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Purpose of review

The increase in obesity in developed societies drives

interest in the interplay of energy intake, metabolic energy

expenditure, and body energy stores. A better

understanding of energy management in physically active

and undernourished humans should help guide strategies

to manage obesity safely and effectively. This review

focuses on field studies of men and women engaged in

prolonged strenuous activities, ranging from ranger training

to extreme expeditions.

Recent findings

Although scientifically unconventional and limited, field

studies of exercise and food deprivation have yielded

interesting findings: 4–5% body fat is the normal lower limit

to fat reserves in physically active underfed young adult

men, and in response to exercise and underfeeding, women

used more fat mass and less fat-free mass to meet

metabolic fuel requirements.

Summary

Field studies have shown that fat energy reserves in young

adult men can be estimated as percentage body fat minus

5%, and initial body fat mass has a significant positive

influence on fat oxidation rates per kilogram of fat-free mass

during rapid weight loss associated with underfeeding and

exercise. Data logging pedometers, activity monitors, global

positioning systems, and wireless body and personal-area

networks promise to make it easier to study and care for

free-living humans.
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Introduction
Highly motivated athletes, soldiers, and adventurers rou-

tinely participate in activities that demand near-maximal

rates of sustained metabolic energy production. For both

practical and ethical reasons, field studies are often the

only way to study these individuals. We review studies of

some of the more extreme events, focusing on field

studies of soldiers in training. Additional information

on the nutritional factors influencing the physical and

mental performance of military personnel under extreme

environmental conditions is provided by the National

Academy of Sciences [1].

Scientists have studied soldiers in training in the hope of

better understanding how exercise and food restriction

impact health and physical performance [2]. The classic

Minnesota starvation study [3] documented weight

loss, body composition and physiological changes over

24 weeks in a group of largely sedentary normal male

subjects. The effects of underfeeding have also been

investigated in soldiers participating in military training

courses in which study durations are shorter, at 3–62 days,

and sleep deprivation and sustained physical activity are

added stressors. Study populations range from Norwegian

cadets participating in a training course that involves a

week of food and sleep deprivation and approximately

23 h/day of marching and other activities [4,5,6�], to

soldiers participating in 8 weeks of physically demanding

US Army Ranger training, in which sleep is restricted to

4 h/day and food is in short supply [7,8]. Others have

studied long-range patrols by Swedish ski troops [9], hot

weather training by Zimbabwean recruits [10], and a

variety of other extremes [11–15] (see Table 1).

Norwegian ranger training
The dramatic physiological effects of 7 days of strenuous

exercise, approximately 1 h/day of sleep and little food on

the endocrine status and body composition of Norwegian

military academy cadets have been studied by Opstad

and colleagues [5,6�,16]. The markedly negative energy

balance, and not sleep deprivation, appeared to be the

primary factor driving changes in endocrine status in the

cadets. Substantial reductions in metabolic regulators,

such as insulin, androgens, and thyroid hormones, were

accompanied by compensatory increases in growth hor-

mone and adrenergic responses to exercise [5]. Male

cadets appeared to lose fat from gluteal adipocytes

before abdominal sites, with little change in femoral

fat [16]. Male cadets had total energy expenditures

(TEEs; 27� 2 MJ/day) that exceeded those of the female
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Table 1 Examples of notable field studies of humans engaged in prolonged strenuous activities

Event (ref.) Description
TEE (AEE) (MJ/day;
kJ/kg per day)

Food energy intake
(MJ/day) DEnergy stores (DBW; DFFM) Key findings

Tour de France
bicycle race [11]

Elite male cyclists (n¼4); 22 days
of high intensity exercise; well
fed and normal sleep

DLW 28.4–38.4 MJ/day
(individual)

21.5–27.1 MJ/day free
food; self-reported
food records (26% fat)

DBW �stable Established upper limit of
voluntarily sustainable energy
expenditure (PAL 4.3–5.3)

