
  

AFRL-IF-RS-TR-2006-288 
Final Technical Report 
September 2006 
 
 
 
 
 
 
AUTOMATIC DETECTION OF ANOMALOUS 
BEHAVIOR IN NETWORKS  
 
 
Purdue University 
 
 
 
 
  
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

STINFO FINAL REPORT 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 

 



  

 
 
 

NOTICE AND SIGNATURE PAGE 
 
 
 
Using Government drawings, specifications, or other data included in this document for 
any purpose other than Government procurement does not in any way obligate the U.S. 
Government. The fact that the Government formulated or supplied the drawings, 
specifications, or other data does not license the holder or any other person or 
corporation; or convey any rights or permission to manufacture, use, or sell any patented 
invention that may relate to them.  
 
This report was cleared for public release by the Air Force Research Laboratory Rome 
Research Site Public Affairs Office and is available to the general public, including 
foreign nationals. Copies may be obtained from the Defense Technical Information 
Center (DTIC) (http://www.dtic.mil).   
 
 
AFRL-IF-RS-TR-2006-288 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION 
STATEMENT. 
 
 
 
FOR THE DIRECTOR:  
 
 
 /s/       /s/ 
 
ANDREW J. KARAM    WARREN H. DEBANY, JR. 
Work Unit Manager      Technical Advisor, Information Grid Division  
       Information Directorate 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings.  
 
 
 
 
 
 
 
 
 
 
 
 



  

 
 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection 
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports, 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, 
Paperwork Reduction Project (0704-0188) Washington, DC 20503. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

SEP 2006 
2. REPORT TYPE 

Final  
3. DATES COVERED (From - To) 

Sep 02 – Mar 06 
5a. CONTRACT NUMBER 

F30602-02-2-0217 

5b. GRANT NUMBER 
 

4. TITLE AND SUBTITLE 
AUTOMATIC DETECTION OF ANOMALOUS BEHAVIOR IN 
NETWORKS 

5c. PROGRAM ELEMENT NUMBER 
33140F  

5d. PROJECT NUMBER 
7820 

5e. TASK NUMBER 
96 

6. AUTHOR(S) 
C. E. Brodley 

5f. WORK UNIT NUMBER 
10 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Purdue University  
1063 Hovde Hall  
West Lafayette Indiana 47906 

8.  PERFORMING ORGANIZATION 
REPORT NUMBER 
N/A 

10.  SPONSOR/MONITOR'S ACRONYM(S) 
 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Research Laboratory/IFGB 
525 Brooks Rd 
Rome NY 13441-4505 11.  SPONSORING/MONITORING 

AGENCY REPORT NUMBER 
AFRL-IF-RS-TR-2006-288 

12. DISTRIBUTION AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.  PA#06-641 

13. SUPPLEMENTARY NOTES  

14. ABSTRACT   
Detection of anomalous behavior in networks is a difficult problem.  We created automatic tools that will detect, through traffic 
monitoring, anomalous behaviors in computer networks.  Because signature techniques cannot detect new forms of attacks, we 
focused on designing adaptive solution to quickly detect new (and old) attacks while minimizing the false alarm rate.  Our approach 
is to form a model of the normal behavior of a network element and then monitor incoming/outing traffic for anomalies.  As part of 
our research, we have also researched methods to model human behavior to detect anomalies in user patterns through mouse 
movements.  In particular, we monitor each user’s keystroke, mouse and GUI behavior to determine if he/she is a valid user or an 
imposter. 

15. SUBJECT TERMS 
Anomaly Detection, DDOS, NDOS, Detection, “Characterization of Normal Behavior,” Network Servers, Monitor, Traffic 

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON 
Andrew Karam 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE 
U 

17. LIMITATION OF 
ABSTRACT 
 

UL 

18. NUMBER 
OF PAGES 
 

24 19b. TELEPHONE NUMBER (Include area code) 
 

 
 



 

Table of Contents 
 
 1. Project Objectives ........................................................................................................................... 1

 
1.1  Basic Infrastructure ................................................................................................................ 1 
1.2  Objective 1:  Explore how the selection of parameters affects our results ............................ 1 
1.3  Objective 2:  Expand experimental testbed............................................................................ 2 
1.4  Objective 3:  Include other network elements........................................................................ 3 

 
    2. Experimental Results: Investigating the Impact of OSPF Attacks ................................................. 3
 
    3. Experimental Results:  Classification of Server Flows ................................................................... 5 

     3.1 Data Sources............................................................................................................................. 6 
     3.2 Aggregate Server Flow Model ................................................................................................. 7 
     3.3 Host-Specific Models ............................................................................................................... 9 
     3.4 Models from Real Network Traffic........................................................................................ 10 
     3.5 Conclusions ............................................................................................................................ 11

 
        4. Published Papers and Presentation................................................................................................ 12
 
       Appendix A - Final Report User Re-authentication via Mouse Behavior.......................................... 13 
 
 
 
 
 
 
 
 
 

 i



ii 

 
 

List of Figures 
 
 
 
Figure 1: Portion of a decision tree generated by C5.0........................................................6   
 
 
 

List of Tables 
 
 

 
Table 1: Classification accuracy of the aggregate model decision trees on unseen      

individual server flows..........................................................................................8 
 
Table 2: Number of flows used for each protocol in training and test sets for each host  

model.....................................................................................................................9 
 
Table 3: Classification accuracy of host model decision trees on unseen server flows ......9 



 

 

1. Project Objectives  
Our project addressed the detection of anomalous behavior in networks. During the funded period 
we created automatic tools that will detect, through traffic monitoring, anomalous behaviors in 
computer networks. Because signature techniques cannot detect new forms of attacks, and in the 
domain of network security, new attacks appear frequently, we focus on designing adaptive 
solutions to quickly detect new(and old) attacks while minimizing the false alarm rate. By adaptive 
we mean that our approach is designed to detect previously unseen attacks rather than a fixed set of 
known attacks.  
 
