
UNIVERSITY OF CALIFORNIA

SANTA CRUZ

ON-DEMAND LINK-STATE ROUTING IN AD-HOC NETWORKS

A dissertation submitted in partial satisfaction of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Soumya Roy

June 2003

The Dissertation of Soumya Roy

is approved:

Professor J.J. Garcia-Luna-Aceves, Chair

Professor Richard Hughey

Professor Katia Obraczka

Frank Talamantes
Vice Provost and Dean of Graduate Studies

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2003 2. REPORT TYPE

3. DATES COVERED
 00-06-2003 to 00-06-2003

4. TITLE AND SUBTITLE
On-Demand Link-State Routing in Ad-Hoc Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Cruz,Department of Computer
Engineering,Santa Cruz,CA,95064

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

185

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright c
 by

Soumya Roy

2003

Contents

List of Figures vi

List of Tables viii

Abstract ix

Dedication xi

Acknowledgements xii

Chapter 1 Introduction 1

1.1 On-demand Routing for Ad-Hoc Networks 2
1.2 Path Selection Algorithm . 4
1.3 Instantaneous Loop Free Routing . 6
1.4 Node-Centric Hybrid Routing . 8

Chapter 2 Source Tree On Demand Adaptive Routing (SOAR) 10

2.1 Working of SOAR . 11
2.1.1 Overview . 12
2.1.2 Information Stored . 13
2.1.3 Neighbor and Route Discovery 17
2.1.4 Handling Link Failures . 20
2.1.5 SOAR Packet Format . 22
2.1.6 Example of SOAR Operation 24
2.1.7 Bene�ts of SOAR . 25

2.2 Correctness of SOAR . 28
2.3 Comparative Analysis . 38

2.3.1 E�ect of Promiscuous Listening 42
2.3.2 E�ect of Node Mobility . 46
2.3.3 E�ect of Increase of Flows . 49
2.3.4 E�ect of Network Load . 52
2.3.5 E�ect of Network Size . 54

iii

2.4 Conclusions . 56

Chapter 3 Path Selection for On Demand Link-State Routing 57

3.1 Building a Source Graph . 58
3.1.1 Modi�ed Bellman-Ford Algorithm 60
3.1.2 Forced Routing . 64

3.2 Building a Source Tree . 65
3.2.1 Complexity Analysis . 67
3.2.2 Finding Valid Paths . 76
3.2.3 Choosing the Best Paths . 77
3.2.4 Optimizing the Source Tree . 82

3.3 Correctness of the Constrained Path-Selection Algorithm 83
3.4 Policy-Based Routing Using Path Selection Algorithm 85

3.4.1 Link Vector Protocol . 86
3.4.2 Conversion of Policies to Labels 88

3.5 Conclusions . 91

Chapter 4 On Demand Link-Vector Protocol (OLIVE) 93

4.1 Motivation Behind Design of OLIVE 94
4.2 Description of OLIVE . 97

4.2.1 An Overview . 97
4.2.2 Example of OLIVE Operation 99
4.2.3 Detailed Description . 102
4.2.4 Neighbor Relationship . 107
4.2.5 Handling Link Sequence Numbers 108

4.3 Correctness and Loop Freedom . 109
4.4 Simulation Results . 114

4.4.1 Mobility Pattern . 117
4.4.2 Input TraÆc Pattern . 117
4.4.3 Comparison Criterion . 117
4.4.4 E�ect of Increasing Load . 118
4.4.5 E�ect of Mobility . 121
4.4.6 Looping Problem . 123

4.5 Conclusions . 124

Chapter 5 Node-Centric Hybrid Routing 128

5.1 Approaches to Node Centric Hybrid Routing 131
5.1.1 Extended Caching of Netmarks 131
5.1.2 Proactive Routes to Netmarks 134

5.2 Netmark-aware Source Tree Routing (NEST) 136
5.2.1 Netmark Discovery . 138
5.2.2 Maintaining Bi-directional Paths 140
5.2.3 Packet Forwarding . 143

5.3 Multiple Netmark Scenarios . 143

iv

5.3.1 Static AÆliation . 143
5.3.2 Dynamic AÆliation . 144
5.3.3 Hybrid AÆliation . 144

5.4 Performance Evaluation . 146
5.4.1 Mobility Patterns . 148
5.4.2 TraÆc Patterns . 148
5.4.3 Performance Criteria . 150
5.4.4 Experimental Scenario 1 . 151
5.4.5 Experimental Scenario 2 . 155
5.4.6 Experimental Scenario 3 . 158

5.5 Conclusions . 160

Chapter 6 Summary and Future Work 162

6.1 Contributions . 162
6.2 Future Work . 165

Bibliography 168

v

List of Figures

2.1 Routing information stored, communicated and processed in SOAR . . 12
2.2 Building partial topology in SOAR using minimal source trees of neighbors 14
2.3 Propagation of link failure in SOAR 20
2.4 Representation of minimal source tree in control packets of SOAR . . 22
2.5 Handling link-state updates and updating network topology in SOAR 26
2.6 Di�erence in routing information exchanged in SOAR, DSR and AODV 26
2.7 Building of routing database in SOAR, DSR and AODV on exchange

of control packets . 27
2.8 A temporary loop in SOAR . 31
2.9 E�ect of promiscuous listening (snooping) in a 20-node network with

20
ows for varying pause time . 44
2.10 E�ect of node mobility in a 20-node network with 10
ows for varying

pause time . 47
2.11 E�ect of node mobility in a 20-node network with 20
ows for varying

pause time . 48
2.12 E�ect of increasing number of
ows in a 20-node network for pause time

0 s . 50
2.13 E�ect of increasing number of
ows in a 20-node network for pause time

60 s . 51
2.14 E�ect of loading 20-node network (number of sources = 10) 53
2.15 E�ect of network size (pause time = 0 s) 54
2.16 E�ect of network size (pause time = 60 s) 55

3.1 Constraints in path selection for on-demand link-state routing 59
3.2 Network topology at node a based on inputs from neighbors b and c.

Each link lists neighbors who have advertised that link. 66
3.3 (a) Partial topology at node i (b) Optimal source tree and (c) A source

tree satisfying the rules of policy constrained path selection 68
3.4 Representation of the logical formula (x1_:x1_y)^(x2_:x2_y)^(x3_

:x3_y)^(x1_x2_x3)^(:x1_:x2_x3)^(x1_:x2_x3) during second
step for the reduction of 3SAT problem to a SPAN-TREE problem. . 71

vi

3.5 Final step in the representation of 3CNF formula in the form of nodes
and edges . 73

3.6 Final representation of the clause (x1 _ x2 _ x3) in the form of vertices
and edges . 74

3.7 Inputs and outputs of path selection algorithm 76
3.8 Depiction of the last phase of the new path selection algorithm 81
3.9 Source tree advertised by the router x in autonomous system x (ASx) 89
3.10 Method of conversion of metric policy to cost parameters 91

4.1 Path selection in OLIVE . 97
4.2 Route discovery and route repair methods in OLIVE 99
4.3 Loop-freedom and correctness of OLIVE 112
4.4 Performance in a 50-node network with 0 second pause time and 20

sources with varying packet load . 116
4.5 Performance in a 50-node network with load of 4 packets/s/source and

10 sources under varying mobility . 119
4.6 Performance in a 50-node network with load of 4 packets/s/source and

20 sources under varying mobility . 126
4.7 Loops for a 50-node network with 20 sources under four di�erent load

conditions . 127

5.1 An ad-hoc network with a single netmark 131
5.2 Di�erence in control information in SOAR and node-centric hybrid rout-

ing protocols like NEST or NOLR . 136
5.3 Setting up of paths between netmarks and nodes 140
5.4 Data paths in an ad-hoc network with multiple netmarks 145
5.5 TraÆc
ow scenarios . 149
5.6 Performance of NEST, SOAR, DSR, AODV in a 31-node network with

a �xed netmark at load generated per node of 3 packets/s 151
5.7 Performance of NEST, SOAR, DSR, AODV in a 31-node network with

a �xed netmark at load generated per node of 5 packets/s 152
5.8 Performance in a 31-node network with three mobility models for net-

mark and two traÆc models . 156
5.9 Performance of NEST, SOAR and NOLR for a network with 30 nodes

and two netmarks . 160

6.1 Cluster formation in multi-netmark networks 167

vii

List of Tables

2.1 Terminology for SOAR . 15
2.2 Constants used in SOAR simulation 42
2.3 Constants used in DSR simulation . 43
2.4 Constants used in AODV simulation 43

3.1 Terminology used for the path selection process 61
3.2 Step-wise execution of the DFS-based path selection algorithm 79

4.1 Constants used for OLIVE . 115

5.1 Constants for NEST . 147
5.2 Speci�cations for INTNET model . 149
5.3 Speci�cations for RELIEF model . 150
5.4 End to end delay distribution of voice traÆc for di�erent netmark mo-

bility models . 158

viii

Abstract

On-Demand Link-State Routing in Ad-hoc Networks

by

Soumya Roy

This thesis explores the challenges, merits and demerits of using link-state information

for on-demand routing in ad hoc networks, such that routers maintain path information

for only those destinations for which they have data traÆc.

We �rst present the source tree on-demand adaptive routing (SOAR) pro-

tocol, in which each router exchanges with its neighbors a "source tree" containing

paths to only those destinations for which the router is the source or relay of data

packets. The main advantage of SOAR is that it is more scalable and better perform-

ing than current state-of-the-art on-demand routing protocols. However, a limitation

of SOAR is that it requires data packets to specify the paths they traverse to detect

loops. To eliminate the need for source routing or path traversal information in data

packets, we introduce the on-demand link-vector (OLIVE) protocol, which prevents

temporary loops for each destination by synchronizing relevant link-state information

among neighbors. In OLIVE, the advertised paths combine to form a source graph,

rather than a source tree. OLIVE is shown to outperform the current routing pro-

tocols proposed for mobile ad-hoc networks in terms of control overhead, throughput

and network delay.

We demonstrate that the problem of computing a source tree with the con-

straint imposed due to the exact nature of on-demand routing protocols is an NP-

complete problem and show approximation algorithms for the path-selection problem.

The practical implementations of ad-hoc networks would be mainly wireless

extensions of the wired Internet and the traÆc would be mainly from the mobile nodes

towards certain special nodes that act as gateways to the wired Internet. To achieve

high performance in such scenarios we have developed a new genre of node-centric

hybrid routing protocol where routes for frequently-accessed gateways would be kept

proactive, while routes between mobile nodes would be reactive.

To My Parents and Brother

xi

Acknowledgements

I am very grateful to my parents who have been my greatest guides all through-out

my PhD life. This research and learning would never have been possible without the

continuous support, unconditional love, a�ection and sacri�ce of my parents. I give

my deepest thanks to my elder brother, who has been my greatest well-wisher all the

time and has always given me a�ection and support.

I am lucky to have Prof. JJ Garcia-Luna-Aceves as my adviser. He has never

failed to give me the motivation and correct direction and I cannot express how greatly

I bene�ted from his words of wisdom whenever I am facing problems.

I would like to thank Prof. Katia Obraczka and Prof. Richard Hughey for

being in my advancement and defense committees. I also extend my thanks to

Prof. Suresh Lodha who had been in my advancement committee and had shown

considerable support for my work. Thanks also to Carol Mullane and Jodi Reiger,

who had always been of great help to me.

I cannot forget the wonderful support of my friends, Architadi, Smita, Avik,

Sasmal, Srikumar, Vidhya, Manju, Sanjit, Shailaja, Chandramouli, Joyopriya, He-

manth, Jyoti, Aman, Rahul, Rini, Rahul (Kundu), Raman, Subhajit, Subhasreedi,

Manosizda, Amyn, Preethy, Deepa, Vineet, Bhagyashri, Shantanu, Ajoy, Vaibhav and

Amin who have helped me gain con�dence and happiness during the trying times and

have made my school-life enjoyable. I am also grateful to my coco-inmates, Srinivas,

Marcelo (Spohn), Marco, Marcelo (Carvalho), Marc, Lichun, and Yu for the wonderful

research discussions I had with them and also to Ramesh, Saro, Hari, Ravindra and

xii

Venkatesh for the challenging non-research discussions.

This work was supported in part by the Defense Research Projects Agency

(DARPA) under grant F30602-97-2-0338 and by US Air Force/OSR under grant

F49620-00-1-0330.

xiii

Chapter 1

Introduction

In today's Internet, wireless networks are becoming more prevalent as they can make

access \anytime, anywhere" possible. Two main architectures for wireless networks

are : wireless local access networks (WLANs), and wireless ad-hoc networks. The

mobile nodes in a WLAN directly communicate with the �xed base-station to send

their traÆc to nodes in the same or di�erent WLAN or to the nodes in the wired

Internet. Routing is not an important issue in a WLAN because the path to the base

station is one hop. However, routing is critical for data forwarding in ad-hoc networks,

where each mobile node can act as a relay in addition to being a source or a destination

of data packets. Ad-hoc networks can play an important role in relief scenarios and

battle�elds, which cannot count on a base-station infrastructure. The participants

of conference scenarios or lecture sessions can also form an ad-hoc network and this

network can get connected to the wired Internet through gateways.

1

1.1 On-demand Routing for Ad-Hoc Networks

Certain speci�c features like interference, fading, shadowing, low available

bandwidth of wireless medium and mobility of nodes pose interesting challenges for

developing routing solutions for wireless ad-hoc networks. The proactive routing pro-

tocols that have been designed for the wired Internet to achieve reliability, robustness,

and optimality cannot be directly applied to wireless ad-hoc networks. For wireless

ad-hoc networks the routing protocols can be proactive as well as reactive. Pro-active

maintenance of paths to each node in an ad-hoc network can be expensive in terms of

routing overhead because routes break and build frequently [9]. Moreover, continu-

ous route maintenance at each node for every other destination may not be required,

because all nodes need not communicate with every other node in the network. On-

demand or reactive routing protocols, (e.g., DSR [25], AODV [33], TORA [32],

ROAM [36], DST [35], NSR [44]) reduce the control overhead by maintaining paths

to only those destinations to which data must be sent and the paths to such destina-

tions need not be optimum. Given that the links in the network are not reliable, it is

more important to set up and maintain at least one path, rather than requiring the

optimal path. On-demand routing protocols can be di�erent from one another based

on how they communicate information to obtain paths to destinations, how they use

and maintain that information, and the way in which data packets are routed. All on-

demand routing protocols proposed to-date use
ood search messages that either give

sources the complete paths to destinations (e.g., DSR), or provide only the distances

and next-hops to destinations and validate such distances in a number of ways (e.g.,

2

sequence numbers as in AODV, timestamps as in TORA, or internodal coordination

as in ROAM).