I/B inaccurate because of
underreported food intake

Norwegian military
training exercise [6�]

Military academy cadets
(n¼10 men & 6 women),
7 days of little or no food &
continuous work (23 h/day)

M 26.6�2.0 W 21.9�
2.0 MJ/day

0.2–1.9 MJ/day Men Characterized endocrine and
immunological responses to
energy restriction and
sustained effort in healthy
young men

M 343�26 W 354�
18 kJ/kg per day

DBW �7.5�1.1 kg

Sex difference in fuel use:
, used more fat and less
FFM than < to meet TEE
needs BUT similar EE/kg
body weight

DFM �3.5�0.7 kg
DFFM �4.0�1.2 kg
%BFfinal 12.7�3.3

Women
DBW �6.0�1.3 kg
DFM �3.4�0.2 kg
DFFM �2.6�1.1 kg
%BFfinal 22.6�4.8 (DEXA)

US Army Ranger
course [7]

Male soldiers (n¼55), 56 days
of 20 h/day work with semi
starvation & continuous work
(20.4 h/day)

DLW 16.7�3.5
(13.1–25.0, depending
on terrain) MJ/day

11.7 MJ/day (34% fat) DBW �12.1�3.4 kg Established normal lower limit
of body fat in healthy young
men with uncomplicated
weight loss

DFM �4.8�2.4

Demonstrated impact of energy
deficit on indices of immune
function

DFFM �7.3�3.2
%BFfinal 5.8�1.8 (DEXA)

G-2 trans-Greenland
expedition [12]

Two fit 25-year-old Norwegian
soldiers; 86-day trek,
3000 km (�9 h/day)

Flat terrain: 14.6,
16.1 MJ/day

25.1 MJ/day DBW �1.1, �8.6 kg Strenuous activity can be
sustained with adequate food
and sleepRugged terrain: 28.3,

34.6 MJ/day

High fat diet (60% fat) DFM �1.6, �7.0 kg

Body composition of subjects
converged with common
tasks & diet

DFFM �0.6, �1.4 kg
%BFfinal 12.7, 13.5 (DEXA)

Zimbabwean
commando
training [10]

Soldiers (n¼8) 12 days of
physically demanding (�8 h/day)
strenuous hot weather activity
(408C avg daytime temp)

DLW 23�4.2 17.0�0.8 MJ/day
(35% fat)

DBW �3.0�0.1 kg Documented negative energy
balance in hot weather trainingI/B 26�2.0 DFM �3.0�0.3

DFFM �0.3�3.0 (skinfolds)

Trans-Antarctic
expedition [13,14]

Two fit adventurers
(48 & 37 years old),
95 days �2300 km
trek across Antarctica

DLW 29.6, 24.1 21.3 MJ/day (57% fat) DBW �24.6, �21.8 kg Demonstrated high level of
voluntarily tolerable rate of lean
mass catabolism in healthy men

I/B 29.07.3 DFM �16.8, �12.5 kg
DFFM �7.8, �9.3 kg
%BFfinal 1.9, 2.5 (UWW)

US Marine Corps
‘Crucible’ recruit
training exercise [15]

Male (n¼29) and female
(n¼20) recruits, 54 h,
high-intensity, moderate
food restriction

M 25.7�0.8 W
19.8�0.6 MJ/day

M 6.0�2.0 MJ/day W
4.8�1.8 MJ/day
(36–37% fat)

Men Men and women performing
similar high intensity activities
had similar PALs and similar
weight-specific EEs

M 350�40 W
340�40 kJ/kg per day

DBW �3.1�0.8 kg
%BFfinal 15.7�3.3

Women
DBW �1.6�0.5 kg
%BFfinal 26.3�3.2 (skinfolds)

