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Abstract

Image compression usually considers the minimization of storage space as its main ob-
jective. It is desirable, however, to code images so that we have the ability to process
the resulting representation directly. In this thesis we explore an approach to document
image compression that is efficient in both space (storage requirement) and time (pro-
cessing flexibility). A representation is presented in which component-level redundancy
is removed by forming a prototype library and component location table. This represen-
tation forms a basis for compression and provides direct access to image components. To
generate the prototype library, a new clustering approach is developed which is suitable
for document image components. The distance metric is based on a character degrada-
tion model so that degraded versions of the same character will be grouped together. To
achieve a lossless representation when required, the residuals are encoded efficiently using
a structural distance ordering. OCR is then used as a measure of readability to evaluate
the rate distortion tradeoff for lossy compression. A set of algorithms is presented for
typical document processing applications which operate effectively on the compressed
representation. Applications demonstrated include subdocument retrieval, skew estima-
tion
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Chapter 1

Introduction

Technological advances in processing, storage, and visualization have made it possi-
ble to maintain large numbers of documents in digital image form and make them
accessible over networks. In order to do this effectively, three primary concerns must
be addressed. The first is document size. An ASCII representation of a document
page can easily be stored in 2-3 KB, whereas a typical scanned image of a page may
require between 500 KB and 2 MB. If we are to maintain documents in image form,
an efficient compressed representation is essential for both storage and transmission.

The second concern is providing efficient access to the compressed image. Tra-
ditional compression techniques used for document images have been successful in
reducing storage requirements but do not provide efficient access to the compressed
data. It is desirable to use a compression method that makes use of a structured
representation of the data, so that it not only allows for rapid transmission but also
allows access to various document components and facilitates processing of documents
without the need for expensive decompression.

The third concern is that of readability. Many lossy compression and progressive
transmission techniques use resolution reduction or texture-preserving methods that
can render a document image unreadable. It is desirable that a document be readable
even at the highest levels of lossy compression and at the start of a progressive
transmission. The highly lossy representation can then be augmented by subsequent
transmissions for better rendition. This is preferred to a scenario in which the highest
resolution is the only readable resolution. In this thesis, we will address these concerns
for scanned images of machine-printed documents.

The task of compression, organization, and transmission of information is not new
to the image and video domains. A number of techniques have been developed to ad-
dress the problems of image quality and compressed-domain access but the solutions
have had very little general application because of the domain-specific requirements.
Likewise, document images have specific characteristics and requirements which re-
quire special attention when considering approaches to compression. Two general
questions which arise immediately are:

1. What are the characteristics of a document image which can be exploited to
benefit compression and compressed-domain processing?



2. What has been done before that can be extended to the document image do-
main?

We will address these questions in the next subsections by reviewing standard com-
pression techniques, examining document image characteristics, and reviewing work
done on document image compression.

1.1 Image compression

The initial breakthroughs in the compression of one-dimensional signals [109] were
easily extended to the image domain by concatenating image rows or columns into
a single stream. Techniques such as Shannon-Fano coding [95] and Huffman cod-
ing [26, 29, 55, 106, 118, 119] use redundancy-reduction mechanisms which result in
shorter codes for more frequently appearing samples. It is necessary to scan the data
samples in order to determine their probabilities of occurrence and create an appro-
priate code. Adaptive variations of these techniques initially assume equal probability
for all samples and calculate subsequent probability measures based on a fixed win-
dow length prior to the sample of interest. This allows local changes in probability
measurements and achieves higher global compression. Run-length coding [38] is an-
other redundancy-reduction coding method where in a scan-line each run of symbols
is coded as a pair that specifies the symbol and the length of the run.

While most redundancy-reduction methods are lossless, other arbitrarily lossy
coding methods have achieved higher levels of compression. Transform coding [44],
subband coding [61, 77, 105, 114], vector quantization [61, 62, 66], and predictive
coding [1, 3, 22, 31, 46, 57, 59, 76, 83, 97] are among the ones that have achieved high
levels of lossy compression.

The major transform coding techniques include cosine/sine [2, 44], Fourier [5, 44],
Hadamard [27, 44|, Haar [27, 44], slant [44], and principal-component (Karhunen-
Loeve) transforms [6, 44]. All transform coding based compression algorithms are
pixel-based approaches which decompose a signal unto an orthonormal basis to achieve
energy compaction. Lossy compression is then achieved by coding the high energy
components and leaving out the low energy ones. While some transformations such
as the Hadamard and Haar transforms can be performed relatively quickly, other
transforms are computationally intensive and either require dedicated hardware or
restrictions such as limiting the size of the transform to a power of two.

In subband coding, as the name implies, different frequency bands are treated
differently to achieve higher fidelity or higher compression. As with transform cod-
ing, the signal is transformed to an alternate domain, but instead of leaving out a
component, it is sampled at a lower resolution while more important components
are quantized at higher resolution. In effect, at each subband the application of a
different quantization strategy is used to preserve fidelity and achieve compression.

Vector quantization is a hybrid of statistical analysis and pattern recognition
with a large number of well-established techniques. This method first divides an
image into blocks which are then serialized into large-dimensional vectors. Each
vector is treated as a sample in a high-dimensional space and this space is partitioned

2



into subspaces, called classes. For each class of vectors, a prototype is created that
closely resembles the vectors which belong to the class. Vector quantization shifts
the partition boundaries by calculating a distance measure. Errors between in-class
vectors and the corresponding prototypes over all classes are minimized to provide
optimum prototype placement. High levels of compression are achieved by coding
every vector that belongs to a given class by a reference to the prototype vector.
The level of lossiness is then dependent on the distance measure and the number of
prototype vectors.

Predictive coding, such as the differential pulse code modulation (DPCM) patented
by Cutler [22], predicts the next sample based on the previously coded samples and
codes the error between the prediction and the actual sample. The main objective of
DPCM is to narrow down the range of coded samples. However, images are not sta-
tionary in texture, and some predictors may work in certain areas, but not in others.
Hence, the concept of adaptive predictors [3, 31, 83] was introduced so that the coder
and decoder could choose from a set of predictors at the cost of transmitting the pa-
rameters needed for the prediction. This method of coding needs to limit prediction
error for efficient coding and achieves lossless compression in coding the entire error;
lossy coding is achieved by limiting the range of the error value.

More recently, second-generation compression algorithms based on human visual
behavior [68] have been proposed which have the potential for much higher com-
pression ratios. Also, developments in user-specified wavelet transforms [18, 68] can
be used to address compression requirements for specific image types. Fractal cod-
ing [117], which is also called chaos coding, is an example of progress in the area
of two-dimensional redundancy reduction. All of these compression techniques are
pixel-based and they perform best for textured images.

1.2 Document characteristics

Document images are scans of documents which are in most cases pseudo-binary
and rich in textual content. Informally, we can define document images as images
that contain components that resemble the symbols of a language. Many documents
look like those shown in Figure 1.1 and are represented adequately by binary images
produced by scanning at a resolution of 300 dots per inch (dpi). They tend to be
highly structured in terms of layout, and have significant redundancy in the symbols
which occur in them.

Since a document can be used in a large number of ways, an important consid-
eration is how the image is affected by compression. For example, if we intend that
the document ultimately be read by humans, it is necessary for compression schemes
to preserve the shapes of the components so that they are recognizable by the reader
after retrieval. If the document must be reproduced in near-original form, techniques
which reduce resolution may not be acceptable. Thus the required resolution is de-
pendent on the task; some resolutions may leave the document readable, but may
destroy fine detail.

As is well known, the performance of conventional compression algorithms (such
as those based on transform coding [44], vector quantization [30], fractal compression

3



Conteuum Mesh, Thermodyn. 1 (1989 153-105 Conipaom Mechavies 5. The cesults for
Thel i Sry smutatos for the Dash protorype.  Wates +m Mineu oreelate well it lso 4 loca ociions cache somore
Tango fows o parsilsplicaien 1t smultion ol bt the MESD Iy Cach posing e s o
cun m 3 wnprocesiar i 3evers procestars 4 et cachen
il momonloesestven T cmush P30 - and alarge.shared, second-levei e
i s s, G o el e o)y s

© SpringerVertsg 1989

detaled

Couplod i Tenes und promidcs (.t fceauen Snee MESD s a e sroeeor and et coches e

ok o iy Rl . sy o6 o b sy i e Dt

aryoperstinns. e laad ofprsate miswes sdds 51he  The Faadigm machine i sinilac 16
On che Dash simulacor, Water and  queoing dayy and reduces the muli- e Gipabax n ts hiscarchyof protes-

it bisve sesomible specdep | proeser s o schos, e uses. e o diffecent

hrougit 64 procesaves. For Wal have run sovers) alher uppliea-  howevar, o hat the physicsluemary i

Teson i ik 1 aprication X Tions e our 16roce T eovmype. il focetes at . 00 v a7
o Trcse inelude oty

A mathematical model for the hysteresis

o
Incecases f60e 1w0 @ 36 crohe hit ates  ppications (using Baroes-Hul and  herence protocol The clustecs comiain

in shape memory alloys e s comsont and hggurcnt e Rk i gt 3 1 ing s dcs rcdent o
of cache misses handled by the Jocat  dusiasapplicasionirom eomputergraph.  vector disectory  overs evel, nstead
Yongehong Heo frbneatgdionige b e b

percent. Thus. mis penaltcs incicase  F2om ey Jaige sealc fregraian o+ digr ls0 VIAcs afock bi per mem-
nry luck 1hat enhances performaace

e Pt Model for reosagacts s genenalized and siupied for che ity e grcent i, iR spicaton, ol bre o apcomaon nd g o
deseription of e hysteretic befviout of 2 polyerysialine specimen For Mg peedup e rom gt e Choesky factoriza.  mosientian

memory s, The hemaiynuical prperies of e it Sk : o The hicrarchical stuciure of dhese
are described by the Landsu-Devorshice free energy which contsins four shared refercnces). The soecdup (s (,Me N aplction (it mchins i sopsalig i hat ey can
rameies. The sorsspondi ;mmmm of parameters of 3 polyerystaline ten. fin.  theoneticaly he extemed ncefmicely
bads i region in & four-dimensionat Preisach space. A termodgnamical i in he applcation. pritetveniy ooy y ircreasing Ghe depit of fhe hiscer
loaditg path. Wil sweep surfaces scross Hhis region ARG changs phasts ia fhc ME3Domiouslytossnateshibitgond  Ovee thistntial setaf L puralielap-  chy. Unfortunately,the igher levels of
arasess, The physical prabicn of the respanst of & spocimis 1o applicd loads spestup e Dahprocy. S o, 1 B e of 11 e camot 0% i
et oo e s sl pmunam o counting votusms botueen i cncoing i MESapnl syt on 10 poeyun n 103 Far. vl e ohatbuss e
eauiesfevet rptonesior hecuons, I od SIS It o e it besoras o it ok It miole
moving surfaces. This comversion faciitwies the numerical evalustion of the e e e s g ihe it bevome « cri it moltpl
effect of complicatod loading paths ot e e suisser. On average.about  all, our expesicnes with the m proces  hcome sigaificantEymorecomptex. Ui
x gre simulat- Apercent oithe insiructionsexccinedia  saf machine has been very promisiag,  Iess anappticaion’scomm avseaion ve-
od that agice well witt obscrved ons. atloast quaitatively. Special atertion MP3IDgencruearead miv foca shared  and indicaes ther many Applications  quircthents march the hus bierarchy ox
s given 2o the interior of the hysteresis loops. It turas out that inside the dain itom. Whes asty ane cluster s sbavkd b able 1 achiovs over H0times  its traffic-shasing 7 uireTaeats are

oo the "stats” of che body is not fully described by the phase frucions; i e lthes oty s peedl o th G emsor oo Al 1he dobsl b M be s b
sather the past history wik have 2 considerabie efect tovally. However, when we 20 10 1w etk Buth requirementsateresicive
e  lage acon of e o i ol agpliationil

ieenesoaresremoriy T Related work fii‘il”t‘.‘r"f.ii‘sy‘ii“"q‘;‘f’,f’l“ -

ran Bnmie s svnge i s
sl i o pocatal g o, Those s s groposed sl (KEE Sesole Cabarnt et
the added pracessoss. ke architectures that support 2 single ad- “The [EER 1396 Scalable Cobere b
ishesurtpmiirnsianond S i ih coheren ke & e GCD) & e i
it ralcd bcae e e e that lso srives to providy

ced by 8 e diens spele, mv\chmn o P e o e et o S,

1 Tnteoduction

“The phase transitions in @ single-crystal specimen of shape-memory lioys maic

of wemperature, The Landav- Bevonshire madel provides an analyte description
of such transitions. It charicterizes the maferial by four pasametrs.

Slacysuine sy the James o SRS a1 S 1 "‘.’z‘fi’f@lme bty ity s o s e e o o koo

DCCIH‘L each crystadite respands differcnily o changes in Joud and tom peratare: hicved when geing feom 1650 32858 3ack of delails on many of she crmra! :m\dxrd ot ) camplele system de-

syt s i e e s s 5 Ry 7 i 6 i i A o e SC1 s 00 st
7"“”5‘ hese quadruplets are points in 3 Cour-gimensional space, which we cal \l lhxl each provessing nade shon

isach space i tocognilion of & simlar Sonstrucsion by Presact (1] <or- M et spacsios s Mmmdlu el . et v poseile Cevog ope P

Chning oromegnet. The quadraples of all cryalies 3 (b specmen GE & i S s g ek erns vsontacion o
v n s y ok TS o an et

e i of Do oo e vm - The Lo Crgebios achsec. o v oo e S0
. .

from those of Dosh,

Soth wse .

41 spsedupaver the cached unipsoces

T e s e bt A e oplel, it s o 0
menis (rom cackis ihe Eouore Gigabox s compysed o T o ditene butme SC1
e spocii T e tmcr Svteron = o ot o0 o 1 o o wrare

teppic s on sl Do nard et coneins o seserl practnon  fcton iormtion s mesred o

wars wising 00 10 LA pracesc. The  moduls. main memory, and a cluster  SC thedecioryisadesrituodsbaring
applications were sUp Uader an early  cxche: Tt imined
Myt 07 =

a b

INDUSTRY NEWS
SubACS: The Competition Begins

Prime contractor IBM will now compete with RCA for full-scale engineering
levelopment of the Navy’s new submarine combat system.

b Jaim P Ot s 0
Sotinent and Nevy ropraseaatives
proved e unsiing o amabk to
s qusion

1 vich o without Ads, (he Nayy
Pt systeen il sl e
Sl subuins o ool

<olnicr the projected sobsarine threat
0 G complx o ronment
e | il The sstean vl

Figure 7. Recovery af ditferent tractions in the vep of the Jighed. s o 8l weapons. The Y-

e villnciute e o,
The relatlon between the time, during which the various £y st necsisary for cmitic
ire Cop 41 the w18 S Aretatio moe. mor e menponn o it . s,
Scvever Slumg Shat 1 tme 3/v-ratia loorosses; the supesn pon e e g sl und wisles
T e e e oo A5 o produsion o s st write it e gro- g el A0 el
©his pesmon the racovery has %o be low for a Nigh grade SIG product. Hth $106 calion, the Navy iy aking & ton provlems and g e frt ssiem 10 itaduse

S ot o e e

Subrieine Advanee g
ALY e Pt o e e
BV Fedrl St D 1 By s

increasing Jig tlue more SiC will sova to the top, becmuss dn the lars
stage of the demixing process the sepasation will take plecs hases on tho
ditterence tn ohaps of the particles

oML aveeruns the Navys eafanced modular signal
oty e e o P

‘Boat Divbion submiteed 3 bid for the

Munesee, Vo, il oy competiion  he
o 8 secand-soutee costeactor for  insiaiot on the SEN-688 ¢l s

Bec. 11 dead

sconouzcs he.second phase af the sestructure suspension kept GL) aet o the pig
. et o e i Sl B s 5 AE‘W‘T‘?(,A;“’EZM
second and Phases. Llh i o
T Al G i
Mhe 3-8 mn fraction of the jaw crusher praduct contaj original SWHACS program have
weam up wich RCA on the ﬁ«lhﬂﬂmﬂlm 1959 o o o

B Y 89 o ot e 2
! XSSP e ) o o s Noy onanneotom s
S\\A\)ﬂ( oo hc '

s the sysiem will o e writen i1 pe i K

e i o e 00 cous. Offciah 2 the DODY 1 15M do-im oot s gt
ACicle Bebthr Sarvco No, ¢
=

6 ELSCTRONCS WARCH 14 &2

c d

Figure 1.1: Examples of binary document images of the types usually found in a
document image database. These are images from the University of Washington
document database [32], cropped (automatically) to the main body of the text.



[12], pattern matching and substitution [10, 64], and other approaches) depends on the
types of images being compressed, and on their texture and content characteristics.
Algorithms often do well on some classes of images and not so well on others. Since
document images differ significantly from scene images, it is reasonable to assume
they will benefit from a specialized compression scheme.

1.3 Previous work on document image compression

Document image compression was first recognized as a special case of compression
in the 1970s when increased use of facsimile machines promised potential growth in
document scanning and transmission. The international communication standards
body then set out to create a standard for use in facsimile transmission. In 1980
the first comprehensive standard was released as the CCITT Group 3 transmission
standard [41], followed by CCITT Group 4 [15, 36, 85]. Both standards were originally
designed for digital transmission rather than for analog phone lines, but nevertheless
have become standards for facsimile transmission. Both schemes use a run-length-
based approach where the white and black runs are pre-coded in the compression
algorithm. An extension to dual scan-line compression exploits coherence between
successive scan lines by inserting references to the previous scan-line’s black runs. In
Group 4, higher compression is achieved, largely due to the omission of various error-
correcting codes which were intentionally included in the Group 3 standard. These
methods are clearly sufficient for transmission of facsimile since a facsimile scanner
sends and receives in scan-line order.

Joint Binary Image experts Group (JBIG) is a recent CCITT standard. JBIG
performs compression on binary images and provides a lossy representation suited for
compression and transmission. Context modeling forms the basis of its coding [81, 82].
At the lowest levels, JBIG uses template models and adaptive arithmetic coding to
encode predictions. “Layers” of the image are represented at reduced resolutions to
provide progressive transmission. Fxception pixels are used to preserve overall image
layout and structure; this works well for textured dithered images, but loses fidelity
when small-scale structure is essential, as in the case of text documents. JBIG,
despite its use of context-based coding, is unable to organize information to be used
for compressed-domain processing. This is mostly due to its use of arithmetic coding
directly on the pixels. The output of the arithmetic coder is highly complex and
cannot be easily deciphered for compressed-domain processing. The only favorable
characteristic of JBIG is its use of intermediate representations for lossy compression
and progressive transmission.

Recent work by Howard [37] performs context-based arithmetic coding on the bit
map image based on predictive coding of “clairvoyant” [37, 112] pixels and previously
coded pixels. Clairvoyant pixels are pixels belonging to prototype images; in Howard’s
coding scheme they contribute to knowledge of the current pixel’s distribution which
can be used for better coding. This is still a pixel-based approach and does not
provide for compressed-domain processing. While Howard proposes a methodology for
scalable lossy compression, his approach lacks a hierarchical representation suitable
for progressive transmission.



An important approach to document compression, suggested by Ascher and Nagy
[9] and later formalized by Witten et al. [43, 110, 111, 112], is based on the repetitive
nature of text components. In a departure from pixel-level to symbol level coding,
marks found within a document are coded. The method is very similar to pattern-
matching and substitution algorithms [10, 47, 64, 69, 70, 85, 113]. It is based on the
measurement of similarity between symbols within an image. In this way redundancies
in symbol shapes are identified, resulting in two-dimensional redundancy reduction
versus the traditional one-dimensional reduction.

Ascher and Nagy’s approach considered a stream of bitmap images which repre-
sented individual characters. They proposed an algorithm which creates a dynamic
library; an uncataloged character gets added to the library and a character that has
already been seen gets replaced by an index to a library item. The library is a col-
lection of bitmap images. By keeping the library’s size limited, an adaptive symbol
compression method is achieved; changes in the symbol stream are compensated by
creating new library prototypes and throwing out old and unused ones.

Witten et al. expanded on this approach to address extraction of image compo-
nents, indexing their locations within the page and compressing those indices, and
coding the residuals left after inexact replacement of components by library proto-
types. This work made contributions to prototype generation, symbol index com-
pression, and residual coding. Connected component analysis is performed on each
bitmap image. The components are then clustered by a symbol matching method
such as Pratt’s combined symbol matching [85], Holt and Xydeas’ “weighted and-
not” method [36], Holt’s combined size-independent strategy [35], and Johnsen’s
generic pattern matching and substitution [47]. Another method of matching, called
compression-based template matching [43] was suggested by Inglis and Witten and
was later improved upon by Zhang and Danskin [116]; it was based on mutual infor-
mation between the component and the prototype. The locations of the components
are ordered in natural reading order, indexed with respect to each other (a compo-
nent is referenced by its upper left corner with respect to the bottom right corner
of the previous component), and compressed. The residual map is kept for lossless
compression since clustering generalizes the input patterns and there exist differences
between the components and prototypes which may affect readability. The residual
map is not compressed, but the original image is compressed; the image composed of
prototypes is used as context in the context-based arithmetic coding.

This method satisfies our concerns to a large extent but falls short in some areas.
Most of the shortfalls lie in the processing domain. The first drawback is that direct
access to the components is lost, or at least difficult, when differential indexing is
used. The second drawback is the lack of hierarchical coding to allow for a scalable
intermediate representation. Only two levels of representation are available (with and
without residuals), which does not make this method suitable for lossy compression
and progressive transmission. The third drawback is the failure to address readability.
They did not utilize a noise model to estimate image quality and derive a scalable
representation. They were concerned only with compression, which they achieved
rather well.



1.4 Compressed-domain processing of document images

Work on skew estimation like that of Baird [11] has been shown to be efficient and
accurate. However, detection of alignment feature locations is computationally de-
manding since the volume of data is large. It would be extremely desirable if the
detection of alignment features could be done in the compressed domain. In Spitz’s
work [100], the pass codes in CCITT Group 4 compressed images were used for Baird’s
alignment features (called fiducial points) to estimate a skew angle. Pass codes are
part the Group 4 specification which mark the locations where the previous scan line
has a run of black pixels and the current scan line does not. The pass codes are heavily
populated at the bottoms of characters and provide a basis for skew estimation. The
occasional pass codes generated by descenders, dots, etc. do not severely degrade the
performance of the skew estimation. However, skew correction is a non-trivial task
with a run-length encoding based algorithm.

Scanning and recognizing barcodes using hand-held scanners has been quite suc-
cessful, but the problem of recognizing barcodes in scanned images has received little
attention. In the work done by Maa [65], detection of barcodes is performed on
CCITT Group 4 representations. The basis for Maa’s work is that since bars and
spaces are upright and perfectly aligned, Group 4 compression will use vertical coding
so as to reduce vertical redundancy. Thus in all scan lines except the first, every run
of bars and spaces will be represented by the same code. This will result in runs of this
code at image locations where there exist barcodes with no interfering patterns. With
added noise, only one or two other codes were usually found in these runs and they
were still usable for detection of barcodes. An 86% performance rate was reported.

For purposes of document image retrieval, it is desirable to index on distinctive
image characteristics. One class of such characteristics which appear in document im-
ages are logos. Logos are defined by Spitz [101] as spatial arrangements of structures.
He used the fiducial points that he had applied to skew estimation, and considered
them to be a series of points locally aligned to specific signatures. A signature rep-
resentative of a logo prototype can be determined and compared with signatures
extracted from the image. Localizing the logo was not considered, but this is an easy
problem since a prototype logo is of a known size and the signature determined from
the image should only depend on that size. Experiments on a small set of images
were reported to result in very high recognition rates.

Recently, document image matching has been considered by a number of re-
searchers [89, 96, 115]. Recent work by Hull [40] addresses this problem by use
of compressed-domain processing. As in Spitz’s work on skew estimation and logo
detection, Hull considers the locations of pass codes as feature points and compares
two sets of feature points for a possible match. These feature points are contained in
a bounding box, and in Hull’s work he determines the best choice of a bounding box
to yield a high match score. Given two sets of feature points, Hull used the Hausdorff
distance [42], which measures the amount of perturbation needed to overlap pairs of
points in a pair of images, and reported a high detection rate. Efficient measurement
of the Hausdorff distance has been studied by Rucklidge [88].

It would be desirable to develop a document compression method that can ad-
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dress a larger amount of compressed-domain processing. In doing this, we can take
advantage of the fact that the features used in such tasks as skew estimation, correc-
tion, and matching are dependent on the document image symbols, so that a method
allowing access to these symbols should facilitate document image processing.

