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ABSTRACT
A majority of the existing algorithms which mine graph
datasets target complete, frequent sub-graph discovery. We
describe the graph-based data mining system Subdue which
focuses on the discovery of sub-graphs which are not only fre-
quent but also compress the graph dataset, using a heuristic
algorithm. The rationale behind the use of a compression-
based methodology for frequent pattern discovery is to pro-
duce a fewer number of highly interesting patterns than to
generate a large number of patterns from which interesting
patterns need to be identified. We perform an experimental
comparison of Subdue with the graph mining systems gSpan
and FSG on the Chemical Toxicity and the Chemical Com-
pounds datasets that are provided with gSpan. We present
results on the performance on the Subdue system on the Mu-
tagenesis and the KDD 2003 Citation Graph dataset. An
analysis of the results indicates that Subdue can efficiently
discover best-compressing frequent patterns which are fewer
in number but can be of higher interest.

1. INTRODUCTION
Recently, an increasing body of research has focused on de-
veloping algorithms to mine graph datasets. A graph rep-
resentation provides a natural way to express relationships
within data. Graph-based data mining expresses data in the
form of graphs, and focuses on the the discovery of interest-
ing sub-graph patterns.

Graph-based data mining has been successfully applied
to various application domains including protein analy-
sis[19], chemical compound analysis[1], link analysis[13] and
web searching[16]. A number of varied techniques and
methodologies have been applied to mining interesting sub-
graph patterns from graph datasets. These include math-
ematical graph theory based approaches like FSG[10] and
gSpan[20], greedy search based approaches like Subdue [2] or
GBI[12], inductive logic programming (ILP) approaches like
WARMR[3], inductive database approaches like MolFea[15]
and kernel function based approaches[8].

Mathematical graph theory based approaches mine a com-
plete set of subgraphs mainly using a support or frequency
measure. The initial work in this area was the AGM[6]
system which uses the Apriori level-wise approach. FSG
takes a similar approach and further optimizes the algo-
rithm for improved running times. gFSG [9] is a variant
of FSG which enumerates all geometric subgraphs from the
database. gSpan uses DFS codes for canonical labeling and
is much more memory and computationally efficient than
previous approaches. Instead of mining all subgraphs, Close-
Graph[21] only mines closed subgraphs. A graph G is closed
in a dataset if there exists no supergraph of G that has
the same support as G. Gaston [14] efficiently mines graph
datasets by first considering frequent paths which are trans-
formed to trees which are further transformed to graphs.
FFSM [5] is a graph mining system which uses an algebric
graph framework to address the underlying problem of sub-
graph isomorphism. In comparison to mathematical graph
theory based approaches which are complete, greedy search
based approaches use heuristics to evaluate the solution.
The two pioneering works in the field are Subdue and GBI.
Subdue uses MDL-based compression heuristics, and GBI
uses an empirical graph size-based heuristic. The empirical
graph size definition depends on the size of the extracted
patterns and the size of the compressed graph. Another
methodology in this field is that of inductive logic program-
ming which has the advantage of the extensive descriptive
power of first-order logic. The first graph-based system to
combine the ILP method with Apriori-like level-wise search
was WARMR. The major advantage of these approaches is
their high representation power. WARMR was used on car-
cinogenesis prediction of chemical compounds [7].

Another promising direction in the field of graph-based data
mining is that of inductive databases which are a new gener-
ation of databases that are not only capable of dealing with
data but also with patterns or regularities within the data.
Data mining in such a framework is an interactive querying
process. The inductive database framework is especially in-
teresting for bioinformatics and chemoinformatics, because
of the large and complex databases that exist in these do-
mains, and the lack of methods to gain scientific knowledge
from them. The pioneer work in this field was the MolFea
system, which is based on the level-wise version space algo-
rithm. MolFea is the Molecular Feature miner that mines
for linear fragments in chemical compounds. Lastly, the
kernel function based approaches have been used to a cer-
tain extent for mining graph datasets. The kernel function
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defines a similarity between two graphs. When high dimen-
sional data is represented in linear space, the function to
learn is difficult in that space. We can map the linear data
to nonlinear space and the problem of learning in that high
dimensional space becomes learning scalar products. Ker-
nel functions make computation of such scalar products very
efficient. Learning in this high dimensional space becomes
difficult. The key is finding efficient mapping functions and
good feature vectors. The pioneering approach that applied
kernel functions to graph structures is the diffusion kernel
[8].