Garcia-Luna-Aceves and Spohn [24] introduced the source-tree adaptive

routing (STAR) protocol, in which a router informs its neighbors only the state of

those links along the paths it chooses to reach all the known destinations in the ad-

hoc network. The set of those links constitutes the source tree of a router. STAR

has been shown to have very competitive performance compared to DSR and AODV

[24, 23] while maintaining routing information for all network destinations. Link-state

routing protocols like OSPF, used in today's Internet [28], are not suitable for mo-

bile ad-hoc networks, because they depend on
ooding of link-state information and

replicating the entire topology information at each node of the network. Jacquet et

al. [22] present a proactive link-state routing protocol for dense mobile ad-hoc net-

works called optimized link-state routing (OLSR). In OLSR, routers exchange periodic

routing messages regarding all destinations, and periodic hello messages with neigh-

bors. OLSR uses the concept of multipoint relays (MPRs), which act as intermediate

routers from sources to destinations for forwarding of control information and works

best in dense networks. Topology Dissemination based on Reverse Path Forwarding

(TBRPF) [30] is another proactive link-state routing protocol, in which each router

computes a source tree, consisting of paths to all destinations based on the partial

topology information stored and reports part of the source tree to neighbors. The set

of nodes in the reported part of the source tree is determined at any router based on

whether, with respect to the destinations, it can act as relay for other neighbors (the

3

method is similar to selection of MPRs for OLSR [22]). TBRPF has been shown to

perform better than AODV and OLSR in terms of optimality of paths, throughput

and packet delay [29].

Given that each of the above link-state protocols is proactive and the source

tree-based approaches of STAR and TBRPF show comparable performance to on-

demand routing protocols, the obvious question is how to use source-tree information

in an on-demand routing protocol. Therefore, the motivation for such a design is the

desirability to provide a solution that is even more eÆcient than the current source-

tree based proactive routing protocols or the distance vector or path based on-demand

routing solutions by exploiting the use of on-demand link-state information. This leads

to the �rst part of our research, namely designing and developing a protocol to use

source-tree information on-demand, which we call the source tree on-demand adaptive

routing (SOAR) protocol. Chapter 2 describes SOAR and compares it with AODV

and DSR.

1.2 Path Selection Algorithm

Path selection algorithms like the Dijkstra's algorithm or the Bellman-Ford

algorithm [6] are commonly used for computation of routes in a link-state routing

protocol, in which the criterion for choosing the shortest path is a single metric. For on-

demand link-state based routing protocols, these algorithms cannot be directly applied

for path-selection because the criterion for the choice of successor is determined both

by shortest path metric and by the set of neighbors who have advertised that route.

4

Because all nodes do not have paths for every destination, a situation can arise

in which a node i �nds that neighbor k should be on the shortest path to a destination

j, but node k has not advertised any route to node j. Therefore, although node i

knows that there exists a path to node j through node k, it cannot forward packets

for node j to node k, because node k does not know how to reach destination j. To

prevent packet losses, the path selection algorithm should ensure that the links in the

anticipated path from node i to node j through node k have been advertised by node

k itself. Given this constraint, traditional path selection algorithms like the Dijkstra's

algorithm or the Bellman-Ford algorithm cannot �nd correctly shortest paths for all

destinations. We have shown that building an optimal source tree i.e., the source tree

with maximal number of vertices in it taking into consideration the above constraint,

is an NP-complete problem. Therefore, we have developed a heuristic that computes

the required source tree. Finite cost paths for some destinations will not exist in the

resultant source tree. However, �nite cost routes for the same destinations is possible

if a source graph, rather than a source tree is computed. Chapter 3 describes the

challenges of designing a path selection algorithm for ad-hoc networks with constraints

because of the use of link-state information on-demand. Chapter 3 also describes how

the proposed path selection algorithm can be extended to support loop-free policy-

based routing for the Internet.

5

1.3 Instantaneous Loop Free Routing

Maintaining loop-free routes at every instant becomes extremely important

in ad-hoc networks with dynamic topologies, because routing loops increase packet-

delivery latencies and reduce the number of packets delivered to the intended desti-

nations. Current on-demand routing protocols adopt di�erent techniques to prevent

temporary loops.

The dynamic source routing (DSR) protocol [25] is an example of protocols

that attain loop-free routing using source routes. In DSR, each route-request, broad-

cast to �nd a destination, records its traversed route, and a route reply sent by a node

speci�es the complete route between the node and the destination. Routers store

the discovered routes in a route cache. The header of every data packet in the basic

scheme speci�es the source routes to their intended destinations. However, implicit

source routing has been proposed recently [20], in which data packets will contain
ow

identi�ers and need not specify complete source routes. Implicit source routing renders

only small increases in data packet overhead and impacts packet delivery ratios and

average delays only slightly with respect to the basic DSR scheme.

The ad-hoc on-demand distance vector (AODV) protocol [34] is an example

of maintaining loop-free routes by using a sequence number for each destination. In

AODV, active routes for a given destination have sequence numbers that are non-

increasing moving away from the destination. When a node A needs to establish a

route to a destination D, it broadcasts a route request to its neighbors. If A previously

knew a route to D that became invalid, A increases the sequence number for D and

6

includes it in the route request. A node receiving the request can send back a unicast

route reply along its shortest path to node A only if it has a valid route to D and

the sequence number stored for D is not smaller than the sequence number in the

route request. Otherwise, the node receiving the route request must forward the route

request. When node A sends a route request for a destination, it increases the sequence

number for itself as well, which is used by other nodes that learn about new routes

to node A. Increasing the sequence number for a destination when routes must be

changed ensures loop freedom, but prevents nodes with valid and shorter paths to the

destination from being used, and in many cases makes the destination the only node

that can answer the route requests, i.e., forces unnecessary network-wide
ooding.

The temporally-ordered routing algorithm (TORA) [32] uses a link-reversal

algorithm [12] to maintain loop-free multipaths that are created by a query-reply

process similar to that used in DSR and AODV. TORA relies on synchronized clocks

to create timestamps that maintain the relative ordering of events. The link-reversal

algorithm is a form of synchronization among nodes spanning multiple hops.

The routing on-demand acyclic multipath (ROAM) protocol [36] uses a sim-

ilar approach in that it requires synchronization of the nodes' routing-table updates

across multiple hops. Although these approaches provide loop-free routing and permit

local repair of routes, their main disadvantage is that they require reliable exchanges

among neighbors and coordination among nodes over multiple hops, thus incurring

more control messages compared to AODV, DSR, and other on-demand protocols

that work correctly even with unreliable transmissions of route requests and replies

7

among neighbors.

The source tree on-demand adaptive routing (SOAR) protocol that we have

mentioned before, requires data packets to carry the path traversal information in

order to detect routing loops.

In Chapter 4 we present the on-demand link vector protocol (OLIVE), which

is the �rst on-demand routing protocol based on path information speci�ed as vectors

of link-states and supports loop-free incremental routing based simply on the desti-

nation of data packets. OLIVE does not need internodal synchronization spanning

multiple hops, the use of a source route, a path traversed, or a
ow identi�er in the

header of data packets or the use of destination-based sequence numbers. OLIVE

generalizes the exchange of path information attained in DSR and other protocols

(e.g., the neighborhood-aware source routing protocol (NSR) [44]) such that, when a

router �nds that selecting a route for a destination after a network change can lead

to a potential loop, it forces all its neighbors to tell the router when they stop using

it in their own paths to the same destination. In so doing the neighbors of the router

provide the router with zero or some alternate loop-free paths to the destination. This

process requires coordination between immediate one-hop neighbors only.

1.4 Node-Centric Hybrid Routing

Prior simulation studies [38, 9, 8] to test the performance of on-demand

routing protocols in mobile ad-hoc networks have assumed uniform traÆc pattern in

the network, i.e., traÆc
ows are randomly distributed throughout the network, with

8

no node being accessed more than others. However, in practical scenarios of ad-hoc

networks, traÆc patterns can be non-uniformly distributed and concentrate around

nodes that host popular network services (e.g., DNS services, Internet access, web

proxies) that are requested throughout the ad-hoc network. When only a few nodes

of the ad-hoc network must act as sources and sinks of most of the data packets,

maintaining routing information to such nodes on-demand and treating those nodes

as any other node may not be as attractive as a proactive approach for establishing

routing information to them while on-demand routing is used between less accessed

nodes. This motivates the interest in a node-centric hybrid approach to routing in

ad-hoc networks.

Chapter 5 introduces two approaches to node-centric hybrid routing. In one

approach, the netmark, which is the heavily accessed node, forces the rest of the

nodes to maintain their routes to it for long periods of time once they acquire it.

This amounts to extending the caching of netmark routing information. In another

approach, a netmark uses proactive routing updates to push its routing entry into the

routing tables of the rest of the nodes in the ad-hoc network.

9

Chapter 2

Source Tree On Demand

Adaptive Routing (SOAR)

The source-tree on-demand adaptive routing (SOAR) protocol is an on-demand link-

state routing protocol designed for wireless ad-hoc networks. The key idea in SOAR

is that the wireless routers exchange minimal source trees, consisting of the state of

the links that are in the paths used by the routers to reach important destinations.

Important destinations are active receivers, relays, or future potential relays of data

packets. Minimal source trees can be updated incrementally or atomically, and updates

to individual links in source trees are validated using sequence numbers. A wireless

router uses its outgoing links and the minimal source trees received from its neighbors

to get a partial view of the network and computes its source tree by running a local

path selection algorithm on its partial topology.

Like any other on-demand routing protocol, SOAR �nds paths to destinations

10

in an on-demand basis using queries and replies. When a router receives a data

packet to forward and the router already has an entry for the intended destination in

its routing table, it forwards the packet to the next hop speci�ed in its routing table.

If a router has no route for the destination of a data packet, the router sends a query

to its neighbors asking for the link-state information needed to produce a complete

path to the destination. A router that receives a query and does not have a path

for the requested destination forwards the query to its own neighbors; otherwise, it

responds with a reply. Routers exchange updates during network connectivity changes

to prevent loops and incorrect packet forwarding.

Section 2.1 describes in detail how SOAR works. Section 2.2 describes the

correctness of SOAR. Section 2.3 compares the performance of SOAR with AODV and

DSR, two popular on-demand routing protocols proposed for mobile ad-hoc networks.

Section 2.4 concludes the chapter.

2.1 Working of SOAR

To describe SOAR, we model the topology of an ad-hoc network as a directed

graph G = (V;E), where V is the set of nodes and E is the set of edges connecting

the nodes. When a router �nds a new node in its range, it assumes the existence of a

new link with it. Every link can have a cost associated with it, which becomes in�nite

when the neighbor is not directly reachable. Each node has a unique identi�er with

which routing protocols and other applications can identify it. Routers are assumed

to operate correctly and information is assumed to be stored without errors.

11

C

B

E

SOURCE

RELAYS

DESTINATIONS

K

Complete Source Tree at A

(a)

MJ L

I

H

A

D

GF

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

B

C

F

D

A

H

I

M

(b)
Minimal Source Tree

reported by A

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

of A stored at H
Minimal Exclusionary Tree

(c)

H

A

D

F

C

B
���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

Figure 2.1: Routing information stored, communicated and processed in SOAR

2.1.1 Overview

Each router in SOAR maintains a source tree, which consists of the links that

the router uses to reach known destinations. For example, as shown in Fig. 2.1(a), the

source tree of routerA contains links that it needs to reach destinationsB;C;D::::L;M .

Let us assume that, among the known destinations, node A has active
ows with nodes

C; F; I, and M (black nodes in Fig. 2.1(a)).

Routers advertise to their neighbors the paths they take to reach important

destinations. Important destinations are active destinations, relays to active destina-

tions, or future potential relays of data packets. Using the example of Fig. 2.1, among

the nodes in node A's source tree, nodes C; F; I, and M are active destinations; and

B; D and H are relays required to deliver data packets to the active destinations.

Therefore, router A does not report links (I; J), (H;K), (K;L), (D;G) and (C;E)

(shown with cross-marks in Fig. 2.1(a)) that belongs to paths to destinations which

are not important. It advertises all the other links, shown within the curved boundary

in Fig. 2.1(a) that are in the paths for important destinations. The subset of the

12

source tree that a router advertises to its neighbors constitutes its minimal source tree

(Fig. 2.1(b)).

Every node builds a partial topology of the network using the state of its

outgoing links and the link-state information in the minimal source trees advertised

by its neighbors. A path selection algorithm is then run on this partial topology for

computing routes to known destinations.

2.1.2 Information Stored

Conceptually, each router i in SOAR maintains a partial topology table Ti,

its source tree STi, a routing table RTi (where each entry contains destination ID,

the next hop for the destination) and the minimal source tree ST x
i , reported by each

neighbor x (�Ni) of node i , where Ni is the list of neighbors of node i. A router also

keeps a query table, a data bu�er and destination table (Di).

For implementation purposes, a single data structure can incorporate all

information present in ST x
i , STi and Ti. For each link lvu 2 Ti, information that

needs to be stored are its head u, its tail v, its cost c, its list of neighbors who have

reported lvu (which is essentially information about ST x
i) and a
ag denoting whether

the links are part of node i0s source tree (which is essentially information about STi).

Router imaintains the information about whether a destination j is important

or not in a destination table Di. An entry in Di for destination j maintains a vari-

able, last heardj , which tells the last time when either one of the following events has

happened:

13

� a data packet for node j is received at node i

� a reply containing a route to node j is received.

� a query is received at node i, which has been originated by node j.

� a new neighbor j is discovered.

When the di�erence between the present time and last heardj is greater than

the SOAR-speci�c protocol parameter, refreshing time, router i will no more consider

node j as important, unless (a) node j is used as a relay for any other node k, and (b)

node k is important.

y

a

i

b

y b

i

x

ax

S S S

S S

Sx

x y

yi i
’

Minimal Source Tree of a Minimal Source Tree of b

Partial Topology at i

(a) (b)

(c)

i

Figure 2.2: Building partial topology in SOAR using minimal source trees of neighbors

When a node i receives the source tree advertised by its neighbor k, it de-

termines the subtree in node k's minimal source tree for which node i is the root and

excludes the links belonging to that subtree and considers the remaining subset for

inclusion in the topology database. This subset of the advertised minimal source tree

that gets included in a router's topology is called the minimal exclusionary tree.

In the example of Fig. 2.1 , the minimal exclusionary tree of node A stored

at node H corresponding to the minimal source tree (Fig. 2.1(b)) reported by node A

to node H is as shown in Fig. 2.1(c). It should be noted that the minimal exclusionary

14

Table 2.1: Terminology for SOAR

lvu : Link entry in the topology for the
link from node u to node v, it is a
tuple (u; v; cost; seqNo)

lvuk : Link entry from node u to node v as
advertised by neighbor k

L.cost Cost of the link entry L
L.seqNo : Sequence number of link entry L
suk : highest sequence number advertised

by node k to node i for destination
u, same as lvuk.seqNo

G : (V,E) is the graph of the network
according to an omniscient observer

Dj
i : Distance from node i to node j ac-

cording to the view of node i

Dj
ix : Distance from node i to node j as

known by the neighbor to node x.
ST i

x : Source tree reported by node x to
node i

P j
xi : path of node x to node j as known

to node i

tree of node A at node H does not include links that are in the subtree rooted at node

H: The reason behind excluding these links is that node A is using node H to reach

any node within the excluded subtree and node H will have more current information

about the status of the links in that subtree.