AEE, Average energy expenditure; BF, body fat; BW, body weight; DEXA, dual X-ray energy absorptiometry; DLW, doubly labelled water method; EE, energy expenditure; FFM, fat-free mass; FM, fat mass;
I/B, intake/balance method of estimating EE; M, men; PAL, physical activity level¼ TEE/resting metabolic rate; TEE, total energy expenditure; UWW, underwater weighing or hydrodensitometric method of
estimating body composition; W, women.
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Figure 1 Hattori plot illustrating mean (WSD) and individual fat

mass and fat-free mass values for women (triangles) and men

(circles) at the start (solid symbols) and end (open symbols) of

7 days of exercise and starvation in a Norwegian military train-

ing course

9

8

7

6

5

4

3

2

1
12               14               16               18               20               22               24

Fat mass
index (FM/Ht2)

Fat-free mass index (FM/Ht2)

Women

Men
Start

End

Body composition was measured by dual X-ray energy absorptiometry.
The women lost less fat-free mass (FFM) for a given change in fat mass
(FM) than the men. This figure has not been previously published and is
based on data from Hoyt et al. [6�].

Figure 2 Decrease in body fat distribution among a group of

soldiers, in response to 8 weeks of exercise and semi-starvation,

converging on an apparent minimum percent body fat

The three distributions reflect the percentage of body fat obtained by
dual X-ray energy absorptiometry measurements for the same 50 men at
the start of the course and at 6 and 8 weeks. Approximately half of the
men had lost all available fat by week 6 and were dependent on body
protein stores for the remaining 2 weeks. This figure has not previously
been published and is based on data from Friedl et al. [7].
cadets (22� 2 MJ/day), but weight-specific TEEs

(�350 kJ/kg per day), and physical activity levels

(TEE/resting metabolic rate¼�3.5) were similar [6�].

A study of Marine recruits participating in a demanding

physically demanding 54 h training exercise also found

that men and women performing similar high-intensity

activities had similar weight-specific TEEs (men

350� 40 kJ/kg per day; women 340� 40 kJ/kg per day)

[15]. Notably, the relative contribution of fat mass to

TEE among the Norwegian cadets was nearly 90% in the

women compared with 74% in the men, indicating

marked sex differences in fat substrate utilization during

this demanding training [6�]. A Hattori plot of the fat

mass index compared with the fat-free mass (FFM) index

illustrates the differences in body composition and fuel

use between the male and female cadets (Fig. 1), with the

women clearly losing less FFM for a given change in fat

mass than the men. This observation is consistent with a

variety of laboratory studies showing that women use

more fat than men to meet the energy demands of

exercise [17].

United States Army Ranger training
The 2-month-long US Army Ranger training course

provided a prolonged period of exercise and nutritional

privation over which to study endocrine and body

composition changes [7,8,18]. Over 62 days of ranger

training, TEEs averaged 16.7 MJ/day whereas dietary

energy intake was only approximately 11.7 MJ/day. These

motivated young men voluntarily reached the apparent
normal lower limit of 4–5% body fat (fat mass 4� 2 kg;

Fig. 2). We had expected these soldiers to have more

modest energy deficits and perhaps achieve as much as

a 10% body weight loss over the 8-week course. We were

astonished to discover an average 16% loss of body weight,

with an extreme weight loss of 23% in one particularly lean

individual [7]. This rate of weight loss was at least twice

that of the Minnesota starvation study [3], in which male

volunteers were taken to 24% body weight loss over

24 weeks, and half the rate of weight loss reported for

Irish hunger strikers in 1981, in which 10 out of 30 indi-

viduals died at an average 62 days (range 48–72 days to

death) with an average weight loss of approximately 30%

(26–38%) at the time of death [19]. These data suggest that

with prolonged negative energy balance, both the rate of

weight loss and the total amount of body weight lost are

important risk factors.