1.5 Symbolic compression

Symbolic compression is a method of coding similarly-shaped marks in an image
with reference to a set of templates. In doing so, individual marks must first be
segmented out. For binary document images, segmentation is typically a matter of
determining connected components of black pixels in the image. Perfect segmenta-
tion 1s not necessary since the residual bits which remain after replacing a component
with a template are also coded. The segmented components are clustered to cap-
ture their redundancies. Various methods of clustering, such as simple exclusive-or
and compression-based template matching [35, 112], can be used. Once all symbols
within the image have been considered for clustering, the cluster centers can serve as
representative templates or prototypes for the clusters. Some clusters may need to be
removed because of inadequate membership, and some clusters may exhibit large in-
class variances which result in abnormally large residuals. The prototypes are stored
in a library. The locations of the symbols must be recorded so that a highly compact
representation, based on prototypes only, is immediately available. The difference be-
tween this symbolic representation and the original image is a residual image which
has far fewer foreground pixels than before; this implies a high compression ratio.
Context-predictive coding of the residual image further improves the compression
ratio.

Residual coding is the portion of the compression algorithm which encodes the
residuals. To preserve symbol access for compressed-domain analysis [50, 53], it is
necessary to code the error on a per-symbol basis rather than coding it for the entire
image. Using a structural model, it is possible to order the error pixels based on
their structural importance. The structural order, derived in part from the work of
Kanungo et al. [48], is based on the observation that the degradation of symbols in a
document image from the effects of copying and scanning occurs mostly around the
edges of symbols. Nagy et al. also observed the near-edge degradation of document
images by considering the effects of point spread functions on the quality of a scanned
image [72]. This type of degradation does not adversely affect to the readability of the
document and does not provide structural information. Conversely, it is observed that
pixels farther from edges have dramatic effects on the readability of symbols and are
structurally more important. By ordering the error pixels in distance-to-edge order,
we can exploit their statistical characteristics by putting the most probable error
pixels last, and we can provide structural coding, by putting pixels which have the
potential to greatly impact the correct recognition of characters first. This paves the
way for compression by packing the energy in the error stream, for lossy compression
by terminating the error stream at an index calculated by the signal-to-noise ratio,
and for progressive transmission by interleaving the error signals for a set of image
marks based on their distance order [49].



To perform successful symbolic compression, we must perform a segmentation
that decomposes the image into components that repeat. These components then
need to be clustered so as to generate a set of representative prototypes. The quality
of performance on these tasks, along with the quality of the image, can drastically
affect the overall compression performance. In our approach to this problem we
concentrate on bi-level document images that have large textual image content. This
is not a strict requirement, but allows us to measure the performance of our document
image compression scheme effectively. Work done by Sennhauser and Ohnesorge [94]
and Sauvola and Pietikdinen [93] proves that block-based compression gives better
performance on document images that contain images. It is also useful to consider
algorithms such as Etemad et al. [25], Anatoncopoulos et al. [7], Jain et al. [45],
Pavlidis et al. [80], and others [28, 79, 108] to provide image segmentation into
regions of different types so that different compression schemes may operate on the
regions. We assume that there exist enough components in the text regions that can
be extracted by connected component analysis and that can be recognized correctly
by a human reader. The fact that the components are repetitive in nature makes them
a rich source for compression. Also the fact that document images contain a large
amount of textual material laid out in a two-dimensional space makes them ideal for
a two-dimensional redundancy reduction scheme. Since the useful information in the
textual portion is contained in the components, access to the components provides
access to that information.

There is a strong case for the use of symbolic compression in document image
coding, in addition to space savings. With the use of only about one percent of
the information in the original image, it is possible to code the dominant symbol
shapes and their locations in the image. Since most of the information in a document
is in the symbols, it is possible to perform compressed-domain analysis by using a
symbolic compressed representation. Using only this representation, though it is not
perfect, it is possible to perform a large number of document analysis tasks [75] such as
skew estimation/correction [11, 13, 63, 73, 84|, Optical Character Recognition (OCR)
[71], layout analysis [74, 80], and so on. Although some work has been done on the
processing of compressed document images [65, 100, 101] the outlook for applying
such techniques to pixel-based methods does not appear promising.

The organization of this dissertation is as follows. Chapter 2 describes a data
representation model which is designed based on requirements related to compres-
sion and processing. This representation not only facilitates the derivation of key
components of the compression algorithm but also streamlines the design and imple-
mentation of a number of compressed-domain tasks. This chapter provides details
about the general approach, the compressed representation in terms of streams, com-
pression/decompression of the streams, and modules to integrate various tasks and
data structures.

Chapter 3 presents an argument for the use of a special class of clustering algo-
rithms in the compression algorithm. In-depth discussion of clustering algorithms is
given along with a new method that facilitates symbolic compression. Motivation
and examples are given to support our choices.

Chapter 4 discusses various methods of performing residual coding. The residue is
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a data structure used in the compression algorithm to allow for lossless and scalable
lossy compression. In this chapter a number of methods are pursued which provide
desirable lossy representations along with higher compression factors. A method of
structural coding is also presented which provides improvements in both lossy and
lossless representation. This coding has an immediate application to transmission
problems. Analytical and empirical results are given.

Chapter 5 analyzes the rate-distortion trade-off of the residual codes mentioned
in Chapter 4. This trade-off is applicable to progressive transmission and lossy com-
pression problems. An OCR-based distortion measure is used to evaluate our code
relative to competing methods.

Chapter 6 describes a set of tasks which we were able to perform successfully in
the compressed domain. In this chapter we review the algorithms that were used
along with performance results and benchmark outputs (when applicable).

Chapter 7 discusses extensions of our approach to grayscale documents, graphics,
networked databases, and hypertext documents. Some preliminary results are given,
but most of the extensions are still speculative.

1.6 Summary of contributions

The following is a list of contributions made in this dissertation along with brief
explanations.

Compressed data representation: The compression algorithm creates data
structures that have specific uses and vary in characteristics and statistics. Qur rep-
resentation of the data contributes to its efficient use for compression and processing.

Pattern clustering: One major component of the compression algorithm is
clustering of the set of patterns. A clustering approach is pursued which matches
the patterns and classifies them based on their match scores. We introduce a new
pattern matching method that attempts to preserve structural properties by weighting
component pixels based on their distances to the closest edge of the prototype.

Residual coding: After substitution of cluster prototypes for the patterns, we
code the residuals. Since the residuals constitute the majority of the compressed rep-
resentation, we develop a hierarchy that exhibits desirable compression, lossy com-
pression, and progressive transmission qualities. Three coding methods are derived
from a novel idea based on structural components of the residuals. A unique advan-
tage of these codings is the reduction of image pattern variability rather than the
traditional resolution reduction to achieve lossy representations.

Rate distortion: We pursue a functional approach to the measurement of dis-
tortion as it applies to compression and transmission issues. We derive a common
platform for testing and evaluation.

Compressed-domain processing: The tasks that can be performed on images
when they are represented in the compressed domain are limited for traditional image
compression techniques. As mentioned previously, there has been some work done in
this area but the outlook for the development of a general paradigm does not look
promising. In our work we promote compressed-domain processing not only to achieve
higher compression but also to improve application-specific processing performance.
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The contribution of this idea is highly philosophical in that a true compressor should
determine redundancy in a way that reflects an underlying message. That message
should be accessible since its constituents are redundant and were captured during
compression. A noise source (uncorrelated white noise) does not carry any message,
hence it cannot be compressed; anything that can be compressed should carry a
message.

Some preliminary work has been done on extending our ideas to grayscale docu-
ment image compression. Other future work entails the extension of our techniques to
other media types in order to arrive at a hyperdocument representation suitable for
transmission and compressed-domain processing. Graphics and network extensions
are not pursued here but appear quite promising.
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Chapter 2

Basic compression and data representation

To address various aspects of compression, organization, and transmission in a uni-
form way, we need to provide a data representation model. Based on the requirements
outlined in Chapter 1, we have chosen to use a model based on a pattern matching and
substitution algorithm, but we need to analyze the available information to arrive at
a suitable organization. This is desirable for a number of reasons. One reason is that
it facilitates further research and improvements, but more immediate consequences
are identification of key algorithms, their interaction in a unified representation, and
preservation of compressed-domain analysis.

Use of pattern matching and substitution for compression requires several levels of
information. Since there exists a well-defined set of patterns within a document image
we would like to organize the patterns so that they are accessible to document analysis
tasks. Once an organization is derived, we can consider what are the constituent
processes that yield the necessary data. The most important aspect of the data
representation is its use for subsequent processing. Several levels of representation
need to be addressed for efficient access. Some algorithms require knowledge of the
positions of characters (skew estimation/correction) while other require knowledge
of their shapes (keyword searching). A representation thus needs to separate these
types of information. There exist several levels of data types, and their successful
integration is crucial to effective application-level processing.

This chapter is organized as follows. We will discuss our general approach to
compression in Section 2.1 and our representation of the document page in Section
2.2 by describing its organization in terms of data streams. We discuss in Section 2.3
the use of these streams for compression and decompression. We give some examples
in Section 2.4 followed by a summary in Section 2.5.

2.1 Approach

The first step in our symbolic document image compression method is to find an
initial set of patterns in the image which can be used to form a library. In the case of
Latin text, performing a connected component analysis on the binary image provides
a reasonable starting set. For connected scripts or text in which the basic units are
disconnected, more extensive segmentation would be necessary.

A small portion of a typical document is shown in Figure 2.1a, and the bounding
boxes of the connected components are shown in Figure 2.1b. Because these patterns
tend to appear repeatedly in the image, they form a basis for compression. In cases
where multiple characters touch to form a single component, or where a single char-
acter is split into multiple components, representing them as a new component lowers
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Figure 2.1: a) A sample document image; b) the bounding boxes of its connected
components.

the compression factor only slightly. If salt and pepper noise is present, it may give
rise to small components; this will reduce compression but will have little or no effect
on the readability of the document.

We next treat each component as an observation and try to determine a best
set of classes (clusters) of the components and to choose a prototype image for each
class. After all observations have been processed, the prototype map typically looks
like the one shown in Figure 2.2. The shapes shown in Figure 2.2 resemble English
characters because of the primarily English content of the original document. For
a document rich in mathematical symbols, some of the prototypes would resemble
mathematical symbols, and similarly for non-Latin languages the prototypes would
capture their symbol content. Clustering algorithms with different characteristics
affect the eventual symbol representation which needs special attention. A number
of algorithms are considered and discussed in Chapter 3.

Each cluster of components is represented by a prototype. Depending on the
sample space, there will exist some amount of variability in the clusters. For some
clusters, the amount of this variation may be large enough that some of the compo-
nents differ significantly from the prototype and extra information must be recorded
to remedy this. A residual map, the difference between a given component and its
prototype, is preserved and used to recover the components in a lossless form when
necessary. Examples of a component, a prototype, and the corresponding residual
map are shown in Figure 2.3. In addition to coding the prototype, we code the resid-
ual map separately so that access to individual symbols can be achieved by access to
their residual maps. The overall encoding scheme is shown in Figure 2.4.

In our work special attention is given to performing document analysis tasks in
the compressed domain, without full decompression. In many situations only parts
of the encoded information pertaining to the given task require decompression.

Our approach makes a strong case for the use of symbolic compression in document
image coding. We will show that it is possible to code the dominant symbol shapes
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Figure 2.2: Typical cluster prototypes from a textually rich image.

(a) (b) ()
Figure 2.3: a) A component; b) a prototype; ¢) the residual map.

and their locations within the image using only about one percent of the original
image data. Using only this encoding it is possible to implement a large number of
common document analysis tasks such as skew estimation/correction [11, 13, 63, 73,
84], Optical Character Recognition (OCR) [71], and layout analysis [74, 80].

In our approach, we use an indexable representation [53] composed of independent
streams for the prototypes, the locations of symbol instances, and the residual maps.
We have shown that lossy compression, progressive transmission, sub-document re-
trieval, skew estimation/correction, and keyword searching can all be done efficiently
using this representation [53].

Our contribution is in the development of a compression system that promotes
compressed-domain analysis by allowing symbol access. Although the approach works
best with clean images where patterns repeat, it is flexible enough to adapt to situa-
tions where the components correspond to arbitrary patterns in the image as opposed
to symbols, or where many symbols are mis-clustered.

14
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2.2 Compressed document representation

Prototypes are easily calculated by the formation of clusters and these prototypes are
substituted for the actual components by indexing their locations. The specification
of component location is done in two parts. For coding efficiency the page is divided
into blocks of 256 x 256 pixels each of which can be addressed by a single byte. A
component is indexed by the relative location of the upper left corner of its bounding
box with respect to the upper left corner of the block. (The number of components in
each block is also stored.) These locations and the block’s address yield the absolute
addresses of the components. This method of addressing is used in order to provide
direct access to the components. Relative position specification is used in compression
by Witten et al. [112], by specifying offset location from the bottom right of the
previous component to the top right of the next component. Their method has
smaller storage requirements but does not provide direct access to the components.

Once we have obtained clusters and chosen prototypes we need to represent the
residuals (the differences between the components and their associated prototypes).
Regardless of the clustering algorithm, we have observed that there always exist
residuals that affect the renditions of the original components, at least as regards
readability. An example of a set of residuals is shown in Figure 2.5%. A residual map
is associated with each component and in a representation based on symbol access,
the residuals are indexed based on their associated components. A small region of
an image was purposely chosen that had many components that did not cluster well.
This in not representative of common residual maps.

2Tn this example, we see three types of residuals - some that do not effect readability (the
silhouettes), some that do affect readability (the letter ‘K’ was replaced by prototype ‘1’), and one
that did not cluster and relies solely on the residual for rendition (the letter “W?).
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2.2.1 Page representation

In order to provide spatial access to image components in the compressed domain,
it is convenient to encode four types of information in four independent sections:
the file header section, the prototype section, the symbolic section (see below), and
the residual section. The file header contains general information which provides
indexes to the prototype, symbolic, and residual sections and an index to the header
section of the subsequent page in a multi-paged document. (In this paper we have
considered only single-page documents.) The prototype section is a collection of
prototype bitmaps and their sizes. The symbolic section provides an encoding of the
locations of components in the image and the prototype of which each component is
an instance. The residual section contains the residuals produced after substituting
the prototypes for the actual components. Each of these four sections is encoded as a
set of streams. Figure 2.6 shows the organization of the streams; they are described
in greater detail in the following subsections.

2.2.2 Streams

The file header section contains a single header stream and serves as an overall
road map for the representation, specifying global document image parameters as
well as indices to the prototype, symbolic, and residual sections and the streams
they contain. The prototype section encodes the library of prototypes and contains
two streams, the prototype size stream, which records the size of each prototype
bitmap, and the prototype image stream, which encodes the actual bitmaps. Two
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extra NULL prototypes are used to serve as indexes for small and large graphic
components which are represented in the residual stream. These prototypes are used
to specify appropriate numbers of bytes for the sizes of the graphic components so
they are indexable.

The symbolic section specifies the location of each component along with the
prototype which represents it. To reduce storage requirements in recording the com-
ponent locations, the image is divided into blocks of size 256256 and component
locations are specified relative to each block. To calculate the absolute address of a
component during decompression, the block membership stream provides a block
index and the component layout stream provides the vertical and horizontal offsets
of the components within the block along with their prototype labels. The compo-
nent layout index stream is used to index the component layout stream after it is
compressed.

The residual section stores the residual for each component and is indexed in
the same way and in the same order as its symbolic counterpart. This requires the
residual map index stream, an index into the residual map, and the residual
map stream itself.

The advantage of representing different types of information by different streams
and then indexing the streams is that applications which need access only to limited
information do not need to decompress the entire document. For tasks such as skew
estimation and correction, which may require only the locations of the components, we
need access only to the prototype size and component layout streams. For a task such
as keyword searching or OCR, the prototype needs to be accessed, and minimal access
to the residual map stream may also be needed. To extract and decode subregions
of the document image, we can access the needed blocks, and we can then access the
components in these blocks efficiently using the index structures.

The size of each stream is specified in a stream header. The header remains
uncompressed so that access to each stream is independent of access to the other
streams. Fach stream can be compressed individually or a common “dictionary”
can be implemented and made available in the header. In our implementation, we
index into the component layout stream by referencing block boundaries and into the
residual map stream by referencing individual components.

2.3 Compressing the streams

Huffman coding is used to compress the streams; it requires two steps. First the
streams are scanned to create a common Huffman lookup table. Second the individual
streams are transformed according to the newly created table. Creating indexes into
the compressed streams will be discussed below.

2.3.1 Header section

Header stream: This stream consists of indices to the streams contained in the
prototype, symbolic, and residual sections. The indices are stored as the sizes of the
individual streams; they remain uncompressed.
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2.3.2 Prototype section

Prototype size stream: Prototypes are limited to 256 x256 pixels so we can use
single bytes for their horizontal and vertical dimensions. These pairs are ordered
as a stream and compressed. The compressed size is recorded in the header. When
required, the compressed stream can be decompressed and used to index the prototype
image stream.

Prototype image stream: The prototype image stream orders the pixels of each
prototype, either by row or column. The resulting array is packed into the prototype
image stream and compressed. The compressed size is recorded in the header. For
decompression, the compressed stream is indexed by the size stream. Knowing the
sizes and number of prototypes from the prototype size stream, and the size of the
decompressed prototype image stream, the stream can be unpacked into the set of
two-dimensional prototypes.

2.3.3 Symbolic section

Block membership stream: We have divided the document image into non-
overlapping blocks of size 256x256. To index the blocks, we record the first row
and column of the block in two bytes. We create a stream for the number of compo-
nents in each block, compress the stream and record the size of the compressed stream
in the header. During decompression we extract the stream and use it to index the
blocks.

Component layout stream: For each component in a block, we append to a list its
position in the block, by specifying a horizontal and vertical offset, and the cluster to
which it belongs, by specifying the identification of its prototype. If the component
is associated with a NULL prototype, we also record its size (the height and width
of its bounding box). For each block, we compress the list and record its compressed
size in the header. We add this size to the component layout index stream (described
below) in one byte and start a new record for the next block. When all components
in all blocks are exhausted, we record the overall stream size. For full decompression,
we ignore the index stream and decompress the entire component layout stream. For
partial decompression we use the size information in the index stream and decompress
only the needed part of the component layout stream.

Component layout index stream: To index the component layout stream we
form a stream based on the compressed sizes of the component layout records. We
compress the entire stream and record the resulting size in the header. When the
information in the stream is needed, we decompress the entire stream.

2.3.4 Residual section

Residual map stream: Using the same encoding as for the component layout
stream, we order the residual maps into a stream. For each residual map, we first
pack the pixels into bytes, submit that portion of the stream for compression, record
the compressed size in one byte, and record the ending bit offset in one byte. We
do this for all residual images and record the overall size of the compressed residual
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map stream in the header. For full decompression, we extract the entire residual map
stream based on its compressed size and unpack it. For partial decompression, we
use the decompressed residual map index stream to extract the needed segments from
the residual map stream.

Residual map index stream: For the index, we form a stream based on the
compressed size of the list of residual map streams for each component. We compress
the entire stream and record the resulting size in the header. When the information
in the stream is needed, we decompress the entire stream.

2.4 Results

To test our system we used text regions from the first 122 scanned images (A001BIN.TIF
to AOO6N.TIF) in the UWASH I database which is available from the University of
Washington [32]. For synthetic images we used BWTEX-generated files from the same
database (LOOOSYN.TIF - LOOMSYN.TIF). Our basic compression package converts
binary TIFF images to and from symbolically compressed images. For synthetic,
BTEX-generated images, it took a total of 855 seconds to compress 23 files for an
average of 37 seconds. The average resulting file size was 45312 bytes compared to
57848 bytes in CCITT G4 coding and 82112 bytes in CCITT G3. For comparison,
the same images were compressed using packed bits and LZW compression, yielding
average file sizes of 198,015 bytes and 110,810 bytes respectively. With original im-
ages of 2550 by 3300 pixels, the compression ratios are summarized in Table 2.1. For
the case of scanned images, compression time was an average of 66 seconds for the
122 files of Table 2.1. (The time is for an implementation running on a SparcStation
20 with the Solaris 2.5 operating system.)

Image | Symbolic | G4 | G3 | JBIG | MG | LZW | PACK-BITS
Synthetic 23.2 18.2 | 128 | 26.9 | 39 9.5 5.3
Scanned 12.2 17.8 | 9.7 | 22.3 | 27 8.7 5.5

Table 2.1: Average compression ratios for synthetic and scanned images for differ-
ent compression schemes. The images are taken from the University of Washington
Database [32]. Averages were taken over 20 synthetic images and 100 scanned images.

2.5 Summary

We have proposed a data organization that is designed to work with symbolic com-
pression. Given that we can identify sources of redundancy and useful sources of
information we designed the organizational model to address both. In our methodol-
ogy we identified the source of redundancy as the repetition of components found in
document images. The source of useful information is found to also be in the compo-
nents, but more specifically it resides in the locations and shapes of the components.
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Redundancy is captured by determining representative classes of observed compo-
nents, which is easily done by clustering. These clusters are represented by prototypes
and are indicative of the components’ shapes. Therefore, prototypes need to be pre-
served and stored to be accessed individually, as we have described. While the shapes
of components are captured in prototypes, their locations need to be stored indepen-
dently to allow for dissemination of useful information. This was done by providing
for a symbolic layout section. The remaining information relates to the residual cod-
ing. Redundancy removal within the residual section will be addressed in Chapter 5.
Some useful information for this purpose can be obtained from the prototype image;
to make this information available we must index the residuals based on the compo-
nents. We proposed a residual coding method which is well suited for partial retrieval
and compressed-domain processing.

Having provided a specification of the data organization, we can now proceed with
specification of actual algorithms.
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Chapter 3

Clustering

3.1 Introduction

A large number of clustering algorithms have been described in the literature [4, 86].
Some algorithms, despite their wide usage for other purposes, are not applicable
to symbol clustering. The goal of symbol clustering is to identify the intra-class
similarities of the symbols. Due to size and pattern variations in the components,
some clustering algorithms may not provide a satisfactory result, as mentioned below
for two of the algorithms.

One example of an inappropriate clustering algorithm is principal component anal-
ysis, where image rows or columns are concatenated into a vector and for a given set
of symbol images a covariance matrix is computed. The eigenvalues of this matrix
give the variances along the eigenvector directions. The effectiveness of this method
depends on the rows and columns providing consistent information for all of the im-
ages. This will not be the case if the images are of different sizes. To remedy this one
can pad the observed image to a fixed size with a constant value or scale the input
image to a fixed size. The padding presents a problem when the input images are
artificially weighted to the size of the padded region. In the example shown in Figure
3.1, it can be seen that all observations have similar shapes (a circular shape will over-
lap all the observations to some degree) in the upper portion of the image, and that
the lower portions of observations 6 and 7 look the most dissimilar (one descender is
on the left and one is on the right with no overlap). However, since observations 1 to
5 are padded, the weight of the descenders in observations 6 and 7 is 2/7 of what it
should be (not as discriminating as it should be). Normalizing the components is not
a viable option, since prototype generation will not be possible in a cluster where the
sizes of the components are different. Scaling of images to a normalized size creates
a situation in which an appropriate prototype may become impossible to find. The
fact of the matter is that the size information is an effective discriminator and it can
be used to effectively separate observations {6,7} and {1,2,3,4,5} of Figure 3.1.

A second type of clustering algorithm, vector quantization [30], is also affected by
the variability in observed sizes. In vector quantization, each symbol image is first
ordered as a vector and this vector is considered to be a point in a high-dimensional
space. A small set of “prototype” vectors is arbitrarily chosen and the distances to
all the prototypes from all of the observations are calculated. We associate with each
observation the prototype closest to it. The prototypes are then refined by taking the
means of their associated observations, and the process is repeated. The prototypes
and the distance measure divide the high-dimensional space into regions of coarser
granularity; hence the name quantization. The results obtained by this method are
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Figure 3.2: Vector quantization regions in a two-dimensional sample space with a)
equal-population clusters; b) a 3:1 population difference; c¢) a 5:1 population differ-
ence.

population-dependent; more prototypes will be found in regions of the space where
symbol images occur. Figure 3.2 shows how the regions change when the number of
samples in one of the clusters is increased.

A third class of clustering methods, which we will primarily use here, are pattern
matching and substitution approaches. If a candidate pattern is a good match to an
existing prototype, it is classified as a member of that prototype’s class; otherwise, it
is considered for possible creation of a new class. The advantages of using this type
of method are that we do not need a priori knowledge about the number of classes
and that the method works with a variety of image sizes.

We can describe clustering via pattern matching more formally by first defining
notation for an observation X and a prototype P:

¥ — { g((n,m) i(;zé:‘;{:g €ER:=({1,.... No}, {1, ..., M,}) (3.1)
P(n,m) for (n,m) e R, =({1,...,N,},{1,...., M,}) ‘
P= { 0 otherwise (3.2)

where it is assumed that foreground pixels have value 1 and background pixels (and
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pixels outside the bounds of R, and R,) have value 0. A number of pattern matching
methods which can be used to define measures of closeness between an observation
and a prototype are discussed below.

The rest of this chapter deals with matching methods that can be used in our pat-
tern matching and substitution clustering process. We first discuss a simple Hamming
distance in Section 3.2. We extend this to a weighted Hamming distance in Section
3.3. A different approach is then suggested to take into account background and
foreground errors in Section 3.4. In Section 3.5 compression-based (entropy-based)
matching techniques are discussed. In Section 3.6 we propose a new matching tech-
nique based on the distance transform which has the desired property of weighting
structural components appropriately. We conclude with some remarks in Section 3.7.