The partial topology maintained at a router is created by aggregating the

minimal exclusionary trees of all its neighbors. As shown in Fig. 2.2, node a has

reported to node i subtrees Sx (rooted at node x) and Si (rooted at node i) and links

(a; x), (a; i), while node b has reported to node i subtrees Sy (rooted at node y) and S
0

i

(rooted at node i) and links (b; y), (b; i). Minimal exclusionary trees of nodes a and b

and adjacent links of node i aggregate to form the partial topology at node i, as shown

15

in Fig. 2.1(c). (Subtrees rooted at node i, Si and S
0

i have been deleted from the �nal

topology table stored at node i.) In case of con
icting information about the status

of a link, advertised by di�erent neighbors, sequence numbers are used to resolve the

con
ict. A node trusts the status of a link reported with a higher sequence number.

Sequence numbers in SOAR are managed on a per-node basis, rather than

on a per-link basis and at any instant of time, the sequence number of any link is the

sequence number of the head node of the link. Each router increments its sequence

number when any of its outgoing links goes up or down, which implies the sequence

number of a link with head node u can increase due to the change in link status of

other adjacent links with the same head node u. Every time a node advertises its

source tree, each of its outgoing links carry the current node sequence number.

The sequence numbers of links with the same head node u at a router i's

database (i 6= u) can be di�erent. This is because information about links with the

same head node propagates towards a node from di�erent directions and intermediate

routers do not report all link-state changes to limit updates.

The following rules are used to add and delete links from the topology graph

of a router (for terminology refer to Table. 2.1):

1. If a link lvu is deleted from a neighbor k's minimal source tree and (a) neighbor k

advertises a link lxu = (u; x;1; suk), where x 2 V and (b) suk > lvu:seqNo, then

the link-state entry lvu of the topology database is marked (u; v;1; suk). The

reason behind this is the neighbor has advertised the highest sequence number

of node u and has deleted lvu from its source tree.

16

2. If a neighbor k advertises a link (u; v; cost; suk), then l
v
u:cost = cost and lvu:seqNo =

suk, if suk > lvu0 :seqNo or suk = lvu0 :seqNo and cost < lvu0 :cost where lvu0 is the

previous link-state entry in the topology.

Since sequence numbers to links are assigned from a �nite number space,

one important cause of concern would be how to achieve the roll-over of the sequence

number. There are two simple ways in which roll-over of sequence numbers can be

supported in SOAR to validate link-state updates. In one approach, an aging �eld

is used in addition to the sequence number of a link-state update (LSU). The largest

possible sequence number is sent with a zero age and each node is forced to delete

the link from its tables and propagate such an LSU; furthermore after establishing a

new link with a new neighbor, a node sends to its neighbor the last sequence number

for the neighbor, so that the neighbor can start using a sequence number larger than

such a value. Another approach consists of using a timestamp together with the

sequence number. The timestamp is maintained externally to the algorithm, and

eliminates the need for resetting the sequence number, because the timestamp increases

monotonically.

2.1.3 Neighbor and Route Discovery

SOAR does not need to depend on a link-layer neighbor protocol for monitor-

ing link connectivity with neighbors. When a router receives a control packet directly

from a router that is not currently a neighbor, it assumes that a link with a new neigh-

bor has been established. It is assumed that either a link-layer protocol can inform

17

SOAR about a link failure when data packets cannot be sent along that link, or SOAR

can make that determination after a few transmissions to a neighbor.

When a router receives a data packet for which it is the next hop and the

router has a valid path to the destination, it immediately forwards the packet. Oth-

erwise, the router initiates a route-discovery process and keeps the data packet in its

data bu�er while the process completes.

The path-discovery cycle consists of two kinds of queries: non-propagating

queries that are meant for neighbors only, and propagating queries that are
ooded

throughout the network.

Non-propagating queries are sent prior to the propagating queries to prevent

unnecessary
ooding when the neighbors of a router have a path to the required

destination. Two path discovery cycles are separated by query send timeout seconds.

The value of query send timeout is doubled each time a response is not obtained

during a path-discovery cycle, until a pre-de�ned number of attempts have been made,

after which it is kept constant. After a pre-de�ned number of attempts, the node can

notify its upper layer that the destination is unreachable and it is up to the upper

layer to decide whether to terminate the
ow or not.

A query for a particular destination is forwarded by a node if all of the

following conditions are satis�ed:

� The router does not have a path to destination.

� The query has not traversed its stipulated number of hops.

18

� The di�erence between the present time and the time when the query for desti-

nation was last forwarded is greater than query fwd timeout.

The second condition is required to limit the queries within a speci�ed zone.

The last condition is imposed to limit the propagation of queries in the network when

they are meant for the same destination and originated from di�erent sources.

A node sends a reply to a query when it has a path to the destination

requested, while it forwards a reply if all of the following conditions are satis�ed:

� The router has a path to the destination of the reply.

� The router has discovered the new route to the source of the packet only after

receiving the reply (this is required to prevent multiple replies).

� The router is a node in the path from the source to the destination (this prevents

ooding of route replies).

The replies can be forwarded in two di�erent ways: (1) they can be unicast

to the originator of the route discovery process; or (2) they can be broadcast and only

those neighbors who satisfy the third condition discussed above re-broadcast the route

reply.

When a router receives a query and forwards it, it marks the source of the

query as important, which implies the query packet will contain the links that consti-

tute the path to the source. This is required to set up reverse paths towards source,

which are used to forward replies back to the source. In addition, when a node sends or

forwards a reply, it marks as important the destination for which route discovery has

19

been initiated, so that minimal source tree carries the path to the destination. After

the path has been established the data packets are forwarded hop by hop. When the

routes break, SOAR uses updates to set up alternate paths and notify neighbors of

the changes in the forwarding paths. Apart from the queries, replies and updates,

in SOAR the routers exchange two other control packets which are (a) forced updates

and (b) forced replies. These packets are essential to force some relevant nodes in the

network to set up paths for certain destinations. In Chapter 3.1, we will describe in

details the design objective behind sending those packets.

2.1.4 Handling Link Failures

j

i

e

d

c

b

a

Node j is not active to these nodes

Node j is active to these nodes
���
���
���
���

���
���
���
���

��
��
��

��
��
��

Figure 2.3: Propagation of link failure in SOAR

When a router detects that the cost of its path to the destination has in-

creased, it sends updates to its neighbors. When costs of paths to important destina-

tions decrease or remain the same, a node can change successor without notifying its

neighbors, because this operation cannot lead to loops.

In Fig. 2.3, assume that active
ows exist between node a and node j and

20

the path taken by the
ow is abcdeij. Let us assume that link (i; j) fails. After node i

detects the failure of link (i; j), it �nds an alternate path (shown as the curved dashed

line) to node i of higher cost and reports that path to its neighbors. The reported

minimal source tree carries implicitly information about the deletion of link (i; j).

The link failure information propagates to the upstream nodes, until it reaches a node

(say d) that has an alternate equal cost path to node j. If the case would have been

that none of the upstream nodes of node i has an alternate equal or lower cost path

to node j, then the link failure information travels all the way back to the source,

a. Under such scenarios, node a will initiate a route discovery process. Accordingly,

intermediate nodes from source to receiver try to locally repair route failures, rather

than always sending link failure information back to source. Unlike SOAR, in DSR

and AODV route failure information travels always to the source. This implies that

in SOAR the number of nodes who can get a�ected due to network dynamics is less

compared to that in AODV or DSR.

The control packets exchanged in SOAR are primarily limited broadcast pack-

ets, which can be lost in a multi-access radio channel. Because the loss of control

packets can lead to incorrect path information and loop formations, the path traced

by a particular data packet is kept in its header. When a node receives a data packet

to forward, it reads the path traversed by the packet in the packet header and checks

whether forwarding it to the successor, speci�ed in the routing table would lead to a

loop. If it detects that the packet can go in a loop, it sends out an update and drops

the packet. A router also sends an update if it receives a data packet for forwarding

21

for a destination to which it does not have a route.

To prevent an update from being sent for each data packet received from a

burst of data packets with no next hop or headed for a potential loop, a minimum

update time is enforced in the transmission of consecutive updates. This time spacing

of updates is maintained only for those updates generated in response to information

obtained through data packets.

2.1.5 SOAR Packet Format

i

g h

c

a

(a) Minimal Source Tree

Breadth First Search Walk : a,b,c,d,e,f,g,h,i

Bitmap : 1,0,0,1,0,0,0,1,0,0,1,1,0,1,1,1,1,1

Special List

Special Bitmap :

(c) Actual Next Hop Representation
for nodes with different next hops that in source tree

(b) Bitmap Representation

: i , i cb

0,0,0,0,0,0,1,0,1

f

b

d e

Figure 2.4: Representation of minimal source tree in control packets of SOAR

The minimal source tree can be eÆciently represented using O(4n+(2n�1))

bits by emulating the breadth-�rst search of the minimal source tree (n is the number

of nodes in the network).

Fig. 2.4(b) shows the bitmap representation of the minimal source tree, given

in Fig. 2.4(a). Breadth First Walk (BFSWALK) sequence shows the nodes in the

order in which they are visited, if the search starts from the source. The bitmap in

Fig. 2.4(b) will explain the parent-child relationship among nodes. After every \1",

the following 0s are the children of that node, for whom the \1" has been placed.

22

Procedure PACKET DECRYPT describes the process of re-creating a tree based on

a given BFSWALK sequence and bitmap.

Procedure PACKET DECRYPT

count 0

i 0

while (count < bitmap:length)

if (bitmap:bit[i] = 1)

count ++

parent BFSWALK[count-1]

index count

bitmap index i+ 1

while (bitmap[bitmap index] = 0)

u BFSWALK[index]

u:parent parent

end i bitmap index

endif

end

The number of bits in the bitmap is (2 � n � 1), where n is the number of

nodes in the tree. 1

Assume that according to the routing table entries, in order to reach node g,

the path taken is acg, while for node i the path taken is acbei. Therefore, node i's and

node g's next hops are di�erent from what they have been shown in the minimal source

tree in Fig. 2.4(a). The reason behind the di�erence in the actual next hop and that

represented by the advertised source tree is that SOAR advertises source-tree only and

the routes computed through the path selection algorithm combine to form a graph,
1Thanks to Marcelo Spohn for the eÆcient packet representation method.

23

rather than a tree. We will explore the issue in detail in the next chapter. In the

SOAR control packets, actual next hops are advertised as shown in Fig. 2.4(c). The

bits in the special bitmap correspond to the nodes shown in BFS Walk and marking

the bit 1 in special bitmap implies that the corresponding node has di�erent next

hop than that indicated in the BFS walk. Their real next hops are indicated by the

indices of those next hops in BFS walk (e.g., in Fig. 2.4(c) ib is the index of node

b in BFSWALK and node b is the actual next hop for node g). The total overhead

(in bytes) for representing this special list is (dn=8e + dlog2n=8e �m) where m is the

number of nodes with di�erent next hops than that shown in the minimal source tree.

2.1.6 Example of SOAR Operation

We illustrate the steps of SOAR operation using the example shown in

Fig. 2.5. For simplicity, we assume that all the nodes have packets for every other

node in the network and therefore, every other node in the network is important for

each node and that the network has converged to the same sequence number for each

node. Therefore, node a knows the highest sequence number for each node in the

network. Corresponding to each node in the �gure, its sequence number has been

indicated in brackets, e.g. 34 is the current sequence number for node b and that is

known to all nodes in the network. The example shows how the partial topology table

at node a in Fig. 2.5 is modi�ed after link (b; c) fails.

When link (b; c) goes down, node b increments its sequence number to 35.

The path to node c breaks at node b and it sends an update reporting its new minimal

24

source tree, as shown in Fig. 2.5(f). Node a receives the update and modi�es the

minimal source tree entries of node b. No update has yet reached from node f and

so the minimal exclusionary tree of node f at node a remains unchanged. The links

deleted from the old minimal source tree of node b at node a are (b; c), (c; d), (c; e).

Links (c; d) and (c; e) do not appear in the minimal source tree of node f . These links

are deleted from the partial topology table at node a. The node sequence number

reported by node b for itself is 35 and the node does not advertise link (b; c). Because

every node must be using the shortest path to any destination, the only reason node b

has stopped using the link (b; c) is that link (b; c) failed or increased in cost or node b

does not use it because there is an alternate lower cost path. Link (b; c) advertised by

node f has sequence number 34 < 35. As indicated in Fig. 2.5(h), node a marks link

(b; c) to be of in�nite cost with sequence number 35. The reason for setting the cost to

in�nity is to stop using the link because the neighbor who has already stopped using

it has advertised the highest sequence number for link (b; c). This technique helps to

inform routers that a link may not be useful for data delivery without the explicit

noti�cation of link failures. The modi�ed network topology, as shown in Fig. 2.5(h),

is used for re-computation of routes.

2.1.7 Bene�ts of SOAR

We show using Fig. 2.6, how SOAR uses least number of control packets

for setting up and maintaining paths by exchanging source tree information. Assume

that initially the routing database of node i is empty. When node i wants to send a

25

���� ����

���� ����

����

���� ��

e

c

d

19

35

35a

f

b

�
�
�
�

��
��
��
��

����

��
��
��
��

�
�
�
�

��

��
��
��
��

��
��
��
��

����

��������

����

������

��
��
��
��

��

��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

����

��
��
��
��

��������

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��

��
��
��
��

cc(27)

d(17)

f(19)

Topology of the Network
with Link (b->c) Down

c(27)

d(17) da

b c

ef

19

17

34

13

a

b c

d

ef

17

35(inf)

19

b
34

27

27

e

c

d

e(17)

b(35)

f(19)

b(34)

a

b c

e

19

17

34

34 a

b

f

d

e

19

34

19

27

27

17

34

a

f

d

13

19

13

a(13)

after link (b,c) fails

35 19

3513

34 19

a(13)

e(17) f

13

(c)

(e)

Minimal Exclusionary Tree of Node b

19

34

19

Topology of the Network

(h)

(d)
(b)(a)

(f) (g)

after the link (b->c) goes down

at Node a
Minimal Exclusionary Tree of Node f

at Node b

Partial Topology at Node a

Minimal Exclusionary Tree of Node b at Node aUnchanged Minimal Exclusionary Tree of Node f
at Node a

Partial Topology at Node a

17
19

Figure 2.5: Handling link-state updates and updating network topology in SOAR

x
y

a e

f

g

e

f

g

m

h a

x’s routing database y’s routing database
(b)

x y

i

(a)

e

x y

a

f

g

f

g

(b) & (c)

x

y

g seqNo

g seqNo dist = 3

 dist = 3

(c) x’s reported path y’s reported path
(d) (e)

(f) AODV’s reported distance

Trees reported in SOAR Paths reported in DSR (d) & (e)

Figure 2.6: Di�erence in routing information exchanged in SOAR, DSR and AODV

packet to node g, it sends a query for node g because it does not have any path for it.