Although the amount of body weight lost in response to

Army Ranger training was substantial, it reflected an

uncomplicated energy deficit, with no evidence of other

nutritional deficiencies [20]. In addition, grip strength

was unchanged, and general strength capacity only

decreased modestly [21]. Physiological changes in the

Ranger students suggested a shift to increased metabolic

conservation, notably subclinical suppression of the thyr-

oid axis [8], low core body temperatures [22], greater

susceptibility to hypothermia [23], and apparently

increased economy of motion [24]. Except for an

increased susceptibility to bacterial infection associated

with marked effects on indicators of immune function

[24], these young men were surprisingly tolerant of large

energy deficits and loss of body mass.
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Naturally, periods of exercise and energy deprivation that

commonly occur with military field training [25�] need to

be balanced by rest and refeeding [26]. Ranger students,

after 5 weeks of limited physical activity and free food

consumption, were able to recover fully from the approxi-

mately 250 MJ energy deficit and approximately 12% loss

of body mass incurred during the 8 weeks of training.

After recovery, FFM and physical performance returned

to pretraining levels, whereas final fat mass exceeded

initial levels [21].

Underfeeding constraints on voluntary energy
expenditure
Soldiers provided an additional 1.7 MJ/day supplement

during the 8-week Ranger course converted approxi-

mately half of the additional food energy to body energy

stores, and used the remainder to fuel higher energy

expenditure [8]. This presumably reflects a lifting of

the ceiling on TEE that is imposed by inadequate

intakes, as in studies of undernourished Columbian

school children playing soccer alongside adequately nour-

ished children [27], when energy intake appeared to limit

work performance. Earlier studies of laborers, such as

sugar cane cutters and road builders, also support the idea

that inadequate energy intake constrains energy expen-

diture [2].

Body composition influence on fuel
metabolism
During weight loss in Army Ranger students, the pro-

portion of fat-to-lean mass loss was related to initial

adiposity (R2¼ 0.42; n¼ 105 men with initial 6–26%

body fat), indicating that under conditions of extreme

energy restriction, men preserve lean mass more effec-

tively if they have a greater initial body fat availability

[18]. Whereas the fatter Ranger students derived the

majority of their energy from body fat stores, the contri-

bution of fat mass to fuel needs in the leanest individuals

was only approximately 20% [18]. The positive influence

of initial fat mass on fat oxidation was similarly evident in

the starved and physically active Norwegian cadets, in

whom fat oxidation per kilogram of FFM was correlated

with initial fat mass (R2¼ 0.51) [6�]. In the Army Rangers,

testosterone had little influence on this pattern of weight

loss. Average testosterone levels were generally depres-

sed and only weakly correlated (R2¼ 0.10) with the ratio

of fat-to-lean loss.

Other consequences of underfeeding and
exercise
In a 3-week study of Swedish ski troops, who had esti-

mated TEEs that reached approximately 26 MJ/day but

only consumed approximately 18 MJ/day of prepackaged

field rations, a preferential sacrifice of fast-twitch type II

muscle fibers was evident [9]. Prolonged exercise alone

does not appear to produce this effect [28]. This
reduction in fast-twitch muscle fibers is probably a con-

sequence of a decline in activity in the thyroid axis [29],

as has been noted in field studies of prolonged work with

inadequate dietary intakes [8,30]. Similar findings are

evident in obese patients on a very low calorie diet

[31]. Other metabolic changes, such as a progressive

increase in total cholesterol levels in the Ranger students

and increasing insulin resistance in Norwegian cadets,

may be related to other counterregulatory mechanisms

directed towards preserving lean mass in the face of large

energy deficits [8,32].

In a study of soldiers participating in 5 days of French

commando training in the Pyrenees, serum testosterone

and insulin concentrations progressively declined with

decreasing energy intake (the diets provided 7.5, 13.4, or

17.6 MJ/day) and increasing weight losses; plasma free

fatty acids and b-hydroxybutyrate were elevated in the

group with the greatest deficit [33]. In the Norwegian

cadets, 5 days of continuous work without food produced

marked increases in free fatty acids and b-hydroxybuty-

rate that became even more pronounced in response to

bicycle exercise on days 3 and 5 [34]. Circulating insulin-

like growth factor 1 (IGF-1) appears to be a key metabolic

marker of hypocaloria, or more specifically, protein intake

and anabolic status. In the Ranger studies, IGF-1

declined substantially [8], but in a shorter-term laboratory

study simulating sustained military operations [35],

IGF-1 appeared to reflect a more complicated balance

of exercise, macronutrient intakes, and energy balance.