3.2 Hamming distance

The simplest method of matching two binary images is to measure their dissimilarity
by the number of pixels that are not equal. An error map calculated from the exclusive
OR (XOR) of the observed image and the prototype is given by

X(n,m) @ P(n,m) for (n,m) € R, NR,

) X(n,m) for (n,m) € R, — R,
E(n,m) = P(n,m) for (n,m) € R, — Ry (3.3)
otherwise

where E(n,m) is defined for all (n,m) € R. = Ry UR,. Since the XOR operation
returns a value of 1 for a mismatch, summing the error map provides a measure of
mismatch,

M=|R.)-M= > E(nm) (3.4)

(n,m)eER.

where |R.| is the highest mismatch score and M is the actual match. In this formula-
tion, maximizing the match is the same as minimizing the mismatch of (3.4). Figure
3.3 shows three examples involving an intra-class observation, a possibly confusing
inter-class observation, and an obvious inter-class observation, along with their mis-
match scores. The amount of mismatch shows some degree of discrimination among
those cases, and by use of a threshold, we are able to identify some classes. However,
if the threshold is too high some intra-class confusion may arise, such as clustering
‘e’ shapes with ‘c’ shapes. Taking a low threshold would result in too many clusters
and would hinder compression efforts. It is desirable to use a distance measure that
provides enough separation for dissimilar shapes.

3.3 Weighted Hamming distance

Improving the distance measure to discriminate between similar images (‘e’ and ‘¢’
of Figure 3.3) is desirable; the weighted Hamming distance [85, 112] provides such
an improvement. This distance measure gives greater importance to error pixels
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which appear in close proximity to other error pixels. Error pixels which appear close
together tend to correspond to structurally meaningful features.

The weighted Hamming distance operates on the error map of (3.3) by summing
over a neighborhood of each error pixel:

Ey(n,m) = E(n,m) x Z E(k,1) (3.5)
(k1) EN (nym)

where NV (n,m) is the 3 x 3 neighborhood of the (n,m)th pixel. With this weighting
strategy, error pixels that occur in a group will give a higher mismatch than iso-
lated error pixels. Figure 3.3 also shows the results of using the weighted Hamming
distance measure for the same observations and prototype. Note that the small dif-
ference between observations A and B is now much larger when the mismatch score
is calculated by (3.4) and using the weighted error map £,

3.4 Sum of weighted AND-NOTSs

When we use an XOR operation the source of the errors is not considered. In par-
ticular no distinction is made between errors in foreground pixels and errors in back-
ground pixels. It may be desirable to give more importance to the foreground pixels
since most of the information is contained in them. This can be done by using the

AND-NOT measure. The weighted AND-NOT map is defined by

Foun = {(X AP)nm)x Y (X AP)(E, z)]
(k,[)EN (n,m) (36)

v [(YAP)(n,m)x 3 (YAP)(k,z)]

(k,[)EN (n,m)

This map is useful in cases where the weighting has elevated the mismatch level due
to misalignment, as illustrated in Figure 3.4.

3.5 Compression-based template matching

Compression-based template matching [43] is a method of matching which attempts
to measure the mutual information between the prototypes and the observations.
This is can be done by minimizing the entropy of the residual. The entropy of a
binary signal £ = {e;,1 =1,...,|R.|} of distribution P(e) is

1

H(E) = = Y P(e)logy( P(e)) (3.7)

e=0

P(e) is estimated given E. Equating H(F) to a mismatch value favors conditions
where the complexity of F is low which translates into cases of mostly zeros or mostly
ones. This is rather different from previous approaches in which the number of pixels
in the residual map is minimized. In compression-based template matching, the idea
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mismatch as weighted XOR and as weighted AND-NOT.

is to keep the residual pixels non-random with respect to each other and achieve a
lower entropy for the residual map. An immediate enhancement is to replace the
probability with one that is conditioned on the formed clusters. Mutual information
is then measured by

1(Ek) =~ Y log, P(E(n,m)|k) (3.8)

n,mERe

where k is the cluster index. While this probability can be estimated from the mem-
bers assigned to the cluster, it can also be estimated as a function of the prototype
image (convolution with some filter [116]).

3.6 Distance-based template matching

Our final method of matching attempts to weight each error pixel according to the
probability that it was corrupted by degradation or noise. In this way we give lower
weights to error pixels which are likely to have resulted from noise and higher weights
to others.

In studies of document image degradation at the character level it was observed
that pixel errors occur more often close to the edges of characters [48]. The probability
of a pixel changing its value decays as a squared exponential with the distance to an
edge. Specifically [48], the probability of a pixel changing value from background to
foreground at distance d from an edge is given by

P(1|d, o, b) = 1 = P(0]d, a, b) = e=% (3.9)
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where « 1s the background decay rate and b denotes the fact that the pixel in question
really belongs to the background. Similarly, for foreground pixels, the probability of
changing value is

P(0ld, 3, f) =1 = P(1|d, 3, [) = ¢ ** (3.10)

We can use this fact to conclude that observed differences which occur between a
prototype and a candidate pattern away from the edge of the prototype are more
likely to be the result of meaningful structure and not noise and should therefore be
considered with higher priority during matching.

We can use this degradation model as a basis for a matching model which assigns
weights based on relative distances from the prototype edge. To simplify the model,
we assume that « is equal to 3 and calculate the weight matrix as a distance trans-
form. This greatly reduces the computational requirement by avoiding a scan to all
components to determine a and [ and by removing an extra exponential operation.
We also use only a relative distance measure; this allows us to avoid the computation
of two squares and a square root.

To compute the distance transform, consider a prototype P. Let F be the set of
indices for the foreground pixels of the prototype, and B the set of indices for the
background pixels. Knowing that F N B = ), the square-of-the-distance transform,
or distance map, of prototype P is calculated by

D(n,m) =min (0= K+ (m— 1|
(k,l) e F, (n,m) € Bor
(k,l)e B, (n,m) € F} (3.11)
This measures the closest (squared) distance of an unlike pixel to the current pixel.
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Figure 3.6: Example of a) an observation, b) a prototype, c) a residual map, and d)
the distance map of the prototype.

The study of distance transforms dates back to the late 1960s. A classical reference by
Rosenfeld [87] discusses a number of algorithms for its computation, while for images
represented by quadtrees one can use a method suggested by Samet [90]. Other recent
algorithms to compute distance transforms can be found in [16, 33, 60, 104, 107].

Figure 3.6 shows a typical prototype and a map of the distances to the edges.
(Figure 3.3 showed the distances overlayed on the prototype image.) Summing the
error pixels weighted by their distance values provides a better separation for inter-
class observations. For the intra-class observations in Figure 3.4, it is easy to see
that the distance-weighted mismatch is 26 since all error pixels occur on the edges
and there are only 26 such pixels. Distance weighting separates the closest inter-class
observations shown in Figure 3.3 by 11 and 44.

It should be pointed out that distance-based template matching could easily be
adapted to other clustering techniques, at the cost of more computation. An example
is adaptation to vector quantization. Consider the clusterings of Figure 3.2, and
suppose that for high values of x and y we would like to weight the z values more
heavily, and for low values we would like to weight the y values more heavily. This
would shift the region boundaries of Figure 3.2a in such a way that at the top right we
would have vertical thin regions and at the lower left we would have horizontal thin
regions. The result would be a partition that is dependent on location in the space
as well as on the population of observations in that area of the space. The distance
ordering has a number of desirable properties, and provides a good framework for
document image processing and handling.

3.7 Summary

In this chapter we considered a number of clustering algorithms that might be used
in our compression system. Due to the size variability of the input images and the
unknown number of clusters, we choose a match-and-classify approach. This ap-
proach allows for the use of different matching functions so that specific features of
observations can be exploited. Prototype generation is easy once a set of clusters is
determined. We simply average the cluster members to arrive at their representative
prototypes.

The simplest match criterion tested was the sum of the Hamming distances, which
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was immediately improved to a weighted sum of Hamming distances. While Hamming
distance sums the mismatch value as the number of pixels that were unequal, weighted
Hamming distance puts more weight on groupings of pixels which were unequal. This
provided a reasonable improvement. We also considered an alternate distance, namely
AND-NOT distance. The reason for considering AND-NOT is that for the XOR
function, the output is independent of the fact that foreground and background pixels
of either the prototype or the component may not match. There may be situations
where a slight misalignment contributes a large amount toward the mismatch value.
By using the AND-NOT function, the groupings of unequal pixels are weighted based
on their foreground and background memberships.

Another class of matching functions tested was entropy-based. This class main-
tains a low level of complexity for the residuals; however, it is not guaranteed that
the prototypes resemble meaningful components. The matching measure is the com-
plexity of the residual image. A simple count of residual pixels yields a probability
mass distribution that is used to calculate an entropy measure. This measure was
adapted to include a condition that the entropy of the residuals belonging to a class
be minimized. Since all pixels are not created equal, especially for document images,
the entropy contributions of all pixels cannot be uniformly combined; they need to
be weighted based on their potential contribution toward appropriate prototype gen-
eration. Entropy-based template matching may contribute towards the compression
of images, but it is more desirable to create prototypes which contribute toward cor-
rect recognition. Once a clustering algorithm can guarantee correct assignment of
components to clusters (i.e. all clusters consist of components which would be recog-
nized as the same symbol as the prototype by a human reader), we can then employ
compression-based clustering to further minimize residual complexity while keeping
recognition intact. Such performance has never been achieved; most researchers in
this area confirm that correct prototype representation is possible only for document
images that are of good quality.

A distance-based approach is suggested here to address some concerns regarding
the pixels’ contributions. A model based on character degradation is used for this
purpose. This model suggests that pixels close to edges of components are most likely
to change in value due to degradation effects. We extend our model to hypothesize
that pixels far from edges must contain large amounts of recognition information.
This is supported by the fact that most document images that are degraded are still
readable. Therefore we associate a distance measure with each pixel and weight its
difference from the prototype based on that distance. This allows discrimination
of shapes that are fairly similar but have strongly dissimilar structural components.
This favors the clustering of similar structurally significant patterns. While we still
cannot guarantee that cluster members will all be recognized as the same symbol, we
have contributed toward achieving a single recognizable component per cluster.

There exist several clustering algorithms which vary in performance, but there
exists no clustering algorithm that performs perfectly. Therefore, it is essential to
include at least partial residual information to assure a representation that allows for
correct recognition of characters. Distance-based matching provides good clustering of
components based on their structural features and readability, but it does not operate
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perfectly, so residual coding is needed to address concerns beyond clustering. This
will be covered in Chapter 5. Another concern is the quality of the input components.
In Chapter 4 we revisit component segmentation to see if the input components are
well suited for our clustering methods.
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Chapter 4

Segmentation-based clustering

4.1 Introduction

Enhancements to clustering, such as the work done by Bloomberg and Vincent [14]
and Zhang and Danskin [116], can greatly improve performance both in lossless and
lossy compression. While there have been efforts to improve clustering in the symbolic
compression of document images, it is unrealistic to expect clustering alone to address
all aspects of prototype generation. For characters that are connected or broken in
the document image, a segmentation based on connected components will not yield
isolated characters after clustering, no matter how good the clustering is. In this
case the resulting set of prototype image maps contains a certain level of redundancy
which was not adequately captured by the segmentation and clustering algorithms.
If a clustering algorithm does not require the output of the segmentation routine, it
is considered to be a joint segmenter and clusterer and does not fall in the category of
simple clustering algorithms. An ideal clustering routine would interact intelligently
with the segmentation routine and derive the best possible prototype images while the
segmentation routine provides a better segmentation given the underlying prototype
maps. Eventually, in residual coding, which involves a majority of the data, the data
can be efficiently organized and coded, as has been demonstrated by Howard [37] and
as shown in Chapter 5.

For the general symbolic compression problem, segmentation has not been a major
issue. This is because any component regardless of shape and size will be coded
appropriately, although not as efficiently as it could be. With the introduction of
small amounts of degradation in the original image, the structural integrity of the
character shapes degrades and the components either start touching or breaking apart.
It is therefore necessary to review alternative methods of segmentation to improve
compression performance for such documents. An example of such a document is
shown in Figure 4.1.

Initially we used a connected component algorithm for segmentation. Although
such segmentation can be done quickly, the process is sensitive to connected or bro-
ken characters. While most of the spatial features of connected characters are still
preserved, their segmentation remains a non-trivial task. In symbolic compression,
fundamental character shapes are identified and clustered to generate prototypes that
embody the constituent patterns of the image. In cases of touching characters, clusters
will be created for observed instances and constituent shapes will not be identified.
We propose to use the prototypes obtained in the first pass to perform partial match-
ing and an alternative segmentation on those components which have not clustered
well. The output of the segmentation is fed into the clustering routine again for an
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Figure 4.1: Example of a document image containing a large set of connected char-
acters.

enhanced set of representative prototypes. This process can be repeated to improve
the compaction of the prototype library.

To improve clustering, compression, and processing of document images we con-
sider an integrated segmentation and recognition approach where the initial segmen-
tation and identification of clusters identifies stable prototypes. We then iterate a
process to refine both segmentation and clustering of components. The prototypes
from the original clustering are used to re-segment the previous components and gen-
erate a new set. The new set of components is clustered to form new prototypes, and
so on. This process is performed iteratively with varying degrees of segmentation to
determine the set of prototypes for the image that yield the best compression.

This chapter is organized as follows. In Section 4.2 we describe our general ap-
proach toward a joint segmentation and clustering methodology. In Section 4.3 we
describe how subcomponent matching is performed to arrive at possible segmentation
alternatives and in Section 4.4 we describe the segmentation method itself. In Section
4.5 we study the integrated process of segmentation and clustering which provides a
basis for enhanced segmentation. In Section 4.6 we present the results and in Section
4.7 we summarize and make comments about the algorithm, including its limitations
and future enhancements.

4.2 Approach

To provide integrated segmentation and clustering, we take the connected components
of the document image as the first guess at the components, cluster them, and gen-
erate a prototype set as shown in Figure 4.2. Using these prototypes, we attempt to
resegment larger components by considering all possible segmentations of the compo-
nents, matching and attempting to identity sub-instances of the previous prototypes
(Figure 4.3). The entire list of components is visited and all combinations of vertical
cuts are considered in order to determine the best possible match. The list of match
values associated with each segmentation is recorded. During segmentation, the best
match of a sub-component to a prototype is chosen and the associated cut-point is
used to create a new observation. After considering all components for segmentation,
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Figure 4.2: Example of a prototype set that is rich in touching components.

a new component list is created which reflects the new instances. These components
are then used for clustering and to create a new set of prototypes. The process of
segmentation and clustering is repeated several times to allow for segmentation of
large components.

4.3 Subcomponent matching

For components that consist of touching characters, we assume that prototypes resem-
bling the characters which they contain are present and that we need to identify them
and locate their positions. To identify these sub-instances, it is necessary to match
smaller components with parts of larger components. The two factors in finding this
match are shape and position. A number of other factors need to be discussed; how-
ever, the general methodology is to obtain the largest-size set of prototypes that are
independent. This is required since blind decomposition of patterns into their small-
est constituents results in a set of the smallest prototypes, such as periods. Figure
4.4 shows several prototypes from the library in Figure 4.2. It is clear that the “ted”
cluster, having a number of observed instances assigned to it, is composed of touching
components, but how to define the set of its sub-components is unclear. It is clear
that decomposition of the “e” prototype (Figure 4.4d) is desired; however, a better
decomposition is that of the “ed” prototype (Figure 4.4e), since it is a constituent

(1]

but one that is bigger in size than the “e” prototype. The reason for this is that if
most instances of “e” appear as “ed”, then representing “ed” is more efficient than
representing “e”. Since this is not the case for the most part, we can conclude that
the “ted” pattern should first be decomposed into “t” and “ed” and then “ed” should
be decomposed into “e” and “d”. The components shown in Figure 4.4c and f are
also constituents but this level of decomposition is clearly undesirable.

Since we are dealing with rectangular bounding boxes to segment regions of com-
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Figure 4.4: Set of observations considered for segmentation (a-c) and corresponding
proposed constituents (d-f).
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ponents and the text lines are horizontal, we consider only vertical cuts. The al-
gorithm to generate segmentation hypotheses is as follows. For each vertical cut,
we determine the minimum bounding boxes of the two resulting components. The
resulting components are then matched to all prototypes which they may contain.
The mismatch is measured by the sum of unequal pixels weighted by the distance
transform. Given the distance transform of (3.11),

Di(n,m) =min{ (0 )+ (m— 1)
(k,l) e F, (n,m) € Bor
(k,l)e B, (n,m) € F} (4.1)
the mismatch M is calculated by

= Z E(n,m) x Da(n,m) (4.2)

n,m

=

where F(n,m) is the error between the segmented component X (n, m) and prototype

P(n,m) (3.3),

(X & P)(n,m) (n,m) € R,NR,

— X(na m) (na m) €Re — RP
E(n,m) = P(n,m) (n,m) € R, — Ra (4.3)
0 otherwise

A match is identified if the minimum mismatch is lower than a threshold. Figure 4.5
shows the best segmentation, where the segmented portion matched to an existing
prototype. In such a scenario, if one segmented component shows a good match, the
cut is kept regardless of the match between the other component and any existing
prototype. This is necessary in order to decompose larger components which have
more than two constituents. For components having three or more constituent ele-
ments, decomposition can take place from the right or left and can proceed to the
middle.

To ensure proper segmentation and avoid over-segmentation as was shown in Fig-
ure 4.4c and f, several factors are considered. The first factor is the position of the
segmentation cut. It is undesirable to segment a component at its extreme right or
left edges. If cuts at these locations are picked, they are most likely due to small
prototypes which do not result in an adequate decomposition. The distance of the
cut from the middle of the segmented component takes this factor into account.

The second factor is favors components that are touching along small numbers
of pixels. The number of foreground pixels that coincide with the segmentation cut
takes this factor into account.

The remaining factors are based on size. It is more desirable to decompose larger
components, so we take the size of the component considered for resegmentation into
account. It is more desirable to decompose a component into the biggest prototypes
that are smaller (at least in area) than the given component, and so the area of the
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Figure 4.5: Best proposed segmentation cut for an observation and a corresponding
template that was matched based on the distance transform.

prototype considered for best segmentation is taken into account. Figure 4.6 shows
examples of these factors. In terms of weights, we use a mismatch value of

Weighty x Weighty

M,=M
8 Weights x Weighty

(4.4)

Upon completion of component matching, the best cut, the mismatch value, and
the closest matched prototype are kept. The segmentation process then uses these
values to determine the best segmentation.

4.4 Segmentation

For segmentation, we need to consider the cuts considered in partial matching for
cases of touching characters. Each component is visited and from among all possible
cuts, only the cut that yields the best partial match is considered. Note that only one
cut 1s allowed per visit, greatly reducing the complexity of segmentation versus the
more general two-cut scheme. Using two cuts, a number of fail-safe mechanisms need
to be considered to avoid empty objects and residual objects created by taking a cut
that is not exactly on the edge of a neighboring constituent component. The best
match is then thresholded to either keep the cut or discard it. Various thresholding
constants were used with varying amounts of effect on compression. Examples of
components that were segmented in this way are shown in Figure 4.7.
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Figure 4.6: Mismatch weighting by considering (a) the cut position, (b) overlap with
foreground pixels, (c) component size, and (d) prototype size.
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Figure 4.7: Examples of segmented components.
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Figure 4.8: Prototypes of document image associated with Figure 4.2 after integrated
segmentation and clustering.

4.5 Integrated segmentation and clustering

After the original segmentation (connected component analysis) and clustering, fur-
ther segmentation is performed by specifying a threshold on the partial matches to the
components. All initial components are considered for segmentation. If the mismatch
value is below the threshold, the initial component is divided into two parts. After
all components have been considered for segmentation and divided as necessary, the
clustering algorithm is applied to the new set of observations. This process is iterated
repeatedly to allow for sufficient decomposition of large connected components. The
prototype library originally shown in Figure 4.2 looks like the one shown in Figure
4.8 after processing.

Integrated segmentation and clustering is also applicable to the case of discon-
nected characters. A reverse approach needs to be taken in which combining com-
ponents is done instead of dividing them. A nearest neighbor approach is used to
combine components, and the results are matched to the prototype library. The clos-
est match is kept if its mismatch value is below a threshold. The same methodology
is used as in the matching of partial components to prototypes except that the cost
factor associated with a cut is replaced by one that is associated with component
combination. Prototype instances that are larger than the broken component (prior
to joining) are considered and the smallest such prototype is favored. This alternative
method of resegmentation is also beneficial.

4.6 Results

The algorithm can be evaluated in terms of its performance in prototype generation,
component decomposition, effectiveness of prototype library generation, and residual
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Compressed Library Pointer Residual
Size Size Size Size

Fle [ 0 [ 0 | @ [ [ [0 0[O
S1 44260 | 41552 | 4550 | 2642 | 3158 | 3948 | 34038 | 31931
S2 39828 | 38240 | 5600 | 5160 | 2258 | 2443 | 20088 | 28648
S3 27300 | 26041 | 3563 | 2703 | 1579 | 1921 | 20763 | 19833
S4 30397 | 28926 | 4640 | 2481 | 1787 | 2069 | 22377 | 22633
S5 27014 | 26416 | 2705 | 1971 | 2818 | 3198 | 19318 | 18834
S6 25050 | 24489 | 3347 | 1748 | 2254 | 2950 | 17648 | 17537
ST 34818 | 33941 | 3724 | 3448 | 3207 | 3393 | 25537 | 24648
S8 40100 | 38207 | 3544 | 3252 | 3856 | 3984 | 29811 | 27985
59 1713 | 49778 | 4520 | 4116 | 3927 | 4340 | 40280 | 38084
SA | 23978 | 22987 | 3331 | 2812 | 1715 | 2035 | 17459 | 16490

Total | 390678 | 376527 | 44630 | 34896 | 30468 | 34551 | 281618 | 280648
% A ()% (23)% 14% (:3)%

Table 4.1: Statistics of selected files with initial (I) and final (F) compression char-
acteristics after applying integrated segmentation and clustering algorithm.

image generation. While the overall gain in compression is important, it is also
important to see how this gain is achieved.

Table 4.1 shows statistics for a selected group of document images. For debugging
purposes we considered small samples of document images which had large numbers
of connected components. Images that did not have high numbers of connected
components showed only a small amount of improvement. For the examples in Table
4.1 we performed symbolic compression with and without segmentation to study
the amount of improvement. We used a representation that stored the prototype
library, symbol location, and residual information separately, so that the effects of
segmentation could be studied across all aspects of the symbolic compression.

The overall compression factor was observed to have decreased by 4.5%. However,
this was due to the small image sizes; the clustering process was not able to use the rich
population of observed components available in larger images. The compression factor
is expected to increase for large images where there exist large numbers of components
as well as instances of touching characters that span a large number of characters.
The interesting result is in the reduction in the size of the prototype library. Since
the prototype library is a small part of the representation, it does not affect overall
performance but it is the major portion of the lossy compression representation. For
lossy compression consisting of only the prototype images, we need to code 66083 bits
when we do not use segmentation, but only 60614 bits when we do use it, resulting in
an 8% increase in compression. The effects of segmentation on processing are clear,
in that the prototypes are more representative of the characters and provide a better
symbolic representation. Basically, any result that is obtained by compressed-domain
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processing is more dependable with segmentation than without.

4.7 Summary

It is logical to consider alternative methods of segmentation in addition to the ba-
sic method of connected components. In most cases, document images are of high
quality and the connectedness of characters is preserved. This cannot be guaran-
teed, however, and it is desirable to devise a method that can gracefully deal with
degradation. Because proportional fonts are often used in typesetting, and because of
the point spread functions of scanners, we observe a larger reduction in performance
due to touching components than due to broken components. In this chapter we
have described a method that can segment connected components using the shapes
of dominant components. This method has the desirable characteristic that a stable
level of representation is achieved in component shape and size. It also improves
compression by 4%. It is important to note that this method is independent of the
clustering algorithm [116] and data representation [53, 112] used, and that it can
benefit from, and contribute to, their operation. For example, a better clustering
algorithm that can achieve a higher level of separation can provide better prototypes
to be used in partial matching. Better segmentation results can increase the per-
formance of compressed-domain processing in tasks such as key-word searching and
skew detection.

The method presented here has not been optimized in any way, but it performs
compression in a few minutes on a SparcStation 20. The images used for testing it
were derived from the University of Washington Database CD ROM [32], by cropping

images to contain rich text content, without scanning and copying artifacts.
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Chapter 5

Residual coding

The primary contribution of this chapter is in the development of new methods of
residual coding. These methods provide a hierarchical representation and allow for
compression and compressed-domain processing, with natural extensions to lossy com-
pression and progressive transmission.

5.1 Introduction

In the previous chapters, we considered a number of methods of determining suitable
prototypes. Since the components that appear in document images contain several
levels of ambiguity, it becomes unrealistic to pursue a conservative approach towards
prototype generation. The advantage of a prototype generating process that guaran-
tees a high level of correct recognition of components is that it results in a large set of
prototypes. The factors that affect the choice of an ensemble of prototypes are image
degradation, shape redundancy/variability, cluster membership, and an acceptable
level of residual complexity.