Our approach is to form a model of the normal behavior of a network element and then monitor 
incoming/outgoing traffic for anomalies. Characterizing normal behavior of a network element 
requires that we 1) determine where to physically monitor the traffic coming in the element; 2) 
decide what features of the available data to measure in order to build a scalable, accurate model of 
the element’s normal behavior; and 3) determine how to build a model of normal behavior from the 
collected data that can then be used for anomaly detection.  
 
Our proposal had three objectives, and we organize the first part of this report with respect to those 
objectives. In the second part we present some of the experimental results and in the final part, we 
discuss the utility of our methods for the discovery of covert channels and backdoors.  
 

1.1 Basic Infrastructure  
In the first quarter of our funded program, we developed the software infrastructure to collect and 
monitor data. To monitor the traffic we use snoop. The graduate student on the project has 
implemented the basic infrastructure in which to run comprehensive experiments.  
 

1.2 Objective 1:  Explore how the selection of parameters affects our results  
 
The goals here were to create the infrastructure to automatically select the parameters of our 
algorithms and to this end, we have implemented an architecture that allows for the automatic 
selection of the features to use to build a model of normal behavior and this includes the parameter 
of the window size over which they are computed.  
 
Our implementation of the available features has been completed and we now compute a 
comprehensive set of features. Note that some of these features are computed over a window of size 
n packets, where n is an adjustable parameter of the system. For monitoring network traffic we have 
code to capture the following features:  
______________________________ 
∗ Note that this report was written in 2004, but not submitted as the grant was extended to allow for the research on 
Mouse Movements.  
 
 
 

 1



 

 
For all protocols:  Mean inter-arrival time and standard deviation; Packet length  
 
For IP:  Header length, Total Length, ID, Checksum, Percentage of fragmentation, percent of new 
 Source IP, and percent of new Destination IP,  
 
For ICMP:  Type, Code, and Checksum.  
 
For TCP:  Source port, Destination port, Flags, and Checksum  
 
In addition we have added the capability to collect data by application protocols (i.e., FTP, SSH, 
HTTP, etc.), and by flow (e.g., TCP traffic from a server to a client of a particular protocol). Note 
that which features are selected depends on what aspect of normal behavior we are trying to model.  
 
We ran a comprehensive set of experiments to analyze normal behavior of server flows. We 
experimented with the optimal window size for our aggregate features (see our report from the first 
quarter). We demonstrated that  
 

• False positive rates of anomaly detection mechanisms monitoring TCP/IP headers can be 
reduced if we learn a separate model of normal behavior for TCP/IP for each application.  

 
• We can classify a flow as one of a set of applications if we monitor features of their 

behavior over a window. (See below for experimental results, which expand upon the results 
reported in the third quarter of our project).  

 

1.3 Objective 2: Expand experimental testbed  
 
Our goals here were to expand the experimental testbed of attacks and run comprehensive 
experiments. In the first quarter of our funded research we set up an off-the Internet experimental 
testbed in which to install and test new NDoS attacks. Using a group of undergraduate volunteers, 
we installed and tested the following attacks: Smurf / Fraggle / Papa Smurf, mstream, TFN, TFN2K 
and Toast. In addition, we also examined the MIT Lincoln Lab’s data and wrote code to allow our 
methods to be applied to these datasets.  
 
In the second and third quarters we expanded the capabilities in our testbed to analyze traffic by 
server flow. Previously we partitioned traffic at the transport layer into TCP / UDP / ICMP / IP. We 
have added the capability to analyze application protocol traffic and further we created the tools to 
analyze traffic at the flow level (i.e., an application protocol for a particular host).  

 

 2



 

1.4 Objective 3: Include other network elements  
 
Our preliminary work focused on a Web server and a file server. In the third and fourth quarter of 
this project, another graduate student, set up the infrastructure to attack and monitor an OSPF 
network using the the simulation tool OPNet. This allowed us to study the affect of various attacks 
against routers. Our long-term goal for the this area is to determine the efficacy of anomaly 
detection in a network at the OSPF level. In particular by watching the link state advertisements. 
We are now poised to begin experimenting with both signature and anomaly-based techniques for 
detecting such attacks. We report the results of our intial experiments in the next section.  
 

2. Experimental Results: Investigating the Impact of OSPF Attacks  
 
In our experiments, we used OPNet to first investigate the impact of various types of OSPF attacks 
and second, to evaluate a very simple rule-based intrusion detection system. Our assumption is that 
a router has been compromised and is therefore able to send out spoofed Link State Advertisements 
(LSAs) about other routers in the same domain. In addition, the compromised router can send any 
information it wants about itself.  
 
In our experiments, the simulated network consisted of 23 routers, 20 servers and 20 LANs. Each 
LAN was composed of 15 hosts which were HTTP and FTP clients. The clients generated random 
HTTP and FTP connections to the servers. The connections between the clients and the servers 
were dynamic. That is, Client A communicating with Server B at time t0 may communicate with 
another server at time t1.  
 
To investigate the impact of OSPF attacks, we launched several attacks at one of two different 
locations: a backbone router or an edge router. We discovered that some OSPF attacks could have 
serious domain-wide impact on the performance of the network. For example, when under an OSPF 
sink attack, the throughput of the network would drop dramatically due to packet loss. An OSPF 
sink attack is a domain-wide attack in which the compromised router makes itself a sink by sending 
out bad LSAs to claim that it has zero cost to everywhere. In addition to the OSPF sink attack, we 
launched a OSPF MaxAge attack, in which the compromised router sends out bad LSAs about 
other routers with Age equal to MaxAge. When a router receives a MaxAge LSA, it removes all the 
links to the sender if that LSA. Therefore, when under the OSPF MaxAge attack, the throughput of 
the network would drop but not at the same rate as that of the OSPF sink attack.  
 
We also observed that some of the attacks were not noticeable by looking at bandwidth and hence 
would avoid detection by an administrator. But these attacks were unsuccessful not because of their 
nature but because the attacker had not yet found out the exact value for the cost that he or she 
should use to create a loop or a sink. Therefore, while the attacker searches for the cost by trying 
various values and launching an attack, the impact of such attacks is negligible. But we would still 
want to know when these unsuccessful attacks are occurring, because they may be an indication 
that a router has been compromised.  

