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Abstract

We derive a hierarchy of PDEs for the leading-order evolution of wall-based quantities, such
as the skin-friction and the wall-pressure gradient, in two-dimensional fluid flows. The resulting
Reduced Navier-Stokes (RNS ) equations are defined on the boundary of the flow, and hence
have reduced spatial dimensionality compared to the Navier-Stokes equations. This spatial
reduction speeds up numerical computations and makes the equations attractive candidates for
flow-control design. We prove that members of the RNS hierarchy are well-posed if appended
with boundary-conditions obtained from wall-based sensors. We also derive the lowest-order
RNS equations for three-dimensional flows. For several benchmark problems, our numerical
simulations show close finite-time agreement between the solutions of RNS and those of the full
Navier-Stokes equations.

1 Introduction

1.1 Background and motivation

The approximation of Navier-Stokes flows near a no-slip boundary was apparently first discussed
in detail by Perry and Chong [11], who developed a procedure for finding the Taylor coefficients
of a velocity field expanded at a boundary point. By this procedure, one can construct velocity
models that are polynomials in terms of the distance from the point of expansion. The models are
dynamically consistent up to any desired order, but depend on properties imposed a priori on the
velocity derivatives at the wall.
Danielson and Ottino [3] used the above procedure to construct a system of ODEs for the

Taylor coefficients of a velocity field at a no-slip boundary point. The ODE system becomes finite-
dimensional upon truncation of the Taylor expansion; Danielson and Ottino showed that even low-
order truncations may lead to ODEs with a strange attractor, a hallmark of Eulerian turbulence.
Recently, Bewley and Protas [12] proposed a less restrictive Taylor-expansion of the velocity in

terms of the normal distance from the boundary. For two-dimensional flows, this procedure yields
a single-variable Taylor-expansion with coefficients depending on the location along the boundary.
Bewley and Protas showed that under appropriate conditions, the expansion converges in a vicinity
of the wall. In addition, for incompressible flows, all Taylor coefficients can be expressed in terms
of time- and wall-tangential derivatives of the wall shear (skin friction) and the wall pressure.
With the availability of accurate skin-friction and pressure sensor-arrays, the results in [12]

enable local velocity reconstruction from wall-based measurements. This offers a promising tool
for practical flow control, where the impact of the controller must be evaluated from wall sensors.
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Feedback control, however, requires more than just an observation of the output: a model for the
evolution of the flow is also crucial. The Bewley—Protas results offer hope that, at least near the
wall, such models are reducible to depend only on the skin friction and wall pressure.
Further underlying the need for such reduced flow models, typical performance objectives in flow-

control are often phrased directly in terms of skin friction and wall pressure, not velocity. Examples
include pressure—recovery enhancement in diffusers and surface—drag reduction on submarines. The
former aims to maximize the integral of the wall-pressure gradient; the latter to minimize the integral
of the skin friction. In both cases, a qualitative prediction for the evolution of the underlying quantity
is more beneficial than a highly accurate but complex numerical model.

1.2 Main results

Motivated by the above, here we study how the dynamics of wall-based quantities, such as the wall-
shear τ (x) and the wall-pressure gradient γ (x), can be modelled and predicted in two-dimensional
Navier-Stokes flows. Our main result is a hierarchy of models, the Reduced Navier-Stokes (RNS)
equations, that describe the evolution of the above quantities at different levels of accuracy. Since
the RNS equations are defined on the flow boundary, they only have one spatial dimension, the wall
coordinate x. This dimensional reduction results in computation times that are significantly shorter
than those of direct Navier—Stokes simulations.
Solving the RNS equations requires updated boundary conditions for τ and γ at two x—locations,

x1 and x2. Thus, x1 and x2 must either be points with a priori known velocity derivatives (e.g., corner
points), or must lie within distributed skin-friction and wall-pressure sensor arrays. In either case,
the RNS equations provide qualitative prediction for the evolution of τ (x) and γ (x) over the whole
interval (x1, x2). The prediction necessarily deteriorates over time; solving the RNS equations over
longer times, therefore, requires periodic re-initialization by sampling τ (x) and γ (x) from sensors
distributed over (x1, x2).
We derive three members of the RNS hierarchy explicitly; these evolution equations are obtained

from cubic, quartic, and quintic truncations of the Taylor expansion of the wall-tangential velocity
component. We prove that these three RNS equations and all higher-order RNS systems are well-
posed, i.e., admit unique solutions that depend continuously on the initial data. We also derive
the lowest-order RNS equation for three-dimensional flows, and discuss the relevance of the two-
dimensional RNS equations in select flow-control problems.
We present evidence for the accuracy of the RNS equations by comparing their numerical solution

to classic solutions of the Navier-Stokes equations. These classic solutions include a viscous channel
flow, the Blasius boundary layer solution, viscous flow near a stagnation point, and an oscillating
flow over an infinite plate. We finally compare the direct numerical simulation of a lid-driven cavity
flow to that of the RNS equations. In all cases, we observe close quantitative agreement on short to
intermediate time scales, and qualitative accuracy over longer time scales.

2 RNS equations for two-dimensional flows
Consider the two-dimensional Navier-Stokes equations

∂tu+ uxu+ uyv = −1
ρ
px + ν (uxx + uyy) ,

∂tv + vxu+ vyv = −1
ρ
py + ν (vxx + vyy) , (1)

where (u(x, y, t), v(x, y, t)) is a velocity field satisfying the incompressibility condition

ux + vy = 0, (2)
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and the no-slip boundary condition

u(x, 0, t) = v(x, 0, t) = 0 (3)

at the y = 0 boundary. In (1), p(x, y, t) denotes the pressure, and ν and ρ are the kinematic viscosity
and the density of the fluid.
We seek to understand the evolution of the skin-friction field

τ(x, t) = ρνuy(x, 0, t),

and the wall-pressure-gradient field

γ(x, t) = px(x, 0, t) = ρνuyy(x, 0, t). (4)

As auxiliary variables to be used later, we also introduce

σ(x, t) = ρνuyyy(x, 0, t), λ(x, t) = ρνuyyyy(x, 0, t), η(x, t) = ρνuyyyyy(x, 0, t).

With the above variables, the Taylor expansion of u(x, y, t) near the y = 0 boundary can be
written as

u(x, y, t) =
1

νρ

∙
τ(x, t)y +

1

2
γ(x, t)y2 +

1

6
σ(x, t)y3 +

1

24
λ(x, t)y4 +

1

120
η(x, t)y5 +O(y6)

¸
. (5)

Subtracting the x—derivative of the second equation in (1) from the y—derivative of the first equation,
we obtain the vorticity-transport equation

∂t (uy − vx) + u (uxy − vxx) + v (uxx + uyy) = ν (2uxxy + uyyy − vxxx) , (6)

from which we shall derive approximate expressions for the evolution of the Taylor coefficients in
(5).

2.1 The cubic RNS equations

Setting y = 0 in equation (6) yields
τ t = ν (2τxx + σ) . (7)

Differentiating (6) with respect to y and using the incompressibility condition (2) leads to

∂t (uxx + uyy) + uy (uxy − vxx) + u (uxyy + uxxx)− ux (uxx + uyy) + v (uxxy + uyyy)

= ν (2uxxyy + uyyyy + uxxxx) . (8)

After setting y = 0 in (8), we obtain

γt +
1

νρ
ττx = ν (2γxx + νρuyyyy) . (9)

Finally, differentiating (8) with respect to y, we find that

∂t (uxxy + uyyy) + uyy (uxy − vxx) + uy (uxyy + uxxx) + uy (uxyy + uxxx)

+u (uxyyy + uxxxy)− uxy (uxx + uyy)− 2ux (uyyy + uxxy) + v (uyyyy + uxxyy)

= ν (2uxxyyy + uyyyyy + uxxxxy) . (10)

Setting y = 0 in this last equation, we obtain

[∂t (uxxy + uyyy) + 2uyuyyx]y=0 = ν (2uxxyyy + uyyyyy + uxxxxy)y=0 . (11)
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At the same time, the second x-derivative of (6) taken at y = 0 is

(∂tuxxy)y=0 = ν (2uxxxxy + uxxyyy)y=0 . (12)

Combining (11) and (12) gives

σt +
2

νρ
τγx = ν (σxx + νρuyyyyy − τxxxx) . (13)

We now assume that the velocity component u(x, y, t) is well approximated by its third-order
Taylor expansion near the y = 0 boundary; in other words, we truncate the expansion (5) at cubic
order. Under this approximation, equations (7), (9), and (13) yield the cubic RNS equations

τ t = 2ντxx + νσ, (14)

γt = 2νγxx −
1

νρ
ττx,

σt = νσxx − ντxxxx −
2

νρ
τγx.