Fig. 2.6(b) and Fig. 2.6(c) show the routing entries for active destinations at node x

and node y, which are neighbors of node i. Nodes x and y reply to the query, because

they both have routes for node g. In SOAR, nodes x and y will report minimal source

trees, as shown in Fig. 2.6(b) and Fig. 2.6(c) respectively. DSR only advertises paths

to the destination requested. The reported paths of nodes x and y in DSR are as

shown in Fig. 2.6(d), while in AODV nodes x and y exchange distance information as

26

shown in Fig. 2.6(e).

next hop = x

destination = g

i

x

a

f

e

y

h

m

g

a

x

i

y

f

g

e

(a) Routing Database in SOAR (b) Routing database in DSR

(c) Routing Database in AODV

distance = 4

seqNo as sent by x for g

Figure 2.7: Building of routing database in SOAR, DSR and AODV on exchange of control
packets

Fig. 2.7(a), Fig. 2.7(b), Fig. 2.7(c) respectively show the aggregated topology

information in SOAR, DSR and AODV that gets stored at node i after the reception of

replies to its queries. AODV has a single choice of route for node g because it accepts

the �rst reply and discards the second. DSR accepts multiple replies and stores the

information in each one of them and therefore, has two paths to node g, while SOAR,

as shown in Fig. 2.7(a) has four choices to reach node g. Therefore in SOAR, when the

original path breaks, the router can set up an alternate path more often than other

routing protocols, without starting a fresh route discovery process.

In [21], a new version of DSR has been proposed in which a link-state database

is created at every node by extracting links from each path information it receives

and a path-selection algorithm is run on this database for �nal route selection. In

SOAR links are updated, maintained and exchanged, while they are derived from

path updates in DSR. SOAR communicates a link only once when it is used to reach

at least one destination and validates each link with a sequence number. In contrast,

DSR with link caches [21] speci�es complete paths to destinations from which links are

27

then extracted; links are not validated individually and are deleted by aging. Though

the link-state representation of paths in DSR helps it to improve the performance,

the source-tree based method of exchange in SOAR always helps it to create a richer

routing database than DSR.

2.2 Correctness of SOAR

The correctness of an on-demand routing protocol must be approached dif-

ferently from the correctness proofs of table-driven protocols in which each node main-

tains routing information for all destinations. The key reasons behind the need for a

di�erent approach are that di�erent routers maintain routing information for di�erent

subsets of destinations, and routing information at a router is modi�ed due to changes

in network
ows in addition to changes in the network connectivity.

For a table-driven (proactive) routing protocol to be correct, it must satisfy

the following two properties:

� All nodes have correct paths for any given destination j following an arbitrary

number of changes in the network conditions.

� No update messages are being exchanged a �nite time after the last change in

the network condition.

What need to be shown for the correctness of on-demand routing protocols

are:

� Within a �nite time following an arbitrary number of changes in network condi-

28

tions and traÆc
ows, all sources have correct paths for each destination that is

reachable through a physical path and for which they have an active
ow.

� Within a �nite time after the last change in network conditions and
ows, all

sources have loop-free and valid paths to all reachable important destinations,

and no �nite paths to important unreachable destinations.

The above conditions leave open the possibility of nodes only trying to �nd

paths to unreachable destinations. In practice, the routing protocol can inform that a

destination appears to be unreachable after a few failed attempts, and it is up to the

higher-level protocol or application to determine whether or not to persist trying to

�nd paths to unreachable destinations.

The assumptions made to prove the correctness of SOAR are:

1. After an arbitrary sequence of link cost changes, topology changes, and
ow

changes, there is a �nite amount of time that is suÆciently long for SOAR to

�nish the �nal computations of routes to important destinations.

2. Control messages are received correctly within a �nite time, or nodes have the

ability to detect loops from information carried in data packets.

3. Routing information is stored correctly and routers operate correctly.

4. An underlying protocol monitors neighbor connectivity and within a �nite time

after the last network-connectivity change, every node knows which are its neigh-

boring nodes.

29

Theorem 1 Within a �nite time after the last change in the topology or network

ows, no updates are transmitted.

Proof : If the updates are transmitted inde�nitely after the last change

in network connectivity or network
ow, then there must be at least one node, which

is sending updates inde�nitely for at least one link. We will show by induction that

this is not possible for any link in the network.

Let dl be the number of hops that a node is away from the head node of a

link l.

If dl = 0, it means we are referring to the head node. The head node changes

the status of a link only �nite number of times because there are �nite changes in

network connectivity. (In SOAR, a node changes sequence number only if there is a

change in the status of any of its adjacent links). Therefore, the proof holds true for

the head node.

The induction hypothesis is that a node which is n hops away from head

node of a link will not send updates inde�nitely for that link.

Let us now consider the case of a node that is (n + 1) hops away from the

head node of the link l. If a node sends updates inde�nitely for a link l, then it

must add or delete the link inde�nitely from its source tree, in which case one of its

neighbors has added or deleted the link inde�nitely from its source tree. Moreover,

that neighbor is one hop nearer to the head of link l (i.e. n hops away) because due to

the use of exclusionary trees, a node does not trust links advertised by the upstream

nodes, i.e., nodes that are farther away. But according to induction hypothesis, the

30

downstream node, which is n hops away from the head node will not add or delete

the link inde�nitely. Therefore, the node, which is (n+ 1) hops away will not add or

delete the link inde�nitely and the updates cannot go on for in�nite time.

The above proof does not make any assumption regarding the reliability of

any particular update and hence the proof should be valid under unreliable updates.

Theorem 2 SOAR does not have permanent loops.

nq

zl
m

n

an chooses n at t1
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

t

j

a

b

x

yn

n

n

n

an chooses n at t1

(a) (b)

sn

n

n
n n

n
tt

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

n

n

n
n n

n

n

n

n

n

2

1
p

p

s

j

j

nq

a

b

x

y

zl
m

n

t

Figure 2.8: A temporary loop in SOAR

Proof : We will divide the proof into several stages.

Assume initially that every destination is important to every other node in

the network, i.e., traÆc for any destination is present at any node all the time. This

implies that the source tree reported by any node contains links to all other nodes in

the network.

As shown in Fig. 2.8(a), let us assume that nodes na, nb,,nx, ny, nz,

....,nl, nm, nn,, nq,..., ns, nt form a loop, and that the loop is formed at time t1

when node nt chooses node na to reach some destination j. The loop is formed because

node na is actually an upstream neighbor for node nt, though that information is not

31

available at node nt. This is because the source tree advertised last by node na to

node nt does not include the subpath from node nt to destination j. That can happen

if node na does not know of its latest path to node j or chooses not to advertise its

latest path.

Let node nm be the node nearest to node na that has not advertised its latest

change in successor in its path to node j (node nm can also be equal to node na, but

nm 6= nt, because then node nt should have known about the correct path to node j

through node na).

When node nm changed from its previous successor (p1) to node nn, it must

have experienced a decrease in cost. This is the case because, if node nm had expe-

rienced an increase in cost, it would have advertised its latest change in successor,

in which case the assumption that node nm is the nearest node to node na who has

remained silent after changing successor will not hold.

By recursion, while proceeding clockwise along the loop, either a node nq

is reached that has not advertised its latest change in successor (due to decrease or

no change in path cost for node j) or node nt is reached. The last condition cannot

happen, as that contradicts our assumption.

Let us now assume that nm is the node extreme from na that has remained

silent due to decrease or no change in its path cost. This implies that nm is the last

node that knows of the correct path through node nt to destination j. Accordingly,

the following equations should be true for node nm and its downstream nodes for node

j (for terminology refer to Table 2.1):

32

Dj
nm(t0) > Dj

nn(t0) > ::::: > Dj
nt(t0) t0 < t1 (2.1)

If node nm's path cost to node j decreased or remained the same, then for

any node x upstream to node nm , Dj
nmx � Dj

nm
. Therefore, we have

Dj
nmnl

(t0) � Dj
nm

(t0) =) Dj
nl
(t0) > Dj

nt
(t0) (2.2)

Extending this, it is easy to show that

Dj
na(t0) � Dj

nl
(t0) > Dj

nt(t0) (2.3)

) Dj
nant(t0) � Dj

na(t0) > Dj
nt(t0) (2.4)

Dj
nt(t1) � Dj

nant(t1) � Dj
nq (t0) � Dj

nm(t0) > Dj
nt(t0) (2.5)

Eq. 2.5 implies that node nt must have an increase in cost when it chooses

na as the successor at t1. The above steps demonstrate initially a temporary loop

can only form if a node chooses a successor which is presently an upstream node, if

it experiences an increase in cost. Then it advertises path [lnant ; l
na
nb
::::Pnynx] and the

cost of the path is greater than Dj
na(t0). From Eq. 2.5, this implies that all nodes

ns; :::; nq; ::::; nm; :::nz must experience an increase in cost and send updates, provided

none of them has found an alternate path of equal cost without involving subpath

from node nt, in which case the loop breaks. When node ny receives the update from

node nz advertising higher cost, it will not choose nz as the next hop as node nz's

advertised path ([lntns ::::l
nm
nl

:::lnant ; l
na
nb
::::Pnynx]) would indicate that the route to node j

contains node ny and the loop would break. That leads us to the �rst part of the

33

proof, where we show the permanent loops cannot happen if every node is important

for every other node. The proof assumes that the control packet sent by a node will

be received in �nite time by the intended recipient.

When a node stops assuming a destination j to be important, updates are

not sent for the change of paths it may encounter for destination j. We have seen that

permanent loops can never be formed if the nodes change path due to decrease in cost.

Next, we prove that permanent loops cannot occur if the distance increases and path

changes have not been reported because the destination is not important. For this

case, we need to consider two cases: reliable transmission of updates and unreliable

transmission of updates. Under the assumption of reliable updates, we shall show that

two hop loop detection mechanism should be suÆcient to prevent permanent loops.

For unreliable updates, a mechanism should be present to detect multi-hop loops.

When a node i detects the formation of a two-hop loop, it sends an update

and in the update it speci�es the path through the neighbor k. Then node k �nds that

its downstream neighbor i is actually using it to reach node j and hence will not select

node i as the next hop and this will break the loop. Therefore, permanent two-hop

loops cannot form.

For this case, we use the example, shown in Fig. 2.8(b). At time t1, node

nt chooses node na as its next hop. Let the distance from node nt to node j be c0

when node nt has a di�erent next hop than node na. Let nl be the �rst node in the

counter clockwise direction that has not advertised its increase of cost and let nx be the

node, till which node na knows correctly the data path. Node nm is the downstream

34

neighbor who does not know that node nl has chosen it as the successor for node j.

Node nm's current successor is node nn and not node nl, which leads to Eq. 2.6

Dj
nl�

= Dj
nlnm

(t0) � Dj
nnnm(t0) � (c0 + �� 1) where � 2 Nnl (2.6)

The assumption is that Dj
nm

(t0) = c0 + � (t0 < t1) and the cost metric of a

path is the hop count (� > 0).

Next we show that although under the assumption some node nl has remained

silent, the upstream nodes for destination j will have a lower estimate of their distance

to node j and the estimate also has a lower bound.

Following Eq. 2.6 if node x is an upstream node � hops away from node nl,

then the following equation is true

Dj
nl
(t0) � (c0 + �� 1) =) Dj

x(t0) � (c0 + �+ � � 1) (2.7)

Using the same argument, it is true that Dj
nant

(t0) � (c0+�+�� 1). When

� + � = 0 and the equality holds, it implies that the loop is a two-hop loop, and it

has already been shown two-hop loops do not exist permanently.

When (�+ �) is a �nite value, we have the following relation:

Dj
nt
(t1) = Dj

nant
(t0) + 1 = c0 + �+ � > Dj

nt
(t0) (2.8)

Accordingly, when node nt chooses node na at time t1, it experiences an increase in

cost and it must send an update and the loop breaks, because the downstream nodes

also experience an increase in path cost.

In case of unreliable updates, if node nt's updates are lost, node nt looses

the opportunity to update its neighbors when it chooses node na as the next hop.

35

If a multi-hop loop detection mechanism is used, then node nt can again update its

neighbors.

Lemma 1 If a source has a path to a destination and according to the network topol-

ogy, G as seen by an omniscient observer that path is invalid, then data packets stop

owing along that path within a �nite time.

Proof : Assume that the source i has a path to the destination j and

according to G that path is invalid. Because node i is the source for node j, within

a �nite time after node i has chosen that route, it must have data packets forwarded

towards node j along that route. Given that the number of nodes in the network is

�nite, if the path is invalid, then the packet should either revisit a node (implying

a loop) inde�nitely, or visit a node that has no path to the destination inde�nitely.

From the previous theorem, the �rst case cannot occur. The rest of the proof shows

that the second condition is also impossible.

Let i, na, nb, nc ..., nx, ny be the sequence of nodes along which the data

packets
ow and node ny is the node which has no �nite path for the destination j.

In SOAR, if a node has a path for node j through neighbor k, it implies that node k

has advertised that path to destination j. Because node nx forwards data packets for

node j to node ny, ST
nx
ny

must contain links that lead to node j, which implies that

node ny has not advertised that it has no path to node j. However, this contradicts

the operation of SOAR, in which any node that receives a data packet to forward and

has no path to node j must send an update and that update would not contain any

path to node.

36

The previous Lemma is also valid if the updates are unreliable, because if lnxny

exists, then there is a �nite probability that the update of ny reaches nx.

Lemma 2 If there exists a path from source i to destination j according to G, then

node i can obtain a path to node j within a �nite time.

Proof : When a source i has no path to the destination j, it generates

queries to set paths to destinations. If a path from node i to node j exists in G and

node i does not get a path to node j within �nite time, it implies that node i generates

in�nite queries to the destination, which is possible only if:

� No node has sent a reply, which cannot be true because at least node j should

send a reply.

� At least one node sends inde�nitely wrong replies. If a reply is wrong either

1. The source i receives an invalid path. However, from Lemma 1, it follows

that the node sending the wrong reply will be corrected.

2. The source or the intermediate nodes that have forwarded queries and re-

ceived wrong replies can not obtain any path for destination j. According

to the operation of SOAR, those nodes will correct the sender of the wrong

reply. When updates are unreliable, assuming that there is a �nite probabil-

ity of packets going through, the sender of a wrong reply will get corrected

within a �nite time. Therefore, this process cannot continue inde�nitely.

Theorem 3 Within a �nite time after the last change in topology and traÆc
ows,

all sources will have loop-free and valid paths to all receivers.

37

Proof : This follows automatically from the combination of Lemma 1,

Theorem 2 and Lemma 2.

Theorem 4 If any destination becomes unreachable, no source can have a �nite path

to any of those destinations within a �nite time.