 3



 

 
Because there are many different variants of OSPF attacks, we classify the attacks into three groups 
and then create several general rules. Note that for each class they can be further subdivided by 
whether the attacker sends the LSAs during the expected update time or not.

1

 
1. Sending out bad LSAs about other routers with current sequence number.  
 
2. Sending outbad LSAs about other routers with a sequence number greater than the 

current sequence number.  
 
3. Sending out bad LSAs about the compromised router itself.  

 
After our initial experiments, we created a simple rule-based IDS that we placed at a backbone 
router. We then re-launched our set of attacks in order to evaluate the efficacy of our rule-based 
approach. We discovered that our IDS could detect all attacks except 1) when the compromised 
router sends out bad information about itself at the expected updating period and 2) when the 
compromised router sends out bad information about other routers with the current LSA sequence 
number. Note that for some configurations of attacker and victim router our rules can detect the 
second case. However missing this second case is less damaging than the first because the impact of 
this attack is limited. Routers that have already received a correct LSA with current sequence 
number will not accept the bad LSA with the same sequence number. Therefore, only the routers 
that receive the bad LSA before the correct LSA would be affected by the attack. Currently the 
rules of our IDS are:  
 

1. When the IDS detects a new link / router or a down link / router, it will check with 
the administrator’s database to verify if the topology change is expected, which 
prevents an attacker from adding or dropping link or router.  

 
2. The IDS should only receive LSAs during the expected updating period.  
 
3. The difference between the sequence number of two consecutive LSAs from the 

same router should be less than or equal to one (Together with Rule 2, this should 
detect most attacks.)  

 
4. The difference between the age of the received LSA and the database’s age of the 

same originator should be less than MaxAgeDiff  
 
5. The change of cost of a link of an originator should be less than N%, where N is a 

parameter that is configured by the administrator.  
 
6. Information contained in LSAs with the same sequence number should be the same.  
 

 

                                                 
1 Each router is expected to send out LSAs every 30 minutes in our simulation 

 4



 

 

3. Experimental Results:  Classification of Server Flows  
 
Understanding the nature of the information flowing into and out of a system or network is 
fundamental to determining if there is adherence to a usage policy. Traditional methods of 
determining traffic type rely on the port label carried in the packet header. This method can fail, 
however, in the presence of proxy servers that re-map port numbers or host services that have been 
compromised to act as backdoors or covert channels.  
 
Our experiments were designed to investigate whether we can classify server type based on features 
of behavior. We present experimental results with learning aggregate flows and by-host flows. The 
key issue in the behavioral authentication of server flows is what characteristics or features of the 
traffic should be monitored. In environments where there are concerns about user privacy, or where 
encryption is used to hide the data carried in network packets, we cannot rely on the contents of the 
payload as a source of features. Rather, we examine the packet header and the operational 
characteristics of the traffic itself to define our feature set. 
 
For the purposes of our analysis and experiments, we focused on the HTTP, FTP, Telnet, SMTP, 
and SSH application protocols. These protocols are well understood, stable, widely implemented, 
and represent the vast majority of user traffic.  
 
Based on our initial observations, we concluded that features based on the TCP state flags (URG-
Urgent, ACK -Acknowledgment, PSH -Push, RST -Reset, SYN -Synchronize, and FIN -Finish) can 
operationally differentiate server flow behavior. For example, HTTP traffic generally contains far 
fewer packets with the PSH flag than does Telnet traffic. Specifically, for each of the flags, we 
calculate the percentage of packets in a window of size n packets with that flag set. In addition to 
these six features we calculate the mean inter-arrival time and the mean packet length for the 
window of n packets. During monitoring, these features are used by the classification method to 
determine whether the previous n packets match the learned behavior of the server flows.  
 
To perform the classification, we chose to use the C5.0 decision tree algorithm – a widely used and 
tested implementation. Here we provide only the key aspects of the algorithm related to decision 
tree estimation, particularly as it pertains to feature selection. The most important element of the 
decision tree estimation algorithm is the method used to estimate splits at each internal node of the 
tree. To do this, C5.0 uses a metric called the information gain ratio that measures the reduction in 
entropy in the data produced by a split. In this framework, the test at each node within a tree is 
selected based on splits of the training data that maximize the reduction in entropy of the 
descendant nodes. Using this criteria, the training data is recursively split such that the gain ratio is 
maximized at each node of the tree. This procedure continues until each leaf node contains only 
examples of a single class or no gain in information is given by further testing. The result is often a 
very large, complex tree that over fits the training data. If the training data contains errors, then over 
fitting the tree to the data in this manner can lead to poor performance on unseen data. Therefore, 
the tree must be pruned back to reduce classification errors when data outside of the training set are 
to be classified. To address this problem C5.0 uses error-based pruning.  

 5



 

 

3.1 Data Sources  
The first data set chosen for our experiments is the 1999 MIT Lincoln Labs Intrusion Detection 
Evaluation Datasets. Although created for a specific evaluation exercise, these datasets have 
subsequently been widely used for research into other later intrusion detection systems not part of 
the original evaluation.  
 
The data represent five weeks of simulated network traffic from a fictional Air Force base. Weeks 
one through three constitute the training data used by anomaly-based intrusion detection systems to 
model behavior. The data in week one and week three are attack-free. There are five network trace 
files for each week – one for each business day representing network usage from approximately 
8:00 AM to 5:00 PM. Each file is in libpcap format (readable with tcpdump),then compressed using 
gzip. On average, each week consists of roughly 1 GB of compressed data representing 22 million 
network packets. We used data from week one in our training sets and data from week three in our 
test sets. Note that we do not use the attack data, since our purpose is to evaluate whether we can 
classify server behavior – not whether we can detect intrusions.  
 
In addition to the Lincoln Labs data, we include experiments using data obtained from our own 
network. The purpose here is to test the applicability of our method on “real world” network traffic. 
In particular, we are interested in classifying traffic from some of the newer peer-to-peer file 
sharing protocols –something that the Lincoln Labs data sets do not contain. Some concerns have 
been raised about the artificial nature of the Lincoln Labs data, and thus an additional objective was 
to identify any marked differences between experiments with these two data sets.  