In this paper we present the graph-based data mining sys-
tem Subdue which approaches the problem of mining in-
teresting substructures in graph datasets by finding sub-
graphs which are not only frequent but also compress the
graph dataset. The driving principle of Subdue’s approach
is the use of the minimum description length (MDL) prin-
ciple to evaluate the interestingness of a substructure. The
use of MDL rather than frequency to evaluate a substruc-
ture distinguishes Subdue from all other frequent subgraph
discovery systems. Subdue typically produces a fewer num-
ber of substructures which best compress the graph dataset.
These few substructures which compress the input dataset
can provide important insights about the domain than a
large number of substructures, each of which is frequent,
in the graph dataset. The rest of the paper is organized
as follows. In Section 2 we discuss the Subdue system. In
Section 3 we discuss the suitability of a compression-based
methodology to frequent subgraph discovery. In Section 4
we perform a comparison of Subdue with the graph-based
data mining systems FSG and gSpan on the Chemical Tox-
icity and the Chemical Compounds datasets that are pro-
vided with gSpan. In Section 4 we present Subdue’s results
on Mutagenesis and the KDD 2003 Citation Graph dataset.
Conclusions and future work are presented in Section 6.

2. SUBDUE
Subdue is a graph-based relational learning system. The
work on Subdue is one of the pioneering works in the field of
graph-based data mining. Inputs to the Subdue system can
be a single graph or a set of graphs. The graphs can be la-
beled or unlabeled. Subdue outputs substructures that best
compress the input dataset according to the Minimum De-
scription Length (MDL) [17] principle. Subdue performs a
computationally-constrained beam search which begins from
substructures consisting of all vertices with unique labels.
The substructures are extended by one vertex and one edge
or one edge in all possible ways, as guided by the example
graphs, to generate candidate substructures. Subdue main-
tains the instances of substructures in the examples and uses
graph isomorphism to determine the instances of the candi-
date substructure in the examples. Substructures are then
evaluated according to how well they compresses the De-
scription Length (DL) of the dataset. The DL of the input
dataset G using substructure S can be calculated using the
following formula,

I(S) + I(G|S)

where S is the substructure used to compress the dataset
G. I(S) and I(G|S) represent the number of bits required to

encode S and dataset G after S compresses G. The length
of the search beam defines the number of substructures re-
tained for further expansion. This procedure repeats until
all substructures are considered or user-imposed computa-
tional constraints are exceeded. At the end of the procedure
Subdue reports the best compressing substructures. The fol-
lowing is the algorithm for Subdue’s discovery process,

Subdue(Graph,BeamWidth,MaxBest,MaxSubSize, Limit)

1 ParentList = Null;
2 ChildList = Null;
3 BestList = Null;
4 ProcessedSubs = 0;
5 Create a substructure from each unique vertex label

and its single-vertex instances;
6 Insert the resulting substructures in ParentList ;
7 while ProcessedSubs less than or equal to Limit

and ParentList not empty
8 do
9 while ParentList is not empty

10 do
11 Parent = RemoveHead(ParentList);
12 Extend each instance of Parent

in all possible ways;
13 Group the extended instances

into Child substructures;
14 for each Child
15 do
16 if SizeOf(Child) less

than MaxSubSize
17 then
18 Evaluate the Child ;
19 Insert Child in ChildList in

order by value;
20 if BeamWidth less than

Length(ChildList)
21 then
22 Destroy

substructure
at end of
ChildList ;

23 Increment ProcessedSubs ;
24 Insert Parent in BestList

in order by value;
25 if MaxBest less than Length(BestList )
26 then
27 Destroy substructure

at end of BestList ;
28 Switch ParentList and ChildList ;
29 return BestList ;

The Subdue system provides a user-defined option of per-
forming an inexact graph match in the discovery procedure
described above. This option is useful in the case where sub-
structure instances can appear in different forms throughout
the graph dataset. In this approach, the user can also as-
sign a distortion cost to each graph distortion. A distortion
consists of basic transformations such as insertion, deletion
and substitution of vertices and edges. By determining the
distortion costs, the user can bias the match for or against
particular types of distortions.



The Subdue system also provides a user-defined option of us-
ing the best substructure found in a discovery step to com-
press the input graph by replacing those instances of the
substructure by a single vertex and performing the discov-
ery process on the compressed graph. The process of finding
substructures and compressing the graph can continue un-
til the whole graph is represented by one vertex or the user
imposed constraints are exceeded. This feature generates a
hierarchical description of the graph dataset at various levels
of abstraction in terms of the discovered substructures.

The Subdue knowledge discovery system comes with several
auxiliary programs. Some important programs are Inexact
graph matcher, Minimum Description Length, distributed
MPI Subdue[4] and Subgraph Isomorphism.