Proof : The result is immediate from the previous theorem. When a node

does not �nd any path to a destination it will inde�nitely send queries. In such a

case, the network layer can send an indication to the application layer after several

attempts of route discovery and it is up to the application to terminate the connection

and resume it later.

2.3 Comparative Analysis

The performance evaluation has been done in the ns2 simulation platform [18],

using the code of DSR and AODV provided with the simulator. For AODV, we have

used the code available from Marina et. al. [27]. The AODV code conforms to the

speci�cations mentioned in the version 3 of the Internet draft of AODV. However,

the values of constants used for AODV are according to the values given in the code.

DSR code conforms to the version 1 of the Internet draft. The link layer implements

the IEEE802.11 [5] Distributed Co-ordination function (DCF) for wireless LANs. The

broadcast packets are sent unreliably and are prone to collisions. The physical layer

approximates the 2 Mbps DSSS radio interface of a Lucent WaveLan Direct-Sequence

Spread-Spectrum radio [46]. The radio range is 250m and for all the simulations, the

38

run length is 900 seconds.

DSR, AODV and SOAR use link layer indications about the failure of links

when data packets cannot be delivered along a particular link. Except for the noti�-

cation of the link layer about links going down, none of the protocols has any other

interaction with the lower layer. In particular, promiscuous listening was disabled for

both DSR and SOAR. Given that both SOAR and DSR carry path information in data

packets, promiscuous listening could improve the performance of these two protocols.

However, our performance comparison of SOAR with DSR and AODV is aimed at

evaluating the three protocols without making too many assumptions regarding the

level of control of the MAC layer. Furthermore, in practice, promiscuous listening may

not be available because of any of the following reasons:

� Link-level encryption may be used, which eliminates promiscuous listening.

� The MAC protocol uses multiple channels rather than a single common channel.

� Promiscuous listening is turned o� to reduce energy consumption [11].

Mobility Pattern The movement of the nodes in the simulation is according to the

random waypoint model [9], which we use to o�er a common reference point with prior

published results [8, 9]. In this model, each node is at a random point at the start of the

simulation and after pause time seconds selects a random destination and moves to that

destination at a speed selected from a uniform probability distribution between 0m/s

and 20m/s. distributed between 0m/s and 20m/s. Upon reaching the destination, the

node pauses again for pause time seconds, chooses another destination, and proceeds

39

there. For our simulation studies, we use moderate sized networks consisting of 20

nodes moving over a rectangular space of 1000m�300m.

Pause times used are 0, 15, 30, 45, 60, 120, 300, 600, and 900 seconds.

We focus on high mobility scenarios with higher granularity than on low mobility

scenarios, because our aim is to �nd how the routing protocols impart extra overhead

under rapidly changing network conditions.

Input TraÆc Pattern For most of the scenarios we have used the network traÆc

load of 40 packets/s or approximately 163 kbps with a data packet size of 512 bytes),

which is small compared to the available bandwidth. The motivation behind using

such a small load is to avoid having data packets compete with the routing layer

packets, and to �nd out whether the control packets themselves create any congestion

in the network.

In ns2, when the links go down all packets scheduled over that link can be

rerouted. Therefore, when the load is less, we are testing whether the routing protocols

can reroute data packets in case of link failures, or whether they loose packets due to

formation of loops and over
ow of data bu�ers at the routing layer where the data

packets wait for their routes to be discovered using the route requests.

We have also tested the e�ect of overloading the network on the performance

of routing protocols by varying packet loads from 20 packets/s to 140 packets/s.

Under increasing number of peer-to-peer connections, the challenge of on-

demand routing protocols is maintenance of increasing routing information. Therefore,

40

we have also determined how each protocol scales with the number of
ows. Accord-

ingly, we carried out experiments for 4, 10, 20 and 32
ows. The packet generation rate

for each individual
ow is changed to keep the total load constant when the number

of traÆc
ows in the network increases.

Each
ow is a peer-to-peer constant bit rate (CBR)
ow and the data packet

size is kept constant at 512 bytes. Each
ow continues for 200 seconds and after

the termination of the
ow, within 1 second, the source randomly chooses another

destination and starts another
ow, which again lasts for 200 seconds.

Comparison Criterion The following performance metrics are used to compare

the performance of the routing protocols:

� Packet delivery ratio: The ratio between the number of packets sent out by the

sender application and the number of packets correctly received by the corre-

sponding peer application.

� Control packet overhead: The total number of control packets sent out during

the simulation. Each limited broadcast packet is counted as a single packet. Low

control packet overhead is desirable in low-bandwidth wireless environments.

� Average hop count: The average number of hops the data packet took from the

sender to the receiver. Smaller hop count implies that the routing protocol is

using shorter paths to the destinations, thereby more eÆciently utilizing the

network resources.

41

Table 2.2: Constants used in SOAR simulation
query send timeout 500
(exponentially backed o�) (ms)

Zero query send timeout (ms) 30

Max number of pending packets 50

query forward timeout (s) 1

max query send timeout (s) 10

Minimum Update Time (s) 3

MAX HOPS 17

refreshing time (s) 60

� Average end-to-end delay: The end-to-end delay measures the delay a packet

su�ers between leaving the sender application and arriving at the receiver ap-

plication. This includes delays caused by route discovery latency, delay due to

waiting at IP and MAC layers and propagation delays.

� Byte overhead in routing packets: The total number of bits used in routing

packets. We have mentioned the results obtained for byte overhead. However,

no graph has been attached in the following section.

Simulation Constants The constants for the di�erent parameters of SOAR, DSR

and AODV are shown in Tables 2.2, 2.3 and 2.4. The values for constants used in the

public releases of AODV [27] and DSR [18] have been used for simulation. For SOAR,

the constants common with other routing protocols have been chosen to be the same.

2.3.1 E�ect of Promiscuous Listening

Promiscuous listening or snooping helps routing protocols to gather extra

information without actively introducing any control overhead. When an interface is

42

Table 2.3: Constants used in DSR simulation
Time between Route Requests 500
(exponentially backed o�) (ms)

Size of source route header carrying 4n+4
carrying n addresses (bytes)

Timeout for Ring 0 search (ms) 30

Time to hold packets awaiting routes (s) 30

Max number of pending packets 50

rt rq max period(s) 10

Time to hold packets awaiting routes (s) 30

grat hold down time(s) 1.0

max err hold(s) 1.0

Table 2.4: Constants used in AODV simulation
bcast id save (s) 6

max rreq timeout (s) 10.0

ttl start 1

ttl threshold 7

ttl increment 2

node traversal time (s) 0.03

local repair wait time (s) 0.15

network diameter 30

rrep wait time (s) (3 x node traversal time
x network diameter)

43

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10 100 1000

R
ou

tin
g

Lo
ad

 (
pa

ck
et

s)

Pause time (secs)

Routing Load in packets

SOAR-np
SOAR-p
DSR_np
DSR_p

0.9

0.92

0.94

0.96

0.98

1

10 100 1000

D
el

iv
er

y
(in

 fr
ac

tio
n)

Pause time(secs)

Fraction of Data Packets received

SOAR-np
SOAR-p
DSR_np
DSR_p

(a) Number of control packets produced (b) Fraction of data packets received

0.001

0.01

0.1

10 100 1000

A
vg

. D
el

ay
 (

se
cs

)

Pause time (secs)

Avg Delay of Data Packets

SOAR-np
SOAR-p
DSR_np
DSR_p

1

1.5

2

2.5

3

10 100 1000

A
vg

. N
um

be
r

of
 H

op
s

Pause time(secs)

Avg No of Hops for Data Packets

SOAR-np
SOAR-p
DSR_np
DSR_p

(c) Average delay of data packets (d) Average number of hops traversed

Figure 2.9: E�ect of promiscuous listening (snooping) in a 20-node network with 20
ows for
varying pause time

44

in promiscuous receive mode, every received packet is delivered to the network layer

without doing any packet �ltering.

We tested the e�ect of snooping in SOAR and DSR for a 20-node network

with 20
ows under varying pause time and data load of 40 packets/s. In Fig. 2.9,

p refers to the protocol with promiscuous listening, while np refers to the protocol

without it. As Fig. 2.9(a) shows, DSR, rather than SOAR bene�ts more from snooping

in terms of control packet overhead. This is because most of DSR's control packets

are replies, which are unicast routing packets and so promiscuous listening enables the

routers to gather more information. In contrast, most control packets exchanged in

SOAR are broadcast packets, and hence snooping does not add much to the routing

information gathered through ordinary exchange. Though DSR's control packets are

signi�cantly reduced due to snooping, DSR-p produces more control packets than

either SOAR-p or SOAR-np, which shows SOAR's method of information exchange

always gives an advantage over DSR.

We observe from Fig. 2.9(d) that in terms of average path lengths both

DSR and SOAR bene�t signi�cantly. DSR or SOAR does not depend on any neighbor

protocol to detect the presence of new neighbors and hence promiscuous listening helps

to discover neighbors faster and achieve route shortening. (DSR-p and SOAR-p has

overlapping plot for average path length). This is also a reason behind improvement

in data delivery due to snooping because the paths traversed become shorter and more

up to date; therefore, the probability of packets getting dropped due to stale routing

information reduces (Fig. 2.9b). The e-t-e delay (Fig. 2.9c) remains unchanged.

45

Promiscuous listening improves the performance of both DSR and SOAR,

though with di�erent degrees. However implementing promiscuous listening in practice

faces several obstacles: Security considerations may prohibit the use of promiscuous

listening and using encryption makes it very diÆcult to enforce it [10], promiscuous

listening cannot be used accurately in networks with more than one common channel,

and the energy consumption for promiscuous mode of operation is much higher than

the energy consumption while discarding packets at the link layer [11].

Given that DSR and SOAR both bene�t from promiscuous listening, and

because of the issues regarding its implementation and the fact that AODV does not

rely on promiscuous listening, the rest of our comparison does not use snooping in

DSR and SOAR.

2.3.2 E�ect of Node Mobility

Fig. 2.10 and Fig. 2.11 present the e�ect of mobility of nodes on the per-

formance of AODV, DSR and SOAR using a 20-node network with 10 and 20
ows

and varying pause times and a traÆc load of 40 packets/s. Fig. 2.10 and Fig. 2.11

show a discontinuity at the pause time of 60 seconds. This is because in that scenario

the network gets partitioned and fewer data packets are delivered. Also the control

packets are fewer in number because they consist mainly of queries, which are sent

at long time intervals to re-discover routes. The graphs will be smooth if we have

removed this scenario. However, we have not done so because network partitioning is

a common scenario in ad-hoc networks and this scenario a�ects each protocol equally.

46

0

2000

4000

6000

8000

10000

12000

10 100 1000

R
ou

tin
g

Lo
ad

 (
pa

ck
et

s)

Pause time (secs)

Routing Load in packets

SOAR
DSR

AODV

0.9

0.92

0.94

0.96

0.98

1

10 100 1000

D
el

iv
er

y
(in

 fr
ac

tio
n)

Pause time(secs)

Fraction of Data Packets received

SOAR
DSR

AODV

(a) Number of control packets produced (b) Fraction of data packets received

0.001

0.01

0.1

1

10 100 1000

A
vg

. D
el

ay
 (

se
cs

)

Pause time (secs)

Avg Delay of Data Packets

SOAR
DSR

AODV

1.6

1.8

2

2.2

2.4

2.6

2.8

3

10 100 1000

A
vg

. N
um

be
r

of
 H

op
s

Pause time(secs)

Avg No of Hops for Data Packets

SOAR
DSR

AODV

(c) Average delay of data packets (d) Average number of hops traversed

Figure 2.10: E�ect of node mobility in a 20-node network with 10
ows for varying pause
time

From Fig. 2.10(b) and Fig. 2.11(b) we see that, in all scenarios, all the routing

protocols deliver above 90% of data packets at high mobility, while at lower mobility

they deliver about 100% of data packets. However, we observe that SOAR has a

better delivery rate than DSR and AODV under high mobility scenarios, while at

lower mobility the delivery rate is almost the same for all protocols. In high-mobility

scenarios, when a link breaks SOAR has more redundant paths to choose from, which

means that it needs to drop fewer packets than DSR and AODV for non-availability

of routes at forwarding nodes.

From Fig. 2.10(a) and Fig. 2.11(a) we see that the routing load in terms

47

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

10 100 1000

R
ou

tin
g

Lo
ad

 (
pa

ck
et

s)

Pause time (secs)

Routing Load in packets

SOAR
DSR

AODV

0.9

0.92

0.94

0.96

0.98

1

10 100 1000

D
el

iv
er

y
(in

 fr
ac

tio
n)

Pause time(secs)

Fraction of Data Packets received

SOAR
DSR

AODV

(a) Number of control packets produced (b) Fraction of data packets received

0.001

0.01

0.1

1

10 100 1000

A
vg

. D
el

ay
 (

se
cs

)

Pause time (secs)

Avg Delay of Data Packets

SOAR
DSR

AODV

1.6

1.8

2

2.2

2.4

2.6

2.8

3

10 100 1000

A
vg

. N
um

be
r

of
 H

op
s

Pause time(secs)

Avg No of Hops for Data Packets

SOAR
DSR

AODV

(c) Average delay of data packets (d) Average number of hops traversed

Figure 2.11: E�ect of node mobility in a 20-node network with 20
ows for varying pause
time

of control packets is the smallest in SOAR, while AODV in all cases produces the

largest load. Because AODV maintains a single path to a destination, it starts a

route discovery process more often than SOAR or DSR. The di�erence in routing

overhead among the three protocols is most pronounced for high mobility scenarios,

and the di�erence reduces when the nodes are less mobile. SOAR during link breakage

can have more alternate paths than DSR or AODV and hence resorts to less route

discoveries. However, in terms of byte overhead DSR and SOAR give comparable

performance. Although in AODV the size of control packets is smaller than in DSR

and SOAR, the number of packets actually sent is too large to give it an advantage in

48

byte overhead.

As can be seen from Fig. 2.10(d) and Fig. 2.11(d) SOAR has smaller average

hop count than DSR on all situations, while AODV's average hop count results are

mixed. SOAR and DSR both use the hop count as a metric for choosing routes, while

the route discovery mechanism of AODV leads to the choice of the least congested path

[8]. Therefore, the trend of the graph for average hop count for AODV is di�erent

from SOAR and DSR. SOAR usually has a shorter hop count than DSR. Exchange

of source trees in SOAR helps to shorten routes without any promiscuous listening.

Intuitively, the di�erence would be smaller between SOAR and DSR with promiscuous

listening enabled in both.

We observe from Fig. 2.10(c) and Fig. 2.11(c) that, in most cases, AODV has

better delay performance than SOAR and DSR. One reason behind this is that AODV

accepts the route reply received �rst, while DSR or SOAR uses hop counts to choose

among multiple options. Even though SOAR delivers more packets than AODV, it

incurs longer delays because data packets explore alternate paths, thereby spending

more time queueing.