 
Figure 1: Portion of a decision tree generated by C5.0.  

 

 6



 

 

3.2 Aggregate Server Flow Model  
 
Our first experiment was designed to determine the extent to which FTP, SSH, Telnet, SMTP, and 
HTTP traffic can be differentiated using a decision tree classifier. We used the data from week one 
of the Lincoln Labs data to build our training dataset. The set was created by first randomly 
selecting fifty server flows for each of the five protocols. Each server flow consists of the packets 
from a server to a particular client host/port. The largest flow contained roughly 37,000 packets, 
and the smallest flow contained 5 packets. The 250 flows represented a total of approximately 
290,000 packets. We refer to this as an aggregate model because the collection of flows came from 
many different servers.  
 
The fact that this data is certified as attack-free meant that we could have confidence in the port 
numbers as indicative of the type of traffic. We used the server port to label each of flows in the 
training set. Each server flow was then used to generate data observations based on our feature set. 
The result is a data set consisting of approximately 290,000 thousand labeled observations. We 
repeated this process for each of seven packet window sizes. The window size is an upper bound on 
the number of packets used to compute the means and percentages. If an individual flow contains 
fewer packets than the packet window size, the number of available packets is used to calculate 
each observation.  
 
Each of the seven training sets was then used to build a decision tree using C5.0. We constructed 
test sets in the same manner – fifty server flows from each protocol were randomly selected from 
week three of the Lincoln Labs data. These were then passed to our feature extraction algorithm 
using the same seven window sizes.  
 
Before describing how a tree is used to classify a flow, we give an example of a portion of a 
decision tree generated by C5.0 in Figure 1. In this example, the root node tests the percentage of 
packets in the packet window with the FIN flag set (tcpPerFIN). If this percentage exceeds1%, a 
test is made on the percentage of packets with the PSH flag set (tcpPerPSH). If this value is less 
than or equal to 40%, the observation is classified as “www”, indicating HTTP traffic. The numbers 
in parenthesis indicate the number of training observations classified with this leaf node. Other tests 
can be seen involving the mean inter-arrival time (meanIAT) and mean packet length 
(meanIPTLen).  
 
During testing, the class label for a given flow was calculated by summing the confidence values for 
each observation in the flow. The class with the highest total confidence was assigned to that flow. 
The classification results are shown in Table 1. For each of seven window sizes, we report the 
percentage of correctly classified server flows out of the set of fifty flows for each protocol. As can  
be seen in the table, the classification accuracy ranges from 82% to 100%.  
 
 
 
 
 

 7



 

 
Table 1: Classification accuracy of the aggregate model decision trees on unseen individual 
server flows. Each value represents the percentage of correctly classified flows out of the fifty 
flows for each protocol  
 

Window Size FTP SSH Telenet SMTP WWW 
1000 100% 88% 94% 82% 100% 
500 100% 96% 94% 86% 100% 
200 98% 96% 96% 84% 98% 
100 100% 96% 96% 86% 100% 
50 98% 96% 96% 82% 100% 
20 100% 98% 98% 82% 98% 
10 100% 100% 100% 82% 98% 

 
In general, the classification accuracy was lower for SMTP server flows than for other protocols. 
We examined the misclassified flows in more detail and discovered that these flows were generally 
24 times longer than correctly classified flows. Longer SMTP server flows represented longer 
periods of interaction, and thus contain increasing numbers of observations classified as Telnet or 
FTP. In these few cases, our feature set is not adequate for discriminating between the behaviors of 
these flows.  
 
It is more desirable to use a smaller window size because this decreases the time to detect that a 
service is behaving abnormally. Indeed for SSH we see that too large a packet window size (1000) 
hurts classification accuracy. For FTP, SSH and Telnet, a window size as small as ten packets 
achieves 100% classification accuracy.  
 
Because the proposed method would be used to monitor traffic in real time, we did a rough 
calculation of classification time. The average length of time used by C5.0 to classify an entire flow 
was 70mS.

2 
Training is done offline so computation time is of lesser importance, but note that the 

average length of time used by C5.0 to create each decision tree was 22 seconds. Finally, we need 
to address the storage requirements for maintaining a window of n values to compute the value of 
each of the features. We can approximate the value created by storing all n values by retaining only 
the mean for each feature, µF

i 
and using the following update rule for each new packet:  

 
(n − 1)µF

i 
+ newF

i
  

n 
 
In future work we will investigate whether this technique significantly degrades performance.  
 
We conclude from our experimental results that the behavior of server flows for the five protocols 
can be differentiated using a decision tree classifier built on aggregate flows.  

                                                 
2 The hardware platform used for building the decision trees and classifying observations was a 500Mhz Dual 

Pentium III PC with 772MB of RAM running Red Hat Linux (kernel version 2.4.18).  
 

 8



 

 

3.3 Host-Specific Models  
 
Our second experiment addresses whether creating models for specific hosts provides better 
performance than the aggregate model. There are three advantages to using host-specific models:  
 

1. By creating models for individual server flows, we can monitor these flows for 
changes in behavior.  

 
 

Table 2: Number of flows used for each protocol in training and test sets for each host model 
 

Host Training Flows Test Flows 
172.16.112.100 20 20 
172.16.112.50 30 25 
172.16.113.50 35 23 
172.16.114.50 10 20 
197.218.177.69 25 35 

 
 

Table 3: Classification accuracy of host model decision trees on unseen server flows. Each row 
reports the host address and the percentage of correctly classified flows for each protocol. 
Fields with a “–” indicate there was no traffic of this protocol type for this host.  
 

Host FTP SSH Telenet SMTP WWW 
172.16.112.100 95% - 100% 90% 100% 
172.16.112.50 92% 100% 84% 100% - 
172.16.113.50 100% - 100% 100% - 
172.16.114.50 100% 95% 100% 95% 95% 
197.218.177.69 100% - 100% 100% - 
 
 

2. A host-specific model can capture the implementation subtleties of a particular 
service running on a host. This resolution is missing in the aggregate model 
consisting of many server flows.  