3. COMPRESSION-BASED
METHODOLOGY

A common characteristic of a majority of the graph-based
data mining methodologies described above is that they fo-
cus on complete, frequent sub-graph discovery. Complete,
frequent sub-graph discovery algorithms such as FSG and
gSpan are guaranteed to find all subgraphs that satisfy the
user specified constraints. Although completeness is a fun-
damental and desirable property, one cannot ignore the fact
that these systems typically generate a large number of sub-
structures, which by themselves provide relatively less in-
sight about the domain. Typically, interesting substructures
have to be identified from the large set of substructures
either by domain experts or by other automated methods
so as to achieve insights into this domain. Subdue typi-
cally produces a smaller number of substructures which best
compress the graph dataset. These few substructures which
compress the input dataset can provide important insights
about the domain.

We demonstrate this advantage of Subdue’s compression-
based methodology by performing an experimental compar-
ison of Subdue with the graph-based data mining systems
FSG and gSpan on a number of artificial datasets. We gen-
erate graph datasets with 500, 1000, 1500 and 2000 trans-
actions by embedding one of the six substructures shown
in Figure 1. Each of the generated twenty-four datasets (six
different embedded substructures, each with 500, 1000, 1500
and 2000 transactions) have the following properties,

1. 60% of the transactions have the embedded substruc-
ture, rest of the transactions are generated randomly.

2. For all the transactions that contain the embedded
substructure, 60% of the transaction is the embedded
substructure, that is, coverage of the embedded sub-
structure is 60%.

Since each of the twenty-four datasets have the properties
1 and 2 discussed above, it is clear that the embedded sub-
structure is the most interesting substructure in each of the
datasets. Using these datasets we now compare the perfor-
mance of Subdue, FSG and gSpan. For each of the twenty-
four datasets, Subdue was run with the default parameters
and FSG and gSpan were run at a 10% support level. Table

Figure 1: Substructures embedded in the artificial
graph datasets. Datasets are generated by embed-
ding one of the six substructures.

Table 1: Results (Average) on 6 artificial datasets
each with a different embedded substructure.
Number of trans-
actions

Percent times em-
bedded substruc-
ture reported by
Subdue as best

Number of
substructures
generated by
FSG/gSpan

500 66% 233495
1000 83% 224174
1500 83% 217477
2000 78% 217479
Average 79% 223156



Table 2: Runtimes (secs.) on 6 artificial datasets
each with a different embedded substructure.
Number of transac-
tions

FSG Subdue gSpan

500 734 51 61
1000 815 169 107
1500 882 139 182
2000 1112 696 249
Average 885 328 150

1 summarizes the results of the experiments and Table 2 the
runtimes of Subdue, FSG and gSpan.

The results indicate that Subdue discovers the embedded
substructure and reports it as the best substructure about
80% of the time. Both FSG and gSpan generate approxi-
mately 200,000 substructures among which there exists the
embedded substructure. The runtime of Subdue is interme-
diate between FSG and gSpan. Subdue clearly discovers and
reports fewer but more interesting substructures. Although
it could be argued that setting a higher support value for
FSG and gSpan can lead to fewer generated substructures, it
should be noted that this can cause FSG and gSpan to miss
the interesting pattern. We observed that the increase in
run time for Subdue is non-linear when we increase the size
of the dataset. Increase for FSG and gSpan was observed
to be linear (largely because of various optimizations). The
primary reason for this behavior is the less efficient imple-
mentation of graph isomorphism in Subdue than in FSG and
gSpan. A more efficient approach for graph isomorphism,
possibly based on canonical labeling, needs to be developed
for Subdue.

4. COMPARISON OF SUBDUE WITH FSG
AND GSPAN ON REAL-WORLD
DATASETS

We performed an experimental comparison of Subdue with
the graph mining systems gSpan and FSG on the chemical
toxicity and the chemical compounds datasets that are pro-
vided with gSpan. We use these datasets rather than one of
the several datasets studied by Subdue researchers in order
to perform a fair comparison.

The chemical toxicity dataset has a total of 344 transac-
tions. There are 66 different edge and vertex labels in the
dataset. FSG and gSpan results were recorded at 5% sup-
port. We found that, if support is set to a lesser value, large
numbers of random and insignificant patterns are generated.
Table 3 summarizes the results of the experiment. Figure 2
shows the best compressing substructure discovered by Sub-
due. Subdue discovered best-compressing frequent patterns
which were missed by FSG and gSpan. The best substruc-
ture by Subdue compressed 8% more than any of the sub-
structures discovered by FSG and gSpan. It is also observed
that the runtime of Subdue is much larger than that of FSG
and gSpan.