2.3.3 E�ect of Increase of Flows

On-demand routing protocols maintain paths to destinations as needed, so

with the increase of the number of
ows, more routes are required to be set up and

hence the routing overhead increases.

Fig. 2.12, Fig. 2.13 show the impact of the number of
ows on protocol

49

2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

4 10 20 32

R
ou

tin
g

Lo
ad

 (
pa

ck
et

s)

Number of flows

Routing Load in packets

SOAR
DSR

AODV

0.9

0.92

0.94

0.96

0.98

1

4 10 20 32

D
el

iv
er

y
(in

 fr
ac

tio
n)

Number of flows

Fraction of Data Packets received

SOAR
DSR

AODV

(a) Number of control packets produced (b) Fraction of data packets received

0.001

0.01

0.1

4 10 20 32

A
vg

. D
el

ay
 (

se
cs

)

Number of flows

Avg Delay of Data Packets

SOAR
DSR

AODV 1.6

1.8

2

2.2

2.4

2.6

2.8

3

4 10 20 32

A
vg

. N
um

be
r

of
 H

op
s

Number of flows

Avg No of Hops for Data Packets

SOAR
DSR

AODV

(c) Average delay of data packets (d) Average number of hops traversed

Figure 2.12: E�ect of increasing number of
ows in a 20-node network for pause time 0 s

performance. The results shown are for a 20-node network with 4, 10, 20 and 32
ows

when the pause times are 0 seconds and 60 s, and the packet load is 40 packets/s.

As we see from Fig. 2.12(a) and Fig. 2.13(a), the control packet overhead

increases for each protocol with the increase of
ows though the rate of increase is

di�erent in each one of them. In the high mobility scenario (pause time = 0 s, number

of
ows = 4), as shown in Fig. 2.12(a), DSR has slightly lower control overhead

than SOAR. This is because SOAR has higher redundancy in its routing database.

Maintaining redundant information helps SOAR, when the number of
ows increases.

As the number of
ows increases, the number of control packets in SOAR increases

50

2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

4 10 20 32

R
ou

tin
g

Lo
ad

 (
pa

ck
et

s)

Number of flows

Routing Load in packets

SOAR
DSR

AODV

0.9

0.92

0.94

0.96

0.98

1

4 10 20 32

D
el

iv
er

y
(in

 fr
ac

tio
n)

Number of flows

Fraction of Data Packets received

SOAR
DSR

AODV

(a) Number of control packets produced (b) Fraction of data packets received

0.01

0.1

1

4 10 20 32

A
vg

. D
el

ay
 (

se
cs

)

Number of flows

Avg Delay of Data Packets

SOAR
DSR

AODV 1.6

1.8

2

2.2

2.4

2.6

2.8

3

4 10 20 32

A
vg

. N
um

be
r

of
 H

op
s

Number of flows

Avg No of Hops for Data Packets

SOAR
DSR

AODV

(c) Average delay of data packets (d) Average number of hops traversed

Figure 2.13: E�ect of increasing number of
ows in a 20-node network for pause time 60 s

at a much slower rate than both DSR and AODV. When the number of
ows is 32,

SOAR produces almost ten times fewer control packets than AODV and 2.7 times

fewer than DSR.

The byte overhead in the routing packets of both SOAR and DSR are similar

for all
ows. This is because SOAR transfers fewer control packets with an increasing

number of
ows, but the size of its minimal source trees increases. The di�erence in

byte overhead in control packets between AODV and the other two protocols become

more pronounced when the number of
ows increases, with AODV producing higher

byte overhead all the time.

51

In terms of data delivery (Fig. 2.12(b) and Fig. 2.13(b)) SOAR delivers more

packets than DSR or AODV when the number of
ows is higher than four, while

AODV delivers more packets when the number of
ows is four. When the number of

ows is less, less number of links are used for data delivery. Link failures are detected

only during data transfer, hence when the number of
ows is less, the path information

can become more stale. As AODV does frequent route discovery, it �nds more recent

paths. But with the increase of number of
ows, as more links are involved in data

forwarding, routes in SOAR stay more up-to-date and hence they help to achieve

higher data delivery.

We observe from Fig. 2.12(d) and Fig. 2.13(d) that SOAR provides shorter

path length in most of the cases. The reason behind this is, as explained before, SOAR

can advertise shorter routes for certain destinations when it decides to advertise longer

routes for other destinations.

From Fig. 2.12(c) and Fig. 2.13(c), we see AODV has a shorter average delay

than SOAR or DSR, because of less queueing at the link layer.

2.3.4 E�ect of Network Load

When the network gets more loaded with data packets, congestion occurs

and unicast control packets have to compete with the data packets for gaining access

to the medium while probability of broadcast control packets colliding with unicast

packets increases. In such scenarios, data packets can get dropped and that limits the

throughput. Furthermore, because data packets have to compete with routing packets,

52

2000

4000

6000

8000

10000

12000

14000

16000

18000

20 40 60 80 100 120 140

R
ou

tin
g

Lo
ad

 (
pa

ck
et

s)

Packet load (Packets/sec)

Routing Load in packets

SOAR
DSR

AODV

0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

20 40 60 80 100 120 140

D
el

iv
er

y
(in

 fr
ac

tio
n)

Packet load (packets/sec)

Fraction of Data Packets received

SOAR
DSR

AODV

(a) Number of control packets produced (b) Fraction of data packets received

0.001

0.01

0.1

1

20 40 60 80 100 120 140

A
vg

. D
el

ay
 (

se
cs

)

Packet Load (packets/sec)

Avg Delay of Data Packets

SOAR
DSR

AODV

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

20 40 60 80 100 120 140

A
vg

. N
um

be
r

of
 H

op
s

Packet Load (packets/sec)

Avg No of Hops for Data Packets

SOAR
DSR

AODV

(c) Average delay of data packets (d) Average number of hops traversed

Figure 2.14: E�ect of loading 20-node network (number of sources = 10)

the delay of data packets should be higher.

We analyzed the performance of the routing protocols when the network

becomes more congested. For a 20-node network with 10
ows and pause time equal

to 0 s, we have used packet loads of 20, 40, 60, 80, 100, 120, and 140 packets/s.

The average delay of data packets in all protocols increases when the load

increases due to the increasing waiting time in the interface queue (Fig. 2.14(c)). In

all cases, the average delay in AODV is shorter than in DSR and SOAR because data

packets in SOAR or DSR su�er more from queueing delay.

We see from Fig. 2.14(a) that control overhead is always less in SOAR than in

53

DSR and AODV. We also observe that on heavier load, SOAR and AODV experience

higher rate of increase of control packet overhead than DSR, primarily because SOAR

and AODV's bulk of control packets are broadcast, which can collide with unicast data

packets while DSR's majority of control packets are unicast replies.

From Fig. 2.14 we see that, in terms of data delivery, SOAR's performance is

always better than DSR and AODV when the traÆc load is less than 120 packets/s.

At a packet load higher than 100 packets/s, AODV performs better than SOAR or

DSR, because SOAR and DSR have stale link-state information, leading to more drops

under heavy loads at forwarding nodes.

2.3.5 E�ect of Network Size

0

5000

10000

15000

20000

25000

30000

35000

20 30 40

R
ou

tin
g

Lo
ad

 (
pa

ck
et

s)

Number of Nodes

Routing Load in packets

SOAR
DSR

AODV

90

92

94

96

98

100

20 30 40

D
el

iv
er

y
(in

 P
er

ce
nt

ag
e)

Number of Nodes

Percentage of Data Packets received

SOAR
DSR

AODV

(a) Number of control packets produced (b) Percentage of data packets received

Figure 2.15: E�ect of network size (pause time = 0 s)

We have simulated the e�ect of network size on the performance of each of

the routing protocols (Fig. 2.15, Fig. 2.16). We have increased the size of network

from 20 to 30 to 40 with the total load being kept constant at 40 packets/s. We have

proportionally increased the area of coverage from 1000m�300m to 1000m�500m, to

54

0

5000

10000

15000

20000

25000

30000

35000

20 30 40

R
ou

tin
g

Lo
ad

 (
pa

ck
et

s)

Number of Nodes

Routing Load in packets

SOAR
DSR

AODV

90

92

94

96

98

100

20 30 40

D
el

iv
er

y
(in

 P
er

ce
nt

ag
e)

Number of Nodes

Percentage of Data Packets received

SOAR
DSR

AODV

(a) Number of control packets produced (b) Percentage of data packets received

Figure 2.16: E�ect of network size (pause time = 60 s)

1000m�700m to keep the network density similar. At the start of the simulation, the

optimum path length is higher with bigger network size; however, due to randomized

mobility, the average path length has remained almost same for high mobility scenarios.

Here our approach is to test how the di�erent protocols behave with higher number of

nodes while maintaining paths for same 50% of the total nodes of
ows i.e. 10
ows

for 20 nodes, 15
ows for 30 nodes and 20
ows for 40 nodes.

From Fig. 2.15(a) and Fig. 2.16(a) we see that the increase in control packets

is similar for all protocols when the network size increases from 20 to 30, but the

increase is more pronounced for both DSR and AODV when the number of nodes

increases further to 40, while it remains the same in SOAR. This is true for both the

cases with pause time equal to 0 second and 60 seconds. One of the reasons behind this

is SOAR produces fewer queries (< 10%) compared to DSR (33%) or AODV (80%),

which become costly when the size of the network increases. For SOAR due to high

amount of redundancy, most of the time it has alternate paths. If the paths are stale

then updates need to be exchanged which involve fewer nodes than the network wide

55

queries. Observe that in terms of data packet delivery, (Fig. 2.15(b), Fig. 2.16(b))

SOAR performs always better than DSR or AODV and the di�erence increases with

the increase of the number of nodes. For these high mobility cases (pause time equal

to 0 seconds and 60 seconds) AODV delivers more than DSR for all network sizes,

though in terms of control packet overhead DSR is always better. If byte overhead

in routing packets is concerned DSR performs slightly better than SOAR for all cases

while AODV's byte overhead is always higher than SOAR and DSR. Though in general

SOAR sends larger sized control packets, the small number of control packets it sends

reduces drastically the byte overhead.

2.4 Conclusions

We have presented, veri�ed and analyzed SOAR, the �rst on-demand routing

protocol based on source-tree information represented with link-states.

Our study shows that SOAR is an e�ective protocol for mobile ad-hoc net-

works, and its approach to route reporting and route maintenance is more eÆcient than

DSR nd AODV, which are representatives of the state-of-the-art on-demand routing

protocols for mobile ad-hoc networks. The performance improvement obtained in

SOAR compared to DSR and AODV is a direct result of communicating source trees

rather than distances or paths to active destinations in route requests and route replies.

Exchanging source trees provides high redundancy, which reduces the frequency with

which route discoveries are needed.

56

Chapter 3

Path Selection for On Demand

Link-State Routing

While choosing routes for any destination in on-demand link-state routing protocols,

apart from the shortest path criterion an additional constraint that only selected neigh-

bors can be selected as next hops to reach certain destinations has to be satis�ed. To

elucidate, a situation can arise at a router where based on its view of the network

topology, some nodes can be reached via the shortest paths through certain neigh-

bors. However, it can happen that those neighbors have not advertised routes to those

destinations and therefore, they might not know of any route to those destinations

and packets forwarded to them would be dropped. Therefore, to prevent incorrect

data packet forwarding, longer paths have to be selected for those destinations. This

constraint motivates a new path selection selection algorithm because the traditional

path-selection algorithms like the Dijkstra's algorithm or the Bellman-Ford algorithm

57

computes shortest paths based on only a single metric like hop count, delay or band-

width.

Section 3.1 describes the constraint in the path selection algorithm for on-

demand link-state routing and shows how a modi�cation to the basic Bellman-Ford

Algorithm forms a source graph rather than a source tree while it satis�es the con-

straint of the path-selection. Section 3.2 shows why the computation of a source tree

with the given constraint is an NP complete problem and describes a polynomial-time

approximating solution. Section 3.4 shows how source-tree based routing combined

with this path selection algorithm can be applied for policy-based routing. Section 3.5

concludes the chapter.

3.1 Building a Source Graph

We have seen in the previous chapter that unlike previous pro-active link-

state protocols, SOAR advertises paths to only important nodes. This can lead to a

situation in which a node i �nds that neighbor k should be on the shortest path to

a destination j, but node k has not advertised any path to node j. The reason can

be that node k does not have a route for node j. To prevent packet losses, the path

selection algorithm should ensure that the links in the anticipated path from node i

to node j through neighbor k has been advertised by neighbor k itself.

We illustrate this scenario using Fig. 3.1, which shows the partial topology at

node a. The partial topology at node a has been computed based on the inputs from

two neighbors b and c. Let us assume that node h is important for nodes a; b; e; f;

58

c and b both advertise
 paths to g

path to g

d

a

c

e

f

g

h

b

Partial Topology Information at a

only b advertises

pa
th

 o
f

g’
s

in
fo

rm
at

io
n

fl
ow

pa
th

 o
f

h’
s

in
fo

m
at

io
n

fl
ow

pa
th

 o
f

g’
s

in
fo

rm
at

io
n

fl
ow

Figure 3.1: Constraints in path selection for on-demand link-state routing

and g, while node h is not important for node c and node d. Assume also that node

g is important for all nodes. Because node h is not important for node d, propagation

of path information for node h stops at node d and node a does not hear from node c

about node h, although node c should be in the shortest path from node a to node h.

Node a learns about link (g; h) from node b.

Given a directed graph, a traditional path selection algorithm like the Di-

jkstra's shortest path �rst algorithm or the Bellman-Ford algorithm would �nd the

shortest paths from a source to any destination on the basis of a single metric. When

any of these algorithms is run on the partial topology at node a, node c will be selected

as the next hop to reach node g and node h. Unfortunately, because node c does not

know about node h0s existence, data packets for node h forwarded to node c will be

dropped. That shows that the Dijkstra's algorithm or the Bellman-Ford algorithm is

inappropriate for computing routes under these circumstances.

59

Therefore, the above constraint leads to the following property that a path

selection algorithm should satisfy in order to start correct packet forwarding:

Property A: All links in the computed path to a destination through a neighbor

should be advertised by the neighbor itself.

Essentially, the combination of paths used for packet forwarding can form a

graph. However, in SOAR certain links in the computed source graph are excluded

and a source tree is always advertised with additional information to take care of the

di�erence. For example, at node a, the source tree that would be advertised by node

a would be acdgh, along with the information that neighbor b is the actual next hop

for node h rather than node c. The last information will enable the recipient of the

source tree to get a partial view of the actual forwarding graph of the sender, though

the complete path would still be not known. Sending trees is preferred to sending to

sending graphs to save bandwidth and power.

3.1.1 Modi�ed Bellman-Ford Algorithm

First we describe the new path selection algorithm that has been adapted

from the Bellman-Ford algorithm.

The Bellman-Ford algorithm does not consider any constraint apart from

choosing the shortest path for any destination. However, a slight modi�cation to the

basic algorithm can compute the shortest path for any destination that is also valid

with a constraint by exploiting the fact that the Bellman-Ford algorithm explores all

paths of length (jV j � 1) to any destination and chooses the shortest among them.