 
3. The training examples in an aggregate model will be dominated by the server 

generating the most traffic. This may dilute examples from other servers. The host-
specific model solves this problem.  

 
We first identified a set of hosts in the Lincoln Labs data that each ran three or more server 
protocols. Training data for each host was collected by randomly selecting server flows from week 
one for each of the protocols running on these hosts. The number of flows used in each model was 
chosen such that each protocol was represented by the same number of flows. Table 2 lists the 
number of training and test flows per host.  

 9



 

 
Based on our results using the aggregate models, we chose a packet window size of 100 for 
generating observations. The selection was driven by the fact that SMTP accuracy was greatest 
using this window size with the aggregate models, and other protocol classifications accuracies 
were between 96% and 100%. We then trained a decision tree for each host that could be used to 
differentiate the server flows coming from that host. Test data was collected from week three in the 
same manner as the training data.  
 
The results in Table 3 indicate that, in general, the host specific models achieve approximately the 
same classification accuracy as the aggregate models. One difference observed is that classification 
accuracy varies by protocol. For example, the classification accuracy of Telnet flows for host 
172.16.112.50 is 84% where as the classification of Telnet flows in the aggregate models averaged 
96.2%. Examination of the packets in the misclassified Telnet flows revealed an interesting 
phenomenon. We often observed large time gaps between packets. The time gaps indicate lapses in 
user activity where the Telnet server is not echoing characters or supplying responses to commands. 
In our framework, a single large gap can radically alter the values for the mean inter-arrival time of 
packets, thus resulting in misclassification of the subsequent observations. We refer to this as the 
Water Cooler Effect – the user temporarily leaves the interactive session, then resumes a short 
while later. We are investigating the sensitivity of our classifiers to this effect. One possible 
solution would be to subdivide flows based on sometime gap threshold and use the interactive sub-
flows to build our classifiers.  
 

3.4 Models from Real Network Traffic  
 
In this section we present experiments with real network traffic. We collected a number of server 
flows using the protocols described. We augmented this set to include flows from hosts acting as 
Kazaa servers. Kazaa is a peer-to-peer file sharing system that is growing in popularity. Peer-to peer 
network traffic was not part of the Lincoln Labs dataset.  
 
Our goal was to determine if there was a significant difference in classification accuracy when using 
synthetic versus real traffic. We observed classification accuracies by protocol ranging from 85% to 
100% for both the aggregate and host models. The peer-to-peer traffic was classified correctly for 
100% of the unseen flows. This is an especially interesting result because Kazaa flows carry a port 
label that is user-defined. Thus, we are able to correctly classify peer-to-peer flows behaviorally – 
without the use of the port number. These results indicate that our classification method is effective 
for real network traffic. The range of accuracies match those observed with the synthetic data. Thus, 
we can identify no appreciable difference in the per-flow behavior in the synthetic Lincoln Labs 
data versus those in real network traffic.  
 
 
 

 10



 

3.5 Conclusions  
 
We have presented a novel approach for defining a set of features to model operational behavior of 
server flow traffic. We demonstrated through the use of the C5.0 decision tree algorithm that our 
features can differentiate the behavior of server protocols with an accuracy of 82% to 100%. We 
illustrate empirically that aggregate models can classify an unseen server flow as belonging to a 
family of previously seen flows, and that host models can determine whether flows from a given 
server match the behavior of previously seen flows from that server. These classifiers can augment 
traditional intrusion detection systems to detect artifacts of successful attacks. Our techniques of 
classification are independent of packet labelings and are thus immune to techniques that modify 
port numbers to conceal activity.  
 
This technique provides a valuable tool for use in identifying the true nature of a given server server 
flow. It is independent of packet labelings and is thus immune to techniques that modify port 
numbers to conceal activity.  
 

 11



 

4. Published Papers and Presentation  
 
This was a one year grant, that received a no-cost extension. It was then expanded to include a sub-
project funded by the NSA on User Re-Authentication via Mouse Behavior. The results from that 
sub-project can be found in a separate final-report also submitted to AFRL. This grant supported 
one PhD student, James Early, who is currently a visiting professor in the Department of Computer 
Science at Purdue University. The papers and presentations from this grant are:  
 
Publications:  
 

• Early, J., Brodley, C. E. and Rosenberg, C., “Behavioral Authentication of Server Flows,” in 
the Proceedings of the Nineteenth Annual Computer Security Applications Conference, 
December 2003, Las Vegas, pp. 49-55.  

 
• Early, J. P. and Brodley, C. E. “Behavioral features for network anomaly detection,” in M. 

Maloof, (Ed.) Machine Learning and Data Mining for Computer Security: Methods and 
Applications, Springer, 2005, pp. 107-124.  

 
• Early, J.P., “Feature Extraction to Describe Attribute Behavior,” Ph.D. Thesis, Department 

of Computer Science, Purdue University, 2005.  
 
Presentations:  

• “Automatic Detection of Anomalous Behavior in Networks,” Air Force Research Laboratory, 
Rome, NY, November, 2002, C. Brodley.  

 
• “Using Statistics to Detect and Thwart Denial of Service Attacks,” Interface-2003, Salt 

Lake City, March 2003, C. Brodley.  
 

• “Behavioral Authentication of Server Flows,” Nineteenth Annual Computer Security 
Applications Conference, December 2003, Las Vegas, J. Early.  

 
• “Behavioral Authentication for Computer Security,” C. Brodley  

 
 – Department of Computer Science, Brandeis University, Waltham, MA, October 2003  
 
 – Department of Computer Science, University of Massachusetts, Amherst, MA, October 
    2004  
 

 12



 

Appendix A
Final Report - User Re-authentication via Mouse Behavior 

Dr. C. E. Brodley, Principal Investigator 
 

Department of Computer Science 
Tufts University 

Medford, MA 02144 
brodley@cs.tufts.edu 

617-627-3652 
 

July 31, 2006 
 

1 Project Objectives  

Our long-term objective is to provide ways to learn and adapt a model of human behavior to 
detect anomalies. An anomaly could signal misuse, an intrusion or insider threat. The goal of this 
project was to evaluate whether we can model user-behavior through mouse movements. 
Although the original proposal was restricted to mouse movements, we expanded the scope of 
the research to include several other biometric sources. In particular we monitor each user’s 
keystroke, mouse and GUI behavior to determine if he/she is a valid user or an imposter. In this 
final report, we summarize our research findings.  
 