To this nonlinear system of PDEs, we add the boundary and initial conditions

τ(0, t) = T0(t), τ(L, t) = T1(t), τ(x, t0) = τ0(x), (15)

γ(0, t) = G0(t), γ(L, t) = G1(t), γ(x, t0) = γ0(x),

σ(0, t) = S0(t), σ(L, t) = S1(t), σ(x, t0) = σ0(x).

The initial and boundary conditions for τ may be obtained from distributed skin-friction sensors;
the same conditions for γ can be measured by distributed pressure sensors. Realistic sensors do not
exist for measuring σ directly, but distributed skin-friction sensors can be used to find the values of
σ from the relations

σ(0, t) = Ṫ0(t)− 2ντxx(0, t), σ(L, t) = ṪL(t)− 2ντxx(L, t), σ(x, t0) = τ̇(x, t0)− 2ντ0xx(x).

The solvability of the cubic RNS equations (14) is guaranteed by the following result.

Theorem 2.1. The cubic RNS equations (14) with the boundary and initial conditions (15) are
well-posed: they admit unique solutions with continuous dependence on initial data on the function
space H3 [0, L]×H2 [0, L]×H1 [0, L].

Proof: See Appendix 7.1.
The advantage of the cubic RNS equations (14) is that they are defined on the one-dimensional

spatial domain [0, L], as opposed to the Navier-Stokes equations (1) that are defined on a two-
dimensional domain. System (14), however, cannot be solved independently: its time-dependent
boundary conditions are to be obtained from pressure- and skin-friction sensors at the boundary. In
addition, a distributed skin-friction and pressure measurement at t = 0 is necessary to identify the
initial condition.
Since the system (14) is obtained from a Taylor-series truncation of the original velocity field,

it will only approximate true Navier-Stokes solutions for finite times. As a result, (14) must be
periodically re-initialized for its solutions to stay accurate. Our main motivation is controller design,
for which the simplicity and the short-term predictive power of (14) is more important than its long-
term accuracy.

4



2.2 The quartic RNS equations

For increased accuracy, we now derive a higher-order approximation for the evolution of velocity
derivatives at the wall. Differentiating (10) with respect to y, we obtain

∂t (uxxyy + uyyyy)− uyyyvxx + uyy (2uxyy + 2uxxx) + 3uy (uxyyy + uxxxy) (16)

+u (uxyyyy + uxxxyy)− uxyyuxx − 3uxyuxxy
−2uxyuyyy − 3ux (uyyyy + uxxyy) + v (uyyyyy + uxxyyy)

= ν (2uxxyyyy + uyyyyyy + uxxxxyy) .

Setting y = 0 in this equation gives

[∂t (uxxyy + uyyyy) + 2uyyuxyy + 3uy (uxyyy + uxxxy)− 3uxyuxxy − 2uxyuyyy]y=0 (17)

= ν (2uxxyyyy + uyyyyyy + uxxxxyy)y=0 .

Next, we differentiate (8) twice with respect to x and set y = 0 to obtain

[∂tuyyxx + 3uxyuxxy + uyuxxxy]y=0

= ν (2uxxxxyy + uxxyyyy + uxxxxxx)y=0 . (18)

Subtracting (18) from (17) then gives

[∂tuyyyy + 2uyyuxyy + uy (3uxyyy + 2uxxxy)− 6uxyuxxy − 2uxyuyyy]y=0
= ν (uxxyyyy + uyyyyyy − uxxxxyy)y=0 ,

or, equivalently,

∂tλ+
2

νρ
γγx +

1

νρ
τ (3σx + 2τxxx)−

6

νρ
τxτxx −

2

νρ
τxσ

= ν (λxx + νρuyyyyyy − γxxxx) .

We now assume that the velocity component u(x, y, t) is well approximated by its forth-order
Taylor expansion near the boundary, i.e., we truncate the expansion (5) at quartic order. Under this
approximation, equations (7), (9), and (13) can be summarized in the quartic RNS equations

τ t = 2ντxx + νσ,

γt = 2νγxx + νλ− 1

νρ
ττx,

σt = νσxx − ντxxxx −
2

νρ
τγx,

λt = νλxx − νγxxxx −
2

νρ
γγx −

1

νρ
τ (3σx + 2τxxx) +

6

νρ
τxτxx +

2

νρ
τxσ, (19)

with the initial and boundary conditions

τ(0, t) = T0(t), τ(L, t) = T1(t), τ(x, t0) = τ0(x), (20)

γ(0, t) = G0(t), γ(L, t) = G1(t), γ(x, t0) = γ0(x),

σ(0, t) = S0(t), σ(L, t) = S1(t), σ(x, t0) = σ0(x),

λ(0, t) = L0(t), σ(L, t) = L1(t), λ(x, t0) = λ0(x).

The boundary and initial conditions for λ can again be obtained from distributed skin-friction
and pressure measurements:

λ(0, t) =
h
Ġ0(t)− 2νγxx(0, t) + T0(t)τx (0, t) / (νρ)

i
/ν,

λ(L, t) =
h
Ġ1(t)− 2νγxx(L, t) + T1(t)τx (L, t) / (νρ)

i
/ν,

λ(x, t0) = γ̇(x, t0)− 2νγ0xx(x) + τ0(x)τ0x(x)/ (νρ) .
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The solvability of the quartic RNS equations (14) is guaranteed by the following result.

Theorem 2.2. The quartic RNS equations (19) with the boundary and initial conditions (20) are
well-posed on the function space H4 [0, L]×H3 [0, L]×H2 [0, L]×H1 [0, L].

Proof: See Appendix 7.2
Note that the evolution of the pressure gradient and the skin friction remain independent in

Stokes flows even after the addition of higher order terms. The same conclusion will hold for
any higher-order RNS equation. In those higher-order equations, the only further change is the
appearance of linear coupling terms to higher-order y-derivatives of u. This suggests that the first
robust enough model for both the skin friction and the pressure gradient is the quartic model.

2.3 Higher-order RNS equations

In order to derive an nth order approximation for the evolution of flow-derivatives at the wall, we
subtract the second x-derivative of the order n−2 RNS equations from the (n−3)-order y-derivative
of equation (10). Setting y = 0 in the resulting equation and neglecting y-derivatives of u higher in
order than n, we obtain the nth-order RNS equations. For example, the quintic RNS equations take
the form

τ t = 2ντxx + νσ, (21)

γt = 2νγxx + νλ− 1

νρ
ττx,

σt = νσxx − ντxxxx + νη − 2

νρ
τγx,

λt = νλxx − νγxxxx −
2

νρ
γγx −

1

νρ
τ (3σx + 2τxxx) +

6

νρ
τxτxx +

2

νρ
τxσ,

ηt = νηxx + ντxxxxxx +
1

νρ
[(5λ+ 8γxx)τx − 5γ(σx + τxxx)− τ(4λx + 3γxxx) + 5τxxγx],

with appropriate boundary and initial conditions.
Our regularity results extend to the solutions of higher-order RNS equations:

Theorem 2.3. For any n ≥ 3, the nth-order RNS equations are well-posed on the function space
Hn [0, L]× . . .×H1 [0, L].

Proof: See Appendix 7.2.

3 RNS equations for three-dimensional flows

Although the focus of the present paper is two-dimensional flows, we briefly discuss here how anal-
ogous equations can be derived in three-dimensions. We start with the three-dimensional Navier-
Stokes equations

ut + uxu+ uyv + uzw = −1
ρ
px + ν(uxx + uyy + uzz)

vt + vxu+ vyv + vzw = −1
ρ
py + ν(vxx + vyy + vzz)

wt + wxu+ wyv + wzw = −1
ρ
pz + ν(wxx + wyy + wzz) (22)
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where (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) is a velocity field satisfying the incompressibility condi-
tion

ux + vy + wz = 0,

and the no-slip boundary condition

u(x, y, 0, t) = 0, v(x, y, 0, t) = 0.