Considerable complexity exists in the residual images. It is desirable to code the
residuals so as to achieve as high a level of compression as possible and provide a
hierarchical representation that degrades gracefully and provides correct recognition
of components. Much like the preservation of structural components during the pro-
totype generation phase, it is possible to structurally order the residuals of the image
components and achieve a graceful degradation of their structural components [52].
We pursue three methods of coding based on structure. We first consider a distance-
based coding method that preserves structural components when residuals are coded,
and we also consider two other methods that attempt to capture the structural com-
ponents when residual pixels are coded.

The remainder of this chapter is organized as follows. In Section 5.2 we discuss the
basic distance-ordered code. In Section 5.3 we extend the basic distance ordering to
structural ordering. In Section 5.4 we analyze the code in terms of its compressibility
by performing an entropy analysis. In Section 5.5 we present the results of the
analysis. In Section 5.6 we conclude with some final remarks.

5.2 Distance-ordered residual coding

The nature of the residuals is clearly dependent on the quality of the original image,
i.e. how well symbols can be clustered, and on the quality of the clustering algorithm
itself. In clean document images, components are, for the most part, isolated from
each other and they can easily be segmented and clustered to form well-defined groups.
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When the components and their prototypes are very similar, little contribution from
the residual maps is necessary to accurately encode the symbols. As the images
degrade, however, noise is introduced and characters tend to either merge to form
bigger components or break into multiple pieces. This increase in the variability of
the components in the clusters results in an increase in the complexity of the residual
map.

An issue independent of how the residuals may change is how well the clustering
algorithm performs in the presence of increased noise. A clustering algorithm needs to
capture meaningful similarities between degraded symbols. For document images, the
structural aspects of symbols are the most meaningful when the ability to recognize
or read the symbols is considered. Whatever levels of image quality and clustering
quality are achieved, it is desirable to code the residuals so that a compact and usable
representation is achieved.

Document image degradation research suggests that the edge pixels of an ideal
image are most susceptible to noise degradation. Nagy et al. [72] and Sarkar [91]
used a point spread function to determine the effects of degradation on characters
in processes like OCR. Kanungo et al. [48] used a quadratic exponentially decaying
function to model the probabilities that foreground and background pixels are affected
by noise. Extrapolating their findings, it can be hypothesized that 1) pixels close to
edges are more likely to be affected, and pixels at the same distance from edges
have similar noise probabilities; 2) pixels far from edges contribute the most to the
structure (and recognition) of the components. In support of the second hypothesis,
it can be observed that most document images are still readable after introducing a
large amount of degradation at or near edges.

The above degradation formulation can be used to create a model that attempts
to distinguish noise pixels from informative structure-contributing pixels during clus-
tering and coding. The formulation predicts that pixels farther from an edge of a
component contribute more to the readability of the component than do close ones.
We therefore order the residual map by distance so that the pixels which contribute
the least to recognition will be coded last. This is implemented by taking the distance
transforms of the prototypes and ordering the residuals by distance, from farthest to
closest. Consider the definitions of observation X, prototype P, error map F, and
distance transform given in (3.1)-(3.3) and (3.11). The contents of E are ordered
based on the distance transform of the prototype D%(n,m).

A typical prototype, cluster member, residual map, and distance transform map
are shown in Figure 5.1. The residual in this example conforms well to the model since
the prototype and observation are of the same class and most of the residual pixels lie
close to the edges of the prototype. It is clear that for the examples in Figure 5.1 the
residual pixels are primarily noise since the prototype and the cluster member both
resemble the character ‘d’. However, if an ‘0’ were clustered with the ‘d’, the residual
content would contribute significantly to the ability to recognize it correctly. Given
these observations, a distance ordering is necessary to exploit the residual statistical
distribution and allow residual pixels with the smallest contributions to recognition
to be coded last.

An example comparing column-major and distance ordering is shown in Figure
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Figure 5.1: Example of a) prototype, b) cluster member, c) residual map, and d)
distance transform of prototype image.
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Figure 5.2: Coding of residual in Figure 5.1 for a) column-major ordering and b)
distance ordering.

5.2. The column-major order results in residual components being spread throughout
the code. In the distance order the relative probability of a residue increases as the
code progresses (from left to right, provided the clustering is correct), as can be seen
in Figure 5.2b. The ordering results in entropy reduction during compression and
allows us to first transmit pixels which contribute the most to symbol recognition.

The quality of the clustering algorithm affects the residuals’ complexity; there
may exist components that have been matched to prototypes of different shapes.
Figure 5.3 shows an example of this situation where a ‘w’ was classified as a ‘v’. The
distance-ordered code is complex. Figure 5.4 shows the progressive reconstruction of
this component by using fractional portions of the code. It can be seen that from the
start of the code, structural components that differentiate a ‘v’ from a ‘w’ are being
formed, aiding in the correct recognition of the component. It can also be seen that
this residual map does not fall into the same category as the residual map shown in
Figure 5.1. From a degradation point of view, there exists a large amount of noise far
from edge pixels and the distribution does not fit the model. Similar results would
be obtained whenever a ‘w’ is misclassified as a ‘v’.
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Figure 5.3: Example of inter-class observation: a) cluster prototype, b) observation,
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c) residual map, and d) distance-ordered residual stream.
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Figure 5.4: Structural contribution of the residual stream shown at reconstruction of

a) 30% b) 60% and ¢) 90% of the residual stream.
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Figure 5.5: a) Low, b) medium, and c¢) high structural impact.

5.3 Structural coding

In the previous section we hypothesized that residual pixels that are farthest from the
prototype’s edge contribute the most to the correct recognition of the component. In
coding the residual, we ordered the pixels by their distances. We can do better if we
take into account the structure of the residual, as discussed in this section.

5.3.1 Continuous ordering

The structure of a residual involves more than its distance ordering. Structure is
a hierarchical concept; a group of pixels has structure, while a single pixel can only
contribute to structure. We will not attempt to give a general definition of “structure”
here, but we will suggest some principles which are applicable to the character domain.
To illustrate these principles, consider the three examples in Figure 5.5. All three
cases show about the same number of residual pixels, and include pixels that have
large distances from the component. In 5.5a, the pixels are randomly scattered; in
5.5b they are tightly clustered to form an almost connected group; in 5.5¢ they form
a group which is almost connected to the prototype. They clearly exhibit a varying
degree of structural impact.

We have experimented with a simple residual encoding algorithm based on the
fact that structurally significant residual pixels are often connected to the prototype.
Our algorithm is based on distance-ordered transmission. When we transmit the first
residual pixel (farthest from the prototype), we connect it (by a digitized straight
line segment(s)) to the pixel(s) of the prototype closest to it, yielding an augmented
prototype that now includes the original residual and the line segment(s). The resid-
ual too then changes; 1’s that belong to the augmented prototype now need not be
transmitted, but 0’s that belong to it (i.e. pixels on the line segment that have value
0 in the image) are now residual pixels and need to be transmitted. As we continue to
transmit residual pixels in (the original) distance order, we connect them to the (orig-
inal) prototype with line segments consisting of 1’s or 0’s; when the latter occurs, it
may cause 1’s to change back to 0’s. Note that such changes affect only pixels that are
closer to the prototype; thus the distances to residual pixels never increase, and the
process eventually terminates when the closest residual pixels have been transmitted.
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Figure 5.6: Three examples of structural coding using various percentages of the
maximal distance.

The results of using this simple algorithm show that (at least) the widths of struc-
tural elements are captured correctly. Figure 5.6 shows three examples of components
represented by using a percentage of the maximal distance. The first example is an
‘m’ component that was misclassified as an ‘n’ prototype. The original residual map
consisted of a structural component that was connected at the top of the prototype.
The representation of this component using residual pixels having distances within
25% of the maximal distance shows a large number of errors in structure estima-
tion. However, subsequent transmissions correct the estimation and produce a shape
close to that of the component. The second example, an ‘v’ misclassified as a dotless
1’, benefits a great deal from the structural ordering; from the onset of coding, the
represented shape is very close to the original component. The third example, a ‘y’
misclassified as a ‘v’, does not take as great advantage of the structural ordering.

5.3.2 Packet-mode ordering

An enhanced variation of this approach transmits the residual pixels in distance-
ordered packets (of user-defined size). When the first packet is transmitted, the
closest pixels in each connected component of the packet are joined to the prototype
by straight line segments. This defines an augmented prototype and a new residual;
the next packet can then be transmitted. Examples of coding based on packet-mode
ordering are shown in Figure 5.7 for packet sizes of 100 and 60 pixels. The size of
the packet should be based on the size of the component and should be large enough
that a packet can contain residuals having a range of distances, and small enough to
allow a number of structural coding steps to take place.

The efficiency of the coding using packet mode ordering, in terms of both com-
pression and representation, falls between those of continuous ordering and distance-
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Figure 5.7: Three examples of packet-mode structural coding using various percent-
ages of the maximal distance, and using 100-pixel (middle row) and 60-pixel (top and
bottom rows) packets.

ordered transmission, since a packet of size 1 implies continuous ordering, and a packet
size as big as the prototype implies distance ordering. For intermediate values, our
results show that both entropy and rendition quality are more favorable, especially
for large components.

5.4 Analysis

It is desirable to analyze the residual code to determine the expected amount of
compression that may be achievable by these and similar coding methods. This can
easily be done by either measuring the entropy as the alphabet approaches infinity,
or by using probabilistic measures. In this section we will pursue both approaches by
setting up a simple model and then extending it to our coding method.

5.4.1 Entropy

Distance ordering has a number of desirable properties, with the compactness of the
code being the most significant. The characteristics and complexity of the residual
map are directly related to the clustering algorithm. For a clustering algorithm that
is optimized based on the degradation effects, the residual pixels can be characterized
as having a distribution consistent with the degradation model. For unoptimized
clustering algorithms residual maps might contain significant structural components.
Assuming that the clustering algorithm is consistent in making cluster assignments,
residual maps that contain a significant amount of structural information will have
consistent mappings. In general, a clustering algorithm that can group similar shapes
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Figure 5.8: System realization of unordered and ordered binary code obtained from
four independent and statistically different sources.

will be able to capitalize on the consistent distribution of residual pixels, particularly
for residual maps that have significant structural components.

Up to now, the consistent distribution of the residual pixels has been shown only
by observing the resulting code and verifying that the beginning of the code has
consistently contained zero values in components that are clustered well. We can,
however, do better. Assume that our residual pixels are samples of binary sources
with varying distributions that depend on the distance model (i.e., residual pixels
having distance d from an edge are samples of the same binary source). Since com-
ponents belonging to the same cluster are not necessarily of the same size, the row
or column ordering of the residual pixels can be regarded as a random selection from
the binary sources. The distance ordering is an attempt to improve this random se-
lection. A hypothetical scenario with only four binary sources is shown in Figure 5.8.
In reality, the number of sources is unknown and the randomizer R is non-uniform
and dependent on the prototypes. Let the unordered code be denoted by U and the
ordered code by O.

To quantify the compactness of O over U we need to determine their entropies.
The entropy of a discrete binary signal B can be calculated by

Hyg(B) =) _ —Pp(b)log,(Pp(b)) (5.1)
beB
where B is the binary space {0,1}, and Pg(b) is the distribution of the samples based
on the binary signal B. This measure of entropy is valid for a binary signal that
is stationary and independent. For signals involving dependency or non-stationary
processes, this measure does not show the true entropy. Consider the entropy of a
discrete signal X with samples in X',

) = oot
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= Y —Px(x)log, (Px(z)) (5.2)

rzeX

For X = {0,1}! we achieve the first-order entropy which is identical to the entropy of
(5.1), and for X = {0,1}" we achieve the nth-order entropy, H,(X). In other words,
a signal X which consists of samples belonging to an alphabet of size [{0,1}"| = 2"
needs at least H,(X) bits per sample (in alphabet) to be coded without any loss.

Then for the n-bit alphabet, the compression factor is the inverse of the

@
entropy rate). For the stationary and independent random variable, the entropy rate
stays constant, but for our ordered binary source the entropy rate decreases as the

order increases. For these signals the true entropy is

H(X) = lim ~H,(X) (5.3)

n—oo n

5.4.2 Simulation

Computing the entropy for U and O is not easy since in calculation of H,(X) we
need to estimate the distribution of symbols in an alphabet of size of 2", which is very
large. For example, for n = 15 the alphabet size grows to 30,000 symbols, and a good
estimate of the probability of each symbol requires a sample of size at least 3 million.
For small values of n, we simulate the entropy of U and O as shown in Figure 5.8,
using four binary sources with the probability assignments of {57, Ss, S3, .54} shown
in Table 5.1. We can then calculate the entropy rates shown in Figure 5.9. Note
that the first order entropy rates of both codes are the same since P(1) = 1 — P(0)
is equal to the number of 1’s divided by the total number of samples, and they are
equal regardless of the ordering mechanism. Note also that the entropy rate of the
unordered code remains reasonably constant (with an average of 0.97), implying a
stationary and independent process (this is true because of the random selector R).
The entropy rate of the ordered code is lower than that of the unordered code (in fact,
lower than 0.75), but the exact value is not certain. The reason for the lower entropy
is that the first quarter of the O code usually has zero entropy (see Table 5.1) and
the average entropy of the code (the average of the entropies in the H(S) column)
is 0.65. The probability assignments shown in Table 5.1 were chosen to involve large
differences between sources and to allow for a variation in the measured entropy rates
of the unordered and ordered codes.

5.4.3 Empirical analysis

Next, we empirically derive the entropy of U and O to arrive at a measure of improve-
ment. We can first analyze the system of Figure 5.8 and generalize H(U) and H(O)
for the case of residual pixel ordering. Consider the four binary sources {57, s, Sz, S4}
with associated probability distributions of { Ps, (s), Ps,(s), Ps,(s), Ps,(s) | s € {0,1}}.
Using (5.1) we can calculate the entropy of each source separately as { H(S1), H(S2),
H(S3), H(S4)}. Tt can be easily shown that these are true entropies (stationary and
independent sources) and remain constant as n approaches infinity. Since the selector
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Source | P(0) | P(1) | H(S)
S1 1 0 0
S 0.7 | 0.3 | 0.88
S 0.5 | 0.5 | 1.00
Sy 0.2 | 0.8 | 0.72
S 0.6 | 0.4 | 0.97

Table 5.1: Probability assignments used to generate code for U/ and O.

R is uniform, Pg(r) = 1, the probability distribution of the bits in U is

PU(U) = FEgr [PSR( )]

~ Z Pr(r)Ps, (u

= 7 ;Psxu) (5.4)

resulting in an entropy of

= =2 Pu(u) x logy(Pu(u) (5.5)

The entropy of O is a measure of the complexity of U given R. In this way the extra
complexity of R is removed from the code and a lower entropy results. By definition

21
H(O) = H(U|R)
_ Zj:H(UU%:r)PR(r)
n [H(U| ) (5.6

The complexity of a sample of U, given that the multiplexed source was obtained
from R, is the complexity of S,, and H(U|R = r) = H(S,). The entropy of the
ordered code O is therefore the expected value of the entropies of the multiplexed
binary sources:

H(O) = 24:]{(5 Pl
—  En[H(Sg)] (5.7)

It is important to note that the entropy indicates the maximum compression possible.
While there exists no general algorithm that achieves this, there are algorithms which
can get arbitrarily close [21], and when the probabilities are powers of 2, the Huffman
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Figure 5.9: Entropy rate of U (0’s) and O (*’s) as function of n.

code achieves the lowest possible bit rate. More important is the fact [21] that if an
algorithm can achieve a rate of H(U) + ¢ for some ¢ > 0, then it can also achieve
a rate of H(O) + ¢. We can therefore use the difference between these entropies to
measure the expected improvement. This difference is given by

H(U) - H(O) = H(U)- H(UIR)

= I(U;R)
. PUR(U,T)
= E{;PUR(U,T) log, W (5.8)

The joint probability of U and R is Pyr(u,r) = Py(u) x Pr(r) since they are inde-
pendent. Py(u), defined in (5.4), can be simplified to

HUTR) = 235 P (s)log, | 2oL (5.9)

s=0r=1 Z PSi (S)
=1

For the system shown in Figure 5.8 the probabilities { Ps, (s), ..., Ps,(s)} are specified
in Table 5.1. The entropies can be calculated from (5.5) and (5.7) and the improve-
ment can be calculated from the mutual information of (5.9). The calculated entropy
of Uis H(U) = 0.971, the entropy of O is H(O) = 0.6508, and the mutual informa-
tion is I(U; R) = 0.3202. This translates into an improvement of almost 33%, which

52



implies that on the average one can expect to need 33% less storage for coding O
versus coding U. In other words, if a compressor were to compress U to 100 bits,
compressing O would yield 67 bits on the average.

To determine the improvement resulting from distance-based ordering, we need
to consider an arbitrary probability distribution Pg(r) where R is the distance value
indexed by the distance transform map. By examining an image and counting the
distance indexes used for ordering the residual pixels of all components, we can esti-
mate Pg(r). For the distribution of binary sources, all residual pixels are considered
and for each distance R = r, we estimate Pg (s). To use these distributions in our
analysis we relax the requirement of a fixed number of binary sources and a uniform
selector. Given Pg(r), Ps,(s), and a maximum observed distance, Ry,4., we calculate

Py(u) = Egr[Psg(u)]

= S hps (5.10)
ZPU 10g2 PU( ) (511)
H(O) = H(UIR)
= FEr[H(Sr)]

Rmaz

= =L Pl ZPS ) log, (Ps, (5)) (5.12)

and

I(U;R) = H(U)— H(U|R)

= 33 Pa(r)Ps,(s)log, (];z—((j))) (5.13)

s=0 r=1

Cumulative event counts are used to calculate an average Pr(r) and Ps, (s) over a set
of images to get a better estimate for H(U), H(U|R), and I(U; R). Unfortunately,
since we have only a limited number of residual pixel observations, especially for
large distances, this method may result in artificially inflated probability values and
may yield a skewed measure of entropy. Nevertheless, in practice we have observed
improvements in excess of 10%, as will be shown in Section 5.5.

To calculate empirical values of entropy from (5.10)-(5.13), we estimate P(R), the
probability of the pixel sample belonging to source R, and P.(u), the probability of
source r having value u. By counting how many distance values r € {1,...; Ryuz}
were observed, we can estimate P(R) by dividing the counts by the sum of all counts.
Figure 5.12a shows the overall distribution of R, calculated cumulatively over 120
images. Calculating P, (u) requires counting 1’s and 0’s separately as a function of
associated distance value r. The plot of P,(u = 1) is shown in Figure 5.12b. Using
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our distance model we expect decreasing probability as r increases. This is observed
primarily for distances less than 2000. The reason for the unusually high values of
the probabilities observed for r > 2000 is the low number of observations at those
distances.

5.5 Results

To test the effectiveness of our structural coding methods, we used the scanned images
in the database and performed symbolic compression [54]. We extracted the resid-
ual information associated with non-NULL prototypes (NULL prototypes are those
classified as graphics; see [50, 54]), and coded the residuals based on the distance,
continuous, and packet mode orderings (using packet sizes of 20). We measured their
entropies by simulating the entropy rate, calculating the conditional probability den-
sities, and using (5.10)-(5.13). Figure 5.10 shows a set of prototypes obtained from
the symbolic compression, as well as the corresponding residuals. The residual coding
methods discussed in this paper were applied to the residuals shown in Figure 5.10d,
which constitute the majority of the represented information.

We first present the results of the entropy rate simulation described in Section
5.4.1 and 5.4.2 and then present the empirical results described in Section 5.4.3 for the
ordering mechanisms discussed in Sections 5.2, 5.3.1, and 5.3.2. Given a set of ordered
residual streams we calculate the entropy of (5.2) for X = {0,1}" and increasing n.
Figure 5.11 shows the simulated entropy rates up to order n = 10, obtained by
extracting the residual components of five document images (a total of 1 million
residual pixels). It is obvious that the limit of the entropy rate of the ordered code
cannot be determined from this graph, but it can be estimated using our empirical
tools. Note that the unordered code exhibits a downward trend which implies the
existence of a higher-order process. The reason for this is that the “ordered” results
were actually based on row-ordered code, and the components exhibited correlation
between the first rows of residuals belonging to the same prototype.

Figure 5.13 shows a plot of entropies for 120 document images and Table 5.2
summarizes the empirical results. To estimate the overall improvement, H(U|R) for
each ordering mechanism was compared to H(U) for row ordering, yielding the results
of Table 5.3, where 17 to 27 percent improvement was observed across all coding
mechanisms and entropy measurements. Figure 5.14 shows the entropies of the codes
obtained by the continuous and packet-mode ordering methods. The horizontal lines
denote the average and cumulative values of the entropy for the unordered codes.

5.6 Summary

We find that the most important contribution to the residuals is due to symbol degra-
dation. By extending existing degradation models [48, 91, 72] we arrive at a model
that takes residual pixels less likely to be noise as informative pixels. By ordering the
pixels in decreasing order of distance, we are able to classify the residual pixels into
groups that have relatively stationary distributions. A model using independent bi-
nary sources is used to justify the distance ordering. We have shown that a code that
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Figure 5.10: Example of a) a set of prototype maps, b) symbolic representation, c)
components that were classified as graphics (“NULL” prototypes), and d) residuals
of components that were assigned to non-NULL prototypes.

Cumulative | H(U) | H(O) | I(U; R)
Distance 3407 | 2828 | .0579
Structural | .3226 | .2714 .0512
Packet 3224 | 2712 .0512

Average | H(U) | H(O) | I(U; R)
Distance 3626 | .2980 .0646
Structural | .3244 | .2636 .0608
Packet 3246 | .2637 | .0608

Table 5.2: Summary of entropy values, in cumulative and average versions, for all
coding methods.
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Figure 5.11: Entropy rates for unordered and distance-ordered coding.
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Figure 5.12: Probability distribution function of a) selector used for ordering the code
and b) the binary distribution for each selection as calculated cumulatively over 120
document images.
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Figure 5.13: Comparison of codes in terms of information: a) entropy of the unordered
code U, b) entropy of the ordered code O, ¢) improvement in entropy (the mutual
information between the unordered and ordered codes).

Percent improvement

Cumulative | Averaged
Distance 17% 18%
Structural 20% 27%
Packet 20% 27%

Table 5.3: Improvements in coding methodologies with respect to unordered code.
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Figure 5.14: Entropy of a) continuous and b) packet-mode structural coding, along
with their cumulative and average values and the cumulative and average values of
entropy for unpredicted and unordered code.

57



does not use the probability assignments has higher entropy and less compressibility.
Furthermore, the group distributions need not be known; the fact that statistically
similar pixels are grouped together is sufficient to provide higher compression. An
important characteristic of this method of residual coding is that the distance order-
ing depends only on the prototypes and is therefore available to both the transmitter
and receiver.

The notion of structure has been considered as a method of assessing the con-
tributions of pixels to structural components. Distance-ordered coding provides an
important basis for predicting this structure. A predictive method is suggested that
makes use of the fact that structural components are connected. Any pixel far away
from an edge makes a high contribution to readability; but connected sets of pixels
form structural components. Packet-mode prediction, which can be regarded as a
tradeoff between distance ordering and predictive ordering, provides a more flexible
approach than pixel-by-pixel prediction.

As a generalization of our method, if a probabilistic model of the residual infor-
mation can be determined for a lossy compression algorithm, it should be possible to
benefit from our coding framework. A lossy algorithm provides a base image which
can then be used to estimate the residual order based on the probability model. This
can apply to images beyond the document image domain.
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Chapter 6

SCoDI: Symbolic Compression of Document Imagery

6.1 Introduction

Symbolic Compression of Document Images (SCoDI) is an implementation of the
techniques described in the previous chapters to create a framework for document
image compression using the symbolic approach. We have previously discussed the
general approach and its data representation requirements along with detailed discus-
sions of the segmentation, clustering, and residual coding tasks. The interrelationship
between these components needs to be mentioned in order to arrive at a comprehen-
sive description.

During segmentation we rely on connected components to provide a set of patterns
that resemble an underlying language and that can be used in a clustering algorithm to
arrive at prototypes which resemble elements of the language. Connected components
are a naive approach to achieving this result. In Chapter 4 we showed that obtaining
good prototypes does depend on the segmentation and eventually affects compression
and processing performance.

In our system we use a pattern matching and classification algorithm which basi-
cally tests the amount of match between a presented pattern and one that is stored
as a cluster prototype. If a match exists then we assign the pattern to the cluster;
otherwise we create a new cluster and let the prototype be equal to the presented
pattern. A large number of matching functions are considered and their effect on the
performance of our system is considered.

Finally, the task of residual coding is considered. Since the majority of the com-
pressed information is in the residual code, it is necessary to address concerns about
its coding. We propose methods that organize the residuals in a way that is compact
(compressible), hierarchically organized (compressible and processable), and associ-
ated with their symbolic counterparts (processable).

In implementing a system that can take advantage of our representation, we must
create some building blocks. The categorization of these blocks provides a detailed
road map for future research and enhancements to the system, since they form the fun-
damental architecture for our approach. The overall structure is shown in Figure 6.1.
While the baseline idea is a derivative of pattern matching and substitution (PMS)
algorithms [10, 64], this representation provides a general framework for achieving
compression while allowing for compressed-domain processing.