The physiological responses to hypocaloria, such as elev-

ated growth hormone, increased insulin resistance, and a

shift to increased fat utilization, appear to be enhanced by

concurrent physical activity.

Exercise, diet and reproductive function
Controlled laboratory studies of normal women have

forced a reconsideration of dogma that high intensity

exercise suppresses reproductive function [36]. These

recent studies clearly indicate that luteinizing hormone

pulsatility is affected by energy deficits and not by

exercise per se. This is consistent with observations that

menstrual dysfunction is not more prevalent in elite

female athletes during periods of high-intensity training

[37]. Female army recruits working at a lower exercise

intensity, with TEEs averaging 11.7 MJ/day, also do not

have an increase in menstrual dysfunction, even among

the large subset of these women who had in excess of 35%

body fat and lost more than 3 kg of fat weight (as

measured by dual X-ray energy absorptiometry) over

the 2 months of military training [38]. The observations

of Loucks [39] will help ensure that women are not

excluded from high physical demand job specialties on

the basis of concerns for reproductive health or potential

bone loss. More importantly to this review, these findings

can be used in designing weight loss routines that have a
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minimal impact on reproductive function. The role of

macronutrient composition on reproductive function has

been examined, and even for women training intensely,

carbohydrate intake and not protein consumption

appears to be a key driver of the observed changes.

Extreme treks
We have learned from studies of individuals that ade-

quate nutrition is essential to physiological wellbeing at

high levels of energy expenditure. On one hand, Mike

Stroud and Ranulph Fiennes did not ingest enough food

(21.3 MJ/day) and suffered more than 20 kg weight losses

over the course of their harsh 2300 km crossing of the

Antarctic continent [13,14], whereas Rune Gjeldnes and

Torry Larsen lost little weight and suffered no perform-

ance breakdowns during a 3000 km crossing of Greenland

while consuming at least 25.1 MJ/day in soy oil and

oatmeal [12]. The dramatic weight losses and muscle

wasting reported in some trekkers can often be ascribed

to poor planning and misadventures that include

deficient diets. The success of Tour de France cyclists

[11], the Greenland trekkers and others suggests that

an adequate diet and appropriate work/rest cycles can

minimize any degradation in endurance capacity.

New technologies for studying free-living
humans
Pedometry, heart rate monitoring, accelerometry or acti-

graphy, and differential global positioning systems are

among the various methods used individually to charac-

terize TEE, and more specifically the intensity, duration,

and frequency of physical activity. Combining these

methods can yield interesting benefits. For example,

heart rate and foot–ground contact times measured sim-

ultaneously during a brief bout of running can be used to

estimate maximal aerobic capacity accurately [40]. This is

more practical than using a 2-mile maximal effort run time

[41] or laboratory treadmill stress testing, and may be a

useful way to follow changes in aerobic fitness over time.

Similarly, data from multiple accelerometers, placed on

legs, torso, and arms, can be used to estimate metabolic

energy expenditure and identify activities and activity

patterns [42]. In the future, chronic monitoring of free-

living individuals will become more practical as wireless

body area networks eliminate wires and enable real-time

data analysis and remote assessment of physiological

status [43].

Conclusion
Field studies have made important contributions to the

scientific understanding of human energy balance, for

example, by identifying the normal lower limit to body

fat in physically active underfed young men, and helping

to show that men and women have different patterns of

body fat and lean mass loss during exercise and under-

feeding. Future field studies are likely to be fruitful as
scientists apply new methods of quantifying aerobic

fitness and exercise intensity and duration.
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