
Abstract
Recently, many AI researchers working on interac-
tive storytelling systems have turned to off-the-
shelf game engines for simulation and visualization
of virtual 3D graphical worlds. Integrating AI re-
search into game engines can be difficult due to the
fact that game engines typically do not use sym-
bolic or declarative representations of characters,
settings, or actions. This is particularly true for in-
teractive storytelling applications that use an AI
story controller to subtly manipulate a virtual world
in order to bring about a structured narrative ex-
perience for the user. In this paper, I describe a
general technique for translating between an arbi-
trary game engine’s proprietary and procedural
world state representation into a declarative form
that can be used by an AI story controller. The
work is placed in the context of building a narra-
tive-based training simulation.

1 Introduction
Interactive storytelling systems are applications in which a
story is presented to a user in such a way that the user has
the ability to affect the direction and possibly even the out-
come of story. The ability of the user to impact the story arc
and outcome suggests a branching story structure [Riedl and
Young, 2005]. Advanced 3D graphics rendering capabili-
ties, such as those found in modern computer games, makes
it possible and even desirable to implement interactive sto-
rytelling by situating the user in a 3D graphical story world.
In this approach, the user, through her avatar, is a character
in the story and is able to interact with the environment and
other characters and possibly even play a role in the plot.

Computer games are perhaps the most pervasive example
of an interactive storytelling system. However, in computer
games, the user’s interactivity with the world is typically
bounded in such a way that the user’s actions do not actually
have an impact on the story arc. That is, computer games
use story to motivate action but typically have little or no
branching.

AI techniques have been applied to the problem of inter-
active storytelling for entertainment and training. A com-
mon technique among AI research in interactive storytelling

is to separate the AI story control elements from the graphi-
cal, virtual world. An automated story director – often re-
ferred to as a drama manager [Kelso, Weyhrauch, and
Bates, 1993] – is responsible for keeping the user and any
non-player characters (NPCs) on track for achieving a par-
ticular narrative-like experience. An automated story direc-
tor maintains a representation of the structure that the emer-
gent user experience is expected to conform to and exerts
influence over the user, the virtual world, and the NPCs in
order to achieve this. Examples of interactive storytelling
systems that use some notion of an automated story director
are [Weyhrauch, 1997], [Mateas and Stern, 2003], [Szilas,
2003], [Young et al., 2004], and [Magerko et al., 2004].
Some interactive storytelling systems such as [Cavazza,
Charles, and Mead, 2002] do not use an explicit story direc-
tor. Instead, such systems rely on story to emerge from the
behaviors of the NPCs and the user [Aylett, 2000].

Recently, many AI researchers working on interactive
storytelling systems have turned to off-the-shelf game en-
gines for simulation and visualization of virtual 3D graphi-
cal worlds (e.g. [Cavazza, Charles, and Mead, 2002], [Seif
El-Nasr and Horswill, 2003], [Young et al., 2004], and
[Magerko et al., 2004]). Game engines provide sophisti-
cated graphical rendering capabilities with predictable frame
rates, physics, and other advantages so that AI researchers
do not need to devote resources to “reinventing the wheel.”

Integrating AI research into game engines can however
be difficult due to the fact that game engines typically do
not use symbolic or declarative representations of charac-
ters, settings, or actions [Young and Riedl, 2003]1. Action
representations for many game engines such as first-person
shooters are expressed as “micro-actions” – mouse clicks,
key presses, etc. – and state representations are based on
continuous vector positions, rotations, velocities and “flag”
variables. AI character or story controllers such as
[Cavazza, Charles, and Mead, 2002], [Young et al., 2004],
and [Magerko et al., 2004] use declarative, symbolic repre-
sentations of character, world, and story state. For example,
Walk(agent1, loc1, loc2) is a discrete action and (at

1 One exception is the commercial game described in [Orkin,
2004], which uses both proprietary and symbolic world state repre-
sentations.