In this chapter we will discuss the implementation issues we encountered. Specif-
ically, we discuss segmentation in Section 6.2, clustering in Section 6.3, component
representation in Section 6.4, and residual coding in Section 6.5. We address some
compressed-domain processing requirements in Section 6.6, and we summarize our

29



Extract
redundant Segmentation
patterns
[}
!
= Classi .
= fy Clustering
€ /’ patterns
0 .S
=37 [}
S Replace extracted Component
S patterns with :
O class representatives | Fépresentation
[}
\j
Represent and Residual
model the residue .
for compression Coding

Figure 6.1: Overall design structure for symbolic compression of images.

implementation in Section 6.7.

6.2 Segmentation

The first step in our method, as described in Section 2.1, is to extract patterns from
an image. Segmentation is a generic term and is highly dependent on image type and
characteristics. For bi-level document images, a simple and effective segmentation
method is extraction of connected components. The bounding boxes for connected
components then should contain the patterns that repeat in the document image. In
our approach we have implemented a connected component analysis routine which
scans a pixel row of image and tags runs of foreground pixels. The same process
occurs on the succeeding scan-line with the exception that tags which are equal across
scanlines are combined. Updating corner locations provides the bounding boxes.
Other segmentation methods can be pursued to extract repetitive patterns. An
example of such a technique is discussed in Chapter 3 where given a set of prototypes
we re-evaluate the components to arrive at a better segmentation. This method is
especially useful for degraded images where components have started to touch each
other and the representative prototypes are images of touching characters. For an
extension to grayscale images, it is desirable to use the grayscale information to
achieve a better segmentation. In effect, a good segmentation is one that provides
fundamental patterns within the image that are redundant. In terms of compressed-
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domain processing, an effective segmentation is one that extracts usable information
to be accessed later. In the case of document images, the connected-component
segmentation allowed for extraction of redundant patterns and usable information.

6.3 Clustering

Once a suitable segmentation is obtained, a clustering algorithm needs to be used
to determine similarities between the extracted patterns. In general, a clustering
algorithm needs to operate on the segmentation output and to capitalize on pattern
redundancy while behaving robustly when inconsistencies occur. For example, a
situation that occurs in document image segmentation and clustering is that the
extracted patterns were of different sizes, so our clustering algorithm was required to
provide a degree of robustness to the input component sizes. A number of clustering
algorithms are considered in Chapter 3, and a suitable one is used for our compression.

In our implementation we input the bitmap image, the bounding boxes of the
connected components, and a threshold value to a routine. The routine scans all the
components and matches them against the prototype images. Each match is com-
pared to a threshold, normalized by the size of the the component (i.e. if the number
of matched pixels is above a percentage of the component size, the component is clas-
sified as belonging to that cluster). If a close enough match occurs the component
is classified in the corresponding cluster, otherwise it is used to create a new cluster.
After a number of components are added to a cluster, the cluster prototype is recalcu-
lated. In our system we recalculate prototypes every time five components are added
and do not recalculate after the tenth calculation. To avoid generating a large number
of prototypes, if the ratio of the number of prototypes generated to the number of
components visited exceeds by fifty percent the ratio of the maximum number of pro-
totypes to the total number of components, the threshold value is increased linearly
by this amount and the clustering is repeated. By starting with a small threshold we
can end the clustering process with an adequate number of clusters.

The relationship between segmentation and clustering is more complicated than
we have indicated here. In our baseline approach, clustering is dependent on seg-
mentation, but as hinted in the previous section, segmentation can be improved if
a clustering result is available. In Chapter 4 we discussed a joint segmentation-
clustering approach which not only improves the compression results but promises to
improve processing performance. In essence there should exist a higher-level process
overseeing the segmentation and clustering tasks, making sure that they access each
other’s intermediate results, as shown in Figure 6.2.

6.4 Component representation

Once we have determined the clusters, it is relatively easy to define a representative
prototype for each cluster. In our method we averaged the members of each cluster
to calculate its prototype image. Hobby and Baird call this “naive averaging” [34].
Zhang and Danskin [116] use an alternative method based on scaling and filtering.
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Our “naive averaging” has produced good results mostly due to the highly structured
character layout of document images.

Given the prototypes, we need to represent their locations within the document
image. To preserve access to the prototypes (i.e., to the components that are rep-
resented by them), we give the address of each component, as described in Section
2.2.1. This representation is somewhat redundant. A highly structured document
image has components which lie on lines. Tt is therefore much simpler to give relative
addresses of components rather than absolute addresses. Work done by Witten et al.
[112] discusses the optimization of component indexing in this context; however, due
to the small storage space needed to record the addresses, this was not pursued. It is
also possible to pursue a rate-distortion analysis with regard to component indexing,
that is to say, provide addresses which are not exact and allow for a certain level of
distortion, while achieving a higher compression ratio.

6.5 Residual coding

It is possible to achieve very high compression by substituting for each segmented
patterns its associated prototype. In document image compression, this is effective
to a great extent; however, exact rendition (at least for reading purposes) cannot be
guaranteed since there always exist ambiguous characters which are assigned to the
same cluster. Readability is not effectively achieved if too many ‘e’ characters are
replaced by ‘o’ characters, even though we can effectively read the ‘o’ characters. To
provide graceful degradation in reading quality, we make use of a residual code.

In our experiments we observed that the largest amount of information is contained
in the residual representation. To achieve a more efficient representation we pursued
a model-driven approach to achieve compression and to provide graceful degradation
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when residues are partially represented. This is logical in that given a segmentation
and clustering, each prototype represents a class of observations which is defined by
the variability in the prototype’s cluster. This variability is finite and has a specific
shape, so for a class of images (to be compressed) it is possible to model the variations
effectively to provide a hierarchical representation for use in graceful degradation of
tasks like lossy representation and progressive transmission. In our implementation
we take as input the original bitmapped image, the prototypes, and the component
memberships and create a stream in which residuals of components are appended
and indexed according to their order of appearance. First the prototypes are used to
generate their distance transforms, and these distance transforms are used to order
the residuals for distance-based coding. For structural coding, we used the residuals,
prototypes, and component memberships as inputs to Matlab routines and measured
their progressive entropy by coding the residuals based on continuous and packet-
mode coding. Special implementation of residual coding is done to allow for packing
of bits into bytes while keeping track of where the residual information for components
starts and finishes, without wasting bits and keeping the information accessible after
performing the Huffman code. This is done by keeping a byte and a bit counter for
each residual set, Huffman coding the set, and recalculating the byte and bit counter
after coding.

While the complexity of the residuals is dependent on the quality of segmentation,
clustering, and component representation, it is easy to see that their relationships
cannot be easily modeled to fit a the framework shown in Figure 6.3. The only
plausible outlook for achieving such a “Global Manager” is to model the effects of
individual components so that one component need not wait for the effects of others
to propagate. For example, a segmentation that is based on existing clusters should
also consider the number and complexity of the residuals and the component layout in
order to make an optimal determination of the correct segmentation. If a global model
is derived that can be trained, a global manager can use it for optimal interaction
between components.

6.6 Compressed-domain processing

Our eventual goal is to perform a set of compressed-domain processing tasks. In our
implementation we created a set of routines with generic functions. One function was
to compress and decompress simple streams. A second routine compressed a stream
while modifying its indexes; this usually involved simple compression of the indexes.
A third routine decompressed only a section of the stream. Using combinations of
these routines we are able to feed appropriate portions of the information to specific
document image processing tasks. Since we are able to divide the information into
logical partitions, we have access to individual information sections, as required by
the processing elements and by the need to perform extra decompression. For large
information sets, we are able to index them so that unnecessary decompression and
processing is minimized.

Since most of the information in document images lies in the components, we are
able to achieve compressed-domain processing. This is not readily obvious for other
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Figure 6.3: Management of compression modules to achieve a global goal.

classes of images. However, it is possible to identify a class of images that are to
be used for a specific purpose, and model their information accordingly so that the
dissemination of information is done efficiently. Such situations abound in today’s
networked databases, and in server-client information exchange systems.

6.7 Summary

The implementation of our compression system has been discussed in this chapter.
Detailed discussions of the implementation of segmentation, clustering, residual cod-
ing, and component representation are given to support our earlier claims about
compression and processing. At every step the implementation is discussed together
with supporting issues and concerns, as well as suggestions for improvement.

We discuss and explain our algorithmic approach to connected component analysis
and bounding box calculation for segmentation. It is important to note that this
analysis is ideal for binary images that have small amounts of degradation. Earlier we
discussed alternate methods of segmentation under heavy degradation and examined
how these methods fit into our compression scheme. We observed that in presence
of degradation an operations manager can provide control over better segmentation
and clustering.

Residual coding and its implementational concerns is also discussed. We suggest
that for an optimized system interaction between subcomponents of the compression
system needs to exist in order to allow them to complement each other’s weaknesses
and strengths. Such an elaborate system is only possible with current computa-
tional technology. Finally, we discuss the general implementation issues of performing
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compressed-domain processing tasks.

Once our system is implemented, we can consider testing its performance at
compression and processing. These validations include rate-distortion analysis and
compressed-domain processing applications.
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Chapter 7

Rate-distortion analysis

7.1 Introduction

Two common problems in compression research are achieving lossy compression and
providing a representation for progressive transmission. The performance of any solu-
tion is characterized by a rate-distortion trade-off in which we attempt to optimize the
correct recognition of image contents. Using symbolic compression in document im-
ages we have shown that compression can be achieved while allowing for compressed-
domain processing [54]. While the ability to perform progressive transmission and
scalable lossy compression has also been demonstrated, a rigorous rate-distortion
trade-off analysis is necessary. Since the symbolic representation contains distinct
data types with different characteristics, rate-distortion analysis should be performed
on all parts and be integrated coherently to promote a comprehensive measure. We
perform the analysis here only on the residual section of the data, where about 80%
of the data is contained.

The problem that must be addressed is how to define an appropriate distortion
function for document images. The traditional signal-to-noise ratio and its derivatives
are not desirable. For a constant power level there exist different representations that
render varying amounts of the image. Pixels carry varying amounts of information
which affects the correct recognition of the image components. The distortion function
should reflect the correct recognition of the lossy representations. Using an OCR
engine and OCR evaluation software, we were able to link the correct recognition of
an image with an associated entropy. This was also compared to distance-weighted
distortion.

This chapter is organized as follows. In Section 7.2 we provide a brief motivation
for our approach. In Section 7.3 we discuss in detail our procedure and results. In
Section 7.4 we provide similar results based on pixel-based matching (distance-based
matching) instead of the OCR-based approach. We conclude in Section 7.5 with some
final remarks.

7.2 Motivation

In the previous chapters we have argued that since characters degrade around the
edges [48, 72, 91] the pixels far from edges contribute more toward correct recognition
than pixels close to edges. This was also supported by the fact that most degraded
images are still recognizable. Tt is however not trivial to extend this concept to address
rate-distortion concerns. This is because the concept of distortion is eventually related
to correct recognition which is hard to measure from a presented image. Here we use
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Figure 7.1: Example of a) an observation, b) a residual map, c) the distance map of
the prototype, d) distance-ordered residual code, and e) row-ordered residual code.
The codes in (d) and (e) are ordered from left to right.
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Figure 7.2: Example of a) an observation, b) a residual map, c¢) the distance map of
the prototype, d) distance-ordered residual code, and e) row-ordered residual code.
The codes in (d) and (e) are ordered from left to right.

OCR to provide a measure of correct recognition of components from a presented
image.

7.2.1 Hierarchy

A typical observation, residual map, distance transform, distance-order code, and row-
order code are shown in Figures 7.1 and 7.2. It is easy to see that the residual pixels in
Figure 7.1b do not contribute significantly to recognition, whereas the residual pixels
in Figure 7.2b do. For the distance order, the residuals of Figure 7.1b are coded
towards the end of the stream, as shown in Figure 7.1d, while for the row-ordered
stream they are spread over the entire stream (Figure 7.1e). For the distance-ordered
residual of Figure 7.2d, the pixels which distinguish the ‘C’ from the ‘G’ are coded
first, in contrast to the row-ordered residual code of Figure 7.2e which contains these
pixels in the middle of the code. Examples of residuals are shown in Figure 7.3.
Letters ‘E’ and ‘1" were classified as graphics, ‘G’ was classified in a ‘C’ prototype,
and the rest of the components have only silhouette residuals.

Figure 7.4 shows an example of extreme lossy/lossless representations with Figure
7.4a requiring a lower entropy than Figure 7.4b. A coding method interpolates be-
tween these extremes to provide an intermediate representation of a desired entropy
and an associated distortion. The point of a hierarchy is that given a representation
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Figure 7.3: Examples of various types of residuals.
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Figure 7.4: Section of document image rendered with (a) almost no residuals and (b)
almost all residuals.

with a rate-distortion pair of (r, d) it is desired to achieve (r+ 6r) entropy and (d—éd)
distortion by transmitting only information of ér entropy. A simple hierarchy is cre-
ated by traversing from left to right in the distance-ordered and row-ordered codes of
Figure 7.1. For an intermediate representation we use a fractional part of the residual
code. The hierarchy can then be tested by comparing the rate-distortion curves of
forward and reverse ordering; forward ordering should clearly perform better than
reverse ordering.

7.2.2 Analysis

Document images are intended for reading and we have therefore chosen the distortion
to be a function of recognition as defined by OCR accuracy. We first need to determine
the baseline text by considering either ground truth data or the OCR results on
the lossless image. For each intermediate representation we perform OCR. We then
evaluate the performance of the OCR output with respect to the baseline text by
string matching [17, 20, 56].

Figure 7.5 shows examples of the words “GigaMax” and “copy” in three different
instances yielding almost equal entropies. It is clear that distance-ordered code (Fig-
ures 7.5a and b) is likely to produce fewer OCR errors than reverse distance-ordered
code. Row-ordered code will have errors, but since reconstruction of the letter ‘G’
has started, it may perform better than reverse distance-ordering. FErrors are not
widespread even in the most lossy representation. This is ideal since in Chapter 8 we
will show that many document image processing tasks can be done without the use
of residuals and that the OCR engine will be working at high accuracies with reliable
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Figure 7.5: Example of portions of an image (Figure 7.4) with the use of roughly
equal entropy in lossy rendition using (a,b) distance ordering, (c,d) row ordering, and
(e,f) reverse distance ordering.

output. OCR evaluation is done by string matching by use of available software which
outputs the numbers of matched, deleted, inserted, and changed symbols. We define
the inverse of distortion (performance) to be the number of deleted, inserted, and
changed symbols minus the number of matched symbols.

7.3 Procedure and results

In determining the rate-distortion relation, two procedures were used. The first was
to render an intermediate representation with an associated entropy and to perform
OCR. The second was to compare the OCR outputs with the ground truth data and
determine the OCR distortion. In creating the intermediate representations, we used
the University of Washington [32] images and represented them using symbolic com-
pression. Given fractions of the residual codes were zeroed (for each component),
and the distribution of the residuals (number of residuals and number of zeros) was
computed. Only the residuals that corresponded to components assigned to a pro-
totype were used in the intermediate representation. This was necessary to avoid
contamination by components that were not clustered appropriately. The temporary
representation was then fed to an OCR engine (ScanWorx by Xerox, API software)
and the text output was saved for later comparisons. The OCR outputs were eval-
uated using software available in the University of Washington database [32]. The
evaluation was done with respect to the ground truth data with the use of zones to
avoid contamination by graphs and images. For each representation set we determined
the achieved entropy, and using the evaluation result we determined a rate-distortion
relation.

Since a linear increase in the fraction of residual code does not translate into a
linear increase in entropy we had to specify fractional amounts that would provide a
better distribution of points on the entropy axis. This was done for distance ordering
only. The plot of distortion with respect to entropy is shown in Figure 7.6. This
result was obtained on 72 images containing 214,292 ground-truthed characters. The
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Figure 7.6: Rate-distortion plot. Symbol ‘*’ denotes distance ordering, ‘x’ denotes
row ordering, and ‘4’ denotes reverse distance ordering.

performance of distance ordering is clearly superior to that of the other codes. An
interesting observation is that distance ordering clearly performs better than reverse
distance ordering. In the case of row and column ordering, that their reversals perform
neither better nor worse. This suggests that row or column ordering does not provide
an adequate representational hierarchy. The fact that reverse distance ordering does
much worse than forward distance ordering suggests that there exists an inherent
representational hierarchy. Another observation is that in Chapter 5 we were able to
achieve an 18% to 27% improvement in entropy over distance ordering by performing
structural coding. The expected amount of improvement is shown in Figure 7.6 in
the form of dashed lines. The dashed line only reflects the improvement in entropy,
but structural coding should also improve distortion (OCR on distance-based).
Figure 7.6 shows the relationship between distortion level and achieved entropy
rate as partial residual coding progresses using different coding schemes. This result
indicates the range of coding efficiency achieved by the coding methods considered
here. While the rate-distortion function cannot be derived from these results, it can
be roughly estimated. The rate-distortion function gives the minimum distortion at
a given entropy rate. It is unrealistic to consider all combinations of residuals that
have the same entropy and determine their distortions, due to the large amount of
processing needed for residual representation and for OCR. However, each bit order
can be used to model the best possible representation given an entropy rate. All
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possible residual codes that achieve a given entropy can be replaced by a single code,
ordered in a hierarchy, that has that entropy rate. The possible improvement is shown
in dashed lines in Figure 7.6. The functions shown in Figure 7.6 need not be strictly
convex for two reasons. The first reason is that they are based on empirical data.
The second reason is that the distortion is averaged over a large number of images
that vary in quality; while convexity may be observed for individual images, it may
be lost over a set of images.

7.4 Distance-based rate-distortion

Distance-based ordering has natural extensions to lossy compression and progressive
transmission applications. In the case of lossy compression, the residual stream can be
terminated at a predefined point. Recall that in the previous sections, we showed that
for lossy compression, the distance order residual is structurally more informative (has
a lower distortion) and is more compact (has lower entropy rate). These properties
are advantageous in progressive transmission as well as lossy compression. For each
symbol and given code length we would like to retain maximal quality (i.e. lower
distortion).

Figure 7.7 shows a typical rate-distortion function achieved for a sample image.
This curve shows a significant change in distortion per unit entropy rate for entropy
rates up to 0.0018 bits per residual pixel. An example of a lossy compressed compo-
nent was shown in Figure 5.1b, and its associated residual map in Figure 5.1c.

The rate-distortion calculation using distance-based matching was done for both
the unordered and ordered (continuous and packet-mode) codes. The distortion mea-
sure used was the same as the distance-based mismatch measure defined in [54], where
the total distortion is measured as the sum of distances for the pixels that were not
coded. The entropy rate, r, was calculated as

. Hy(FE) x Number of residual pixels (7.1)

Image size

in units of bits per pixel. For the case of unordered residual coding, the pixels are
coded in row order. Figure 7.8 shows the rate-distortion functions for unordered,
distance-ordered, continuous and packet-mode structural coding. The diagonal line
represents the unordered code, for which the tradeoff between distortion and transmis-
sion rate is almost a constant. For distance ordering, we coded bits that contributed
to the highest distortion first and calculated their rate as specified above. Continuous
coding and packet-mode structural coding were also used to calculate distortion and
achievable entropy rate. Figure 7.8 shows the performances of these coding mech-
anisms. The structural methods give the best result, slightly better than that of
distance-ordered coding. Note that the packet-mode and continuous methods are not
distinguishable in the plot shown in Figure 7.8.

This analysis is incomplete in that the measure of distortion is not comprehensive
enough. The primary conclusion from Figure 7.8 is that distance ordering contributes
much more toward reduction of distortion than row ordering. This is obvious, because
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Figure 7.7: Plot of rate-distortion function for AOO6BIN.TIF image in database [32],

by considering residual information due to components belonging to a prototype.
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Figure 7.8: Rate-distortion plots of unordered, distance-based, continuous, and
packet-mode structural coding.

the distortion is based on the distance transform. It remains to establish that the
distortion measure used in Figure 7.8 measures something useful such as the reading
quality of the image which in turn affects the correct recognition of individual symbols.
In the previous section OCR errors were shown to be less for distance ordering than
row ordering for the same entropy rate. It follows that the distortion measure used
for Figure 7.8 may calculate a measure close to reading quality. An automatic choice
of the best distortion-rate pair is not obvious in OCR-based distortion, but is quite
easy in distance-based distortion.

7.5 Summary

In compression, it is often desirable to perform lossy compression and progressive
transmission. Traditionally, algorithms which provide these capabilities use a rate-
distortion plot to determine the exact compression factor achieved by allowing a fixed
amount of distortion measured by the signal-to-noise power ratio. This is easy to do,
since the signal is modeled by equiprobable samples and the amount of deviation from
the model is taken to be the distortion by taking a simple distance measure.

For document images a signal model which can distinguish signal from noise does
not exist. While a document image is a bit-mapped image, the useful information
resides in the symbols found in it. Therefore a model must include the symbol repre-
sentation of the document image. Here, we have proposed an OCR model to determine
a distortion measure by performing lossy representation to achieve a fixed entropy.
Our analysis has shown that the rate-distortion measure based on the ability of an
OCR engine to recognize correctly is more favorable to distance ordering than to
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row ordering. Furthermore, the results suggest an inherent hierarchy within the code
since the reverse ordering clearly performs more poorly than the forward ordering.
The reason that reverse row ordering did worse than forward row ordering is that in
our segmentation of components, we referenced the upper left corner of the bounding
box, and in our prototype estimation we padded the lower right corner. This results
in an informational preference toward the top of the component rather than the bot-
tom, which results in reverse row ordering doing worse than forward ordering. This
also agrees with the entropy rate of row-ordered residual coding computed in Chapter
5, in that the entropy is slightly reduced for higher entropy rates, implying a higher
order process within the row-ordered code.

We have also considered a distance-based distortion function in determining the
rate-distortion characteristics of our coding method. The rate-distortion tradeoff can
be used to automatically represent a lossy image in terms of the lowest rate and
distortion. Row-ordered coding is not likely to provide the lowest rate and distortion
point since for a fractional entropy rate there exists fractional distortion across all
entropy rates. On the other hand, the fractional measured distortion with respect
to a fractional entropy rate is clearly unproportional across all entropy rates when
we use the distance ordering. Distance-based matching and coding may eventually
provide a measure of the OCRability of a given document image prior to performing

actual OCR.
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Chapter 8

Compressed-domain processing

In the document domain, algorithms which implement CCITT Group 3 and 4 fax
compression have been used widely. In the document domain, the measure of a good
compression algorithm may have a number of parameters beyond the traditional space
reduction. For example, we find that digital libraries which contain document images
benefit not only from compression which reduces the amount of storage necessary,
but also from the ability to process and search the underlying documents easily and
efficiently.

Due to the large volume of document images and the computationally intensive
tasks that need to be performed on them, there exists a genuine need for performing
document image processing in an efficient manner. Compressed-domain processing
has been able to address this by accessing features used by the compression algorithm
and using them to satisfy processing needs, as was mentioned in Chapter 1. Symbolic
compression of document images provides a rich source of these features and a large
number of compressed-domain processing tasks can be done using them.

This chapter contains a discussion of a number of applications that use the rep-
resentations described previously. In Section 8.1 and 8.2 we discuss the qualities of
our representation when we perform lossy compression and progressive transmission.
In Section 8.3 we demonstrate the ability to perform scalable retrieval for large doc-
ument images. In Section 8.4 we show how skew estimation and correction can be
performed while the data is in the compressed domain. In Section 8.5 we show how to
perform keyword searching, and in Section 8.6 we consider the problem of duplicate
detection in an image database. We conclude with final remarks in Section 8.7.

8.1 Lossy compression

A useful option in compressing an image is to be able to specify a quality of com-
pression, or a required size limitation. In document image compression, it is hard to
identify a measure of quality, which has to be related to the readability of the docu-
ment. Most measures of quality are related to the overall “power” in the error image,
defined by the difference between the lossless and lossy representations. We have
found, however, that some pixels contribute more to the readability of a document
than others, and even if two representations give the same “error power”, one may
be more readable than the other. As described previously, in our representation we
have ordered the residual pixels associated with each component and can use different
fractions of the residual map stream to achieve different degrees of lossy compression.
We take the rendition of the document without the use of any residual pixels as a
baseline and add linearly increasing fractions of the residual stream.
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Figure 8.1: Lossy compression of images using a) 80%, b) 60%, c) 40%, d) 20%, and

e) 1% of the error streams associated with the templates.

Figure 8.2: Difference between the original portion of the image and its lossy compres-
sion using a) 80%, b) 60%, c) 40%, d) 20%, and e) 1% of the error streams associated
with the templates.

Figure 8.1 shows an image which has been lossily compressed to varying degrees,
with (a) being the least compressed and (e) being the most. The percentage indi-
cates the amount of residual information kept for each non-NULL-clustered symbol
(i.e., 100% would yield a lossless image). Note that there is no observable difference
between the least and most compressed images as regards readability. The residual
images shown in Figure 8.2 show that the residuals lie mostly on the edges of the
symbols, and that even at the highest levels of lossy compression, the rendition is
quite readable without any compromise in resolution.