60

Table 3.1: Terminology used for the path selection process

Modi�ed Bellman-Ford Algorithm

G(V;E) : network topology with vertex set, V and edge set, E
NLs : list of neighbors of node s
nx : any neighbor of node s
d(u; nx) : distance to node u through neighbor nx of node s
�(u; nx) : parent of node u if the path is through neighbor nx
d(u) : distance in the shortest valid path to node u
�(u) : parent in the shortest valid path to node u
next hop(u) : neighbor of node s through which node u can be

reached
STnx : source tree reported by neighbor nx to node s

DFS based Path Selection

min dist : minimum length of the best paths to a destination x
best options : total number of neighbors that have advertised paths

of smallest length
cx : nodes which are directly connected to node x and

reachable along the least-cost paths through node x
bnh (best next hop) : neighbors corresponding to least-cost paths to node x
px : predecessors of node x in the least-cost paths through

which node x can be reached
selec best options : number of best choices among the shortest paths
count : total number of nodes farther from a node that can

be potentially included in the �nal source tree when
nh is chosen as next hop)

The change that can be incorporated is that all the paths rather than the shortest

path can be stored corresponding to each node and only those which satisfy Property

A can be considered for shortest route computation.

The input to the algorithm is a graph consisting of nodes and edges. Each

edge in the graph has the list of neighbors who have advertised it. There is a change in

the data structure maintained for every node in the modi�ed Bellman-Ford algorithm

compared to that in the basic Bellman-Ford algorithm. Instead of keeping only shortest

distance entry (d(u)) for a node u, this algorithm maintains d(u; nx) entry 8nx 2 NLs

61

entry. (For terminology refer to Table 3.1.1). In Procedure Initialize (initialization

phase of the algorithm), distance to any node through any neighbor nx is made in�nite

and the parent is set to NULL while the distance for the source is made zero and the

parent set to itself.

|||||||||||||||||||||||||
Procedure Initialize (G,s)

|||||||||||||||||||||||||
1 foreach u 2 V [G]
2 foreach nx 2 NLs
3 d(u; nx) 1
4 �(u;nx) NULL

5 end

6 end

7 foreach nx 2 NLs
8 d(s; nx) 0
9 �(s; nx) s

10 end

|||||||||||||||||||||||||

In Procedure Mod Bellman Ford, steps 5-11, iterate through each vertex in

G, and then through all the outgoing links of each vertex in G. Each edge visited is

used for relaxation of path costs (Step 9). Steps 4-13 will be executed, until no change

in d(u; nx) for any node u for any neighbor nx occurs in an iteration. This helps to

terminate the algorithm earlier, without requiring the total number of iterations to

be always (jV j � 1), which is required in the worst case. The steps in the Proce-

dure Mod Bellman Ford function are similar to the steps of the original Bellman-Ford

algorithm, the di�erence being mainly in the Relax procedure called in Step 9.

|||||||||||||||||||||||||
Procedure Mod Bellman Ford (G, s)

|||||||||||||||||||||||||
1 Initialize (G, s)
2 any change TRUE
3 while (any change 6= FALSE)
4 any change FALSE
5 for (i! 1 to jV [G]j
6 u nodei
7 do foreach edge (u,*)
8 if ((u; v) 6= (u; s) AND lvu:cost 6=1)
9 any change any change[Relax(u; v)

62

10 endif

11 end

12 end

13 end

|||||||||||||||||||||||||

In Procedure Relax, steps 3-8, for each neighbor nx of NLs, who has adver-

tised the link lvu, d(v; nx) is relaxed. Step 3 ensures that a path to v through nx should

be advertised by nx.

The procedures described so far combine to compute all the shortest valid

paths, where each path satis�es Property A. In case multiple shortest valid paths are

possible for any destination and one of them already exists in the current forwarding

structure, then that path is chosen otherwise any random choice would suÆce. The

combination of the shortest valid path for each destination will form a source graph.

Then the source tree to be advertised is formed by combining edges connecting each

node to its parent. If a path is selected for any destination, then the immediate pre-

decessor in that path becomes the parent of that destination. Procedure makeSrcTree

builds the �nal source tree.

|||||||||||||||||||||||||
Procedure Relax (u,v)

|||||||||||||||||||||||||
1 any change FALSE
2 foreach nx 2 NLs
3 if (lvu 2 STnx)
4 if (d(v; nx) > d(u; nx) + lvu:cost)
5 d(v; nx) = d(u; nx) + lvu:cost

6 �(v; nx) = u

7 any change TRUE

8 endif

9 endif

10 end

|||||||||||||||||||||||||

|||||||||||||||||||||||||
Procedure makeSrcTree

|||||||||||||||||||||||||
1 d(v; �) = min(d(v; nx)8nx 2 NLs;
2 STi NULL
3 foreach v 2 NLs

63

4 STi STi [fs; vg
5 end

6 for (i = 2; i � max dest; i++)
7 foreach v with d(v; �) = i

8 foreach nx with d(v; nx) = i

9 v:nh nx
10 v:parent �(v; nx)
11 if (nh = RTi:v:next hop)
12 break
13 endif

14 end

15 end

16 end

17 foreach v 2 V

18 STi STi [fv:parent; vg
19|||||||||||||||||||||||||

The complexity of modi�ed Bellman-Ford Algorithm is O(n2d2), where n

is the number of nodes in the network and d is the average degree of each node.

In comparison, the unmodi�ed Bellman-Ford algorithm has complexity of O(n2d).

Intuitively the di�erence is due to the storage of d paths instead of a single one in the

modi�ed Bellman-Ford algorithm.

3.1.2 Forced Routing

One important observation from the example of Fig. 3.1 is that if some neigh-

bors would have advertised paths for certain destinations, then shorter paths can be

chosen for those destinations and the advertised source tree would then be exactly

same as the forwarding tree of each node. Forced routing is used to make that hap-

pen. Referring to the example of Fig. 3.1, node a knows of a shorter path to node h

through node c, but it cannot use node c as the next hop for node h because it has

not reported it. Therefore, forced routing would be used to ensure that neighbor c

advertises a path for node h also.

For the scenario in Fig. 3.1, node a sends a ForcedUpdate towards node h

64

through neighbor c such that all intermediate nodes c and d along the shortest path

to node h start considering node h as important, and ForcedReplies containing the

shortest path information retraces from node d and node c to node a. For the brief

time, before shorter routes get established using forced routing, data packets will be

forwarded along the longer paths.

ForcedUpdates are also used by a router in SOAR to correct neighbors when

they send invalid path information for any destination in reply to its queries. Un-

like queries, replies or updates, which are broadcast packets sent to all neighbors,

ForcedUpdates and ForcedReplies are unicast packets sent to speci�c neighbors.

3.2 Building a Source Tree

Referring back to the example of Fig. 3.1, we can see that for a certain time

interval when forced routing gets accomplished and packet forwarding continues along

the shortest path through node b, the source tree advertised by node a does not truly

advertise the true picture of its forwarding graph or source graph. That can lead to

loops. In order to prevent that situation, next we need to develop a new path-selection

algorithm that computes a source tree, rather than graph, while satisfying the path

constraints of on-demand link-state routing.

The constraint imposed in computing the source tree can be translated to

the following rules:

Rule 1: If pkji is the path computed at node i to reach node j through neighbor k,

then for each edge e 2 pkji , node k belongs to lab(e) where lab(e) indicates the label

65

set for edge e. The label set refers to the neighbors which have advertised that edge.

Hereafter, the words label and neighbor have been used interchangeably.

Rule 2: There can be several potential paths that satisfy Rule 1. However, for �nal

route computation, paths with the smallest length should be chosen.

Rule 3: If a particular node can be reached via multiple paths due to Rule 1 and

Rule 2, only a single path can be chosen to reach that node such that a source tree is

formed.

a

c e f

b d

g h

(c) (c)

(c)

(c)(c)

(b)

(b)

(c)

(b)

Figure 3.2: Network topology at node a based on inputs from neighbors b and c. Each link
lists neighbors who have advertised that link.

For example, in Fig. 3.2 which shows the partial topology at node a and the

labels corresponding to each link, there are two valid paths for node g namely abdg

and acefg. Path abdg through neighbor b will be selected because that is the shortest

path (Rule 2). In that case, no �nite-cost path is possible for node h because the only

valid path acefgh to reach node h is possible through neighbor c (Rule 1) and the

shortest valid path to node g, the predecessor according to that path is through node

b.

66

3.2.1 Complexity Analysis

As shown in the previous example, �nite-cost paths for all destinations might

not be possible. In such a case, an optimal path-selection algorithm has to be developed

that maximizes the number of nodes for which �nite-cost paths can be obtained. This

problem of �nding the source tree with the maximum number of vertices is termed as

OPT-TREE problem and is de�ned as follows:

INSTANCE : Graph, G = (V, E), a given node i, which can be termed as

the source (i 2 V) and a collection of possible labels, C, and the set of labels, Se

corresponding to each edge e (Se � C, e 2 E).

The labels corresponding to any edge can be thought of as boolean variables

and each variable would be assigned an '1' if the edge is included in the �nal source

tree and the path containing that edge includes the neighbor that has been represented

by that variable. Therefore, for the link e with label set, Se fl1; l2; l3g, the boolean

value assignment would be fl1 = 1; l2 = 0; l3 = 0g, if the edge e is included in a path

of the �nal source tree through neighbor l1 . If l4 2 C, but l4 =2 Se, then l4 would be

unde�ned for Se.

Based on the above boolean assignment strategy, the OPT-TREE problem

can be re-de�ned as :

QUESTION : What is the maximum-vertex source tree that can be formed

at node i, such that the edges on the path from node i to any node v in that source

tree will have the same label set to \1" ?

We explain OPT-TREE problem in detail using Fig 3.3. Fig 3.3(a) shows

67

(y = 1)

(y = 1)

(y = 1)(y = 1)
3c

(b = 0, y = 1)

(b = 1)

(a = 1,b = 0)cc3

(y)

(y) (y)

(x = 1)

(x = 0, a = 1)

(y = 1)
(a = 1)

(a = 1)

(y)(b)(a)(x)

(a,b)c2

(x)

(x)

(b)(a)

(b, y)(x, a)

(y)(b)(a)(x)

21 mm

1c

1 mm
2

i i

2

(a)

x a b y

(b)

x a b y

n
1 2

(a = 1)2
n

1
n n

(b = 1)

(a = 0, b = 1)

(b = 1)

(x = 1)

(x = 0, a = 1)

(a = 0, b = 1)

(a = 0, b = 1)

(b = 1, y = 0)

(y = 1)(b = 1)
(a = 1)

(a = 1)

21 mm

2c

i

(c)

x a b y

2
n

1
n

Figure 3.3: (a) Partial topology at node i (b) Optimal source tree and (c) A source tree
satisfying the rules of policy constrained path selection

68

an instance of the OPT-TREE problem, i.e., the network topology at node i and the

labels associated with each edge in the topology. Fig 3.3(b) gives the optimal solution

that satis�es all the rules for constructing the source tree. As shown in Fig. 3.3(b),

all edges from node i to node n1 has the same label fag set to \1", while all edges

from node i to node n2 will have the same label fyg set to \1". There are also other

non-optimal solutions available satisfying all relevant rules and one of them is as shown

in Fig. 3.3(c).

The next step towards solving the OPT-TREE problem is to reframe the

OPT-TREE problem as a k-TREE problem: Is there a source tree having k vertices

and rooted at source i, such that edges on the path from node i to any vertex v will

have the same label set to \1"? By varying the value of k from one to jV j and applying

the k-TREE problem, we have the solution for the optimality problem. We will show

that the k-TREE problem is NP-complete. And subsequently OPT-TREE will also

be NP-complete.

As the �rst step towards proving that k-TREE problem is NP-complete, we

de�ne the SPAN-TREE problem.

INSTANCE: Graph, G = (V, E), a given node i, which can be termed as the

source, a collection of labels C, and the set of labels, Se corresponding to each edge e

(Se � C).

QUESTION: Can we construct a tree rooted at node i containing jV j nodes,

such that edges on the path from node i to any node v have the same label set to \1"?

We �rst show that SPAN-TREE 2 NP . Let the tree formed be G = (V 0; E0).

69

We �rst verify V 0 = V and then we verify that in the spanning tree formed, all the

edges in the path from the source to any node will have the same label set to \1" and

this can done in O(jV j)) time.

The next step is to prove that SPAN-TREE is NP-hard. For that purpose,

the well-known 3SAT problem [6, 13] has been reduced to SPAN-TREE. In the well-

known 3SAT problem, the question is to �nd whether a logical formula in the 3-CNF

form is satis�able or not.1 An example of a 3SAT problem is how to assign values to

the literals, x1; x2; and x3 such that the logical formula (x1 _ x2 _ x3) ^ (:x1 _ :x2 _

x3) ^ (x1 _ :x2 _ x3) is satis�able, i.e., has an output equal to \1".

The reduction algorithm consists of three steps. The �rst step is to convert

the logical formula (x1 _ x2 _ x3)^ (:x1 _:x2 _ x3)^ (x1 _:x2 _ x3) to the following

form :

(x1 _:x1 _ y)^ (x2 _:x2_ y)^ (x3 _:x3 _ y)^ (x1 _x2 _x3)^ (:x1 _:x2 _

x3) ^ (x1 _ :x2 _ x3), where y is a dummy literal which always assumes the boolean

value zero.

The modi�ed formula is essentially the same as the original formula because

the �rst three clauses are true, irrespective of the values set for x1; x2; and x3. This

step of reduction is trivial, because it extends a logical formula by adding a clause

corresponding to each literal x 2 C, where each clause is (x_:x_ 0) and C is the set

of all literals. The �rst step of the reduction can be done in O(m) time, where m is

the cardinality of the set C.

1A boolean formula is in 3-CNF (conjunctive normal form) if is expressed as an AND of clauses,
each of which is the OR of three distinct literals)

70

x22x
x3

x11x y{ }

x

x
x x

x

x
x

1

1

1 3

3xx2{ }

22

3

v

v

v

v v

i

1 2 3

v4 5

6

y
y}

{ } 3x{

Figure 3.4: Representation of the logical formula (x1 _:x1 _ y)^ (x2 _:x2 _ y)^ (x3 _:x3 _
y) ^ (x1 _ x2 _ x3) ^ (:x1 _ :x2 _ x3) ^ (x1 _ :x2 _ x3) during second step for the reduction
of 3SAT problem to a SPAN-TREE problem.

The modi�ed logical formula is next represented in the form of a graph. First,

we create a node i that represents the root and a new node is created for representing

each of the clauses in the modi�ed logical formula. Logically, for each node representing

a clause, there are three incident edges and each edge has a label corresponding to

each literal in that clause. Because the same literal appears in di�erent clauses, in the

graph created there can be multiple edges with the same label set.

