Analytical Study of Sub Terahertz Radiation from Ultrashort Laser Pulse Propagation Streamers

William Page
Laverne Schlie

5 October 2006

Conference Presentation

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

This material is declared a work of the US Government and is not subject to copyright protection in the United States.

AIR FORCE RESEARCH LABORATORY
Directed Energy Directorate
3550 Aberdeen Ave SE
AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776
REPORT DOCUMENTATION PAGE

1. **REPORT DATE (DD-MM-YYYY)**
 05-October-2006

2. **REPORT TYPE**
 Conference Presentation

3. **DATES COVERED (From - To)**
 25-April-2006 - 30-September-2006

4. **TITLE AND SUBTITLE**
 Analytical Study of Sub Terahertz Radiation from Ultrashort Laser Pulse Propagation Streamers

5a. **CONTRACT NUMBER**
 In-House (DF297074)

5b. **GRANT NUMBER**

5c. **PROGRAM ELEMENT NUMBER**
 62605F

5d. **PROJECT NUMBER**
 4866

5e. **TASK NUMBER**
 LU

5f. **WORK UNIT NUMBER**
 03

6. **AUTHOR(S)**
 *William Page, *Laverne Schlie
 William Zimmerman (ITT Engineering Sciences)

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 *AFRL/DELS
 3550 Aberdeen Avenue SE
 Kirtland AFB, NM 87117-5776

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
 Air Force Research Laboratory
 3550 Aberdeen Ave SE
 Kirtland AFB NM 87117-5776

10. **SPONSOR/MONITOR'S ACRONYM(S)**

11. **SPONSOR/MONITOR'S REPORT NUMBER(S)**
 AFRL-DE-PS-TP-2006-1016

12. **DISTRIBUTION / AVAILABILITY STATEMENT**
 Approved for Public Release; Distribution is Unlimited.

13. **SUPPLEMENTARY NOTES**
 2nd EPS-QEOD Europhoton Conference, Pisa, Italy, 12 September 2006. This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. **ABSTRACT**
 A numerical calculation based on Maxwell's equations was made to examine the details of this process. The numerical calculation proceeded from Maxwell's curl equations and included the treatment of the of the polarization current by means of a non linear oscillator model. The oscillator is linear for small displacements but becomes non-linear for large fields where the Kerr Effect is important. The oscillator equations of motion determine a non-linear polarization current that is included as a source term in the Maxwell's equation simulation. This simulation determines the time dependent dipole moment density of the ionization charge distribution. These dipole moments can then be integrated to find the near field and radiation field components of the fields from the standard integrals. The details of these results also show a lower frequency component of the field, but it is still an optical frequency about a factor of 10 lower than the laser frequency. The results do not show the sub terahertz radiation reported in the literature. An interpretation of this is that the measured fields must be very small, coming from second order effects not included.

15. **SUBJECT TERMS**
 Ultra-short laser ionization streamer radiation terahertz

16. **SECURITY CLASSIFICATION OF:**
 a. **REPORT**
 Unclassified
 b. **ABSTRACT**
 Unclassified
 c. **THIS PAGE**
 Unclassified

17. **LIMITATION OF ABSTRACT**
 SAR

18. **NUMBER OF PAGES**
 18

19a. **NAME OF RESPONSIBLE PERSON**
 Laverne Schlie

19b. **TELEPHONE NUMBER (include area code)**
 N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18
Analytical Study of Sub Terahertz Radiation from Ultrashort Laser Pulse Propagation Streamers

William Page
Vern Schlie
US Air Force Research Laboratory

William Zimmerman
ITT Engineering Sciences

CLEARED
FOR PUBLIC RELEASE
AFRL/DEO-RA
19JUL06
Outline

- Ionization streamer formation and propagation synopsis
- "NSLE" propagation ionization numerical simulations
- Reported data and theory
- Analysis of the possibility of radiated fields and corroborating Model
- Maxwell numerical simulations and test case results
- Conclusion and comments
RF Radiation from Laser Filaments