Towards Integrating AI Story Controllers and Game Engines: Reconciling World
State Representations

Mark O. Riedl
Institute for Creative Technologies
University of Southern California

13274 Fiji Way, Marina Del Rey, CA 90292 USA
riedl@ict.usc.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Towards Integrating AI Story Controllers and Game Engines:
Reconciling World State Representations

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California,Institute for Creative Technologies,13274 Fiji
Way,Marina del Rey,CA,90292

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

agent1 loc1) is a discrete term partially describing the
world state.

AI technologies often use declarative and/or symbolic
representations of the virtual environment, simplifying the
world to only the aspects that are necessary for computation.
Declarative representation facilitates robust reasoning about
the simulation state such as regressive problem solving (e.g.
planning and re-planning), predictive analysis (e.g. predict-
ing plan failure), user goal recognition, agent belief-desire-
intention modeling, and others. As far as automated story
direction is concerned, [Young, 1999] describes the advan-
tages of using a declarative, partial-order plan representation
for narrative: (a) causal dependencies between actions en-
sure that all events are part of causal chains that lead to the
outcome; (b) planning algorithms are general problem-
solvers that “solve the problem” of piecing together the
events of a narrative that achieves a particular outcome; and
(c) story plans can be repaired by replanning to allow inter-
activity.
 For an AI character or story controller to be closely inte-
grated with a proprietary game engine, the AI system must
transform the proprietary non-declarative world state in the
game engine into a declarative form. For example, Mimesis
[Young et al., 2004] overrides the game engine’s user input
routines in order to detect discrete user actions. The discre-
tized user actions are correlated with plan operators that
have declarative preconditions and effects with which to
reason about changes to the world wrought by the user. Not
all AI controllers use plan operator representations.

The remainder of the paper is laid out as follows. In Sec-
tion 2, we describe a generic architecture for an interactive
storytelling system. In Section 3, we describe a general
technique for translating proprietary and procedural world
representation from an arbitrary game engine into a declara-
tive form that can be used by AI controllers such as auto-
mated story directors and autonomous agents. In Section 4,
we briefly describe a narrative-based training simulation
that motivates the need for the integration of an automated
story director and autonomous agents with an arbitrary
game engine.

2 A Generic Interactive Storytelling Archi-
tecture

A generic architecture for an interactive storytelling system
is given in Figure 1. The architecture is based around a
game engine and one or more AI controllers. AI controllers
can be automated story directors or autonomous agents.
Autonomous agents control the decision-making processes

of non-player characters (NPCs). Even though a virtual
world contains non-player characters, it is not necessarily
the case that there must be an AI controller for each NPC.
An automated story director, in addition to maintaining a
branching narrative model, can be implemented such that it
also directs the behaviors of NPCs, as in [Young et al.,
2004]. If there is an automated story director, there is typi-
cally only one director. There does not necessarily have to
be an automated story director for there to be interactive
storytelling, as in [Cavazza, Charles, and Mead, 2002].

The game engine can be any game or simulation system
that supports or can be extended to support interface to the
automated story director and the virtual actors. Figure 1
refers to the game engine as an extended game engine be-
cause of its support for AI controllers. The game engine
extensions are described in further detail in the next section.
In general, the game engine is responsible for simulating a
virtual world plus graphical presentation of the virtual world
to the user who is embodied by an avatar. Each non-player
character (NPC) that the trainee will be expected to interact
with is represented graphically in the game engine as a bot.
A bot is a physical manifestation of an NPC based on the
proprietary graphical rendering of the character’s body in
the virtual world. Aside from processes for rendering, ani-
mating, and low-level path-planning, there is little or no
intelligence in the bot. The higher-level intelligence of an
NPC is relegated to one of the AI controllers that receive
updates from the virtual world and issues control commands
to bots.

It is possible – and sometimes even desirable – for the
various AI controllers to communicate with each other to
coordinate behaviors and world representations. For the
remainder of this paper, we shall assume that all the AI con-
trollers in an interactive storytelling system use the same
world state representations and it is only the game engine
that does not. Furthermore, we shall assume that there is at
least one AI controller that is an automated story director.