Figure 8.3 shows examples of lossless, symbolic-only, and lossy compression of
an image using symbolic compression. It is not easy to see, but the symbolic-only
representation contains an enormous amount of information about the content of
the image. Figure 8.4 shows a comparison of symbolic compression with a leading
contender that uses resolution reduction. Note the reduction in correct recognition
of components within the image. Only a small portion of the image is shown to allow
direct comparison.

For 122 images in the University of Washington document database we achieved
an average compression ratio of 29.56 when we used 1% of the residual stream, 25.71
for 20%, 22.88 for 40%, 19.96 for 60%, and 15.67 for 80%. This is in comparison to
lossless compression ratios of 12.2 and 17.8 for symbolic compression and for Group
4 standard respectively.
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Figure 8.3: Example of a document at levels of symbolic lossiness. a) Lossless rep-
resentation taking 120KB of storage space, b) purely symbolic representation taking
33 KB of storage space, and c¢) lossy representation taking 44 KB of storage space.

8.2 Progressive transmission

In transmitting images, an ordered stream of information should be used to convey
increasing amounts of information, so that the image can be rendered losslessly if the
entire stream is transmitted. In transmission of textured regions, taking a blockwise
DCT (Discrete Cosine Transform) of the image and sending one coefficient per block
at each iteration provides a reasonable progressive representation of the image. In
the case of document images and the symbolic representation, we first transmit all
the prototype and symbolic information, and we order the residual maps based on
the distance transforms of the prototypes (or more precisely: of their complements).
Sending the residual maps in this order, largest distance first, renders the document
quite readable at the start and provides additional detail at each transmission itera-
tion.

We have successfully implemented a progressive transmission system based on
our representation. Figure 8.5 shows a progression for a test image which consists
of instances of similar symbols; we transmit pixels that are farthest from the proto-
types’ edges first. Since larger components have residual pixels with larger absolute
distances, they are reconstructed first, which is desirable since larger components are
perceptually more salient than smaller components.

8.3 Sub-document retrieval

A common document browsing task requires retrieval and decoding of a subregion of
the document image. This may be useful, for example, for expanding a region such
as a single article or picture from a thumbnail of a compressed newspaper page. This
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Figure 8.4: Comparison of lossy compression between symbolic and JBIG compression
at almost constant levels. a) Lossless representation of a portion; (b-d) range of lossy
representations, from least to most, using symbolic compression; (e-g) range of lossy

representations, from least to most, using JBIG compression.
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Figure 8.5: Progressively sending bits ((a) to (f)); (f) is the lossless rendition.
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¢) (830,1090)-(1280,1490) d) Retrieval time as a function of area.

can be done using our representation by partially decoding the appropriate streams.
Specifically, we decompress the prototype size, prototype image, block membership,
component layout index, and residual map index streams, and only partially decom-
press the largest streams, the component layout and residual map streams. Using
the layout index stream we decompress components in blocks which overlap with the
subimage, and according to the overlap of each component with the subimage we
decompress its residual map. An example is shown in Figure 8.6a. If the coordinates
of a subtitle are known, we may decompress only the subtitle (Figure 8.6b), and if
the top left corner of the first paragraph is needed, we can decompress accordingly
(Figure 8.6¢). We can decompress only the top part of the first page in a document
to determine the title and authors of the document. The processing time depends
on the area of the region of interest. Figure 8.6d shows a plot of decompression time
versus retrieval area. The time required to decompress small regions can be viewed
as overhead time, and the increase in time with area defines the scalability.

8.4 Skew estimation and correction

Skew estimation and correction are also important tasks in an OCR system. By
using an algorithm based on the Hough transform, we are able to estimate skew and
correct 1t using our representation, without having to fully decompress. We use only
the position and size of each component. To compute their values, we decompress
the prototype size, block membership, and component layout streams. We input the
coordinates of the middle of the bottom of each component to a Hough transform,
and thus compute the skew. For the 122 images in our database, it took an average
of 2.5 seconds and 9152 bytes per image to calculate skew to an accuracy of 1/640
vertical units per horizontal unit. On the same set of test documents the average
error was measured to be 0.1786 degrees.

For skew correction, we modified the component layout and residual map streams
and reordered them if the components moved from one block to another. Reordering
is computationally expensive and does not contribute much correction for small skew
angles. To improve performance, we bounded the movement of the components across
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Figure 8.7: Deskewing example: a) Skew at five degrees, b) deskew.

Introduction Introduction
(a) (b)

Figure 8.8: Small portion of the deskewing example: a) Skew at five degrees, b)
deskew.

a block boundary to five pixels; below this bound, movement is terminated at the
edge of the block. For instance, if a component is located close to a block boundary,
and by deskewing, it moves two pixels into another block, it is moved to the edge
of its original block. We take the middle of the image as the reference point. The
translation in the vertical direction is computed by multiplying the horizontal distance
from the middle of the page by the slope of the line containing the reference point

and component location.
Figure 8.7 shows two examples of skewed documents and the results of deskewing

them. For the 122 test images, it took an average of 3.3 seconds to deskew an image.
Figure 8.8 shows two small examples. Note that the local skew is not corrected.

8.5 Keyword search

Keyword search is another important document-related task. A method reported by
Spitz [98] requires scan-line ordering of components and matching of ordered compo-
nents to queried components. To implement this method using our representation,
we decompress the prototype size, prototype image, block membership and compo-
nent layout streams. The skew angle of the document is first estimated, as described

(28]
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above, and the bounding boxes are horizontally projected. The projection is then
scanned to determine the locations of lines of text. We scan the lines from top to
bottom and record the components which each line contains. This method picks up
disjoint components, such as the dots in the ‘i’ and ‘j’, very nicely. It is also very
stable to errors in locations of objects and in scan direction.

Once the components are ordered we apply a feature-based matching algorithm.

We classify each component as being an z-height, an ascender, a descender, an “i”,

a “)”7, or punctuation. A second-level classification checks if there exists a hole in
the component, and a third checks for the existence of a concavity from the right.
These features are computed only for the prototypes rather than for the individual
components. The heights of the components are measured only for the first ten in-
stances of each prototype in the image, and their values are averaged. These features
are shown in Figure 8.9. The input query is mapped into this feature space using a
simple lookup table; 90% of the maximum score is taken to be a match. Figure 8.10
shows search results on the 122 database images for the query “approach”. It took
an average of 2.7 seconds per image to obtain the results. There are fundamental
ambiguities associated with using our small set of features; for example, we are treat-
ing characters like “a” and “0” as belonging to the same feature class. However, the
effects of these ambiguities are greatly reduced when a string of features is used in
matching.

8.6 Duplicate detection

Consider a situation where thousands of documents are being imaged and added to a
database, possibly from a distributed environment. If multiple instances of the same
document exist, they may be re-entered into the database unnecessarily. This may not
be desirable for a number of reasons, including increased storage cost, difficulties in
maintaining database integrity, increased processing cost for database operations, and
cost of indexing multiple images with the same underlying content. The definition of
a “duplicate instance” is open to some interpretation and we only consider duplicates
where multiple instances of an effectively identical original source are scanned for
incorporation into a database. The original documents may have been written on,
stapled, torn, taped or may have pages missing or had a cover added. The document
may have been copied repeatedly, so different-generation copies are involved. The
document may have been scanned at different times and on different devices, so
resolution, illumination, and contrast are also issues.

One approach to the problem of duplicate detection is to address it from the
symbolic point of view. In a database that has organized the image information based
on the symbolic representation, it is possible to analyze the prototype image maps
and their distribution throughout the image. This distribution can be compared to
the distribution of another image by associating similar prototypes. Figure 8.11 shows
two prototype image maps belonging to different document images. The similarities
and dissimilarities of the prototypes are obvious. To create a correspondence between
them, a base set of prototypes is created which is common to the two images. This
base set also takes into account the similarities between prototypes in the same image.
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Figure 8.9: Shape code description for use in keyword searching.
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Figure 8.11: Examples of two prototype sets.

The resulting base set (a smaller set than the prototype sets of both images) is then
used to determine the distributions of the components. The distributions of these
base prototypes are then compared for a possible match.

Figure 8.12 shows the distributions in the images of the prototypes that are shown
in Figures 8.11(a) (first image) and (b) (second image). Figure 8.12a shows the dis-
tribution with respect to a prototype base set derived primarily from the first image
and Figure 8.12b is the distribution of the second image with respect to the same
prototype set. Figures 8.12¢ and d are the distributions with respect to a proto-
type base set derived from the second image. There exists some level of discrepancy
between the distributions which might be used for discrimination. It only remains
to determine the level of similarity after some degradation corresponding to realistic
duplication.

Figure 8.13 shows distributions for an image before and after various amounts of
degradation. There exists a large amount of similarity between the distributions.
However, a test of distribution similarity is very time consuming, rendering this
method unrealistic for determining duplicates in databases containing millions of
images. This test does, however, provide a good tool for performing comparisons at
a second or third level after greatly reducing the pool of suspect documents.

8.7 Summary

Computer systems are being increasingly used to process and analyze images of many
types. These tasks vary in computational complexity and in storage and communi-
cation requirements. Advances in data compression have been able to reduce these
requirements; a compressed file takes less storage space, takes less time to read and
process, and takes less channel capacity to transmit. Compression is especially im-
portant in handling document images because of the large file sizes and the intensive
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Figure 8.12: Histograms of components assigned to base prototype image sets. (a,b)
and (c,d) have common prototype bases but the histograms are obtained from different
images.
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Figure 8.13: Histograms of components assigned to base prototype image sets for
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histograms.
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processing they require. With the increasing popularity of digital libraries, retaining
and presenting scanned documents in image form remains a cost-effective and usually
accurate way to distribute document information that was originally in hard copy.

We have developed a system that addresses most aspects of document image
compression, especially those related to transmission and processing. Our system
achieves compression while still allowing for efficient processing. It is evident that
the important information in documents is at the symbol level which implies that
traditional resolution-reduction methods may alter symbol shapes and reduce per-
formance in document processing tasks. By symbol coding, derived in part from
pattern-matching and substitution algorithms, we have shown that image coding and
retrieval can be done efficiently. Image analysis tasks such as skew estimation, cor-
rection, keyword searching, and duplicate detection can also be performed efficiently
since the symbolic representation preserves sufficient information to be used in these
tasks.

In this chapter we have addressed the problem of compression strictly in the im-
age domain, and for good reason. It is clear that the ultimate form of symbolic
compression is simply to recognize the symbols and represent them by their ASCII
codes. However, such a compressed representation suffers by not preserving infor-
mation about the fonts, point sizes, locations on the page, etc. of the symbols. To
varying degrees such features can be preserved, but the representation does not allow
us to reconstruct a truly lossless version of the original. A hybrid compression scheme
which integrates ASCII symbols which can be recognized with high accuracy into a
scheme such as ours would be ideal.
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Chapter 9

Applications and extensions

A number of applications and enhancements can be built into our current compression
system or can benefit from its structure. In our base system we were able to create
an infrastructure that can be used for compression, transmission, and processing.

An application that was considered earlier for compressed-domain processing was
document duplicate detection. While it was not able to perform fast enough to handle
millions of documents, it can be modified to handle such computational demands. One
source of overhead is the number of prototype images. If we can map the prototypes
into a fixed number for all the documents, this will reduce computation dramatically.
Another source of computational reduction is in the number of components. We
can consider limiting the number of components, at the cost of increasing the false
detection rate. However, preserving the order of the components as they appear on
a scan line in the image can help to dramatically reduce the false detection rate.

A possible extension of our base compression method is to grayscale document
images. Since documents may contain images, it may be unrealistic to scan than as
binary images. For multi-level documents, many essential document image charac-
teristics can be preserved in grayscale. For such images, resolution reduction is still
not desirable, but grayscale re-quantization is an option for lossy representation.

Graphic images can also benefit from symbolic compression. A graphic image
usually contains lines, arrows, legends, and a small amount of textual information.
There are very few of these constituent patterns and there is hope of achieving high
levels of compression.

Networked databases could also benefit from the hierarchical data representation
of our base compression scheme and from enhancements to the residual coding. Some
problems which could be addressed are source-channel coding, design of variable
error resiliency codes, client-server task optimization, packet, TCP/IP, and ATM
transmission optimization.

Finally, we have experimented briefly with extensions to different media types,
including textured images, video, and sound. These media domains already have
potential for developing a hierarchical model. The extension considered here is the
intelligent merging of media types so that problems of compression, transmission,
and processing are addressed across media types. A hyper-document [92] serves the
purpose of integrating multiple media types, so that compression, transmission, and
processing of hyperdocuments can be considered.

In this chapter, we present preliminary results in each of these areas. In Section 9.1
we provide an alternate approach to duplicate document detection, in addition to that
suggested in Chapter 8, which can process millions of documents on user demand. In
Section 9.2 we present some preliminary results regarding the compression of grayscale
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document images. In Section 9.3 we give an argument for using the same compression
methodology for graphic images. In Section 9.4 we propose a way to address the
communication of document images in a networked environment along with related
problems and advantages. In Section 9.5 we extend the classical document function
to include other media types and fit these media sources within the framework of our
symbolic compression. We conclude in Section 9.6 with some final remarks.

9.1 Duplicate document detection

Depending on what information is available a priori in a database system, the prob-
lem of duplicate detection can be approached in a number of ways. If, for example,
basic index information such as the document number, date, title, authors or number
of pages is entered manually prior to scanning, this information can serve as a prelim-
inary filter for duplicates. In most cases, however, high-volume operations prohibit
such manual entry prior to scanning. Instead, we would like to identify duplicates
from their images prior to any manual entry. Although we have basic quantitative
information such as the number of pages, at this point we consider only the analysis
of the image itself.

One possible solution which has been proposed is to apply OCR to the document
image and match as much text as possible between the documents. Although this
matching can be done relatively quickly, OCR performance suffers on degraded doc-
uments in terms of both accuracy and speed. For this reason, we do not feel that
OCR is feasible as a first-level filter, but it may be used as a secondary filter to reduce
possible matches from hundreds to tens of documents.

A more realistic solution (in terms of resources and time requirements) would
require an approach that does not process every image every time duplicate detection
is initiated. This is logical in the sense that for each detection procedure all images
in the corpus need to be processed redundantly. If an algorithm can produce features
that need only be calculated once, duplication detection could benefit from this. The
detection process would not be directly dependent on the presented image but only
on the set of features derived from it. To consider this approach we need to determine
a signature that describes the presented image accurately and is consistent across its
duplicate instances, but that also provides sufficient separability to distinguish it from
non-duplicates. Then we can address concerns about determining this signature by
performing compressed-domain processing of the image in symbolic (or other) form.
(Hull [40] operated on CCITT G4 images to detect duplicates.) A large number of
features can be used to define the signature to be used for duplicate detection. We
are constrained by the fact that we may be dealing with millions of documents, many
of which may be highly degraded. To cope with such situations, we must have a
signature for each document which is

Robust - The signature should be reliably extractable, even when the document
becomes degraded.

Unique - Although we cannot realistically expect the signatures to be unique unless
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we use an excessively large feature set, a given signature should be associated
with several tens of documents at most.

Compact - The storage capacity required to hold the signatures of millions of ob-
jects may be very large, so the index keys should be as small as possible.

In addition, the algorithms which extract the signature must be

Fast - Algorithms which take minutes to extract a signature, and then attempt to
match it against each document in the database, are not acceptable. The appli-
cation demands rapid extraction, and near constant time indexing of previously
entered documents

Scalable - Initially the algorithms will work on hundreds of document, but as more
documents are processed, the size of the database could grow to tens of millions.

Accurate - It is acceptable to miss a small percentage of duplicates since the result
is only that the same document is entered twice, but identifying documents as
duplicates when they are not (false alarms) is not acceptable.

9.1.1 Related work

The detection of duplicate or near-duplicate documents has been a problem of interest
for some time in many fields, but has not been addressed for collections of images.
Some example domains include education, for detection of plagiarism [78]; publishing,
for detection of unauthorized copies [89, 96]; databases, for maintaining database
integrity; information retrieval, for information filtering [115]; and in the USENIX
community, for detecting duplicate files [67].

In the document community, most of the work on identifying similar documents
has been done using either ASCII documents or “water-marked” electronic represen-
tations. Much less work has been done with document images. A notable exception is
Hull [39], who describes a method for matching documents which have the same char-
acter content but which may have been reformatted or distorted prior to re-imaging
(content-variant documents). Hull’s approach represents each document by a set of
robust local features which can be used to hash into a database of descriptors. The
features in both the query example and the database must be invariant to geometric
distortions; by extracting multiple descriptors from each document, they can also
be made robust to errors in feature extraction. The measure of similarity is simply
the number of features the query document and the database instance have in com-
mon. Experiments were performed using the symbolic approach where distributions
of components assigned to a common set of prototypes were examined. However,
this process relied heavily on the assumption that the images should be represented
in symbolic format; this may not provide an efficient approach. Another experiment
was performed using as features the character counts for each word in short sequences
of words; this provided a set of simple yet robust features that was adequate for small
databases. With as few as ten features, 100% accuracy was obtained for a clean query
string and a small clean database. Unfortunately, as the number of documents grows,
the character count metric becomes less discriminatory.
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Figure 9.1: Sample character shape code assignment.

9.1.2 Basic approach

Another approach is based on the extraction of a signature from a representative line
of text in the document image using a shape coding technique. The technique has been
used by a number of authors including Tanaka [103] and Spitz [99] for other document
analysis applications. Shape coding labels the symbols in the line of text based on
very simple shape properties, such as whether they are ascenders, descenders, limited
to the x-line, multi-component, or punctuation, for example. These properties are
much more robust to noise than the features necessary for OCR, and can be extracted
fairly rapidly.

To extract the signature, the document is scanned for a representative sample of
text, typically on the order of 50 symbols, on a single line or across several lines. For
this sample, the base-line, x-line, ascender-line and descender-line are identified, and
each character component is assigned a shape code as shown in Figure 9.1.

The string of shape codes assigned to the characters of the text sample is used as a
signature for the document. A second level of robustness is added by indexing based
on n-grams of the codes, rather than attempting to use an index based on the entire
string. Fach shape code n-gram serves as an index key into the database. A single
dropped or inserted code will affect a small number n of these keys but will not affect
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Figure 9.2: Overview of indexing scheme.

the entire signature. Figure 9.2 shows the relationship between the signature, its
keys, and the database. When a set of keys is presented for indexing, each key results
in a set of hits from the database. Fach hit is counted as a vote for the resulting
document, and a ranked set can be returned.

Clearly, a number of additional issues should be addressed in developing a com-
plete system that satisfies the criteria set forth above. These include:

e use of global classifiers - number of pages, page component statistics, etc. as
first-level filters to reduce the duplicate search space.

e choice of a shape code alphabet - selection of features to incorporate into the
signature which provide maximum discrimination.

o extraction of features - how to select the signature in the image of a document.

o database organization and indexing - how to create efficient ways to index into
large collections.

e verification of candidate duplicates.

All of these issues are addressed while designing a working system.
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9.1.3 Feasibility analysis

Before implementing and testing this approach on real data, we performed a theoreti-
cal analysis to see if our approach is realistic and if it is robust to errors in signature ex-
traction. The parameters that were varied in our analysis included system-dependent
variables such as file size limitations of the operating system, disk access time and
disk transfer rate; database variables such as the number of documents, the size of
the index table and the average size of the documents; and algorithm variables such
as the size of the signature alphabet, the size of the signature and the key or n-gram
size.

The analysis yielded qualitative estimates of the expected size of the database,
the computational requirements for matching signatures, and the number of missed
and false duplicate detections as functions of the database size. It was found that the
system could be implemented with generally available hardware.

The analysis was performed assuming we have extracted a candidate signature.
The following is a list of variables which can be used in the feasibility and perfor-
mance analysis of the algorithm. Here the signature is the vector of feature values
used to represent the document and a key is a term, possibly resulting from a par-
titioning of the document signature, used to index into the database. A majority of
the parameters reflect physical constraints of the system and are necessary to explore
scalability.

Algorithm-Dependent Variables

N : Number of documents.

Ny : Maximum number of files for the index table.

Sy + Maximum file size for storing b buckets.

E : Size of index table entries in bytes.

d : Average size of documents in bytes.

[ : Number of buckets that will be kept in the main memory.

b : Number of index table buckets that will be stored in a file in main memory.

Independent Variables

a : Size of alphabet used to construct the signature.

m : Size of the signature.

w : Window size.

k : Number of keys for a given signature size (m — w + 1).

The matching algorithm relies on the index structure that is generated as doc-
uments are added to the database. FEach signature is partitioned into equal-sized
overlapping windows of size w, to be used as index keys. This partitioning provides
robustness in the sense that errors in the signature will only be propagated within the
window, at the expense of a less unique set of sub-keys. For a signature of size m we
have k = (m — w + 1) possible keys (Figure 9.2) to be indexed. The index table has
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Figure 9.3: The index table.

on the average k x (a%) entries per bucket with each entry being the identification of

a document which contains that key. Figure 9.3 shows the index table structure. A
table with a maximum size of Min{N, (k* x (£}))} keeps a count of the documents
that have matched the input key. When the document’s keys are indexed, a counter
is incremented for each document which contains that key. The most frequently oc-
curring documents will then be the candidate duplicates. A more in-depth discussion
is contained in [23].

9.1.4 Performance analysis

To characterize the performance of a specified system we first need to formulate
several probabilistic models and define a design criterion. This is done by using
hypothesis testing and deriving an appropriate distribution function such that specific
performance measures can be computed. For a hypothesis test consider two events,
called the null and alternative events. The null event, Hy, signifies a situation where
there is no duplicate for a given document, and the alternative event, H;, signifies
that there is a duplicate.

Hy - Null Hypothesis P(n|Ho) (9.1)
H; : Alternative Hypothesis P(n|H;)

Associated with each hypothesis is a probability measure which characterizes the
variable used for detection, in this case 5. In detection, a thresholding operation
is used to determine which hypothesis is valid. In this case 5 signifies a matching
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score assigned to an observation. By choosing an appropriate threshold nr we make
a decision that if n > nr then accept the alternative hypothesis and if n < 57 then
accept the null hypothesis. The probabilities of detection and of false alarm effectively
capture the performance of this detector:

Pp(nr) = P(n =nr|H) (9.2)
Pra(nr) = P(n = nr|Ho)

This set of numbers will be used as operating specifications given various parameters,
but to fully specify Pp and Prys we need to analyze or make assumptions about the
available data and the matching processes.

Given a signature of size m from an alphabet of size @ and an observation window
of size w, define z; to be the 7th symbol and y; to be the jth index key. With
z; € X; = {0,1}°82(9) it is easy to see that all the z;’s are independent. In fact

PX=2)=[[P(Xi==) forze X=X ={0,1}le (9.3)

Let us define y; = {4, ziy1, ..., Tizw—1}; this is clearly dependent on ;11 t0 yiyw—1. As
described in the previous sections, the y;’s will be used for indexing into a signature
database and the number of hits determines 5. In indexing, however, there is no
preference as to the order of the observed y; values, and in a hypothetical situation
two documents could have large numbers of hits by matching y;’s out of order. Smaller
w values would increase this effect and larger values would decrease it; however, in
most cases we can argue that the y; values used to calculate n are independent. We
shall assume that it is equally probable (with probability alw) to observe any y; and
shall now present our probability analysis.