In (22), p(x, y, z, t) denotes denotes the pressure, and ν and ρ are the kinematic viscosity and the
density of the fluid.
The skin-friction field is now defined as

(τ1(x, y, t), τ2(x, y, t)) = (ρνuz, ρνvz)|z=0,

and the wall-pressure-gradient field is equal to

(γ1(x, y, t), γ2(x, y, t)) = (px(x, y, 0, t), py (x, y, 0, t))

= (ρνuzz, ρνvzz)|z=0.

As auxiliary variables to be used later, we also introduce

(λ1, λ2) = (ρνuzzz, ρνvzzz)|z=0,
(σ1, σ2) = (ρνuzzzz, ρνvzzzz)|z=0.

With these variables, the Taylor expansion of u(x, y, z, t) and v(x, y, z, t) at the boundary z = 0 can
be written as

u(x, y, z, t) =
1

ρν
[τ1(x, y, t)z +

1

2
γ1(x, y, t)z2 +

1

6
σ1(x, y, t)z3 +

1

24
λ1(x, y, t)z4 +O(z5)],

v(x, y, z, t) =
1

ρν
[τ2(x, y, t)z +

1

2
γ2(x, y, t)z2 +

1

6
σ2(x, y, t)z3 +

1

24
λ2(x, y, t)z4 +O(z5)]. (23)

As we show in Appendix B, the truncation of the expansion (23) at cubic order leads to the
three-dimensional cubic RNS equation

τ1t = 2ντ1xx + ντ1yy + ντ2xy + νσ1,

τ2t = 2ντ2yy + ντ2xx + ντ1xy + νσ2,

γ1t = ν
¡
2γ1xx + γ1yy + λ1 + γ2xy

¢
− 1

νρ

¡
τ1τ1x − 2τ1yτ2 − τ1τ2y

¢
,

γ2t = ν
¡
2γ2yy + γ2xx + λ2 + γ2xy

¢
− 1

νρ

¡
τ2τ2y − 2τ2xτ1 − τ2τ1x

¢
,

σ1t = −ν
£
3τ1xxxx + 3τ

1
yyxx + σ1xx + 3τ

2
xxxy + 3τ

2
yyyx + 2σ

2
xy − σ1yy

¤
+
1

νρ

£
−2γ1xτ1 − 3γ1yτ2 − 3τ1yγ2 + 3γ1τ2y + τ1γ2y − 3τ1xxτ1

¤
+
1

νρ

£
−3τ2xyτ1 + 3τ1xyτ2 + 3τ2yyτ2 + 3(τ1x)2 + 6τ1xτ2y + 3(τ2y)2

¤
,

σ2t = −ν
£
3τ2yyyy + 3τ

2
yyxx + σ2yy + 3τ

1
xyyy + 3τ

1
yxxx + 2σ

1
xy − σ2xx

¤
+
1

νρ

£
−2γ2yτ2 − 3γ2xτ1 − 3τ2xγ1 + 3γ2τ1x + τ2γ1x − 3τ2yyτ2

¤
+
1

νρ

£
−3τ1xyτ2 + 3τ2xyτ1 + 3τ1xxτ1 + 3(τ1x)2 + 6τ1xτ2y + 3(τ2y)2

¤
.

(24)
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4 τ − γ formulation and flow control
Here we briefly discuss the relevance of the RNS equations in flow modelling and control. First, we
recalling that all derivatives of an incompressible velocity field at a no-slip wall can be expressed in
terms of the skin friction, pressure, their wall gradients, and their time derivatives (see Bewley and
Protas [12]), This implies that (14) can be re-written as a two-dimensional set of PDEs for τ and γ.
Indeed, differentiating the first equation of (14) in time gives

τ tt = 2ντxxt + νσt

= 2ντxxt + ν

∙
ν

µ
1

ν
τxxt − 2τxxxx

¶
− ντxxxx −

2

νρ
τγx

¸
,

which, combined with the second equation of (14), gives the system of PDEs

τ tt = 3ντxxt − 3ν2τxxxx −
2

ρ
τγx, (25)

γt = 2νγxx −
1

νρ
ττx,

the τ − γ form of the cubic RNS equation. A similar reduction transforms the quartic RNS system
(19) to the τ − γ form

τ tt = 3ντ txx − 3ν2τxxxx −
2

ρ
τγx, (26)

γtt = 3νγtxx − 3ν2γxxxx +
5

ρ
τxτxx +

5

ρ
ττxxx −

2

ρ
γγx −

4

νρ
ττ tx +

1

νρ
τxτ t.

The τ −γ formulations (25) and (26) offer low-order approximations for the evolution of the skin
friction and the wall-pressure gradient. Such approximations are useful in flow control problems
where the cost function only depends on τ or γ.
For instance, if x ∈ [0, L] varies on a wall segment connecting the inlet and the outlet of a diffuser

(see Fig. 1a), then losses in the diffuser are measured by the pressure recovery

Cp =
p(L, 0, t)− p(0, 0, t)

1
2ρu

2
in(t)

,

with uin denoting the mean inflow velocity. The losses will be minimal if CP is maximal. Assuming

x=0

x=L x

p L,0,t( )

p 0,0,t( )
u in y

( )a ( )b

x=0 x=L

��x)
x

Figure 1: Possible domains of definition for the RNS equations in flow control problems. (a) Inclined
wall section of a two-dimensional diffuser (b) Wall section of a two-dimensional streamlined body.

constant-in-time inflow conditions, Cp will be maximal if p(L, 0, t) − p(0, 0) is maximal. Thus, to
minimize losses in the diffuser, the time-average of the cost function

Cγ(t) =

Z L

0

γ(x, t) dx

8



is to be maximized.
Another relevant example is surface drag reduction over the boundary section [0, L] of a stream-

lined body (see Fig. 1b) Since the surface drag force is the integral of the wall shear along the wall,
minimizing the average of the cost function

Cτ (t) =

Z L

0

τ(x, t) dx,

minimizes surface drag over [0, L] .

5 Numerical study of the RNS equations
Here we show by examples that the cubic, quartic, and quintic RNS solutions approximate true
Navier-Stokes solutions well over characteristic time intervals. The examples include a channel flow,
a Blasius boundary layer flow, a viscous flow near a stagnation point, an oscillating flow above an
infinite plane, and a lid-driven cavity flow.
In the first four examples, the Navier-Stokes equations admit exact or simplified steady-state

solutions. We use these steady-state solutions as initial conditions for the RNS equations, and
monitor how the solutions obtained this way deviate from the exact steady-state solutions. In our
last example, we compare direct numerical solutions of the Navier-Stokes and the RNS equations. In
this case, the boundary conditions for the RNS equations are a priori known: the normal derivatives
of the u—velocity are zero at the corners of the lid-driven cavity.
We use a Chebyshev spectral scheme for the spatial approximation of (14), (19), and (21). We

choose this method for its high accuracy and for its ability to treat Dirichlet boundary conditions
(see Canuto et al. [2]). For temporal integration, we use a second-order implicit Crank-Nicholson
scheme (Canuto et al. [2]) combined with a Newton-Krylov solver (Kelley [7]). We present our
simulation results using the nondimensional (convective) time

t̄ = tu0/L0,

where u0 is a characteristic velocity and L0 is a characteristic length.

Channel flow

Analytical solution
For a laminar flow between two parallel plates at distance L, the Navier-Stokes equations (1)

simplify to

νuyy =
1

ρ
px, (27)

if we assume that the vertical velocity v vanishes, and u does not vary with x. Consequently, px ≡ p0x
is a constant.
Integrating (27) with respect to y and using the symmetry condition uy (x,L/2) = 0 leads to

uy (x, y) =
1

νρ
p0x (y − L/2) . (28)

Integrating once more and using the no-slip condition u = 0 at y = 0 yields

u (x, y) =
1

2νρ
p0x(y

2 − Ly). (29)

Setting u(x,L/2) = umax then gives

p0x = −
8umaxνρ

L2
, (30)

9



thus the solution of (27) can be written as

u (x, y) = −4umax
∙³ y

L

´2
− y

L

¸
. (31)

Validation
From (31), we obtain

τ exact = −
4ρνumax

L
, γexact = −

8umaxνρ

L2
, σexact = 0, λexact = 0. (32)

As a direct substitution into (14) and (19) shows, (32) is an exact solution of the cubic and quartic
RNS equations. This was to be expected, because the solution (31) is exactly equal to its cubic and
quartic Taylor-expansion in y.
In practice, however, initial conditions for the RNS equations are determined from sensors and

hence are subject to measurement errors. We emulate such errors by selecting the perturbed initial
condition

τ = τ exact [1 + � sin(2.0πx)] , �¿ 1, (33)

in our RNS simulation instead of the exact steady-state given in (32). We select the parameters
umax = 1 m/s, ν = 0.01 m2/s, and ρ = 1.0 kg/m3 in our simulations.
At this low Reynolds number (Re = umaxL/ν = 10), the full Navier-Stokes equations damp out

the perturbation in (33) and the flow returns to steady state. By contrast, the cubic RNS equations
produce slowly growing oscillations about the steady state for the perturbed initial condition (33).
Positive news on the growth is that it is weak: it does not exceed the order of the perturbation on
times scales of O(1). This can be seen in Fig. 2, where the percentage error in τ and γ are plotted
for different RNS equations.
As seen from Fig. 2, the quartic RNS equations limit the error growth better for τ . The quintic

RNS equations (21) provide further improvement for t̄ < 1, but for larger times, the error grows
faster. For t̄ > 5, the error exceeds the order of the perturbation, and hence the RNS equations
have to be re-initialized. Interestingly, increasing the order of the RNS equation results in growing
errors for γ; the errors, however, still remain below 1% for times up to t̄ = 3.
Despite the growing errors, qualitative accuracy of the RNS equations persists for extended times.