3 A Middleware Substrate for Integrating a
AI Controllers into a Game Engine

In the generic architecture for an interactive storytelling
system described in the previous section, the automated
story director and any autonomous agents are assumed to
use a shared declarative representation of world state. The
game engine, however, is not assumed to use a world state
representation that is deterministic or shared with the other
components. In fact, it is assumed that the game engine
does not use a declarative representation! However, it is
vital that the AI controllers are aware of the state of the
simulation in the game engine. An automated story director,
in particular, must be aware of the changes to the world
state that are caused by the actions of the user. Agents must
also be aware of changes in the world state to be able to
react appropriately and believably. The solution to reconcil-
ing world state representations between an arbitrary game
engine and AI controllers described here is motivated by the
generic architecture. However, it is our belief that the solu-

Extended
Game

Engine
Avatar Bot2 acts

vis.

Bot1

AI Controller0

Figure 1: Generic architecture for an interactive storytelling
system.

AI Controller1 AI Controller2

tion is general enough to apply to other interactive storytel-
ling systems.
 The procedural, non-declarative state representation
maintained by the game engine must be translated into a
declarative representation shared by the automated story
director and the actors. One way to transform the game
engine’s representation into a declarative form is through a
middleware substrate that interfaces directly with the game
engine through scripting or through an API such as that pro-
posed in [van Lent, 2004]. A middleware approach may be
inappropriate for computer game production where AI is
only guaranteed a small portion of a computer’s processing
time and efficiency is therefore essential. However, AI
game research is not necessarily beholden to production
constraints. Researchers in automated story direction often
resort to a distributed architecture where graphical and
simulation processing occurs on one computer while AI
processing occurs on one or more other computers. In this
case, a middleware solution is favorable because it abstracts
away the procedural nature of the game engine and allows
AI researchers to focus on theories, algorithms, and cogni-
tively plausible representations of narrative.

The proposed middleware substrate implements state de-
tectors and proprioceptive detectors that efficiently access
the game engine’s proprietary state variables (such as object
locations, rotations, velocities, flags, etc.) to derive discre-
tized information about the game engine and push that in-
formation to any system modules that request updates. Fig-
ure 2 shows a conceptualization of the middleware sub-
strate.

3.1 State Detectors
State detectors determine if discrete state declarations are
true or false. For each atomic, ground sentence used by the
automated story director or an autonomous agent to repre-
sent some aspect of world state, there must be a detector that
can recognize whether it is true or not in the simulation.
Note that for efficiency purposes a single state detector can
be responsible for more than one fact.

An example of a state detector is one that determines
whether (in-speaking-orientation user ?npc) is
true for some non-player character in the world, meaning
the NPC and player are close by, facing each other, etc.
When a sentence of this form is true, the player and agents

can engage in conversation (either can take the initiative).
This world state can be important to agents who need to
know if they can engage the user in dialogue and to an
automated director if the story requires some conversational
exchange between user and another character before the
story can continue. Whether a sentence of this form is true
or not can be computed from the distance between the user’s
avatar and the bot and the directional orientation of avatar
and bot towards each other. A single detector can be re-
sponsible for determining whether the relationship holds or
does not hold for all NPCs in the world, as opposed to state
detectors for each NPC.

3.2 Proprioceptive Detectors
Proprioceptive detectors apply only to the user’s avatar and
are used to determine if the user has performed certain dis-
crete actions. The purpose of a proprioceptive detector is
for the user’s avatar to declare to listening AI controllers, “I,
the user’s avatar, have just performed an action that you
might have observed.” Bots do not need proprioceptive
detectors because their behavior is dictated by an AI con-
troller; success or failure of bot behaviors can be confirmed
by comparing the expected world state changes with actual
world state changes. Agents can be made aware of each
others’ observable actions through direct back-channel
communication.