2 Task 1: Collection of a Large Scale Database  

During the course of the project, we collected two distinct data sets. The first data set was 
obtained by a group of 61 volunteers who were given a reading assignment followed by a set of 
twenty questions about the material they just read. Users were specifically instructed to read the 
assignment on the screen as opposed to reading it from a printout in order for us to record as 
many mouse movements and GUI changes as possible while they navigated between the reading 
material and a text editor. They were also given a set of web pages to look at and answer yet 
another set of questions. The average number of hours to complete the assignment was 4.10 
hours.  
 

The second dataset was collected by a group of 47 volunteers who were asked to fill out 
an electronic copy of a travel expense form (one page in length) word-by-word from a template. 
Typing mistakes were allowed. Users were instructed to use their mouse device when going from 
one field of the form to the next (instead of the “Tab” key) in order for us to record as many 
mouse movements as possible. The entire process lasted 9.44 minutes on average.  
 

In our experiments we used a ten-fold cross validation. In each of the ten runs 90% of the 
user data set was used for training and the remaining 10% was used for testing. Please note that a 
different 10% of the user data set was used for testing in each run. The results reported were 
averaged over the inner eight cross-validation runs. We decided to disregard results obtained 
from the first and last cross-validation run because our volunteers used this time to familiarize 
themselves with the data collection software and to wrap-up the data collection process, 
respectively.  

 13



3 Task 2: Develop Features for Discrimination of Users

In this section we describe the full set of extracted features. Note that feature selection is an
integral part of our classification scheme, and that the classifiers induced from the data had far
fewer features than the full set.

Each user dataset contains keystroke, mouse and GUI data. The data points are recorded in
the order in which they are induced by a user. For each data point we record the time, the X and
Y screen coordinates and the application in which the data point occurred. We compute features
by examining a window of N data points at a time. Ideally, the parameter N is customized for
each user, but for the experiments in this paper we set N at five hundred.1

We collect keystroke events for every key on a general–purpose keyboard (see Figure ??). This
includes the “regular” keys (i.e., letters of the alphabet and numbers), “function” keys (e.g., F1–
F12), “control” keys (e.g., Control, Alt and Delete), “mouse” keys (i.e., keys used by expert users to
navigate through a computer system without the use of a mouse device, such are Page Up/Down,
Tab, arrow keys, etc.) and “other” keys (e.g., Pause/Break, PrtSc/SysRq, etc.). We extract
keystroke features by computing the n-graph duration2 between consecutive keystrokes where n ∈
[1, 8].

We collect the following mouse events: left/right clicks and double clicks, mouse wheel move-
ments and non-client (NC) area mouse movements3. Due to an intractably high volume of client-
area mouse movements4 we rate limit them by recording a new mouse movement data point every
100 milliseconds if and only if the on-screen cursor moved in the meantime. Thus, our mouse data
is composed of mouse events and mouse movements. For every two consecutive data points we
compute the following eleven features: 1) distance, 2) speed, 3) angle of orientation and 4) n-graph

duration where n ∈ [1, 8].
To obtain GUI data points we record the following events: “window” events (i.e., scroll bar,

minimize, maximize, restore, move, etc.), “control” events (i.e., application and process control,
open/close, etc.), “menu” events (e.g., open, select, navigate, close), “item,” “icon,” “dialog,”
“query,” and “combo box” events (e.g., open/close, select, move, resize, etc.) and “miscellaneous”
events (e.g., power up/down, language change, background color change, etc.). Some of these
events are purely temporal in nature and some are both temporal and spatial. We extract features
for all temporal GUI events by computing the n-graph duration between consecutive events where
n ∈ [1, 8]. For spatial GUI events we compute the 1) distance, 2) speed and 3) angle of orientation
between every two consecutive GUI points.

Finally, to complete the feature extraction process we compute the mean, the standard deviation
and the third moment of the keystroke, mouse and GUI features over a window of N data points.
To summarize, our feature space contains the following:

1. For each type of data points (there are eight of them for keystrokes, eight for mouse and
twelve for GUI, and for the entire window of N data points we compute three statistical mea-
surements (i.e., the mean, the standard deviation and the third moment) of eight keystroke
features (i.e., n-graph duration with n ∈ [1, 8]), eleven mouse features (i.e., distance, speed,
angle of orientation and n-graph duration with n ∈ [1, 8]), eight temporal GUI features (i.e.,
n-graph duration with n ∈ [1, 8]) and three spatial GUI features (i.e., distance, speed, angle

1
N = 500 is equivalent to a fifty second time period on average.

2The n-graph duration is defined as the elapsed time between the first and the nth data point [?].
3Non-client area of a window is considered to be the portion of the window where toolbars and menu are located.
4Client-area mouse movements occur over a hundred times per second even when user has only touched the mouse

device and has not moved it even by a pixel.

2
14

sasenbum
Note
Accepted set by sasenbum



of orientation). This generates 8 ∗ 3 ∗ 8 = 192 keystroke features, 8 ∗ 3 ∗ 11 = 264 mouse
features, 12 ∗ 3 ∗ 8 = 288 temporal GUI features, 6 ∗ 3 ∗ 3 = 54 spatial GUI features and
1 ∗ 3 ∗ 11 = 33 features for the entire window of N data points.

2. For each type of mouse and spatial GUI data points and for the entire window of N data
points we compute three statistical measurements of X and Y cursor coordinates, thereby
gaining an insight into which part of the computer screen each user was most or least active
in. This generates 8 ∗ 3 ∗ 2 = 48 mouse features, 6 ∗ 3 ∗ 2 = 36 spatial GUI features and
1 ∗ 3 ∗ 2 = 6 features for the entire window of N data points.

3. Over a window of N data points we count the number of points of each type. This generates
another 28 features. We also count the number of occurrence of each alphabet letter and each
numeral thereby obtaining 26 alphabet features (i.e., A(a)–Z(z)) and ten (i.e., 0–9) numeric
features.