Specifically, qualitative correctness holds up to t̄ = 7 in the cubic and quartic case, and up to t̄ = 5
in the quintic case (see Fig. 3).

Blasius boundary layer

Similarity solution
Here we consider a similarity solution to the zero-pressure-gradient boundary layer over a flat

plate accredited to Blasius (White [13]). For this flow, the Prandtl boundary—layer equations give

u(x, y) = Uf 0 (ξ) , |v (x, y)| ¿ |u (x, y)| , (34)

where U is a reference velocity outside the boundary layer, prime denotes differentiation with respect

to the variable ξ = y
x

q
Ux
ν , and f satisfies the ODE

2f 000 + ff 0 = 0. (35)

The boundary conditions for f are f(0) = f 0(0) = 0 and f 0(∞) → 1. Solving (35) with these
boundary conditions gives f 00(0) = 0.33206. From (34), we obtain

τ exact (x) = ρU

r
νU

x
f 00(0), γexact = 0, σexact = 0, λexact (x) =

ρU3

2νx2
f 00

2
(0), ηexact = 0.

(36)
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Figure 2: RNS simulations for τ and γ in the perturbed channel flow with � = 10−3. The percentage

error for τ is obtained as ∆τ% = 100
N

hPN
i=1 |τ − τ i|

i
/maxi |τ i| where τ1, . . . . , τN are the τ values

at N gridpoints x1, . . . , xN ∈ [0, 1]; the definition of ∆γ% is similar.

Validation
We use (36) to obtain initial and boundary conditions for our simulation of the RNS equations

(14), (19), and (21). We solve these equations over the spatial interval x ∈ [1, 2] with U = 1 m/s,
ν = 10−3 m2/s, and ρ = 1.0 kg/m3. For these parameter values, the Reynolds number is Re = 103,
at which the boundary—layer equations are a good approximation to the Navier-Stokes equations,
and hence can be compared to corresponding RNS solutions. Figure 4 shows such a comparison
with the percentage error in τ and γ for the cubic, quartic, and quintic RNS equations.
The error growth is faster than in the previous channel flow example, but still remains below 1%

up to one convective time unit. Notably, the error in the quartic RNS is now significantly less than
in the cubic RNS. The quintic RNS, however, is less accurate than the quartic, because the terms
neglected in the boundary layer approximation vanish in the quartic RNS, but not in the quintic
RNS.
For this example, the qualitative accuracy of the RNS systems is evidenced by Fig. 5. Even the

cubic RNS solutions remain qualitatively accurate up to t̄ = 2 convective time units, but the quartic
RNS systems performs significantly better.

Viscous flow near a stagnation point

Similarity solution
For a viscous stagnation point flow, the Navier-Stokes equations (1) yield the similarity solution

u (x, y) = BxF (ξ) , (37)

where F satisfies the ODE
F 000 + FF 00 + 1− F 0

2

= 0, (38)

with prime denoting differentiation with respect to ξ = y
q

B
ν . The parameter B is proportional to

the ratio of a reference velocity U and a reference length L (White [13]).
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Figure 3: Evolution of the τ and γ profiles in the cubic, quartic, and quintic RNS equations for the
channel flow. The snapshots are taken with nondimensional time step ∆t̄ = 0.1; the final simulation
time is t̄ = 10 for the cubic and quartic RNS equations, and t̄ = 7 for the quintic RNS equation.
Crosses mark the exact solution.

The boundary conditions for (38) are F (0) = F 0 = 0 and F 0(∞) = 1. Solving (38) numerically
with these boundary conditions yields F 00(0) = 1.23259. From the velocity expression (37), we find
that

τ exact (x) = Bρ
√
νBF 00(0)x, γexact (x) = −B2ρx, σv (x) = 0.0, (39)

λexact (x) =
B4ρ

ν
[F 00(0)]

2
x, ηexact (x) = −2

r
B

ν

B4ρ

ν
F 00(0)x.

Validation
For the numerical solution of the RNS equations, we obtain initial and boundary conditions from

(39). We solve the equations on the spatial domain x ∈ [0, 1m] with B = 1 s−1and ν = 10−2 m2/s;
the corresponding Reynolds number is Re = 100, which is well within the validity of the laminar
stagnation flow approximation.
Figure 6 again shows limited error growth. In this simulation, however, the 1% error bar is

reached in 0.1 nondimensional time units, indicating faster error growth than in earlier examples.
While the quartic RNS is an order of magnitude more accurate for γ than the cubic RNS, the two
sets of equations perform equally well for τ . The quintic model shows a much improved estimation
for the evolution of τ .
As for qualitative accuracy, we show the time evolution of the τ and γ profiles in Fig. 7. In all

cases, qualitative closeness to the approximate analytic solution is maintained for convective times
up to t̄ = 1.

Fluid oscillation over an infinite plate

Analytical solution

12



Figure 4: Percentage of error in τ and γ as a function of time for the Blasius profile.

For an unsteady parallel laminar flow, the Navier-Stokes equations reduce to

ut = −
1

ρ
px + νuyy. (40)

The pressure gradient can only be a function of time for this flow, and hence can be absorbed into
the velocity by a change of variables leading to a homogeneous diffusion equation (White [13]).
For an oscillating wall with u(0, t) = U0 cosωt with zero velocity far from the wall, the velocity

field is of the form u(y, t) = f(y)eiωt. Substitution into the above-mentioned diffusion equation leads
to f = e−η cos(ωt− η), where η = y

p
ω
2ν . The real part of u(y, t) is then given by

u(y, t) = U0e
−η cos(ωt− η). (41)

With (41) at hand, we find that

τ exact (x) = −ρνB[cosωt− sinωt],
γexact (x) = −2ρνB2 sinωt,

σexact (x) = 2ρνB3[sinωt− cosωt],
λexact (x) = −4ρνB4 cosωt,

ηexact (x) = 4ρνB5[cosωt− sinωt], (42)

where B =
p
ω/ (2ν). Note that all the above quantities are independent of x.

Validation
Again, (42) provide initial and boundary conditions for our RNS simulations. We select U0 =

1 m/s, ν = 10 m2/s, and ω = π 1/s; we solve the cubic, quartic and quintic RNS equations for
0 ≤ x ≤ 1 m. The corresponding Reynolds number is Re = 0.1, which is consistent with the Stokes-
flow approximation present in (40). Figure 8 shows that the L2 error in τ and γ remains below
3% for up to 0.1 nondimensional time unit. In addition, the quartic model predicts γ two orders of
magnitude more accurately than the cubic model.
In this example, we observe qualitative correctness for the RNS systems on long time scales.

Shown in Fig. 9, the τ and γ profiles stay qualitatively close to the exact solution for up to 4
nondimensional time units; the errors appear uniformly bounded for all times.
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Figure 5: Evolution of the τ and γ profiles in the cubic, quartic, and quintic RNS equations for the
Blasius boundary layer flow. The snapshots are taken with nondimensional time step ∆t̄ = 0.3; the
final simulation time is t̄ = 3. Crosses mark the exact solution.