An example of a proprioceptive detector is one that de-
termines when the user has moved from one discrete loca-
tion in the world to another. That is, it determines whether
the declarative action Walk(user, ?loc1, ?loc2) has
been performed. This declaration can be important to
agents who observe the user leaving or arriving. This decla-
ration can also be important for an AI controller such as an
automated director that needs to know about the effects of
the action: (at user ?loc2) and ¬(at user ?loc1).
However, this information can be derived through state de-
tectors as well without concern for how those effects were
achieved (e.g. Walk versus Run).

3.3 Detector Integration with the Game Engine
While state changes can be determined from discrete action
representations such as those used in planning systems, the
purpose of detecting user actions is primarily for sensor
input to the autonomous agent AI controllers. When NPCs
and the user interact, the agents will need to know the ob-
servable actions that the user performs, whether they are
physical or discourse acts, instead of inferring them from
local world state changes. State detectors, however, are still
necessary above and beyond proprioceptive detectors be-
cause the user’s input into the game engine is through “mi-
cro-actions” – mouse clicks, key presses, etc. Many micro-
actions string together to produce discrete actions. How-
ever, it may be the case that the user performs micro-actions
that change the world state but are not aggregated into a
recognizable discrete action. Thus, it is possible for the
simulation state in the game engine to become out of sync
with that of the story director and the actors. One solution
is to define discrete action representations at a finer level of

Game
Engine

Avatar Bot2 Bot1

Middle-
ware Detector1 Detector2 Detectorn…

Director Agent1 Agent2

Detector3

Figure 2: Middleware for detecting and translating game
engine world state.

detail. The approach advocated here is to detect high-level
actions that are necessary for user-agent interactions and
allow state detectors to fill in the rest.

 It is possible to integrate symbolic and procedural rep-
resentations. Orkin [2004] describes a technique for indi-
vidual AI characters to perform real-time, goal-oriented
planning in a game engine using action representations that
combine both symbolic preconditions and effects with pro-
cedural preconditions and effects. However, it is not clear
whether such a technique could be applied to an AI story
director since a story director does not directly act in the
world as an AI character does. We believe the middleware
substrate approach advocated in this paper to be more gen-
eral and flexible.

4 Towards a Narrative-based Training Simu-
lation

In this section, we describe an interactive storytelling sys-
tem built on top of a game engine that uses a multitude of
AI controllers, including an automated story director and
several autonomous agents. The various types of AI con-
trollers use different AI technologies and consequently have
different declarative world representations. The middleware
substrate approach is capable of meeting all of the informa-
tion requirements of the heterogeneous collection of AI con-
trollers without requiring any to be tightly integrated with
the game engine. The following discussion describes the
purpose of the system and motivates the necessity of having
different types of AI controllers operating simultaneously.

The interactive storytelling system we describe here is a
narrative-based training simulation. Simulations have been
used for training skills and situation awareness. For training
tacit knowledge such as the operational and procedural
skills required for adaptive military leadership, it is advan-
tageous to situate the trainee in a realistic environment. A
virtual reality simulator is a good start. However, it is ad-
vantageous that trainees are situated in an environment
whose situational evolution is directed. The advantages are
that the trainee can be exposed to a larger context, multiple
learning objectives can be strung together in a particular
order, and the trainee can gain valuable experience in deal-
ing with successions of problems that are interrelated in a
lifelike manner (instead of running separate, and thus dis-
joint, training exercises). Since pure simulations are open-
ended, there is no guarantee that the world will evolve in a
sustainable manner. That is, the structure of the trainee’s
experience is not guaranteed to contain certain events or
situations after the first few actions. The actions of the
trainee and any autonomous agents can cause the world to
evolve in a way that is undesirable from the perspective of
the trainee being exposed to situations of pedagogical value.