- THz and sub-THz radiation from short pulse laser filaments have been reported.
- Sub-THz radiation from longitudinal plasma filament oscillations has been predicted observations reported by Tzortzakis et al (02).
 - Cheng et al (01) have proposed plasma oscillation mechanism
 - This mechanism has been challenged (Carron, 02)
 - Carron states filament can only radiate from discontinuities when filament starts and stops.
 - Traveling wave model supports Carron's results (Zimmerman, 02)
- At present there is a shortage of quantitative data and no satisfactory theory for observed sub-THz radiation

Comments on this Chart:

Among the interesting phenomena generated by these laser filaments in air is the emission of THz and sub THz electromagnetic radiation. Both near and far field measurements have been made by various investigators. Unfortunately the reported data is qualitative in nature. A model of sub THz radiation was proposed by Cheng et al in which longitudinal oscillations are excited by the laser pulse. This model has been challenged on two grounds. The first is that a traveling current pulse is not expected to radiate except at discontinuities. The second is that the electron neutral collision frequency is on the order of 10^12 sec^{-1} and so sub THz oscillations would be expected to be damped out. At present there does not appear to be a satisfactory model to explain the experimental results
Analysis of Filament Fields

Phase 1: Initial Dipole is Created
- Capacitor is Created
- Electron "Push" Ahead by
- Radiation Pressure
- Ponderomotive Force
- Changing Dipole Moment Creates Radiated Field

Phase 2: Dipole Moves with Laser Pulse Leaving Plasma Trial
- Two Possibilities
 - Capacitor Moves with Uniform Velocity &
 - Trailing Neutral Plasma
 - Electron Moves with Uniform Velocity &
 - Trailing Positive Plasma
- Neither Case Creates Radiation

Phase 3: Dipole Decays
- Both Phase 2 Possibilities Finally Leave Neutral Plasma
- Dipole Creates Radiation as it Diminishes

Comments on this Chart:

1. Initial dipole is created, a radiated field is created since there is a 2nd time derivative of the dipole moment.

2. The pulse propagates, there are only linear rates of dipole moment change so the 2nd derivative of P is zero and there is no radiated field.

3. The dipole is extinguished, a radiated field is produced since there is a 2nd time derivative of the dipole moment.
Diagram of Possible Ionization Streamer Oscillations
from Scaled Plasma Frequency Parameters

\[\frac{A W_p}{c} \]

- Plasma Oscillations Possible
- Plasma Oscillations Critically Damped by Collisions
- Field Expelled before Plasma Can Oscillate

\[\frac{V}{W_p} \]

- \(W_p \) is the plasma frequency
- \(V \) is the collision frequency
- \(a \) is the channel radius
Envelope Equation Approach

Maxwell’s Equations
\[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} \]

Uniform Media
No Free Charge
Wave Equation
\[\left(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \right) \mathbf{E} = \mathbf{S} \]

Field is Slowly Varying Envelope, \(A \), of Single Frequency Sinusoidal Wave
Sources Also Slowly Varying Envelope of Single Frequency Sinusoidal Wave
Expansion of Linear Source Term \(\mathbf{S}_s = \left(\frac{e}{\epsilon} \right) \sum \int \epsilon \omega \frac{d^2 A}{d \omega^2} \)
Transformation from Real to Retarded Time

Envelope Equation
\[\left[\nabla^2 + 2ik_x \frac{\partial}{\partial z} - k_y \beta^2 \frac{\partial^2}{\partial \tau^2} + \gamma |A|^{2} \frac{\partial}{\partial \tau} - \frac{k_y \beta^2}{c^2} \left(\frac{1 - i \nu}{\omega} \right) + \frac{8\pi k_y \beta^{(\gamma)}}{c} \left[|A|^{2} \right]^{\nu} \right] A = 0 \]

Comments on this Chart:
This shows the derivation path from Maxwell’s Equations to the Envelope Equation

1. With Uniform Media and no free charge, Maxwell’s equations becomes the wave equation

2. Envelope approximation, expansion of linear polarization in terms of time derivatives of the envelope and transformation to retarded time gives final envelope equation
Real Time Maxwell Algorithm