The chemical compounds dataset has a total of 422 trans-
actions. There are 21 different edge and vertex labels in the
dataset. The results for FSG and gSpan were recorded at

Table 3: Results on the Chemical Toxicity Dataset.
Compression achieved by best substructure re-
ported by Subdue

16%

Best compression achieved by any of the substruc-
tures reported by FSG/gSpan

8%

Number of substructures reported by FSG/gSpan 884
Runtime Subdue (secs.) 115
Runtime FSG (secs.) 8
Runtime gSpan (secs.) 7

Figure 2: Best Compressing Substructure Discov-
ered by Subdue on the Chemical Toxicity Dataset.
The lables on the vertices and edges represent the
atom names and bond names. Numbers have been
used to represent atom names and bond names as
gSpan only accepts numerical lables.



Table 4: Results on the Chemical Compounds
Dataset

Compression achieved by best substruc-
ture reported by Subdue

19%

Best compression achieved by any of the
substructures reported by FSG/gSpan

7%

Number of substructures reported by
FSG/gSpan

15966

Runtime Subdue (secs.) 142
Runtime FSG (secs.) 21
Runtime gSpan (secs.) 4

Figure 3: Best Compressing Substructure Dis-
covered by Subdue on the Chemical Compounds
Dataset. The lables on the vertices and edges rep-
resent the atom names and bond names. Numbers
have been used to represent atom names and bond
names as gSpan only accepts numerical lables.

10% support. We found that, if support is set to a lesser
value, large numbers of random and insignificant patterns
are generated. Table 4 summarizes the results of the exper-
iment. Figure 3 shows the best compressing substructures
discovered by Subdue. It is observed that Subdue discov-
ered best-compressing frequent patterns which were missed
by FSG and gSpan. The best substructure found by Subdue
compressed 12% more than any of the substructures discov-
ered by FSG and gSpan. It is also observed that the runtime
of Subdue is much larger than that of FSG and gSpan.

5. EXPERIMENTS ON THE MUTAGENE-
SIS AND KDD 2003 CITATION DATASET

The Mutagenesis dataset[18] has been collected to identify
mutagenic activity in a compound based on its molecular
structure and is considered to be a benchmark dataset for
multi-relational data mining. The Mutagenesis dataset con-
sists of the molecular structure of 230 compounds, of which
138 are labeled as mutagenic and 92 as non-mutagenic. The
mutagenicity of the compounds has been determined by the
Ames Test. The task is to distinguish mutagenic compounds
from non-mutagenic ones based on their molecular structure.
The Mutagenesis dataset basically consists of atoms, bonds,
atom types, bond types and partial charges on atoms. We
ran Subdue on the 138 positive examples in the Mutagenesis
dataset. Figure 4 shows the best compressing substructure
discovered by Subdue which compresses the input data by

Figure 4: Best Compressing Substructure Discov-
ered by Subdue on the Mutagenesis Dataset

Figure 5: Best Compressing Substructures Discov-
ered by Subdue on the KDD 2003 Citation Dataset

40%. The KDD 2003 Citation dataset consists of citation in-
formation from the e-print arXiv, which is the primary mode
of research communication in physics. We constructed a ci-
tation graph from this data in which each paper was denoted
by a single vertex labeled File and a citation between two
papers was denoted by a directed edge. The citation graph
comprised of a total of 29,014 vertices and 342,437 edges.
We ran Subdue on this citation graph. Figure 5 shows the
best compressing substructures discovered by Subdue each
of which compresses the input data by 9%.

6. CONCLUSIONS AND FUTURE WORK
We presented the graph-based data mining system Subdue
which uses a compression-based methodology to frequent
subgraph discovery. Subdue can efficiently discover best-
compressing frequent patterns which are fewer in number
but can be of higher interest. In fact, Subdue may find high-
compressing patterns that are less frequent, and therefore
missed by the purely frequency-based approach. As a part
of our future work we plan to develop better algorithms
for graph isomorphism which will improve the run time of
Subdue. We also plan to implement canonical labels which
would allow implementation of several optimization as in
FSG and gSpan. The use of pre-processing schemes (like
elliminating vertices and edges with single instances) will
also improve the run time of Subdue. Subdue’s run time
and quality of results is sensitive to the parameters beam
and limit. Currently the default values for limit and beam
are set based on the total size of the dataset. In certain
cases this leads to an unsatisfactory performance as in [11].
Determining optimal values for limit and beam parameters
by looking at the graph datasets would be an important
direction of work. We also plan to compare Subdue with



recent graph mining systems such as Gaston an FFSM.

The Subdue source code and related materials can be down-
loaded from http://ailab.uta.edu/subdue.
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