4.1 Story Control for Training
Our narrative-based training simulation uses a high-level AI
control structure to try to manipulate a simulation such that
the world state, at least at a high level of abstraction,
evolves in way that corresponds to a given model of narra-

tive. The way in which this is achieved is necessarily dif-
ferent from more entertainment-oriented interactive storytel-
ling systems. One difference between training and enter-
tainment applications is that the trainee must learn about
second- and third-order effects of their actions, meaning that
it is important for realistic emergence of situation. An en-
tertainment application can ignore the effects on the world
that do not contribute to the story. This emergence [Aylett,
2000] must be carefully balanced against the overarching,
high-level narrative model of the story director.

A second difference between training and entertainment
applications of interactive storytelling is that in systems for
training the AI story controller should be relatively resilient
to branching. That is, the given high-level narrative model
achieves a certain sequence of learning objectives that has
pedagogical value. Branching to alternative narrative arcs
should be possible, but only when absolutely necessary.
Furthermore, any alternative narrative branch should be as
similar as possible to the original narrative model and con-
tain the same pedagogical value. Branching story in enter-
tainment applications only require the consequent alterna-
tive narrative branches to have entertainment value and can
consequently deviate more in order to comply with the ap-
parent desires of the user.

A third difference between training and entertainment ap-
plications of interactive storytelling is that in systems for
training, the automated story director should not intervene
with the actions of the trainee. This is important because
one does not want the trainee to learn that certain incorrect
or inappropriate actions are okay because they will be
caused to fail. It is also important for the trainee to learn
from her mistakes, even if it means “game over.” This is in
contrast to [Young et al., 2004] which describes an enter-
tainment-oriented interactive storytelling system that is ca-
pable of subtly intervening with user actions to preserve the
content of the narrative. For training, user actions that are
not in accordance with the narrative model should either
cause an alternative branch to be taken or result in failure
with feedback about what was wrong.

4.2 Architecture for a Narrative-Based Training
Simulation

We believe that we can achieve the nuances of interactive
storytelling for training purposes with a combination of
automated story direction and semi-autonomous agents.
The heterogeneity of AI controllers makes a middleware
approach to integration with a game engine desirable. The
architecture for the narrative-based training simulation is
given in Figure 3.

The three main components to the architecture are: the
game engine, the automated story director, and the semi-
autonomous virtual actors. The game engine is any game
engine or simulation that includes the middleware substrate
for interfacing with an automated story director and AI
characters. The automated story director is an AI controller
that has a branching narrative model and is capable of de-
termining whether the simulation state in the game engine
matches – or at least is not contradictory to – the narrative

model. Additionally, the automated story director is capable
of manipulating the extra-diegetic effects of the game en-
gine as well as the semi-autonomous virtual actors. Extra-
diegetic aspects of the game engine are those involving the
visualization of the world such as music, cinematography
(e.g. [Jhala, 2004]), and lighting (e.g. [Seif El- Nasr and
Horswill, 2003]), and not the actual simulation state.
 Each non-player character (NPC) that the trainee will be
expected to interact with is represented by a pairing of two
components: a bot and an AI controller called an actor.
Bots are described in Section 2. An actor2 contains within it
an autonomous agent decision-making process that has be-
liefs, desires, and intentions and uses sensors to react to the
environment as it attempts to achieve its intentions. Exam-
ples of AI character technologies that have been applied to
animated, virtual agents are Soar [Rickel et al., 2002], HAP
[Loyall, 1997], ABL [Mateas and Stern, 2003], and hierar-
chical task networks [Cavazza, Charles, and Mead, 2002].
We do not make any commitment to the type of agent tech-
nology used in the narrative-based training simulation ex-
cept that the agent decision-making process is wrapped in
additional logic that is aware of the narrative goals of the
automated director and is directable. A directable agent is
one whose behavior and reasoning can be manipulated by an
external process [Blumberg and Galyean, 1995; Assanie,
2002]. The actor itself is aware of the narrative goals of the
automated director and takes direction from the automated
director. Direction from the automated director takes one of
two forms:

• Direction to achieve some world state that is desirable
to the automated director and moves the plot forward.