5.1 Steady and unsteady lid-driven cavity flow

As our final example, we use direct numerical simulation of a lid-driven cavity to test the accuracy
of the RNS equations. The simulations are performed with a staggered-grid multidomain spectral
method (Kopriva [8] and Jacobs et al. [9]). The computational model consists of a square whose
upper boundary is a lid moving at a constant speed.
The Reynolds number Re = 400 of the flow is based on the velocity of the lid and the length of

the square’s side. The flow is started from a quiescent state that develops into a steady state. The
steady-state solution is characterized by three vortices, as shown by the streamlines in Fig. 10(a).
This steady-state solution agrees with previously published results by Ghia et al. [4], as seen in Fig.
10(b).
At the steady state, we evaluate the y-derivatives of the velocity to be used as initial conditions

for the RNS equations. The boundary conditions for the RNS equations at x = 0m and x = L = 1m
are zero because of the zero derivatives at the corners of the cavity.
Figure 11 and 12 show that up to time t̄ = 1, the skin friction τ remains within 1% of its steady

state value for both the cubic and the quartic RNS equations. Over the same time period, γ shows
errors in the order of 10%. Qualitative correctness holds up to time t̄ = 2 for γ, and up to t̄ = 3 for
τ .
Figure 13 compares τ for the initial unsteady cavity flow. The velocity gradients at t̄ = 5.0

are used as initial conditions for the RNS equations. At later times, the computed τ values from
the RNS equations are compared with the simulation. We find that at time t̄ = 5.1, the RNS
equations compare reasonably with the simulation. Although at t̄ = 5.2, the RNS equations show
substantial deviation from the Navier-Stokes simulation, the τ profile is still qualitatively correct.
With initial conditions re-set at t̄ = 5.1, the RNS equations again remain accurate for times of order
0.1; qualitative accuracy again persists somewhat longer, but is lost by t̄ = 5.5.
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Figure 6: Percentage of error in τ and γ as a function of time for the viscous stagnation point flow.

Finally, we compare the local u—velocity reconstructed from the truncated expansion (5) using the
cubic and quartic RNS simulations. Figures 14 and 15 compare true and reconstructed u velocities
at select x and y locations near the y = 0 boundary during the initial unsteady phase of the cavity
flow.
The conclusion from figures Figs. 14 and 15 is that the skin-friction and pressure-gradient

evolution obtained from the RNS equations is suitable for short-term velocity field prediction near
the wall away from corners. A general discussion on velocity reconstruction from instantaneous
skin-friction and wall-pressure measurements is given by Bewley and Protas [12].

6 Conclusions
In this paper, we have derived a hierarchy of evolution equations for two key wall-based quantities, the
skin friction and the wall-pressure gradient, in two-dimensional incompressible flows. The resulting
RNS equations are well-posed for smooth enough initial data. Defined over the flow boundary,
the RNS equations offer reduced spatial dimensionality over the full Navier-Stokes equations; as a
result, typical computation times for the RNS equations are a fraction of those for the Navier-Stokes
equations.
For instance, on a 2.2GHz Intel Xeon processor, our spectral Navier-Stokes simulation of the lid-

driven cavity flow (programmed in Fortran90) required about 1 minute of CPU time to compute the
velocity field over the convective time scale ∆t = 0.2. By contrast, on a slower ULTRASPARC-III
750 MHz processor, our spectral RNS simulation of the same problem (programmed in MATLAB)
required only about 1.4 seconds for the cubic RNS and 1.9 seconds for the quartic RNS equation.
The RNS equations, however, rely on updated boundary conditions and hence cannot be solved
without observing the flow at two discrete boundary points.
Our numerical simulations on a range of benchmark problems show quantitative accuracy for

short-to-intermediate times: the RNS equations produced less than 1% error over times that range
from 0.1 to 3 nondimensional time units in different problems. The error growth was noticeably faster
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Figure 7: Evolution of the τ and γ profiles in the cubic, quartic, and quintic RNS equations for the
viscous stagnation point flow. The snapshots are taken with nondimensional time step ∆t̄ = 0.1;
the final simulation time is t̄ = 1.5. Crosses mark the exact solution.

in the lid-driven cavity flow, where corner effects result in large wall-normal derivatives that are not
captured by truncations of (5). In their envisioned application in flow control, however, the RNS
equations should be more useful as qualitative reduced-order models rather than exact numerical
tracking tools. In most of our examples, the RNS equations remained qualitatively accurate for times
between 1 and 10 nondimensional time units. Over longer times, the equations require periodic re-
initialization for sustained qualitative accuracy.
Our results are directly applicable in unsteady separation control when combined with the an-

alytic approach of Alam, Liu and Haller [1]. In that approach, the solution of the skin-friction
equation (7) was controlled via two-point boundary actuation to satisfy the kinematic separation
conditions of Haller [6]. The velocity derivative σ, however, was obtained from observations rather
than from a model. We expect an improvement in the controller derived in [1] once the present RNS
equations are used to obtain predictions for σ. This is explored in ongoing work.
Reduced spatial dimensionality comes at a price: higher-order RNS equations include higher-

order spatial derivatives, both in the equations and in the boundary conditions. Over a certain
order, the computation of derivatives becomes too expensive and the advantage of reduced spatial
dimensionality is lost. For this reason, we only expect the cubic and quartic RNS equations to be
effective in flow-control applications, unless the equations are posed between boundary points with
known velocity derivatives.
In the present work, we have tested the RNS equations numerically for Reynolds numbers up

to 103. In this range, assuming a two-dimensional flow geometry is reasonable for a number of
applications. The behavior of the RNS hierarchy for higher Reynolds numbers is expected to be
more delicate. We plan to study this question in future work.
Three-dimensional extensions of the present work are possible as our initial results indicate in

section 3. In that case, the RNS equations are defined over two-dimensional boundary domains
and hence require boundary conditions observed along one-dimensional curves. Such observations
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Figure 8: L2 error in τ and γ as a function of time for flow oscillating over an infinite plate.

are possible via two-dimensional arrays of skin-friction and pressure sensors, thus applications to
three-dimensional flow modelling and control appear feasible.
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7 Appendix A: Well-posedness for the RNS equations

7.1 Well-posedness for the cubic RNS equations

7.1.1 Function space

We consider the PDE system (14) with the boundary conditions (15). We will first show that (14)
has a unique solution for the homogeneous boundary conditions

τ(0, t) = τ(L, t) = 0, γ(0, t) = γ(L, t) = 0, σ(0, t) = σ(L, t) = 0, (43)

on the function space
X = B3 ×B2 ×B1,

where
Bn = {u ∈ Hn([0, L]) : u(0) = u(L) = 0}. (44)

On the space X, we define the norm

||U ||2 = ||(τ , γ, σ)||2 =
Z L

0

{|τ |2 + |τx|2 + |τxx|2 + |τxxx|2 + |γ|2 + |γx|2 + |σ|2 + |σx|2}dx

= hτ , τi+ hτx, τxi+ hτxx, τxxi+ hτxxx, τxxxi+ hγ, γi+ hγx, γxi+ hσ, σi+ hσx, σxi
= hhτ , τii3 + hhγ, γii1 + hhσ, σii1, (45)
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where hhv, viin = hv, vi+ hvx, vxi+ hvxx, vxxi+ ...+ h∂nx v, ∂nx vi.
The homogeneous boundary conditions (43) and the equations (14) imply

τxx(0) = τxx(L) = 0, γxx(0) = γxx(L) = 0. (46)

Differentiating the first equation in (14) twice, we obtain

τxxt = 2ντxxxx + νσxx,

which gives

0 = 2ντxxxx(0) + νσxx(0),

0 = 2ντxxxx(L) + νσxx(L),

by (43). Combining these last two equation with the third equation in (14) leads to

σxx(0) = σxx(L) = 0, τxxxx(0) = τxxxx(L) = 0. (47)

7.1.2 Evolution equation formulation

Next we rewrite system (14) in the evolution equation form

ut = Au+ f(u), (48)

where

A =

⎛⎝ 2ν∂xx
0

−ν∂xxxx

0
2ν∂xx
0

ν
0

ν∂xx

⎞⎠ , f(u) =

⎛⎝ 0
− 1

νρττx
− 2

νρτγx

⎞⎠ . (49)

By a classic result of Pazy [10], the linear operator A is the infinitesimal generator of a C0

semigroup T (t) with ||T (t)|| ≤Meωt, if A satisfies the following conditions:
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( )a ( )b

Figure 10: (a) Streamlines at the steady state of a lid-driven cavity flow at Re = 400. (b) Comparison
of a u-velocity profile along the midplane for the steady state of a lid-driven cavity at Re = 400.