Instead of using a wave equation the curl equations are directly solved simultaneously

\[
\nabla \times E = -\dot{B},
\n\nabla \times H = -\dot{D} + J,
\n\]

The media polarization current is determined from a nonlinear oscillator model analyzed (via ODE's) in conjunction with the field time stepping

Using the Yee algorithm the E field and H field meshes are offset in space allowing centered 2nd order curl differencing for finding E or B at a new time step from H or E at the old time

Comments on this Chart:

Start with Maxwell's equations
Yee Algorithm has Electric Field and Magnetic Field offset in space and time
Inclusion of Frequency Dependant Properties
In The Time Domain Calculation

Non nonlinear media are included by solving a simple oscillator equation including both linear and nonlinear terms. Simultaneously carrying this solution provides a polarization current for Maxwell’s Eqs. The oscillator coefficients are determined from optical data.

Maxwell Equation
\[\nabla \times H = -\partial D/\partial t + \sigma \nabla E \]

Oscillator equation of motion
\[\frac{d^2 e}{dt^2} + \delta_0 e + \delta_1 e^2 = \frac{1}{c} \left(L_0 \cdot H_0 - \sigma_1 \cdot E_0 \right) \]

Polarization current
\[j_{\text{polarization}}(Ae^i\omega t) = e \omega^2 e e^i \]

Comments on this Chart:

Solution of Fields are combined with Source term computation
Shows details of mapping between a harmonic oscillator model and the nonlinear effects
Oscillator model
1. Begins with linear part
2. Extended to non-linear (Kerr) effect
3. Finally results in ionized atom
Finite Difference Model ODE's

Electric field ODEs for the elemental cell (Include corresponding Y and Z Terms)

\[\dot{(E_x)}_i = -\left(\frac{\sigma_i}{\varepsilon_i} \right)(E_x)_i - \left(\frac{n_e e}{\varepsilon_i} \right)(v_x)_i - \left(\frac{e}{\varepsilon_i} \right)(p_x)_i, \]

Dielectric/polarization model, \(\dot{v}_x = (v_x)_i \) (Include corresponding Y and Z Terms)

\[(v_x)_i = \left(\frac{e}{m_i} \right)(E_x)_i + \left(\frac{e}{m_i} \right)(<H_z>_i, (v_x)_i - <H_x>_i, (v_x)_i) - (2\gamma)(v_x)_i - (\omega_e^2)x_i + ax_i^2 \]

Dielectric/polarization model, \(\dot{n}_i = S_i \) (Include corresponding Y and Z Terms)

\[(p_x)_i = -\nu_n (p_x)_i + \left(\frac{e}{m_e} \right)(<H_z>_i, (p_y)_i - <H_y>_i, (p_z)_i) + \left(\frac{e}{m_e} \right)(E_z)_i, n_i \]

Ionization model

\[S(e/cm^3-sec) = \frac{dN_e}{dt} = n(N_2)R_{n2}(I/I_T)^{\omega n} + n(O_2)R_{n2}(I/I_T)^{\omega n} \]

Comments on this Chart:

This shows how the physics equations become algebraic equations to be solved

1. The electric field depends on the linear and non-linear sources
2. Bound electrons move under the effects of the electric and magnetic fields as well as the restoring forces of the oscillator model for bound electrons
3. Free electrons move under the effects of the electric and magnetic fields.
4. The equation for the ionization is also shown
Computational Check out problem

A femtosecond pulse propagating in air impinges on a silica slab.

This problem has been calculated to check out the Maxwell formulation and results.

The form of the incident pulse in the finite code checkout calculations is taken to be:

\[E(t) = E_0 \exp\left(\frac{-0.5(t-\tau)^2}{\Gamma^2}\right) \sin(2\pi f_0(t-\tau)) \]

\[\Gamma = 8.333 \text{ fs}, \quad f_0 = 0.3 \text{ pHz}, \quad \tau = 33.33 \text{ fs} \]
Field Propagation Checkout - I

Pulse propagates to right into a thin Si foil

1- Electric field at a fixed point in Si near left side. First incident pulse later reflection from right side.