• Direction that constrains the internal, reactive decision-
making process – which is only aware of its own be-
liefs, desires, intentions and sensory input from the
environment – from choosing actions, behaviors, or

2 Gordon and van Lent [2002] lay out the pros and cons of agents
that are realistic models of humans versus agents that are actors.

dialogue that contradicts or invalidates the automated
director’s narrative model.

Both types of direction are essential. The first type of direc-
tion is the primary mechanism through which the automated
director pushes a story forward and is necessary because the
actors cannot be relied on to autonomously make decisions
that are always favorable to the automated director. The
second type of direction is important in any situation where
actors do have some autonomy to form and reactively pur-
sue their own goals. Autonomy means that actors can po-
tentially choose actions, behaviors, or dialogue that contra-
dicts the narrative model of the automated director and even
make it impossible for the narrative and all of its branches to
continue coherently.
 The final component in Figure 3 is a blackboard. Rist,
André, and Baldes [2003] demonstrate a blackboard to be an
effective channel of communication between autonomous
agents and story directors. Here, the blackboard serves two
purposes. First it contains a specific world state that is
shared between the director and the actors. Note that this
world state may be different than the world state held by the
actor’s internal agent processes because the internal agent
processes are responsible for reacting to local environmental
conditions and should not necessarily be aware of things
outside the scope of its senses. Actors only receive state
updates and knowledge about user avatar actions that are
within range of the bots’ senses and necessary for reactivity
within the environment. The blackboard, however, contains
a global representation of the entire virtual world, including
the internal state of all the NPCs. This privileged informa-
tion is only accessible to the directable processes that wrap
the autonomous agent decision-making processes.

The second purpose of the blackboard is a communica-
tion channel between the automated story director and the
actors. In particular, the director sends directives to the ac-
tors so that they will achieve certain world states that are
advantageous to the narrative development as well as con-
straints so that the actors do not perform actions that make it
impossible for the plot to advance. Conceivably, actors can
also communicate amongst themselves to coordinate their
performances.

5 Conclusions
In an interactive storytelling system such as the narrative-
based training simulator described here, the graphical ren-
dering of the virtual world and story world characters is
separate from the AI control processes for story direction
and agent decision-making. Game engines notoriously use
proprietary and procedural representations for world state
whereas AI controllers such as an automated story director
often use declarative and/or symbolic world state represen-
tations. The approach presented here is a middleware sub-
strate that uses actor and state detectors to produce declara-
tions about the simulation world state and push state
changes onto the story director and autonomous actors.
While this approach is taken in the context of the architec-
ture for a narrative-based training simulator, the middleware

Game
Engine

Avatar Bot2 acts

vis.

Bot1

 Actor1

Agent

 Actor2

Agent

Director

Exec.
Monitor

Branching Narrative Model

Blackboard

Figure 3: Architecture for a narrative-based training simula-
tor.

Middleware
substrate

data requests

extra-
diegetic
control

updates updates updates acts

acts

substrate approach is expected to be general enough to be
applicable to many interactive storytelling systems.

Acknowledgements
The project or effort described here has been sponsored by
the U.S. Army Research, Development, and Engineering
Command (RDECOM). Statements and opinions expressed
do not necessarily reflect the position or the policy of the
United States Government, and no official endorsement
should be inferred.

References
[Assanie, 2002] Mazin Assanie. Directable synthetic charac-

ters. In Proceedings of the AAAI Spring Symposium on
Artificial Intelligence and Interactive Entertainment,
2002.

[Aylett, 2000] Ruth Aylett. Emergent narrative, social im-
mersion and “storification.” In Proceedings of the 1st In-
ternational Workshop on Narrative and Interactive
Learning Environments, 2000.

[Blumberg and Galyean, 1995] Bruce Blumberg and Tinsley
Galyean. Multi-level direction of autonomous agents for
real-time virtual environments. In Proceedings of
SIGGRAPH, 1995.

[Cavazza, Charles, and Mead, 2002] Marc Cavazza, Fred
Charles, and Steven Mead. Planning characters’ behav-
iour in interactive storytelling. Journal of Visualization
and Computer Animation, 13: 121-131, 2002.