Under the conditions stated above, given a signature we observe a set of features
y; for © = 1,2,..., k. Since each y; is now treated as an independent observation and
we have k observations, we can identify the probability of  matches out of k possible
matches to be binomial, b(k, -L):

) qW

Po=(4) ) (0-%)" 0

Here P(n) is the probability of the number of matches given the null hypothesis,
P(n|Hy). This probability in effect measures the relationship between different sig-
natures and is relatively easy to understand and compute. The assumption that the
occurrences of keys are equally likely in the realm of all allowable keys is unrealistic.
For example, it is unrealistic for a window observation to consist of all ascenders.
We therefore intend to derive realistic probabilities of key occurrences from experi-
ments; this may revise the probability distribution function of the null hypothesis.
The probability measure for the alternative hypothesis, however, is more involved.
To derive the probability distribution of the alternative hypothesis, we need to
consider what realistic errors may be found between a candidate signature and its cor-
responding entry in the database. The discrepancies between observed and recorded
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signatures are in the form of insertions, deletions, or changes of shape code. In gen-
eral it is more probable to have fewer errors than to have more, so we assume that
the probability of observing ¢ errors is a decaying exponential function, defined by

a decay rate B . The general form of this function is P(:) = P(0)e™"*, where P(0)

should be calculated by letting >- P(z) = 1. Calculating P(0) and formulating the

distribution function we get

. 1—¢ B .
P(l) = P(O)Gﬁ2 = (Ts(mm) e_m fOI‘ L = 0, 1, caey TN (95)

This equation is not exact since this probability measure depends on the accuracy of
identifying shape codes, the statistics of shape codes, and the similarity of duplicates
found in the database. It is, however, impossible to characterize the statistical nature
of these phenomena, so we have simplified P(7) to an exponential function. In order
to formulate the probability distribution of the alternate hypothesis we need to study
the relationship between the number of errors and the matching score. In the case
where only one error occurs, the error is propagated to w out of k index entries.
This results in a matching score of & — w out of a maximum of k. Although the
errors might occur at either end of the signature, and insertions and deletions change
the matching score (by 1) in contrast with shape changes, these occurrences are
statistically insignificant and offset each other. For multiple errors, the worst-case
scenario is the case where the errors occur w shapes away from each other and these
errors propagate to the greatest possible number of allowable window observations.
For this worst-case scenario, ¢ errors will translate to a maximum matching score of

i for i — k
Moot — {k iw fori=0,1,..., 7] (9.6)

0 otherwise

For the best-case scenario, the errors could occur next to each other, yielding a
maximum matching score of

Phest = K — [ﬂ wrk—ifori=01,..k (9.7)
The probability that worst-case or best-case errors occur is clearly dependent on the
number of errors. This is true since ¢+ = 1, by definition, is a worst-case scenario
and ¢ = m it is a best-case scenario. It is also true that the score probabilities
change as a power function with respect to the number of errors, and their analysis
is extremely complex. Therefore, for the sake of simplification, and as will be seen
in the following section we will assume that the matching score is an average of the
worst- and best-case scenarios:

7]worst+77best — { k_lﬂ% fOI'i:O,l,...,[wz—flJ

) = , 9.8
77(2) 2 % fori:{wz—_ﬁJ—l—l,...,m—w—l—i ( )

Using (9.5) and (9.8), the probability distribution function of the alternative hypoth-
esis 1s fully specified. We are now ready to calculate the probabilities of detection
and false alarm.
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Given a threshold 57, we make a decision that any document with a higher score
is identified as a duplicate, as shown in (9.2). We now have to apply this criterion to
the probability distribution functions of the null and alternative hypothesis to get the
probability of false alarm and probability of detection, respectively. The distribution
function of the null hypothesis is given in (9.4), and summation over n = nr,..., k
gives the probability of false alarm:

Ppa = P(n > nr|Ho) = gkn:T ( 7]; ) (aiwy (1 — a%)’“‘” (9.9)

In order to calculate the probability of detection we need to consider the inverse of
(9.8) to be used in (9.5). Using nr and solving for ¢ in (9.8) gives the maximum
number of allowable errors such that the effective score is the threshold score:

. B %f_%l for npy > MZT_Q
Tmay = + . (9.10)
k —nr otherwise
Then summing (9.5) from zero to 2,4, gives the probability of detection:
tmaz 1 _ e—ﬁ _ﬁz
Pp = P(n = nr|Hy) = ;) T o5y ) © (9.11)

Given equations (9.9) and (9.11), it is possible to plot the probability of false alarm
with respect to the probability of detection as a function of the threshold np. Tra-
ditionally, this plot is called the ROC (Receiver Operating Characteristic) curve; a
typical curve is shown in Figure 9.4. Figure 9.4 also shows a diagonal line which
signifies the minimum achievable performance. The diagonal line represents picking
the null or the alternative hypothesis based on a coin toss; if an algorithm performs
below this line, a coin toss would achieve better performance.

9.1.5 System design

Our model basically has two main profiles: performance and system resources. The
performance can be characterized by specifying the error tolerance. The system
resources can be thought of as constraints on the desired performance. It is hard
to find a single formula that can give us optimum values of the model parameters
(m,w, a) for given system resources and performance range. But we can at least give
a recipe for finding “good” values for the parameters. Once the system resources
are characterized, making tables (like Tables 9.1 and 9.2) for different combinations
of the model parameters (m,w, a), and considering constraints for different values of
these parameters, helps us understand the possible ranges of the model parameters.
Then, by drawing ROC curves and looking for a desired detection probability range,
we can shrink the ranges of the parameters further.

Let us comment on each parameter’s effect. The increase in the value of m (the size
of the signature) increases the search time and the size of the index table. However,
the probability of duplicate detection becomes higher (Figure 9.5).
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a | Number | Entries | Bucket | Buckets | Bucket file | Number | Expected
of per size per size of search

buckets | bucket | (MB) file (MB) files | time (sec)

4 1024 | 2246094 8.6 1 8.6 1024 38.68
5 3125 | 736000 2.8 1 2.8 3125 12.82
6 T776 | 295782 1.1 1 1.1 7776 5.23
7 16807 | 136848 0.5 3 1.6 5603 2.64
8 32768 70191 0.3 7 1.9 4682 1.56

Table 9.1: Index table characteristics for w =5, m = 50, N = 50M, K = 2MB.

w | Number | Entries | Bucket | Buckets | Bucket file | Number | Expected
of per size per size of search

buckets | bucket | (MB) file (MB) files | time (sec)

3 512 | 4492188 | 17.136 1 17.1 512 76.94
4 4096 | 561524 | 2.142 1 2.1 4096 9.98
5 32768 70191 0.268 7 1.9 4682 1.56
6 262144 8774 | 0.033 59 2.0 4444 0.56
7| 2097152 1097 | 0.004 477 2.0 4397 0.43
8 | 16777216 138 | 0.001 3799 2.0 4417 0.42

Table 9.2: Index table characteristics for a = 8, m = 50, N = 50M, K = 2MB.

The increase in the value of w (the window size) makes the detection probability
lower (Figure 9.6). We conclude from Figures 9.6 and 9.5 that only £ = m—w+1 (the
number of keys) matters for the detection probability, because increasing w means
decreasing k, which lowers the detection probability.

The value of a (the alphabet size) actually has no significant effect on the detection
probability (Figure 9.7). But increasing it improves the detection probability, since
the false alarm rate drops.

The choice of a and w is crucial for the number of entries per bucket. The number
of entries per bucket affects the search time, and as the search time increases, the
number of entries increases. As w or a increases, the number of entries per bucket
decreases, but on the other hand the errors increase. Smaller values of w are desirable

for robustness.

9.1.6 Experiments

Two experiments were performed by Doermann et al. [23] with the results given
below. The first experiment used a small database of 5000 text lines extracted from
the Wall Street Journal’s ASCII representation of news and reports. Each line was
treated as an independent document so the database contained 5000 document im-
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Index | Shape Code Description Members
0 - space blank
1 X ascender "% () 12357<>TCEFGHI]J
KLMNSTUVWXYZ[ ]fhklt
2 y descender , . _y
3 e xline ¥t -y =cmnrsuvwxz
4 A asc. with hole #%5&04689 ABDOPQRDA
5 g des. with hole gpq
6 a xline with hole aeo
7 i ascender mark ijro oo

Table 9.3: Table of shape codes and symbols to which they apply.

[31a[n[ula]r]y[ [a[n[d] [1]0]1]% [a] [y[e[a|r[ [e[a[r[t]i]e[r].[ [O] e[r[a]t]i]n[g| [r[a[t[e[s] [c]
[Xa|x|x[a[x[y|- [a] x| A-[XAXX]a]-[y[a]a]x|- [a]a] X Xi[a] {y|- |A] g a] x| a| Xi [x] o[ - [ x| a[ {a[x|-[X]
[116]3[3]6]3[2[o[6[3[4[o[1]4[ 1]1]0] 6] o[ 2] 6] 6] 3] 0] 6] 6] 3] 1] 7] 6] 3] 2[ o] 4] 5[ 6] 3[ 6] 1] 7] 3] 5] o[ 3] 6] 1] 6] 3[ O] 3]
[1]6]3[3]6][3][2]0]6]3] . . .

[e[3[3[6[3] ...

Figure 9.8: Shape codes from sample signature 831 an

ages, eachrepresented by asignature oflength > 50. We c
of size 8 (shown in Table 9.3), and akey lengthof5 (i.e., ¢
from each signature). An example of a text line is shown
its shape code signature and some of the index keys. The
database.

The experiment was divided into two parts. Part I exan
scores for known duplicates, corrupted duplicates and no
the database. Part Il looks at the distribution of the ra
in the top 20 positions. To address the robustness of fe
and degradation model was built into the system. The mc¢
randomly perturbing afixed number of shape codes ineach
errors in shape coding.

In Part T of the experiment, aset of signatures known t
matched against the database. The results of matching a
(831) are shown in Table 9.4 for the cases where 0, 5, 10
introduced. Table 9.4 shows that although the match sco-
there areonly 5 errors, the correct document still has a si
alternative choices. Thelarge difference between the top
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(e [ 1 [ 2 [ 3 [ 4 |
0 831(46) | 3934(16) | 839(14) | 3734(14)
5 831(25) | 708(10) | 218(10) | 1029(10)
10 831(25) | 1990(7) | 3827(7) | 3934(7)
15 831(9) | 790(6) | 839(6) | 984(6)
20 387(3) | 1421(3) | 2066(3) | 2952(3)
e [ 5 [ 6 [ 7T [ 8 |
0 834(14) | 3752(13) | 828(13) | 3990(13)
5 2788(14) | 2789(13) | 4474(10) | 4498(10)
10 742(6) | 3909(6) | 2235(6) | 4118(6)
15 1383(6) | 2394(6) | 2397(6) | 2402(6)
20 2955(3) | 2959(3) | 2990(3) | 2994(3)

Table 9.4: Scores of line 831 in [candidate (score)] format.

match is not simply random, but rather well correlated with its candidate.

To test the robustness of the features, signatures of text lines that were not in the
original database (i.e. documents known to be non-duplicates) were matched against
the lines in the database. Table 9.5 shows the match scores for such a text line.

In Part II of the experiment, 100 signatures were randomly chosen from the 5000
in the database and perturbed to be matched against the 5000 signatures in the
database. The correct match was recorded in the the top one, two, five, and ten
positions. The results are shown in Table 9.6 when the candidates were corrupted
with 0, 5, 10, 15 and 20 errors. In practice, the variation between two documents
which are true duplicates is typically due to factors such as notes, photocopying and
aging, and due to characteristics of the scanning process, including resolution, density
and skew. It is expected that few “differences” exist in the shape codings of duplicate
documents, so the introduction of 20 errors is more then sufficient.

In the second experiment a much larger database was considered for experimen-
tation. The ASCII data was similar to the database of the first experiment but with
millions of signatures. 2,500 non-duplicate and 2,500 randomly chosen duplicate sig-
natures were used to simulate incoming documents.The first line of Table 9.7 shows
the number of duplicates detected in the top 1, 2, 5, 10 and 20 positions®.

The corrupted signatures of duplicate documents were used in the matching pro-
cess, perturbing them by introducing fixed numbers of errors (5, 8 and 10). The
numbers of duplicate documents detected in the top 1, 2, 5, 10, and 20 positions for
these levels of errors are shown in the bottom three lines of Table 9.7. Figure 9.9
shows the percentage of detected duplicates as a function of the number of documents

aSome of the lines in the original database occur more than 20 times, so the “true” duplicate
may not appear in the top 20. That is why even in the Q error case, the 2500 documents were not
all detected.
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(o™ [ 0 [ 2 [ 3 | 4 |
0 828(12) | 834(10) [ 3390(10) | 4598(10)
5 801(6) | 822(6) | 1872(6) | 1882(6)
10 3390(3) | 2634(6) | 1823(6) | 4530(6)
15 2726(5) | 2838(5) | 397(4) | 732(4)
20 544(9) | 2027(9) | 4727(8) | 1482(7)

(™™ 5 | 6 [ 7 | 8 |
0 888(9) | 2317(9) | 2350(9) | 223(9)
5 2208(6) | 2635(6) | 1959(5) | 2159(5)
10 3373(5) | 62(5) | 4489(5) | 1636(5)
15 041(4) | 1593(4) | 2027(4) | 2097(4)
20 489(7) | 2274(7) | 2620(7) | 3383(7)

Table 9.5: Scores of line 5416, which was not in our database, in [candidate (score)]

Added Errors || Top 1 | Top 2 | Top 5 | Top 10 | Top 20
0 100 100 100 100 100
5 100 100 100 100 100
10 100 100 100 100 100
15 51 58 69 7 100
20 17 21 24 30 100

Table 9.6: Top duplicate candidates in 100 queries.

Added Errors || Top 1 | Top 2 | Top 5 | Top 10 | Top 20
0 2416 | 2443 | 2458 2465 2467
5 2379 | 2419 | 2447 2457 2463
8 2059 | 2202 | 2327 2390 2431
10 1403 | 1678 | 1905 2039 2181

one million documents.
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Figure 9.9: Percentage of duplicate documents identified in the top n candidate doc-
uments retrieved.

retrieved for each of the error levels.

9.2 Grayscale extension

The domain of document images is by no means limited to binary images. A document
image, much like other images, can have pixels that span the entire color spectrum.

The majority of the work done with document images involves high-contrast black
and white images which are ideal for bi-level image capturing. Our first extension
from this baseline is to consider grayscale document images. While color document
images need to eventually be considered, the grayscale extension is more widely ap-
plicable. Figure 9.10 shows a section of a grayscale document image, which exhibits a
large amount of symbol-level redundancy and background texture. Given a success-
ful application of component segmentation, clustering, background extraction, and
residual coding, the application of symbolic compression is straightforward.

A survey of character segmentation was conducted by Casey and Lecolinet [19] and
a method of grayscale segmentation of characters is given in [58]. In our preliminary
implementations, we performed connected component analysis on a thresholded im-
age. A successful grayscale segmenter is envisioned to be one that uses a combination
of connected components based on ranges of thresholds and previously determined
prototypes. The clustering algorithms are in general very similar to those used for
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Characteristics of Characeans
Characean algae have been used in
much of the work on plant excitability.
They are stoneworts, with a fossil
record stretching back to the Devonian
period, which began about 400 million
years ago, and they are the ancestors of
all higher plants. Extant stoneworts be-
long to a single family, Characeae,
which is composed of six genera in-
cluding Chara and Nitella. The majority
of the extant species inhabit the bottom
of clear freshwater ponds, where they
live entirely su i

As I have noted, the primary attrac-
tion of characean algae as an object of
study is the size of their cells. In Chara,

Figure 9.10: Example of a grayscale document image.

clustering of binary components. The only difference is in the distance-based match-
ing since distance is not strictly computable from a grayscale component. Other
matching methods can address the problems of grayscale components. The two re-
maining tasks, background extraction and residual coding, need to be addressed for
the successful implementation of grayscale symbolic compression.

9.2.1 Background extraction

Suppose that components have been segmented and removed from a grayscale docu-
ment image. The resulting image is a “cut” version of the original image in which the
pixel values have been set to 0 where components were detected and segmented. The
remaining image can be considered to be mostly background and can be analyzed
to determine its compressibility index. Comprehensive background removal was not
attempted since it would involve background texture determination together with
segmentation, clustering, and residual coding. However, once a background image is
determined it will have the same characteristics as the cut image.

Figure 9.11 shows the distribution of the background pixel values. It shows that
most pixels occur near the lower end of the grayscale spectrum. In this particular
example, there exist no pixels above grayscale value 151 (on a scale of 0 to 255). The
entropy of this background image comes to 5.5605 for a bit rate of 0.6951. Lossy
representation of the background can be achieved in a number of ways, including
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Figure 9.11: Probability distribution function of the background pixels.

resolution reduction, requantization of grayscale values, and multi-scale representa-
tion, among others. The background section can also tolerate a much higher lossy
representation without affecting readability.

9.2.2 Residual coding

Figure 9.12 shows the set of prototypes assigned to the clusters of grayscale document
image components. Instead of a distance transform, we use a gradient transform. This
transform favors pixels whose neighborhoods are fairly flat over those that have higher
gradients. We modify our hypothesis that informative pixels are farther from edges
to a hypothesis that the informative pixels are in low-gradient areas.

Figure 9.13 shows examples of a segmented component, its assigned prototype,
and its gradient transform. The gradient was calculated with a 3 x 3 window. It can
be seen that the edges of characters, which exhibit the highest gradients, are shown
as having darker pixels. The residual map and the ordered and unordered code of the
examplein Figure 9.13 are shown in Figure 9.14. It is easy to see that the degradation
effects for binary images continue to hold for grayscale images.

9.2.3 Entropy analysis

To show this phenomenon more explicitly we can estimate the distribution of the
residual pixels and the gradient values to arrive at an entropy value for the ordered
and unordered code along with the mutual information between the unordered code
and the distribution of the gradient map. This is analogous to the work done in
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Figure 9.12: Prototype instances of a grayscale document image.
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Figure 9.13: Example of a) grayscale component, b) assigned prototype, and c) gra-
dient of the prototype.
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Figure 9.14: Example of a) grayscale residual, b) unordered code, and c) ordered
code.
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Figure 9.15: Distribution of a) the unordered pixels and b) the gradient values.

Chapter 5. Recall that the entropy of the unordered code is

255

=2 Pulu) x logy(Pu(u)) (9.12)

where Py(u) is the distribution of the residual pixels associated with a segmented
component. The entropy of the ordered code is

H(O) = H(U|R)
= Er[H(Sg)]

Rmax 255

S Z Pa(r ZPS )log,(Ps, () (9.13)

and the mutual entropy which measures the improvement in coding is

I(U;R) = H(U)-Y(U|R)

255 R
max PS (S)
= Pr(r)Ps,(s)lo - 9.14

where R, is the largest gradient, analogous to the largest distance in the case of
binary images. Figure 9.15 shows the distribution of the unordered and the gradient
values. The entropy of the unordered pixels comes to 0.8747 bits. The distribu-
tion of the unordered residual shows artifacts which could be the result of pixels
occurring at different gradient levels. The gradient distribution of Figure 9.15 shows
a non-constant distribution, which could provide better ordering and coupled with
bit-allocation of residual pixels at different gradient levels could give desirable rate-
distortion characteristics. Figure 9.16 show a set of plots which reflect the distribution
of conditioned residual pixels. The distribution varies by a large amount and promises
to provide a compact coding.
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Figure 9.17 shows the entropy of pixels for each gradient value r. The trend of this
plot is not as expected. We expected to observe lower entropy as r increases. This
implies that we have not derived a sufficient condition R to apply to the unordered
code U. This makes sense in that a 3 x 3 neighborhood does not provide an accurate
measure of how residual pixels behave. The underlying principle should, however,
hold in that edge pixels are more prone to degradation and pixels far from edges hold
more information needed for correct recognition. In our example we measured the
entropy of the unordered code to be 0.8747, and of the ordered code to be 0.8290, for
an improvement of 0.0457 which translates into an improvement of 5 percent.

We are confident that the residual coding will improve. In any case, the developed
infrastructure has a wide range of applicability to tasks that require a hierarchical
representation. As was mentioned in Chapter 5, this infrastructure is immediately
applicable to problems ranging from lossy compression and transmission to multime-
dia signal processing. The hierarchical representation can contribute in two ways.
One is to the readability of the document, where an attempt is made to preserve the
character structure, much as it was preserved for binary images. The second is to the
fidelity of the image. While binarizing the document would renders it readable, it is
much more esthetically pleasing to use shades of gray. The problem is to determine
the best combination of fidelity and readability. For degraded documents an OCR
engine might do better with a higher-fidelity image, and a balance can be reached
that provides the best-recognizable document. However, at what point does a docu-
ment’s fidelity affect its readability? These problems still need to be addressed for a
successful implementation of grayscale document image compression.
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Figure 9.18: Examples of graphic images.

9.3 Graphic extension

It can be argued that graphical diagrams are specialized types of documents. These
images do not fall into the category of natural images. They have a large amount of
organization at several levels, and they are composed of mostly redundant elements.
Examples of graphic images are shown in Figure 9.18.

The most redundant constituent in these images is a straight line segment. In
determining a representative prototype, one needs to develop a segmentation method
that produces sections of straight lines that can be indexed into the image and achieve
compression. This may be hard to do since too-small lines will reduce compression by
specifying too many location indexes. The effects of the residual may be minimal, but
the application of residual coding should be addressed in determining an appropriate
segmentation. Graphical analysis techniques (a review of some algorithms appears in
[8]) can be applied toward graphic segmentation.

9.4 Networked databases

Network optimization is a task that can clearly benefit from our hierarchical orga-
nization. It is true that transmission capabilities have increased by a large amount,
but it is also true that processing power has increased. This means that while we
can deliver data faster, there exist processes that require larger amounts of data and
in turn require higher data transfer rates. While there exist fast networks that do
not need to be concerned about client-server information exchange, there exist remote
client-server pairs that do not have optimized traffic and are constantly competing for
network bandwidth. In the age of the world wide web, central database servers, and
countless modem connections, many users are confronted with slow network speeds.

111



Servers Clients

Traffic:

sockets

Priority assignment

o

Priority

'

bit stream
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Figure 9.19 depicts a server-client network where at a particular time multiple
sockets are busy transferring data. If uniform network resources are allocated, the
informative prototype shapes and their locations are weighted equally with the resid-
ual pixels (if any), without any regard to total amount of service provided to a group
of users. Service can be defined by the amount of readable information transferred
and a priority assignment can easily be devised so that network traffic is optimized
in the sense of providing the best service to the greatest number of users.

This approach can easily be extended to packet-transport networks and ATM net-
works that use quality-of-service indexes. A number of concerns must be addressed
when faced with these issues. While textured images, video, and sound have tradi-
tionally been considered in connection with these problems, document images have
not, and need to be, addressed [51].

9.5 Hyperdocument organization and transmission

The usage of documents has become very flexible in recent years. While it has been
shown that documents hold information at various levels [24] that must be managed
and retrieved, other media domains have also been integrated into their structure.
Document processing with multimedia tools have been studied [102] but new charac-
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teristics, beyond synthetic languages like SGML or definitions like MHEG, need to
be addressed [92].

Hyperdocuments offer a unique extension to the traditional functionality of a
document by extending the semantic meaning of document objects to include multi-
media objects. This is different from a synthetic markup language in that a physical
document is used and referenced, while cross-media objects, from physical sources,
are anchored to mark up the document.

The implications of this degree of freedom are great. For instance, consider a
field manual, originally derived from text manuals having a high level of structure
(title, paragraphs, graphs, annotated text and images). Field technicians can use
a hyperdocument interface tool to annotate the document in various media (video,
audio, and/or data such as “We have observed new cracks in the secondary valves
...7) and design engineers can use a hyperdocument management and browsing tool
to gain access to sections of the field manual.

Cooperative learning, reviewing, and project management could all benefit from
this framework. The basic idea here is that there exist a single physical based docu-
ment which is used by multiple sources. By annotating the document appropriately,
conferencing occurs which allows for a fluent dissemination of information for the
document readers. For media distribution, physical media types can easily be inte-
grated, such as assembly procedures, to be delivered to customers or co-workers. The
use of this concept provides a logical connection from a physical media domain to a
multi-media markup domain. In achieving that goal, a large number of issues need

to be addressed [92].

9.6 Summary

We have developed a methodology for detecting duplicate document images in a het-
erogeneous database. This can aid in maintaining document image databases. We
are able to perform extremely fast duplicate detection on millions of documents. The
first scan is able to reduce the possible duplicates from millions to tens or hundreds
of documents. A finer, but more computationally intensive, duplicate detection al-
gorithm was also suggested which can be used in reducing possible duplicates from
hundreds to tens or lower by use of a symbolic approach. A final reduction can be
done by comparing OCR results.

Several extensions to our base image compression effort have been suggested.
The first natural extension of binary document images is grayscale images. Some
preliminary results show that some amount of improvement in coding can be obtained;
however, there exist fundamental concerns regarding the readability and fidelity of the
image and how they interact. After these concerns are addressed, the performance
of lossy compression and progressive transmission needs to be assessed along with
efficiency of coding for document processing, e.g. keyword searching, skew estimation
and correction, partial retrieval, etc. Once the grayscale extension is accomplished,
the further extension to color images can be addressed. Another logical extension is to
the compression of images which are composed of patterns that are connected. In our
compression scheme we took a connected component approach since the patterns in
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the image appeared as disconnected components. However, graphic images, as well as
documents in languages that are composed of connected characters, have constituent
patterns that appear continuously. For a successful implementation of our approach
for these image types, an alternative segmentation method needs to be used.

Representation and coding of images are only parts of a comprehensive solution
to the class of information archiving and management problems. The transmission of
information is an inherent part of information dissemination and needs to be addressed
for efficient usage of limited resources. Often, resource allocation and usage are liberal,
assuming unlimited resources. These practices fail to perform well in cases where the
resources per user are limited. Technological advances have made optimized resource
allocation possible and need to be addressed for network resources.

Finally, integration of other media into a document’s structure was suggested.
With technological advances bringing massive amounts of information to users, intel-
ligent use and management of various media is desired. This goes beyond the confines
of a markup language and widens the usage of classical documents. When a classi-
cal document image is viewed, a standard organization exists, such as title, author,
paragraphs, images, footnotes, etc. This is easily extended to include other media
domains. Organization of these components has been addressed to some extent [24]
but fundamental problems in compression, transmission, and processing need to be

addressed.
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Chapter 10

Conclusion and future work

Computer systems have made significant contributions to the managagement and
transmission of images in many forms. Transmission and processing remains an ac-
tive research problem in many image domains. In an attempt to optimize retrieval
of document images, it was observed that document images contain most of their
meaningful information within their components. Since the components are samples
of a specific language, redundancy in their occurrence can be exploited to provide a
highly efficient representation. We developed a technique which extracted constituent
components, clustered them, and represented them in a compressed form. While this
technique was developed independently, it significantly extends the technique pro-
posed by Witten et al. [110], and took its roots from work done by Ascher and Nagy
[9].