4 Task 3: Perform Extensive Experimentation

We begin this section with the description of the learning algorithm used for classification and the
evaluation method used in the experiments. We then present a series of experiments designed to
investigate the applicability of biometric dynamics in user re-authentication. Note that we have a
far more comprehensive set of experiments in our papers.

4.1 Classification

We apply a supervised learning algorithm to determine whether we can discriminate the users. We
assume a closed-setting scenario in which data can be readily obtained from all of the employees
and intruders are likely to come from “within”. We use the decision tree algorithm C5.0 (without
boosting) to build a clasifier that is then used to classify new instances as either belonging or NOT
belonging to a valid user. We chose to use decision trees because they provide a comprehensible
representation of their classification decisions. Although techniques such as boosting or support
vector machines might obtain slightly higher classification accuracy, they will not greatly impact
the results and further they obscure the decision making process. Finally, note that decision tree
algorithms perform automatic feature selection.

4.2 Evaluation Methodology

We implement two evaluation metrics. We begin by testing one feature vector instance at a time. If
the instance belongs to the profile of a valid user, we service the user’s request. If, on the other hand,
the instance does not belong to the profile of a valid user, we do one or all of the following: alert
the system administrator, ask the user to authenticate again and close the current login session.
Note that such a simplistic scheme may induce a high rate of false alarms. To address this issue
we implemented a smoothing filter. We look at a window of n ∈ [1 − 11] feature vector instances
at a time and if m ∈ {0, n} of those instances belong to a valid user, we service the user’s request,
otherwise, we raise an alarm. Note that both n and m are user specific and empirically derived on
the training datasets by minimizing the unweighted sum of false error rates. We define a cluster of
false alarms to be the sequence of consecutive false alarms and we count each sequence as a single
false alarm. Our argument for this choice is that when an alarm is raised for the first time, the
bell is turned on and kept on until it is serviced by a system administrator. Consecutive alarms

3
15



Performance Measures FP Rate FB Rate FN Rate Error Rate Bell Count

STATISTIC AVG STD AVG STD AVG STD AVG STD AVG STD
Basic 5.87% 3.50 1.40% 0.62 5.87% 1.93 4.98% 1.56 2.21 1.02

Smoothing 1.71% 1.40 0.33% 0.27 10.58% 4.43 5.44% 1.98 0.50 0.42

Table 1: The average and the standard deviation values of FP, FB, FN and Error Rates

and Bell Count over all 61 users for pairwise discrimination.

Performance Measures FP Rate FB Rate FN Rate Error Rate Bell Count

STATISTIC AVG STD AVG STD AVG STD AVG STD AVG STD
Basic 45.70% 17.30 6.28% 1.70 0.54% 0.27 1.21% 0.60 10.85 5.76

Smoothing 21.11% 15.97 1.85% 0.94 11.75% 29.40 11.95% 29.01 3.15 1.82

Table 2: The average and the standard deviation values of FP, FB, FN and Error Rates

and the Bell Count over all 61 users for binary classifiers.

are observed as being a part of the original bell. By counting the number of bells and dividing this
count by the number of valid user’s instances we obtain the false bell rate (i.e., FB Rate).

4.3 Experiment I: Pairwise Discrimination

The result of this experiment illustrated the strength of a biometric classifier as a user re-authentication
tool. We wanted to answer the question of whether there is a signal of “normalcy” per user and
if so, to what extent. To this end, we built a binary classifier to perform pairwise discrimination
between every two users thereby generating a symmetric 61 by 61 matrix. Table 1 summarizes the
results averaged over all 61 users. The results obtained confirm that there is a signal of “normalcy”
per user. Small standard deviation values of FP, FB, FN and Error rates and Bell Count suggest
good scalability of the pairwise biometric classifier. Nonetheless, the most important outcome of
this experiment was an insight into which features capture user behavior best on a per–user–basis.
By examining the decision trees from the pairwise experiment we were able to produce a subset of
most relevant features. The feature subset is user specific and the feature subset for user A has a
union over all pairwise decision trees generated for user A of the ten most significant5 and unique

features that distinguish user A from some user B where B ∈ {1,N} and B is different from A. In
the following experiments we use the individual feature subsets to evaluate the performance of the
biometric classifier; i.e., for user A we use feature set A.

4.4 Experiment II: Anomaly Detection

This experiment was designed to test the accuracy of a biometric classifier for each user. In
particular to answer whether one can build an accurate model of normal user behavior after seeing
the behavior of a valid user A and the behavior of the remaining N −1 users in the role of intruders.
Table 2 summarizes results over all 61 users. The smoothing filter scheme lowered FP and FB rates
and the Bell Count, but increased FN and Error rates.

We examined the behavior of individual users to determine why some users produced either
a high FB or FN rate. We examine their raw data files, their feature vectors and their decision
trees and summarize our observations in Table 3 and Table 4. Table 3 shows users with FB rate

5The feature significance is determined by its entropy measure.

4
16



ID FB Rate Elapsed Time #Mouse Points #Keystroke Points
4 5.34% 8.88 hrs 37.4 18.41

18 9.32% 0.38 hrs 31.0 2.0

38 8.67% 0.87 hrs 141.6 1.3

44 8.11% 0.90 hrs 156.9 22.8
AVG 2.50% 4.1 hrs 86.0 28.4

Table 3: Users with FB rate above 5%. The average values in the table are obtained

by averaging over all 61 users.