(i) A is closed and the domain of A, D(A), is dense in X.

(ii) The resolvent set ρ(A) =
n
λ ∈ C : (λI −A)

−1 exists
o
of A contains an interval (ω,∞) such

that for all λ > ω, the resolvent operator

RA (λ) = (λI −A)
−1 (50)

satisfies
||Rn

A (λ) || ≤M(λ− ω)−n. (51)

Since A is a linear combination of closed differential operators, A is closed. Moreover, the domain
of A contains C∞ × C∞ × C∞ which is dense in X. Hence, the conditions in (i) are satisfied.
To show that (ii) is also satisfied, we have to identify the spectrum of A. To this end, we expand

τ , γ, and σ into Fourier series:

τ =
∞X
n=1

an sin knx, γ =
∞X
n=1

bn sin knx, σ =
∞X
n=1

cn sin knx.

(Here we have implicitly extended all three functions to the interval [−L, 0] in an odd manner.)
Using (46) and (47), we obtain

τxx = −
∞X
n=1

k2nan sin knx, τxxxx =
∞X
n=1

k4nan sin knx,

γxx = −
∞X
n=1

k2nbn sin knx, σxx = −
∞X
n=1

k2ncn sin knx, (52)

after integration by parts. Here the equality signs are meant in the sense of L2 convergence; the
wave number is kn = 2nπ/L.
By (49) and (52), the spectrum of A is the union of the spectra of the three-by-three matrices

Akn =

⎛⎝ −2νk2n0
−νk4n

0
−2νk2n
0

ν
0
−νk2n

⎞⎠ ,
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Figure 11: Errors in the cubic RNS simulation of the lid-driven cavity flow. The (absolute) errors
∆τ and ∆γ are shown as functions of the location for different times; the L2-errors ∆2τ and ∆2γ
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which are found to be

σ (Akn) =

(
−2νk2n,

Ã
−3
2
± i

√
3

2

!
νk2n

)
.

Therefore, the spectrum of A lies in the negative complex half-plane bounded away from zero.
Although the spectrum of A is confined to the negative complex half-plane, A is not not self-

adjoint, and hence we cannot directly conclude the boundedness of exp (At) from its boundedness in
eigenbasis. Establishing well-posedness for (48), therefore, requires more than just the boundedness
of the spectrum of the linear part. For instance, the linear system

ut = Au,

u(x, 0) = u0(x),

with A defined in (49) is not well-posed on the space X̃ = L2 × L2 × L2, because the norm of

exp(Aknt) = e−
3
2k

2
nt

⎛⎜⎜⎝
2√
3
cos
³√

3
2 k2nt+

π
6

´
0 2√

3k2n
ik−2n sin

³√
3
2 k2nt

´
0 e−

1
2k

2
nt 0

2√
3
ik2n sin

³√
3
2 k2nt

´
0 2√

3
cos
³√

3
2 k2nt− π

6

´
⎞⎟⎟⎠

does not admit a k−independent upper bound of the form Keαt (cf. Gustaffson et al. [5]).
We proceed by defining

F = (λI −A)U,
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Figure 12: Same as Fig. 11, but for the quartic RNS simulation of the lid-driven cavity flow.

or, in component form,

f1 = λτ − 2ντxx − νσ,

f2 = λγ − 2νγxx,
f3 = λσ − νσxx + ντxxxx.

The norm of F can then be written as

||F ||2 = hhf1, f1ii3 + hhf2, f2ii2 + hhf3, f3ii1
= hhλτ − 2ντxx − νσ, λτ − 2ντxx − νσii3 + hhλγ − 2νγxx, λγ − 2νγxxii2

+hhλσ − νσxx + ντxxxx, λσ − νσxx + ντxxxxii1. (53)

We find that

hhλτ − 2ντxx − νσ, λτ − 2ντxx − νσii3
= λ2hhτ , τii3 + 2λνhhτ ,−2τxx − σii3 + hh2τxx − σ, 2τxx − σii3
= λ2hhτ , τii3 − 2λνhhτ , σii3 + 4λνhhτx, τxii3 + hh2τxx − σ, 2τxx − σii3
≥ λ2hhτ , τii3 − 2λνhhτ , σii3, (54)

and

hhλγ − 2νγxx, λγ − 2νγxxii2 = λ2hhγ, γii2 − 4νλhhγ, γxxii2 + 4ν2hhγxx, γxxii2
= λ2hhγ, γii2 + 4νλhhγx, γxii2 + 4ν2hhγxx, γxxii2
≥ λ2hhγ, γii2; (55)
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Figure 13: Comparison of skin-friction values predicted by a Navier-Stokes simulation (“code”), and
by the cubic and quartic RNS simulation for the initial unsteady phase of the lid-driven cavity flow
at Re = 400. (a) Initial condition at t̄ = 5.0 (b) Simulation at t̄ = 5.1 (c) simulation at t̄ = 5.2 (d)
Same as (c) but with initial conditions re-initialized at t̄ = 5.1.

furthermore,

hhλσ − νσxx + ντxxxx, λσ − νσxx + ντxxxxii1
= λ2hhσ, σii1 − 2λνhhσ, σxxii1 + 2λνhhσ, τxxxxii1 + hhνσxx + ντxxxx, νσxx + ντxxxxii1
≥ λ2hhσ, σii1 + 2λνhhσ, τxxxxii1 = λ2hhσ, σii1 + 2λνhhσxx, τxxii1
≥ λ2hhσ, σii1 + 2λν[hhσ, τii3 − hhσ, τii1]. (56)

Using the estimates (54)-(56) in (53), we obtain

||F ||2 ≥ λ2hhτ , τii3 − 2λνhhτ , σii3 + λ2hhγ, γii2 + λ2hhσ, σii1 + 2λν[hhσ, τii3 − hhσ, τii1]
= λ2hhτ , τii3 + λ2hhγ, γii2 + λ2hhσ, σii1 − 2λνhhσ, τii1
≥ λ2hhτ , τii3 + λ2hhγ, γii2 + λ2hhσ, σii1 − λν[hhσ, σii1 + hhτ , τii1]
≥ (λ2 − λν)||U ||2 ≥ (λ− ν)2||U ||2

for all λ > ν.
Thus, for all λ > ν, we obtain

||U ||
||F || ≤

1

λ− ν
.

Consequently, the resolvent RA (λ) defined in (50) satisfies

||RA (λ) || ≤
1

λ− ν
,
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Figure 14: The u-component of the lid-driven cavity velocity field at t̄ = 5.0 and t̄ = 5.1 at different
locations near the y = 0 boundary. “NS” refers to Navier-Stokes simulations; “cubic” refers to cubic
RNS simulations.

or, equivalently,

||Rn
A (λ) || ≤ ||RA (λ) ||n ≤

1

(λ− ν)n
.

We, therefore, conclude that property (51) is satisfied for ω ≡ ν > 0, and hence A is an infini-
tesimal generator of a C0 semigroup T (t) with

||T (t)|| ≤ eνt.

7.1.3 Existence for the full cubic RNS equations

For system (48), Pazy [10] shows that if A is the infinitesimal generator of a C0 semigroup on X,
and f : X → X is continuously differentiable, then (48) has a unique (classical) solution u over the
time interval [t0, tmax). Moreover, if tmax <∞, then limt→tmax ||u(t)|| =∞.

We have already shown that A is an infinitesimal generator of a C0 semigroup. We now prove that
f(u) is continuously differentiable in u. We first observe that f is defined and uniformly continuous
on a dense subset of the complete space X = B1([0, L])×B2([0, L])×B2([0, L]). As a result, f can
be extended continuously to the whole of X.
For u = (τ , γ, σ) and h = (h1, h2, h3) ∈ X, we can write

f(u+ h)− f(u) = − 1
νρ

⎛⎝ 0
h1τx + h1xτ + h1h1x
2(τh2x + h1γx + h1h2x)

⎞⎠ ,

which gives

Duf(u) = −
1

νρ

⎛⎝ 0
τx + τ d

dx
2γx

0
0

2τ d
dx

0
0
0

⎞⎠ ,

a map continuos in X with respect to the norm ||.|| defined in (45). Therefore, the cubic RNS
equations with homogeneous boundary conditions are well posed: they have unique classical solutions
that depend continuously on the initial conditions.
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Figure 15: Same as Fig. 14, but for the quartic RNS simulation.