2- Electric field at a fixed point in center of Si. First is incident pulse later reflection from right side.

Transit times and transmission/reflection coefficients agree with known values
1- Kerr effect on speed in Si (20 GV/M)
2- Induced current in air plasma at lower intensity
3- Induced current in air plasma at higher intensity
Showing non-linear behavior
Fields From Dipole Moments

Integrals of Dipole moment, dipole 1st time derivative, and 2nd time derivative give near, intermediate and far fields. Error Field

\[E_r = \frac{1}{4\pi\epsilon_0} \nabla \times \left(\frac{1}{\alpha} \mathbf{p} \times \mathbf{p} \right) \]

\[H_r = \frac{1}{\mu_0} \nabla \times \left(\frac{1}{\alpha} \mathbf{p} \times \mathbf{p} \right) \]

\[\mathbf{J}_r = \frac{1}{\epsilon_0 \gamma^2} \nabla \times \left(\frac{1}{\alpha} \mathbf{p} \times \mathbf{p} \right) \]

Comments on this Chart:

The question of whether RF radiation can be generated from a traveling current pulse can be found by integrating over the moments of the dipole distribution, accounting for time retardation (coherence).

The usual expansion of the fields into near intermediate and radiated components can be found.
An alternate derivation is to proceed from the propagating current distribution.

Standard expressions for the radiated field can be evaluated. This of course gives the same result as found from the dipole moment integration.
Conclusions

1- First principles analysis indicates no radiated field from a uniformly propagating ionization streamer.
2- The predicted ionization densities/collision frequencies would abruptly damp out any oscillations in the ionization.
3- Maxwell simulations showed both optical frequencies and a low frequency component. The low frequency is not low enough to explain reported sub THz radiation.
4- Observation show numerous streamers in one laser beam.
NLSE simulations indicate the formation and extinction of multiple ionization Streamers. These non steady state features have not been analyzed here.
5- Our simulation do not indicate any sub THz radiation.
6- Mechanisms to explain reported observations are not well understood.
Test Case, Dielectric Model (Continued)

Analytic Estimate for the transverse and longitudinal Current Densities

<table>
<thead>
<tr>
<th>transverse</th>
<th>longitudinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z_{(polarization)} \equiv 7.02 \times 10^{-13} \text{ m}$</td>
<td>$x_{(polarization)} \equiv 1.55 \times 10^{-16} \text{ m}$</td>
</tr>
<tr>
<td>$v_{t}(polarization) \equiv 1.32 \times 10^{8} \text{ m/s}$</td>
<td>$v_{t}(polarization) \equiv 5.48 \times 10^{4} \text{ m/s}$</td>
</tr>
<tr>
<td>$J_{t} \equiv 5.61 \times 10^{10} \text{ A/m}^{2}$</td>
<td>$J_{t} \equiv 2.48 \times 10^{6} \text{ A/m}^{2}$</td>
</tr>
</tbody>
</table>

Numerical results for the transverse and longitudinal current densities

<table>
<thead>
<tr>
<th>transverse</th>
<th>longitudinal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z_{(polarization)} \equiv 1.21 \times 10^{-11} \text{ m}$</td>
<td>$x_{(polarization)} \equiv 4.65 \times 10^{-10} \text{ m}$</td>
</tr>
<tr>
<td>$v_{t}(polarization) \equiv 2.25 \times 10^{1} \text{ m/s}$</td>
<td>$v_{t}(polarization) \equiv 1.55 \times 10^{8} \text{ m/s}$</td>
</tr>
<tr>
<td>$J_{t} \equiv 9.40 \times 10^{10} \text{ A/m}^{2}$</td>
<td>$J_{t} \equiv 7.24 \times 10^{6} \text{ A/m}^{2}$</td>
</tr>
</tbody>
</table>

The analytic and numerical results are in reasonable agreement

Analytical and numerical results are shown on this slide.

As can be seen the analytical and numerical results are in good agreement. comparison with the previous slide