Traditional coding, transmission, and lossy representation of images often made
use of resolution-reduction practices. This was ideal for textured images but document
images do not fit easily into that class. Document images lose their meaningful fine
structure much faster than textured images when resolution is lowered. In the process
of replacing an image component by the prototype of a representative cluster, we do
not reduce resolution; instead, we reduce the allowable level of variability between
image components. This effectively produces a lossy representation which is still
readable and processable.

10.1 Summary

We first devised a data representation scheme that formulated the constituent parts
of our algorithm. This representation was designed to not only provide compression,
but also facilitate processing while in the compressed domain. Since the task of de-
compression is more computationally intensive than that of retrieval, we decomposed
the representation into logical building blocks and introduced indexes for large blocks
which benefit from partial decompression. The design of this representation helps in
the identification and construction of various processing modules that enhance and
augment the functionality of the compression. In addition to building the compres-
sion /decompression routines, we were able to conclude that component segmentation
and clustering could benefit from joint processing and that eventually a global oper-
ations manager could optimize the overall representation.

We considered a number of clustering algorithms for incorporation into the above
model. Due to the size and population variability of components, several well-known
clustering algorithms were dismissed as having undesirable computational properties.
We then considered a matching and classifying approach which had desirable proper-
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ties and also provided the freedom of choosing a matching function that attempts to
preserve some component properties. We considered the use of Hamming distance,
weighted Hamming distance, and weighted AND-NOT matching functions for use
in our clustering algorithm. We also considered entropy-based functions, and sug-
gested a distance-based matching method that preserved component structures. This
yielded a clustering algorithm that grouped components of similar structure. We
argue that structural components contribute the most toward the correct recogni-
tion of characters. We also improved on the clustering methodology by considering a
joint segmentation and clustering algorithm. This has proven to be useful for images
which contain large numbers of connected characters. The method starts with the
connected components of an image and derives a set of prototypes. The prototypes
are then used to revisit all the components and determine an alternate segmentation
strategy that attempts to segment characters which are joined together. A simple
feedback construction allows for effective calculation of meaningful prototypes which
can improve compressed-domain processing.

Residual coding constitutes a major portion of the image coding. We developed
a novel approach to residual coding with desirable compression and transmission
characteristics. Our original method was to provide a hierarchical representation in
which the image representation based on only the prototypes defined the baseline.
Any subsequent information was considered to be less important and farther down
in the hierarchy. Since residual coding was necessary for effective representation of
the image (without it, the image might be misinterpreted) we proposed a hierarchical
ordering of residual information to allow for higher compression and desirable lossy
representation. The basis of this code is the fact that all pixels are not created equal,;
while some pixels contribute to correct recognition of a component, other pixels do
not. We pursued a distance-based ordering which favored more informative pixels
and attempted to preserve character structure for lossy compression. Two other
structural coding methods were also suggested which provided enhancements to the
distance ordering by observing that structural components consist of groupings of
pixels and that the groupings are most likely connected to the prototype. Favorable
compression performance was shown with desirable lossy representation.

A rate-distortion analysis was performed with a measure of distortion based on
OCR and distance-based matching performance. The OCR performance, with respect
to various achievable rates, showed that distance ordering is clearly more favorable
than row ordering. We experimented with various intermediate representations using
fractional residual information and observed the performance of the OCR engine with
respect to the available ground truth data. The performance of the OCR engine at
the highest levels of lossy compression was very high (80%), guaranteeing that the
OCR engine was operating under near-peak conditions, and the performance was
observed to increase to its maximum (95%) when all of the residual information was
represented. We also considered a rate-distortion tradeoff using the distance-based
match as a measure of distortion. This allows for automatic generation of a lossy
representation that gives optimally low distortion based on the achievable entropy
rate.

A set of applications that utilize our data representation was then presented.
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The basic compression and decompression routine formed the basis for these applica-
tions. We demonstrated successful implementation of lossy compression, progressive
transmission, sub-document retrieval, skew estimation and correction, and keyword
searching. Scalable processing was demonstrated for lossy compression, progressive
transmission, and sub-document retrieval, and compressed-domain processing was
exhibited for skew estimation and correction and keyword searching. We also used
information about character shapes to perform duplicate detection of documents in
large databases.

Due to the large number of immediate extensions to our work, a full section was
devoted to this topic. Preliminary results on some concepts showed promise for the
success of future developments. OQur basic methodology appears to be applicable to
other common image and networking problems.

10.2 Future work

Immediate work should emphasize concepts discussed under extensions (Chapter 9),
especially those involving grayscale images and graphic images. It is envisioned that
in the immediate future, these extensions will have the most impact. Extensions to
network databases are also interesting and should be pursued, but only in conjunction
with research on multi-media databases, and only if justified by market demand. In
the long term, hypermedia extensions will prove to be a valuable research topic with
a large number of market applications.

In other areas not yet mentioned, integration of wavelet decomposition will prove
to be valuable. Research on binary wavelet decomposition has given good results,
but in the realm of display technology rather than compression, transmission, and
processing technologies. The idea is that if a screen of low resolution is used to render
an image, it does not seem efficient to transmit a high-resolution image. The problem
is then to decompose the image into desired scales and transmit based on those scales.
Since binary wavelets are rare and their bit allocation is a hard problem, their use
in binary image compression was not pursued. However, for grayscale images, there
may exist sets of wavelets that are tunable based on prototypes to create the best
scalable decomposition through a resolution path. The idea of wavelet decomposition
should be reexamined for the case of grayscale images.

Integration with MG (Managing Gigabyte), and creation of a code that can achieve
low entropy will prove to be extremely beneficial. Integration with MG should provide
higher compression; it will also add scalable lossy and progressive representation,
which MG currently lacks. Tt will also promote compressed-domain processing using
its representation. Performing compressed-domain processing relies on performing
indexable compression. A coding method needs to be pursued that can achieve close
to the entropies mentioned in Chapter 5 while allowing for partial decompression. It
is also desirable to devise coding methods that will allow for scalable error coding,
for eventual use in source-channel coding.

After studying the symbolic approach and its rate-distortion tradeoff, we can
predict that distance ordering and structural decomposition may provide an approach
to document image enhancement or to determining image quality prior to performing
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any processing. Since we have used a degradation model which relates well to correct
recognition (OCR-based rate-distortion), we may extend this model to either alter the
image for better recognition or calculate a quality index. While the use of compressed-
domain processing in OCR applications is logical, it is also logical to have built-in
OCR correction mechanisms based on our representation. This will augment the
standard word dictionary or other lexicon-based checking.

The final extension of our method is envisioned to address compression in other
image domains such as satellite or aerial images, biomedical images, and so on. The
concepts of segmentation, clustering, and residual coding need to be addressed for
these domains; this may lead to significant progress in the compression and processing
of general images.

118



Bibliography

1]

[10]

[11]

[12]

[13]

J. Abate. Linear adaptive delta modulation. Proceedings of the IEEFE, 55:298—
308, 1967.

N. Ahmed, T. Natarajan, and K. Rao. Discrete cosine transform. IEEFE Trans-
actions on Computers, 23:90-93, 1974.

S. Alexander and S. Rajala. Image compression results using LMS adaptive
algorithm. [TEEFE Transactions on Acoustics, Speech and Signal Processing,
33:712-717, 1985.

M.R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.

G. Anderson and T. Huang. Piecewise Fourier transformation for picture band-
width compression. IEFKE Transactions on Communications, 19:133-140, 1971.

H. Andrews. Computer Techniques in Image Processing. Academic Press, 1970.

A. Antonacopoulos and R. Ritchings. Flexible page segmentation using the
background. In Proceedings of the International Conference on Pattern Recog-
nition, pages 339-344, 1994.

J. Arias, R. Kasturi, and A. Chhabra. Evaluating the performance of techniques
for the extraction of primitives from line drawings composed of horizontal and
vertical lines. In Proceedings of the Document Analysis Systems Workshop,
pages 191-204, 1996.

R. Ascher and G. Nagy. A means for achieving a high degree of compaction on
scan-digitized printed text. TFEFE Transactions on Computers, 23:1174-1179,
1974.

M. Atallah, Y. Genin, and W. Szpakowski. Pattern matching image compres-
sion: Algorithmic and empirical results. Technical Report CSD TR-95-083,
Computer Science Department, Purdue University, 1995.

H.S. Baird. The skew angle of printed documents. In Proceedings of the SPSE
40th Annual Conference and Symposium on Hybrid Imaging Systems, pages
21-24, 1987.

M.F. Barnsley and L.P. Hurd. Fractal Image Compression. A.K. Peters, 1993.

G. Bessho, K. Ejiri, and J.F. Cullen. Fast and accurate skew detection algorithm
for a text document or a document with straight lines. In Proceedings of the
SPIE - Document Recognition, volume 2181, pages 133-140, 1994.

119



[14]

[15]

[16]

[17]

[18]

19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

D. Bloomberg and L. Vincent. Blur hit-miss transform and its use in document
image pattern detection. In Procceding of the SPIE- Document Recognition I1,
volume 2422, pages 278-292, 1995.

D. Bodson, S. Urban, A. Deutermann, and C. Clarke. Measurement of data
compression in advanced Group 4 facsimile system. Proceedings of the IFEFE,

73:731-739, 1985.

T. Boult. Dynamic digital distance maps in two dimensions. IEEFE Transactions

on Robotics and Automation, 6:590-597, 1990.

R. Boyer and J. Moore. A fast string matching algorithm. Communications of

the ACM, 20:762-772, 1977.

H. Cai and G. Mirchandani. Wavelet transform and bit-plane encoding. In
Proceedings of the International Conference on Image Processing, volume I,

pages H78-581, 1995.

R. Casey and E. Lecolinet. Strategies in character segmentation: A survey. In
Proceedings of the International Conference on Document Analysis and Recog-

nition, pages 1028-1033, 1995.

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT Press,
1990.

T. Cover and J. Thomas. FElements of Information Theory. John Wiley and
Sons, 1991.

C. Cutler. Differential quantization of communication signals. U.S. Patent 2

605 361, 1952.

D. Doermann, H. T, and O. Kia. Duplicate document image detection. Tech-
nical Report 3739, Center for Automation Research, University of Maryland,
1997.

D. Doermann, C. Shin, A. Rosenfeld, H. Kauniskangas, J. Sauvola, and
M. Pietikainen. The development of a general framework for intelligent docu-
ment image retrieval. In Proceedings of the Document Analysis Systems Work-

shop, pages 605-632, 1996.

K. Etemad, D. Doermann, and R. Chellappa. Multiscale document page seg-
mentation using soft decision integration. IEEFE Transactions on Pattern Anal-

ysis and Machine Intelligence, 19:92-96, 1997.

N. Faller. An adaptive system for data compression. In Proceedings of the Asilo-
mar Conference on Clircuits, Systems and Computers, pages 593-597, 1973.

B. Fino. Relations between Haar and Walsh/Hadamard transforms. Proceedings

of the IEEE, 60:647-648, 1972.
120



28]

[29]

[30]

31]

32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

L. Fletcher and R. Kasturi. A robust algorithm for text string separation from
mixed text/graphics images. IEEFE Transactions on Pattern Analysis and Ma-
chine Intelligence, 10:910-918, 1988.

R. Gallager. Variations on a theme by Huffman. IEEFE Transactions on Infor-
mation Theory, 24:668-674, 1978.

A. Gersho and R. Gray. Vector Quantization and Signal Compression. Kluwer
Academic Publishers, 1992.

A. Habibi. Survey of adaptive image coding techniques. IEEE Transactions on
Communications, 25:1275-1284, 1977.

R. Haralick. UW English document image database I: A database of document
images for OCR research. CDROM.

T. Hirata. A unified linear-time algorithm for computing distance maps. Infor-
mation Processing Letters, 58:129-133, 1996.

J. Hobby and H. Baird. Degraded character image restoration. In Proceedings
of the Symposium on Document Analysis and Information Retrieval, pages 233—
245, 1996.

M. Holt. A fast binary template matching algorithm for document image data
compression. In J. Kittler, editor, Pattern Recognition, pages 230-239. Springer
Verlag, 1988.

M. Holt and C. Xydeas. Recent developments in image data compression for

digital facsimile. ICL Technical Journal, pages 123-146, 1986.

P. Howard. Lossless and lossy compression of text images by soft pattern match-
ing. In Proceedings of the IEKE Data Compression Conference, pages 210-219,
1996.

T. Huang. Run length coding and its extensions. In T. Huang and O. Tretiak,
editors, Picture Bandwidth Compression, pages 231-264. Gordon and Breach,
1972.

J.J. Hull. Document image matching and retrieval with multiple distortion- in-
variant descriptors. In Proceedings of the International Workshop on Document
Analysis Systems, pages 383-400, 1994.

J.J. Hull. Presented at SPIE - Document Recognition IV, 1997.

R. Hunter and A. Robinson. International digital facsimile coding standards.

Proceedings of the IEEFE, 68:854-867, 1980.

D. Huttenlocher, G. Klanderman, and W. Rucklidge. Comparing images using
the Hausdorfl distance. ITEEE Transactions on Pattern Analysis and Machine
Intelligence, 15:850-863, 1993.

121



[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

S. Inglis and 1. Witten. Compression-based template matching. In Proceedings
of the IEEE Data Compression Conference, pages 106-115, 1994.

A. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1989.

A. Jain and S. Bhattacharjee. Text segmentation using Gabor filters for au-
tomatic document processing. Machine Vision and Applications, 5:169-184,
1992.

N. Jayant. Adaptive delta modulation with a one-bit memory. Bell Systems
Technical Journal, 49:321-343, 1970.

O. Johnsen, J. Segen, and G. Cash. Coding of two-level pictures by pattern
matching and substitution. Bell System Technical Journal, 62:2513-2545, 1983.

T. Kanungo, R.M. Haralick, and I.T. Phillips. Global and local document
degradation models. In Proceedings of the International Conference on Docu-
ment Analysis and Recognition, pages 730-734, 1993.

O. Kia and D. Doermann. Structure-preserving image compression and trans-
mission. In Proceedings of the International Conference on Image Processing,

volume I, pages 193-196, 1996.

0. Kia and D. Doermann. Symbolic compression for document analysis. In
Proceedings of the International Conference on Pattern Recognition, volume

111, pages 664668, 1996.

0. Kia and D. Doermann. Document image coding for processing and retrieval.
In Proceedings of the IEEE Workshop on Multimedia Signal Processing, 1997.
To appear.

O. Kia and D. Doermann. Residual coding in document image compression.
Technical report, Center for Automation Research, University of Maryland,
1997. To appear.

0. Kia, D. Doermann, and R. Chellappa. Compressed-domain document re-
trieval and analysis. In Proceedings of the SPIE - Multimedia Storage and
Archiving Systems, volume 2916, pages 176-187, 1996.

0. Kia, D. Doermann, A. Rosenfeld, and R. Chellappa. Symbolic compression
and processing of document images. Technical Report CAR TR-849, Center for
Automation Research, University of Maryland, 1997.

D. Knuth. Optimal binary search trees. Acta Informatica, 1:14-25, 1971.

D. Knuth, J. Morris, and B. Pratt. Fast pattern matching in strings. SIAM
Journal on Computing, 6:323-350, 1977.

A. Kolmogorov. Interpolation and extrapolation of stationary random series.

Journal of the Soviet Academy of Science, pages 314, 1941.
122



[58]

[59]

[60]

[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

S.W. Lee, D.J. Lee, and H.S. Park. A new methodology for gray-scale character
segmentation and recognition. [TKFEFE Transactions on Pattern Analysis and

Machine Intelligence, 18:1045-1050, 1996.

T. Lei, N. Scheinberg, and D. Schilling. Adaptive delta modulation system for
video encoding. IFKKFE Transactions on Communications, 25:1302-1314, 1977.

F. Leymarie and M. Levine. Fast raster scan distance propagation on the
discrete rectangular lattice. CVGIP: Image Understanding, 55:84-94, 1992.

J. Lim. Two-Dimensional Signal and Image Processing. Prentice-Hall, 1990.

Y. Linde, A. Buzo, and R. Gray. An algorithm for vector quantizer design.
IEEFE Transactions on Communications, 28:84-95, 1980.

J. Liu, C.M. Lee, and R.B. Shu. An efficient method for the skew normalization
of a document image. In Proceedings of the International Conference on Paltern
Recognition, volume I11, pages 122-125, 1992.

T. Luczak and W. Szpakowski. A lossy data compression based on an approx-
imate pattern matching. Technical Report CSD TR-94-072, Computer Science
Department, Purdue University, 1995.

C. Maa. Identifying the existence of bar codes in compressed images. CVGIP:
Graphical Models and Image Processing, 56:352-356, 1994.

J. Makhoul, S. Roucos, and H. Gish. Vector quantization in speech coding.
Proceedings of the IFEE, 73:1551-1558, 1985.

U. Manber. Finding similar files in a large file system. In Proceedings of the
USENIX Conference, pages 1-10, 1994.

A. Mazzarri and R. Leonardi. Perceptual embedded image coding using wavelet
transforms. In Proceedings of the International Conference on Image Processing,

volume I, pages 586-587, 1995.

K. Mohiuddin. Pattern Matching with Application to Binary Image Compres-
ston. PhD thesis, Stanford University, 1982.

K. Mohiuddin, J. Rissanen, and R. Arps. Lossless binary image compression
based on pattern matching. In Proceedings of the International Conference on
Computers, Systems, and Signal Processing, pages 447-451, 1984.

S. Mori, C.Y. Suen, and K. Yamamoto. Historical review of OCR research and
development. Proceedings of the IEFE, 80:1029-1058, 1992.

G. Nagy, P. Sarkar, D. Lopresti, and J. Zhou. Spatial sampling of printed
patterns. Draft, 1996.

123



[73]

[74]

[75]

[76]

[77]

(78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

Y. Nakano, Y. Shima, H. Fujisawa, J. Higashino, and M. Fujinawa. An al-
gorithm for the skew normalization of document image. In Proceedings of the
International Conference on Pattern Recognition, pages 8—13, 1990.

L. O’Gorman. The document spectrum for page layout analysis. IFEE Trans-
actions on Pattern Analysis and Machine Intelligence, 15:1162-1173, 1993.

L. O’Gorman and R. Kasturi. Document Image Analysis. TEEE Computer
Society Press, 1995.

J. O’Neal. Predictive quantization system (differential pulse code modula-
tion) for the transmission of television signals. Bell Systems Technical Journal,

45:689-721, 1966.

D. O’Shaughnessy. Speech Communication: Human and Machine. Addison-
Wesley, 1987.

A. Parker and J. Hamblen. Computer algorithms for plagiarism detection. IEFEE
Transactions on Fducation, 32:94-99, 1989.

T. Pavlidis. Page segmentation by white streams. In Proceedings of the In-
ternational Conference on Document Analysis and Recognition, pages 945-953,

1991.

T. Pavlidis and J. Zhou. Page segmentation and classification. CVGIP: Graph-
ical Models and Image Processing, 54:484-496, 1992.

W. Pennebaker and J. Mitchell. Probability estimation for the Q-Coder. IBM
Journal of Research and Development, 32:737-752, 1988.

W. Pennebaker, J. Mitchell, G. Langdon, and R. Arps. An overview of the
basic principles of the Q-Coder adaptive binary arithmetic coder. IBM Journal
of Research and Development, 32:717-726, 1988.

P. Pirsch. Adaptive intra/interframe DPCM coder. Bell Systems Technical
Journal, 61:747-764, 1982.

W. Postl. Detection of linear oblique structures and skew scan in digitized doc-
uments. In Proceedings of the International Conference on Pattern Recognition,

pages 687-689, 1986.
W. Pratt, P. Capitant, W. Chen, E. Hamilton, and R. Willis. Combining

symbol matching facsimile data compression system. Proceedings of the IFEFE,

68:786-796, 1980.

K. Rose. Deterministic Annealing, Clustering and Optimization. PhD thesis,
California Institute of Technology, 1991.

A. Rosenfeld and J. Pfaltz. Distance functions on digital pictures. Pattern
Recognition, 1:33-61, 1968.

124



[33]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

W. Rucklidge. Efficient computation of the minimum Hausdorff distance for vi-
sual recognition. Technical Report TR94-1454, Computer Science Department,
Cornell University, 1994.

H. Garcia-Molina S. Brin, J. Davis. Copy detection mechanisms for digital
documents. In Proceedings of the ACM SIGMOD Annual Conference, 1995.

H. Samet. Distance transform for images represented by quadtrees. [TFKEE
Transactions on Pattern Analysis and Machine Intelligence, 4:298-303, 1982.

P. Sarkar. Random phase spatial sampling effects in digitized patterns. Master’s
thesis, Rensselaer Polytechnic Institute, 1994.

J. Sauvola and O. Kia. Hyperdocument management for compression, trans-
mission, and processing. In Proceedings of the IKEE Workshop on Multimedia
Signal Processing, 1997. To appear.

J. Sauvola and M. Pietikainen. A document management interface utilizing page
decomposition and content-based compression. In Proceedings of the Interna-
tional Conference on Pattern Recognilion, volume 11, pages 752-757, 1996.

R. Sennhauser and K. Ohnesorge. Document image compression using docu-
ment analysis and block-class-specific data compression methods. In Proceedings

of the SPIE - Image and Video Compression, volume 2186, pages 146-155, 1994.

C. Shannon. A mathematical theory of communication. Bell Systems Technical

Journal, 27:623-656, 1948.

N. Shivakumar and H. Garcia-Molina. Scam: A copy detection mechanism for
digital documents. In Proceedings of the Second International Conference on
Theory and Practice of Digital Libraries, 1995.

C. Song, J. Garondick, and D. Schilling. A variable-step-size robust delta mod-
ulator. IFEFE Transactions on Communications, 19:1033-1044, 1971.

A. Spitz. An OCR based on character shape codes and lexical information. In
Proceedings of the International Conference on Document Analysis and Recog-

nition, pages 723-728, 1995.

A. Spitz. Using character shape codes for word spotting in document images.
In Shape, Structure, and Pattern Recognition, pages 382-389. World Scientific,
Singapore, 1995.

A.L. Spitz. Skew determination in CCITT Group 4 compressed document im-
ages. In Proceedings of the First Symposium on Document Analysis and Infor-
mation Retrieval, pages 11-25, 1992.

A.L. Spitz. Logotype detection in compressed images using alignment signa-
tures. In Proceedings of the Fifth Symposium on Document Analysis and Infor-
mation Retrieval, pages 303-310, 1996.

125



[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]
[110]

[111]

[112]

[113]

[114]

[115]

[116]

R. Steinmetz and K. Nahrstedt. Multimedia: Computing, Communicalions and
Applications. Prentice-Hall, 1995.

H. Tanaka and A. Kogawara. High-speed string edit methods using hierarchical
files and hashing technique. In Proceedings of the International Conference on
Patlern Recognilion, pages 334-336, 1988.

B. Verwer, P. Verbeek, and S. Dekker. An efficient uniform cost algorithm
applied to distance transforms. [IEEE Transactions on Pattern Analysis and

Machine Intelligence, 11:425-429, 1989.

M. Vetterli. Multi-dimensional sub-band coding: Some theory and algorithms.
Signal Processing, 6:97-112, 1984.

J. Vitter. Design and analysis of dynamic Huffman codes. Journal of the
Association for Computing Machinary, 34:825-845, 1987.

F. Wahl. A new distance mapping and its use for shape measurement on binary
patterns. Computer Vision, Graphics and Image Processing, 23:218-226, 1983.

F. Wahl, K. Wong, and R. Casey. Block segmentation and text extraction
in mixed text/image documents. Computer Graphics and Image Processing,

20:375-390, 1982.
R. Williams. Adaptive Data Compression. Kluwer Academic Publishers, 1991.

I. Witten, T. Bell, H. Emberson, S. Inglis, and A. Moffat. Textual image
compression: Two-stage lossy/lossless encoding of textual images. Proceedings

of the IFFE, 82:878-888, 1994.

[. Witten, T. Bell, M. Harrison, M. James, and A. Moffat. Textual image
compression. In Proceedings of the IEEE Data Compression Conference, pages
42-51, 1992.

I. Witten, A. Moffat, and T. Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Van Nostrand Reinhold, 1994.

K. Wong, R. Casey, and F. Wahl. Document analysis system. IBM Journal of
Research and Development, 26:647-656, 1982.

J. Woods and S. O'Niel. Subband coding of images. IEEFE Transactions on
Acoustics, Speech and Signal Processing, 34:1278-1288, 1986.

T. Yan and H. Garcia-Molina. Duplicate detection in information dissemination.
In Proceedings of the Very Large Database Conference, 1995.

Q. Zhang and J. Danskin. Entropy-based pattern matching for document image
compression. In Proceedings of the International Conference on Image Process-
ing, pages 221-224, 1996.

126



[117] Y. Zhang and L. Po. Fractal color image compression using vector distortion
measure. In Proceedings of the International Conference on Image Processing,

volume III, pages 276-279, 1995.

[118] J. Ziv and A. Lempel. A universal algorithm for sequential data compression.

IEEFE Transactions on Information Theory, 23:337-343, 1977.

[119] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate

coding. IEEFE Transactions on Information Theory, 24:530-536, 1978.

127