7.1.4 Inhomogeneous boundary conditions

We reconsider the system (14) with the boundary and initial conditions (15). Under the change of

variables

τ = τ 0 +
1

L
[(L− x)T0(t) + xTL(t)] = τ 0 + F (x, t),

γ = γ0 +
1

L
[(L− x)px(0, t) + xpx(L, t)] = γ0 + P (x, t),

σ = σ
0
+
1

L
[(L− x)S0(t) + xSL(t)] = τ 0 +H(x, t),

system (14) becomes

τ 0t = 2ντ 0xx + νσ0 + νH − Ft,

γ0t = 2νγ0xx −
1

νρ
τ 0τ 0x −

1

νρ
τ 0Fx −

1

νρ
Fτ 0x −

1

νρ
FFx − Pt,

σ0t = νσ0xx − ντ 0xxxx −
2

νρ
τ 0γ0x −

2

νρ
τ 0Px −

2

νρ
Fγ0x −

2

νρ
FPx − St. (57)

which has a different linear part than (14) does. However, we can view (57) as

ut = Au+ g(u),

where A is given in (49) and g has quadratic, linear and constant terms in u. It is straightforward
to check that g is continuously differentiable on X, thus all our previous arguments remain valid,
and the existence of a unique solution with continuous dependence on initial data is proved.

7.2 Existence and uniqueness for higher-order RNS equations
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7.2.1 The linear part

To derive the nth equation of the RNS system of order N with N ≥ n ≥ 3, we take the (n − 3)rd
y-derivative of equation (10), then subtract from that the second x-derivative of the (n− 2)nd-order
RNS equation. Carrying out this procedure for only the linear parts of the equations, we obtain the
linear part of the nth order RNS equation, which we explore below.
With the notation

un = ρν
∂nu

∂yn
,

the linear part of (10) becomes

∂t(u
3 + ∂2xu

1) = 2ν∂2xu
3 + νu5 + ∂4xu

1.

Taking (n− 3)rd derivative of this last equation with respect to y, we obtain

∂t(u
n + ∂2xu

n−2) = 2ν∂2xu
n + νun+2 + ∂4xu

n−2. (58)

This last equation is also valid for n = 1, 2, except that the terms containing un−2 are absent. Taking
the second x-derivative of (58) and letting n→ n− 2, we find that

∂t(∂
2
xu

n−2 + ∂4xu
n−4) = 2ν∂4xu

n−2 + ν∂2xu
n + ∂6xu

n−4. (59)

Subtracting (58) from (59), we obtain

∂t(u
n − ∂4xu

n−4) = ν∂2xu
n + νun+2 − ∂4xu

n−2 − ∂6xu
n−4. (60)

Next, we add to (60) the equation

∂t(∂
4
xu

n−4 + ∂6xu
n−6) = 2ν∂6xu

n−4 + ν∂4xu
n−2 + ∂8xu

n−6,

which we obtain from (58) by taking the 4th x-derivative and letting n → n − 4. The resulting
equation is

∂t(u
n + ∂6xu

n−6) = ν∂2xu
n + νun+2 + ∂6xu

n−4 + ∂8xu
n−6, (61)

in which the order of the y-derivative on the left-hand side has decreased by 2 compared to (60).
We repeat the above order-reduction procedure until only ∂tun is left on the left-hand side of the

equation. This happens when the superscript of u in the second term of the left-hand side reaches
−1 or −2; this indicates that that corresponding term is absent.
In the case of n = 4k + i with i = 1, 2, the resulting linear equation is

unt = ν∂2xu
n + νun+2 + ν∂n−i+2x ui;

in the case of n = 4k + 2 + i with i = 1, 2, the resulting linear equation is

unt = νunxx + νun+2 − ν∂n−i+2x ui.

When n + 2 > N, the term containing the superscript n + 2 is absent, because we truncate the
Taylor-expansion of u at order N .
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In summary, the linear part of the Nth order RNS system, say in the case of N = 4K + 1, is of
the form

u1t = 2ν∂2xu
1 + νu3,

u2t = 2ν∂2xu
2 + νu4,

u3t = ν∂2xu
3 + νu5 + ν∂4xu

1,

u4t = ν∂2xu
4 + νu6 + ν∂4xu

2,

...

u4k+it = ν∂2xu
4k+i + νu4k+i+2 + ν∂4k+2x ui,

u4k+i+2t = ν∂2xu
4k+i + νu4k+i+2 + ν∂4k+4x ui,

...

u4Kt = ν∂2xu
4K + ν∂4Kx u2,

u4K+1t = ν∂2xu
4K+1 + ν∂4K+2x u1, (62)

where i = 1, 2, and all terms are evaluated at y = 0. The structure of the RNS system for other
values of N is similar.
We consider the Nth order RNS system (62) on the function space

X = BN ×BN−1 × ...×B2 ×B1,

where Bn is defined in (44). On X, we define the norm

||U ||2 = {hhu1, u1iiN+
1√
2
hhu2, u2iiN−1}+

1

2
{hhu3, u3iiN−2+hhu4, u4iiN−3}+...+

1

2(N−1)/2
hhu2k+i, u2k+iii1,

where i = 1 or 2, and

hhu, viin = hu, vi+ hux, vxi+ huxx, vxxi+ ...+ h∂nxu, ∂nx vi.

We observe that the homogeneous boundary conditions imply

∂2xu
N = 0, ∂2xu

N−1 = 0,

∂2j+2x uN−2 = 0, ∂2j+2x uN−3 = 0, j = 0, 1,

∂2j+2x uN−4 = 0, ∂2j+2x uN−5 = 0, j = 0, 1, 2,

...

∂2j+2x u1 = 0, j = 0, 1, 2, ..,m = (N − 1)/2.

We again let
F = (λI −A)U,

where A is the linear operator appearing on the right-hand side of the RNS system (62). We estimate
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the norm of F as

||F ||2 = hhf1, f1iiN +
1√
2
hhf2, f2iiN−1 +

1

2
hhf3, f3iiN−2 + ...+

1

2(N−1)/2
hhfN , fN ii

= hhλu1 − 2ν∂2xu1 − νu3, λu1 − 2ν∂2xu1 − νu3iiN

+
1√
2
hhλu2 − 2ν∂2xu2 − νu4, λu2 − 2ν∂2xu2 − νu4iiN−1

+
1

2
hhλu3 − ν∂2xu

3 + ν∂4xu
1 − νu5, λu3 − ν∂2xu

3 + ν∂4xu
1 − νu5iiN−2

+
1

2
√
2
hhλu4 − ν∂2xu

4 + ν∂4xu
2 − νu6, λu4 − ν∂2xu

4 + ν∂4xu
2 − νu6iiN−3

+
1

4
hhλu5 − ν∂2xu

5 + ν∂6xu
1 − νu7, λu5 − ν∂2xu

5 + ν∂6xu
1 − νu7iiN−4

+...

+
1

2(N−1)/2
hhλuN − ν∂2xu

N + ν∂4xu
N−2 ± ν∂N−i+2x ui, λuN − ν∂2xu

N + ν∂4xu
N−2 ± ν∂N−i+2x uiii1

≥ λ2hhu1, u1iiN + 2λνhh∂xu1, ∂xu1iiN − 2λνhhu1, u3iiN + ...

+
1

2
λ2hhu3, u3iiN−2 + λνhh∂xu3, ∂xu3iiN−2 − λνhhu3, u5iiN−2 + λνhh∂2xu3, ∂2xu1iiN−2 + ...

+
1

4
λ2hhu5, u5iiN−4 +

1

2
λνhh∂xu5, ∂xu5iiN−4 −

1

2
λνhhu5, u7iiN−4 +

1

2
λνhh∂xu5, ∂5xu1iiN−4 + ...

...