ID FN Rate Elapsed Time #Mouse Movements #Keystroke Points
2 3.73% 3.35 hrs 37.3 34.2
8 3.76% 18.43 hrs 44.6 3.8

22 3.74% 2.48 hrs 32.2 11.2

28 3.76% 1.33 hrs 57.8 63.3
42 3.73% 0.72 hrs 81.5 23.1
48 3.75% 43 min 188.3 58.6

AVG 1.96% 4.1 hrs 65.5 28.4

Table 4: Users with FN rate above 3.5%. The average values in the table are obtained

by averaging over all 61 users.

above 5%. The first column of the table shows User ID, second column has the FB rate for the
specific user; the third column has the time it took user to complete the data collection process;
and the fourth and fifth columns show the average number of all mouse points and all keystroke
points, respectively. The last row of the table shows the average values across all 61 users. Table
entries printed in bold highlight those values that are approximately one standard deviation above
or below the average. Closer examination of Table 3 reveals that the number of mouse points was
very low for users 4 and 18. Although these users moved a mouse to complete the assignment, they
induced very few mouse events which made it difficult for the classifier to distinguish them from
the rest. Similarly, users 4, 18 and 38 had only a few keystroke points. Finally, users 18, 38 and
44 spent less than an hour collecting the data which is one-fourth of the average data collection
time. In other words, these users did not have enough data for the biometric classifier to build an
accurate profile of their normal behavior. The classifier misidentified them as intruders and this
in turn created a high FB rate. We conclude that in order to improve the overall accuracy, we
need more raw data per user dataset and this is particularly true as the number of users to be
discriminated increases.

Table 4 shows users with FN rate above 3.5%. The first column of the table shows User ID,
second column has the user’s FN rate, third column has the elapsed time of the data collection; and
the fourth and fifth columns show the average number of mouse movements and keystroke points,
respectively. Closer examination of Table 4 reveals that users 22, 28, 42 and 48 spent less than two
and a half hours collecting the data which is about half the average time. Furthermore, users 2 and
22 had less than two thirds of the average number of mouse movements; and users 8 and 22 had
well below the average number of keystroke points. All these factors contributed to the failure of
the biometric classifier to generalize well. The classifier overfitted the data and created a too broad

profile of valid user’s behavior. Subsequently, when an intrusion occurred the intruder’s behavior
was misidentified as that of the valid user and an alarm was not raised. We conclude that the lack
of data per user leads to an inaccurate profile and consequently high FB or FN rate.

5
17



4.5 Experiment III: Detecting Previously Unseen Intruders

The hypothesis we want to test is whether the biometric classifier is accurate enough to detect
even an “unseen” intruder after previously being trained on a large number of “seen” intruders.
We investigate the performance of the classifier when all but one randomly selected user data set
(let’s refer to this data set as U) is seen in the training phase and a profile of normal user behavior
for each user is built by observing the valid user’s behavior and behavior of the remaining N − 2
intruders. We use U ’s data set to compute the FN rate during testing. The average FN rate across
all 61 users is 0.98% and in fact, it is zero for 15 users. We conclude that the biometric classifier is
accurate enough to detect even a previously unseen intruder (i.e., an unlabeled sample).

5 Conclusions

We take a direct approach to user re-authentication by continuously monitoring user’s mouse move-
ments, keystroke dynamics and GUI changes in a syntactic sense. We purposefully avoid the
keystroke semantics to increase the efficiency of our system. Namely, once the model of normal
user behavior (i.e., a binary decision tree) is obtained we need only compute those features that
are present in the tree and then classify the current user by traversing the tree. This makes our
approach fast and therefore suitable for an on-line environment.

We conducted four experiments to determine the strength and gain insight into the scalability
of the biometric classifier. Our results indicate that even a classifier trained over a short period
of time can scale well and accurately build a profile of valid user behavior if and only if user
utilized his/her I/O devices. We conclude that both a longer data collection time and more raw
data instances per user are needed for the classifier to scale well and build an accurate profile of
user behavior. As a final point, our third experiment relaxed the constraints of the closed-setting
scenario by demonstrating that the biometric classifier did not need to have previously seen every
intruder’s data set to accurately detect the intruder assuming the classifier had been trained on
a large number of seen intruders. These results suggest that as the number of seen intruders
increases in the training phase, more unseen intruders (i.e., more unlabeled data) could be detected
in practice. In summary, the biometric sources of mouse movements, key strokes and GUI behavior
provide a method for authentication of users.

6 Published Papers and Presentation

Publications:

• Pusara, M. and Brodley, C. E., “User Re-authentication via Mouse Movements,” the Work-

shop on Statistical and Machine Learning Techniques in Computer Intrusion Detection, Septem-
ber 24-26th, 2003.

• Pusara, M. and Brodley, C. E., “User Re-authentication via Mouse Movements,” Proceedings

of the 2004 ACM workshop on Visualization and data mining for computer security, 2004,
Washington DC, USA October 29 - 29, 2004

• Pusara, M. and Brodley, C. E., “Analysis of Mouse Dynamics for User Re-authentication,”
submitted to ACM Transactions on Information and System Security.

• Pusara, M. and Brodley, C. E., “Dynamics of Biometric Sources for User Re-authentication,”
submitted to ACM Conference on Computer and Communications Security.

6
18



Presentations:

• “User Re-authentication via Mouse Movements,” Workshop on Statistical and Machine Learn-
ing Techniques in Computer Intrusion Detection, Washington, D.C. September 24-26th, 2003,
Maja Pusara.

• “User Re-authentication via Mouse Movements,” 2004 ACM workshop on Visualization and
data mining for computer security, 2004, Washington DC, USA October 2004, Maja Pusara.

• “Behavioral Authentication for Computer Security,” C. Brodley

– Department of Computer Science, Brandeis University, Waltham, MA, October 2003

– Department of Computer Science, University of Massachusetts, Amherst, MA, October
2004

7

19


	Andy.pdf
	02-2-0217 TOC nsa-final-report-06.pdf
	1. Project Objectives 
	1.1 Basic Infrastructure 
	1.2 Objective 1:  Explore how the selection of parameters aﬀects our results 
	1.3 Objective 2: Expand experimental testbed 
	1.4 Objective 3: Include other network elements 

	2. Experimental Results: Investigating the Impact of OSPF Attacks 
	3. Experimental Results:  Classiﬁcation of Server Flows 
	3.1 Data Sources 
	3.2 Aggregate Server Flow Model 
	3.3 Host-Speciﬁc Models 
	3.4 Models from Real Network Traﬃc 
	3.5 Conclusions 

	4 Published Papers and Presentation 
	Appendix Final Report User Re-authentication via Mouse Behavior