[Gordon and van Lent, 2002] Andrew Gordon and Michael
van Lent. Virtual humans as participants vs. virtual hu-
mans as actors. In Proceedings of the AAAI Spring Sym-
posium on Artificial Intelligence and Interactive Enter-
tainment, 2002.

[Kelso, Weyhrauch, and Bates, 1993] Margaret Kelso, Peter
Weyhrauch, and Joseph Bates. Dramatic presence. Pres-
ence: The Journal of Teleoperators and Virtual Envi-
ronments, 2(1), 1993.

[Jhala, 2004] Arnav Jhala. An Intelligent Cinematic Camera
Planning System for Dynamic Narratives. Masters The-
sis, North Carolina State University.

[Loyall, 1997] Brian Loyall. Believable Agents: Building
Interactive Personalities. Ph.D. Dissertation, Carnegie
Mellon University, 1997.

[Magerko et al., 2004] Brian Magerko, John Laird, Mazin
Assanie, Alex Kerfoot, and Devvan Stokes. AI charac-
ters and directors for interactive computer games. In
Proceedings of the 16th Innovative Applications of Artifi-
cial Intelligence Conference, 2004.

[Mateas and Stern, 2003] Michael Mateas and Andrew
Stern. Integrating plot, character, and natural language

processing in the interactive drama Façade. In Proceed-
ings of the 1st International Conference on Technologies
for Interactive Digital Storytelling and Entertainment,
2003.

[Orkin, 2004] Jeff Orkin. Symbolic representation of game
world state: Towards real-time planning in games. In
Proceedings of the AAAI Workshop on Challenges in
Game Artificial Intelligence, 2004.

[Rickel et al., 2002] Jeff Rickel, Jon Gratch, Randall Hill,
Stacy Marsella, David Traum, and Bill Swartout. To-
ward a new generation of virtual humans for interactive
experiences. IEEE Intelligent Systems, July/August
2002.

[Riedl and Young, 2005] Mark Riedl and R. Michael
Young. From linear story generation to branching story
graphs. In Proceedings of the 1st Conference on Artificial
Intelligence and Interactive Digital Entertainment, 2005.

[Rist, André, and Baldes, 2003] Thomas Rist, Elisabeth
André, and Stephen Baldes. A flexible platform for
building applications with life-like characters. In Pro-
ceedings of the 2003 International Conference on Intel-
ligent User Interfaces, 2003.

[Seif El-Nasr and Horswill, 2003] Magy Seif El-Nasr and
Ian Horswill. Real-time lighting design for interactive
narrative. In Proceedings of the 2nd International Con-
ference on Virtual Storytelling, 2003.

[Szilas, 2003] Nicolas Szilas. IDtension: A narrative engine
for interactive drama. In Proceedings of the 1st Interna-
tional Conference on Technologies for Interactive Digi-
tal Storytelling and Entertainment, 2003.

[van Lent, 2004] Michael van Lent. Combining gaming and
game visualization with traditional simulation systems.
Invited talk at the Serious Games Summit, 2004.

[Weyhrauch, 1997] Peter Weyhrauch. Guiding Interactive
Fiction. Ph.D. Dissertation, Carnegie Mellon University.

[Young, 1999] R. Michael Young. Notes on the use of plan-
ning structures in the creation of interactive plot. In Pro-
ceedings of the AAAI Fall Symposium on Narrative Intel-
ligence, 1999.

[Young and Riedl, 2003] R. Michael Young and Mark
Riedl. Towards an architecture for intelligent control of
narrative in interactive virtual worlds. In Proceedings of
the 2003 International Conference on Intelligent User
Interfaces, 2003.

[Young et al., 2004] R. Michael Young, Mark Riedl, Mark
Branly, Arnav Jhala, R.J Martin, and C.J. Saretto. An ar-
chitecture for integrating plan-based behavior generation
with interactive game environments. Journal of Game
Development, 1: 51-70, 2004.