+
1

2(N−1)/2
©
λ2hhuN , uN ii1 + 2λνhh∂xuN , ∂xuN ii1

− 2λνhh∂xuN , ∂3xuN−2ii1 + 2λνhh∂xuN , ∂N−i+1x uiii1
ª

(63)

Based on the estimates¯̄
−λνhhu1, u3ii+ λνNhh∂2xu3, ∂2xu1iiN−2

¯̄
= |− λνhhu1, u3ii1|

≤ 1

2
λν[hhu1, u1ii1 + hhu3, u3ii1],

|hhu1, u3iiN | = |hh∂2xu1, ∂2xu3iiN−2|+ |hhu1, u3ii1|
= |hh∂3xu1, ∂xu3iiN−2|+ |hhu1, u3ii1|

≤ 1

2
[hh∂3xu1, ∂3xu1iiN−2 + hh∂xu3, ∂xu3iiN−2] + |hhu1, u3ii1|

≤ 1

2
[hh∂xu1, ∂xu1iiN + hh∂xu3, ∂xu3iiN−2 + hhu3, u3ii1],

hh∂xu5, ∂5xu1iiN−4 ≤ 1

2
[hh∂xu5, ∂xu5iiN−4 + hh∂5xu1, ∂5xu1iiN−4]

≤ 1

2
[hh∂xu5, ∂xu5iiN−4 + hh∂xu1, ∂xu1iiN ],

we deduce the general relations

hhun, un+2iiN+1−n ≤ 1

2

£
hhun+2, un+2iiN−1−n + hhun, uniiN+1−n

¤
,

hh∂xun, ∂nxu1iiN+1−n ≤ 1

2

£
hh∂xun, ∂xuniiN+1−n + hh∂xu1, ∂xu1iiN

¤
.

Combining these last two inequalities with (63), we find that for λ > 0,

||F ||2 ≥ (λ2 − λν)||U ||2 ≥ (λ− ν)2||U ||2,
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which again implies

||Rn
A (λ) || ≤ ||RA (λ) ||n ≤

1

(λ− ν)n
.

Therefore, property (51) is again satisfied for the resolvent of A, and hence for ω ≡ ν > 0, the
linear system (62) admits a C0 semiflow T (t) with

||T (t)|| ≤ eνt.

This proves the existence, uniqueness and C0 regularity of solutions of the Nth-order linearized RNS
system.

7.2.2 The full nonlinear system

We now extend the above regularity result to the full Nth-order RNS system

ut = Au+ f(u), (64)

where Au represents the right-hand side of (62), and f(u) denotes the quadratic terms. By the result
of Pazy [10], system (64) is well-posed if f : X → X is continuously differentiable.
Let {ei}Ni=1 be the standard basis of RN . We observe that by the definition of the space X, the

map

fl,m1,n1,m2,n2 : X → X, (65)

u 7→ el (∂
m1
x un1) (∂m2

x un2) , (66)

is continuously differentiable if

m1 ≤ l − n1, m2 ≤ l − n2. (67)

All terms in the Nth-order RNS system are of the general form (65); a systematic review of these
terms reveals that they all satisfy (67). (We omit a detailed listing of the nonlinear terms for brevity.)
We conclude that the function f(u) in (64) is continuously differentiable, and hence theNth-order

RNS system with homogeneous boundary conditions admits unique solutions that are continuous
with respect to the initial data. The case of inhomogeneous boundary conditions follows as in the
case of the cubic RNS system (cf. Appendix 7.1).

8 Appendix B: Derivation of the cubic RNS equations in 3D
Subtracting the x-derivative of the third equation in (22) from the z-derivative of the first equation,
we obtain

∂t(uz − wx) + uxzu+ uxuz + uyzv + uyvz + uzzw (68)

+uzwz − wzxu− wxuz − wyzv − wyvz − wzzw − wzwz

= ν(uxxz + uyyz + uzzz − wxxx − wyyx − wzzx).

Evaluating (68) at z = 0 and using the no-slip boundary conditions, we obtain

[uzt]z=0 = [νuzzz + νuzxx + νuzyy − νwzzx]z=0 .

By incompressibility, this last equation yields

[uzt]z=0 = [2νuzxx + νuzyy + νvzxy + νuzzz]z=0 . (69)

The same argument applied to the v-component of the Navier-Stokes equations gives

[vzt]z=0 = [2νvzyy + νvzxx + νuzxy + νvzzz]z=0 . (70)
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We continue by taking the z-derivative of equation (68) to obtain

∂t(uzz − wzx) + uxzzu+ 2uzxuz + uxuzz + uzzyv + 2uzyvz + vuyvzz + uzzzw + 2uzzwz

+uzwzz − wzzxu− 2wzxuz − wxuzz − wyzzv − 2wyzvz − wyvzz − wzzzw − 3wzzwz

= ν(uzzxx + uzzyy + uzzzz − wzxxx − wzyyx − wzzzx). (71)

Evaluation at z = 0 then gives

[uzzt]z=0 = [−2uzuzx − 2uzyvz − uzwzz + ν(2uzzxx + uzzyy + uzzzz + vzzxy)]z=0 .

We use incompressibility to rewrite this last equation as

[uzzt]z=0 = [ν(2uzzxx + uzzyy + uzzzz + vzzxy)− uzuzx − 2uzyvz − uzvzy]z=0 . (72)

Similarly, we obtain

[vzzt]z=0 = [ν(2vzzyy + vzzxx + vzzzz + uzzxy)− vzvzy − 2vzxuz − vzuzx]z=0 . (73)

Differentiation of (71) with respect to z gives

∂t(uzzz − wzzx) + uzzzxu+ 3uzzxuz + 3uzxuzz + uxuzzz + uzzzyv + 3uzzyvz + 3uzyvzz

+uyvzzz + uzzzw + 3uzzzwz + 3uzzwzz + uzwzzz − wzzxu− 3wzzxuz − 3wzxuzz − wxuzzz

−wyzzzv − 3wyzzvz − 3wyzvzz − wyvzzz − wzzzzw − 4wzzzwz − 3wzzwzz

= ν(uzzzxx + uzzzyy + uzzzzz − wzzxxx − wzzyyx − wzzzzx),

which, at z = 0, becomes

[uzzzt − wzzxt]z=0 = [−3uzzxuz − 3uzxuzz − 3uzzyvz − 3uzyvzz − 3uzzwzz − uzwzzz

+3wzzxuz + 3wyzzvz + wzzzzw + 4wzzzwz + 3wzzwzz

+ν(uzzzxx + uzzzyy + uzzzzz − wzzxxx − wzzyyx − wzzzzx)]z=0.

Imposing incompressibility on this last equation, we find that

[uzzzt]z=0 = −uzxxt − vzxyt − 3uzzxuz − 3uzxuzz − 3uzzyvz − 3uzyvzz + 3uzzuzx
+3uzzvzy + uzuzzx + uzvzzy − 3uzxxuz − 3vzxyuz + 3uzxyvz + 3vzyyvz + 3uzxuzx
+6uzxvzy + 3vzyvzy + ν(uzzzxx + uzzzyy + uzzzzz − uzxxxx − vzyxxx − uzxyyx)

−ν(vzyyyx + uzzzxx + vzzzyx)]z=0 (74)

Using (70), we can rewrite (74) as

[uzzzt]z=0 = [−ν(2uzxxxx + uzyyxx + vzxyxx + uzzzxx)− ν(2vzxyyy + vzxxxy + uzxxyy + vzzzxy)

−3uzzxuz − 3uzxuzz − 3uzzyvz
−3uzyvzz + 3uzzuzx + 3uzzvzy + uzuzzx + uzvzzy − 3uzxxuz − 3vzxyuz + 3uzxyvz
+3vzyyvz + 3uzxuzx + 6uzxvzy + 3vzyvzy

+ν(uzzzxx + uzzzyy + uzzzzz − uzxxxx − vzyxxx − uzxyyx − vzyyyx − uzzzxx − vzzzyx)]z=0.

After cancellations due to incompressibility, the above equation becomes

[uzzzt]z=0 = [−ν(3uzxxxx + 3uzyyxx + uzzzxx + 3vzxxxy

+3vzyyyx + 2vzzzxy − uzzzyy − uzzzzz)

−2uzzxuz − 3uzzyvz − 3uzyvzz + 3uzzvzy
+uzvzzy − 3uzxxuz − 3vzxyuz + 3uzxyvz (75)

+3vzyyvz + 3uzxuzx + 6uzxvzy + 3vzyvzy]z=0.
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A similar argument yields

[vzzzt]z=0 = [−ν(3vzyyyy + 3vzyyxx + vzzzyy + 3uzxyyy

+3uzxxxy + 2uzzzxy − vzzzxx − vzzzzz)

−2vzzyvz − 3vzzxuz − 3vzxuzz + 3vzzuzx
+vzuzzx − 3vzyyvz − 3uzxyvz + 3vzxyuz (76)

+3uzxxuz + 3vzyvzy + 6vzyuzx + 3uzxuzx]z=0.

Then equations (69), (70), (72), (73), (75), and (76) can be summarized as the cubic three-
dimensional RNS system (24).
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