The graph is created stepwise by starting from the �rst clause and moving

towards the right of the logical formula and representing each clause by a node. For

each literal xi, the last node vlast with an incident edge having label xi, is remembered.

If a new node vnew is created for a new clause, one of whose literals is again xi, an

edge from vlast to the new node vnew is created and is assigned the label xi. Also

vnew becomes vlast. This process makes the distance of node vnew from node i always

71

greater than the distance of node vlast from node i if the path is traced from node i

to node vnew along the edges with label xi.

Using the above algorithm, the graph shown in Fig. 3.4 has been created

corresponding to the modi�ed logical formula. Nodes v1; v2 and v3 are joined to the

source i by edges and they correspond to the new clauses that have been added to

the original logical formula. Node v4 is created for the fourth clause of the modi�ed

formula with three incident edges having labels x1; x2 and x3 respectively. Then node

v5 is created, v5 joins node v4 by an edge with label x3 because node v4 is the last node

that has been created with an incident edge having a label x3. Similarly all the other

edges and nodes are created. This representation can be done in polynomial time by

constructing (m+n) nodes and (3n+m) edges where m is the number of literals and

n is the number of clauses in the original 3-CNF formula.

The next step of the reduction algorithm is to replace each node (except those

nodes directly connected to the source) in the graph created above by three nodes each

with three incident edges, each with a particular set of labels. This step is shown in

Fig. 3.5, where a node with three incident edges with labels x1; x2 and x3 respectively

is replaced by three nodes with the labels of the incident edges on each of the three

nodes being [f:x1g; fag; fbg], [fx2g; fbg; fcg] and [f:x3g; fcg; fdg] respectively. This

reduction is similar to the reduction algorithm used for the reduction of the 3SAT

problem to the 1in3SAT problem [49].2 The newly created edges with labels a; b; c;

and d directly connect the source to the newly created nodes. Rest of the connections

2The problem in 1in3SAt problem is whether a logical formula in the 3-CNF form is satis�able or
not where exactly one literal in a clause is true.

72

are in the same pattern as shown in Fig. 3.4. In Fig. 3.6, we show how the node v4 with

label set [x1 = v1; x2 = v2; x3 = v3] is replaced by three nodes, v14, v
2
4 and v

3
4 and their

label sets are respectively [f:v1g; fa
1g; fb1g], [fv2g; fb

1g; fc1g] and [f:v3g; fc
1g; fd1g].

Only the representation for node v4 has been shown in the �gure for clarity. Each

of the nodes, v5 and v6 is similarly replaced by three nodes, each with three incident

edges.

x x x

x
x

1

1 2

x2 3

3
b

a b
c

c
d

Figure 3.5: Final step in the representation of 3CNF formula in the form of nodes and edges

The next step is to show that there exists a solution in 3SAT problem if

and only if there is a solution in SPAN-TREE. First we show that if there exists a

solution for 3SAT there will also be a solution in SPAN-TREE. The steps of the proofs

presented here have been motivated by the steps given of [49].

If the 3SAT problem has a solution, then the logical formula is satis�able

and each clause will be true and at least one literal of each clause must be true. We

now show that depending on the values of x1; x2; and x3 for a clause, (x1 _ x2 _ x3),

we can have di�erent boolean assignments for labels, a; b; c and d, based on which if

there exists a solution for the 3SAT problem, we can have a solution for SPAN-TREE

73

problem.

Let us assume that x2 = 1 in the clause fx1; x2; x3g. In that case, following

assignment for the labels a; b; c; and d leads to a solution for the SPAN-TREE problem:

a = x1, b = 0, c = 0, d = x3. Using such an assignment, the nodes representing clauses

(:x1 _ a_ b), (x2 _ b_ c) and (:x3 _ c_ d) will have exactly one incident edge having

one label set to \1". Therefore, by using appropriate values for a; b; c and d, if there

exists a solution for 3SAT, every node in the �nal graph has exactly one incident edge

whose exactly one label has been set to \1", which implies that a spanning tree can

be formed. Given that, there is exactly one incident edge on a vertex with exactly

one label set to \1", there can be no cycle, because in that case for at least one node

(excluding the source which has no incident edge), among all labels for all its incident

edges there have to be at least two labels which are set to \1". However, that cannot

be true. Moreover, a forest can not be formed because apart from the source node i,

each node represents a clause of a satis�able logical formula and therefore, each node

must have exactly one incident edge with exactly one label set to \1".

x22x

x
1

x11x

x3

x3

2x dc{ 1 }1

v v v

i

1 2 3

y
y}

{ } 3x{
a b

cb

y{ }
{ }

}{

1 1

1 1

v v v
4 4 41 2 3

Figure 3.6: Final representation of the clause (x1 _x2 _x3) in the form of vertices and edges

74

Let us assume that x2 = 0. In that case there are three possibilities for the

values assigned to x1 and x3 and they are (a) x1 = 1 and x3 = 1 (b) x1 = 1 and x3 = 0

and (c) x1 = 0 and x3 = 1.

For building a spanning-tree, condition (a) leads to the assignment : a = c

= 0, d = 1, b = 1; condition (b) leads to the assignment: b = 1, a = c = d = 0; and

condition (c) leads to the assignment: a = b = d = 0, c = 1.

The case of (x1 = 0 and x3 = 0) is not possible, because at least one literal

in each clause has to be true.

The next step is to show that, if there exists a solution for the SPAN-

TREE problem, there exists also a solution for the 3SAT problem. The proof is by

contradiction. Let us assume that, although there exists a solution to the SPAN-

TREE problem, there exists no solution for the 3SAT problem. If such is the case,

then x1 = x2 = x3 = 0 for at least one clause. Then a = 0; d = 0. Also b = 0 or c = 0

(but not both b and c). However, if either one of these two literals, b or c is equal

to one, then the condition that in the spanning tree there is only one incident edge

with exactly one label set to \1" is not satis�ed. For the �rst node (that represents

the clause (:x1 _ a_ b)) or the third node (that represents the clause (x2 _ b _ c)) we

will get two incident edges that will have labels set to \1", which is a contradiction

to the original assumption that a spanning tree has been formed in which case each

node can have exactly one label set to \1" among all labels for all of its incident edges.

Therefore, the 3SAT problem has a solution, if SPAN-TREE has a solution.

We have thus shown that the SPAN-TREE problem is NP-hard and that

75

SPAN-TREE 2 NP, which implies that SPAN-TREE is NP-complete.

Now, the next step is to show whether the k-TREE problem is NP-complete.

This can be a proof by restriction [13]. The SPAN-TREE problem is a restricted case

of k-TREE problem, where the value of k is jV j. Therefore, k-TREE is NP-complete

and also the OPT-TREE problem, i.e., the problem of �nding the tree with the optimal

number of nodes in it is an NP-complete problem, because the decision problem (k-

TREE) to which the optimality problem has been reframed is NP-complete.

i

a

b

c

n

n

n

n

n

n

n

n

n n

n1

2

3

4

5

6

7

8

9

10 11

(a)
(a,b) (a,b)

(c)

(c)(c)(c)

(c)

(c)
(b) (b)

(b)

(a)
(b)

(c)

a

n

nn

n

21

5

8

b

n

n

n

n

n

n

n1
2

3
5

7
8

9

c

n

n
n

n

n

n

n

1

3

4

6
7

10

11
n 11

n 7n 5

i

a b
c

n
n

n

n 1

n

3
4

10

n 2

8

(a) Partial topology (b) Source graphs corresponding (c) Final source tree
to neighbors a, b, c at node i

Figure 3.7: Inputs and outputs of path selection algorithm

3.2.2 Finding Valid Paths

We have shown in the previous section that the OPT-TREE problem is NP-

complete. That implies no polynomial-time optimal solution is possible. Therefore

we have designed a polynomial-time approximating solution that satis�es the given

constraints. The heuristic consists of selecting the valid paths for a destination and

then choosing the shortest among the valid paths with the objective of having maxi-

mum nodes in the �nal source tree. Next we describe each phase of the path selection

algorithm and Table 3.2 explains the steps through examples.

76

The inputs for the path selection algorithm are the source trees advertised

by each neighbor, ni (ni 2 Ni, where Ni is the set of neighbors of node i and d = jNij).

Fig. 3.7(a) shows the partial topology at node i, where the list of labels for each link is

shown in parenthesis next to the link. Fig. 3.7(b) shows the source trees of neighbors

a, b and c that are stored at node i.

Any path to a destination that is in the source tree of a neighbor is a valid

path. By executing Depth First Search (DFS) on each source tree, a valid route for

each destination in the form of tuple fdistance, successor, predecessorg is computed.

Atmost d valid paths are theoretically possible for each destination, and the actual

number depends on the maximum number of source trees of neighbors in which a path

to the destination exists. The complexity of depth-�rst traversal is O(n) for a tree with

n nodes; therefore, the total complexity isO(nd) for d neighbors. Column 2 of Table 3.2

shows the di�erent possible valid paths in the form of fnexthop; predecessor; distanceg

tuples for each node in the network of Fig. 3.7. For example, corresponding to node

n8 the valid paths are: (1) through neighbor a, with predecessor n5 and distance four

(this path is represented by the tuple fa; n5; 4g), and (2) through neighbor b, with

predecessor n5 and distance four (this path is represented by the tuple fb; n5; 4g).

3.2.3 Choosing the Best Paths

After computing all valid paths for a particular destination, the least-cost

paths among them are only considered for the �nal route selection, thereby satisfying

Rule 2. That process requires two operations: (a) �nding the minimum cost among the

77

possible options (O(nd)), and (b) selecting the paths which are of least cost (O(nd)).

Columns 5, 6, and 7 of Table 3.2 show the valid least-cost paths possible for each

destination in the form of its direct children, successor and predecessor respectively.

A valid path to any destination will have the same label as the label of the links that

form the path. As shown in Table 3.2, the least-cost valid path to reach node n7

among the two valid paths with labels b and c has label c, with the predecessor in that

path being node n4 and the possible direct children being nodes n9 and n10.

The next step of the operation is to choose a single path for each destination

among the valid least-cost paths, aggregation of which forms the maximum-vertex

source tree. We have already discussed that this problem is NP-complete. The solution

that we will provide is a polynomial time approximating solution. The steps of the

proposed solution are given in Fig. 3.8. As shown in Fig. 3.8, imagine that the nodes

are all arranged in several layers, with source i at the highest layer and the nodes

with the longest least-cost paths at the bottom-most layer. Based on the successor-

predecessor relationship of all the valid least-cost paths, the nodes are then joined

with one another. This will form the input to the heuristic and the heuristic is divided

into two separate operations. In the �rst operation, calculations are made from the

nodes farthest from node i to the ones nearest. If a particular edge with a certain

label is chosen to be the incident link on a node then under such a label assignment

the number of downstream nodes or children further down the layer that can be added

is counted. The links with labels giving maximum count at a node are ultimately

considered for inclusion in the �nal source tree. To illustrate, if node n1 is reached

78

Table 3.2: Step-wise execution of the DFS-based path selection algorithm

N
o
d
e
fn
ex
t
h
op
,

p
re
d
ec
es
so
r,

d
is
ta
n
ce
g

m
in

d
is
t

b
es
t

op
ti
on
s

c x

bn
h

p
x

[s
el
ec
b
es
t
op
ti
on
s,

co
u
n
t,
fn
h
,
d
is
tg
]

[n
h
,
p
re
d
,
d
is
t]

a

fa
,
i,
1g

1

1

n
1
;n
1

a

i

X

[a
,
a,
1]

b

fb
,
i,
1g

1

1

n
1
;n
2

b

i

X

[b
,
b
,
1]

c

fc
,
i,
1g

1

1

n
1
;n
3
;n
4
c

i

X

[c
,
c,
1]

n
1

fa
,
a,
2g
,
fb
,
b
,

2g
,
fc
,
c,
2g

2

3

n
5
;n
6

a,
b
,

c

a,
b
,
c

[2
,
3,
fa
,
3g
,
fb
,
3g
]

[b
,
b
,
2]

n
2

fa
,
a,
2g
,
fb
,
b
,

2g

2

2

X

a,
b

a,
b

[2
,
1,
fa
,
1g
,
fb
,
1g
]

[b
,
b
,
2]

n
3

fb
,
b
,
2g
,
fc
,
c,

2g

2

1

X

c

c

[1
,
1,
fc
,
1g
]

[c
,
c,
1]

n
4

fc
,
c,
2g

2

1

n
7

c

c

[1
,
4,
fc
,
4g
]

[c
,
c,
1]

n
5

fa
,
n
1
,
3g
,
fb
,

n
1
,
3g

3

2

n
8

a,
b

n
1
;n
1

[2
,
2,
fa
,
2g
fb
,
2g
]

[b
,
n
4
,
3]

n
6

fc
,
n
1
,
3g

3

1

X

c

n
1

[1
,
1,
fc
,
1g
]

[N
U
L
L
,
N
U
L
L
,

1
]

n
7

fb
,
n
3
,
4g
,
fc
,

n
4
,
3g

3

1

n
9
;n
1
0

c

n
4

[1
,
3,
fc
,
3g
]

[c
,
n
4
,
3]

n
8

fa
,
n
5
,
4g
,
fb
,

n
5
,
4g

4

2

X

a,
b

n
5
;n
5

[2
,
1,
fa
,
1g
fb
,
1g
]

[b
,
n
5
,
4]

n
9

fb
,
n
7
,
5g

5

1

X

b

n
7

[1
,
1,
fb
,
1g
]

[N
U
L
L
,
N
U
L
L
,

1
]

n
1
0

fc
,
n
7
,
4g

4

1

n
1
1

c

n
7

[1
,
2,
fc
,
2g
]

[c
,
n
7
,
4]

n
1
1

fc
,
n
1
0,
5g

5

1

X

c

n
1
0

[1
,
1,
fc
,
1g
]

[c
,
n
1
0
,
5]

79

via neighbor c, then nodes which can be reached from node n1 are n1 and n6. While

if either node a or node b is chosen as the next hop to reach node n1 then nodes n1,

n5 and n8 can be included. There for the later cases the count is three as opposed to

the �rst case whose count is two. Hence, node c is excluded as a next hop choice for

destination n1 and its total number of possible least-cost paths with maximum count

(total number of possible least-cost paths is referred to as selec best options in Table

3.2) becomes two and they have labels a and b.

During the second operation, the �nal selection of a successor for each des-

tination among selec best options is done stepwise starting from the nodes nearest to

node i continuing till the farthest nodes. Final selection of next hop is made based

on the following criteria: (1) if the present successor is among the selec best options,

that node will be chosen automatically as the successor to prevent route
apping, (2)

if a node has a single predecessor, then it automatically selects the next-hop chosen

by the predecessor as its successor and (3) still if there are several choices, random

selection is made. For the example of Fig. 3.7, node n2 can be reached via neighbor

a, as well as via neighbor b. Any one of node a or node b can be chosen as next hop.

However, if node b is the present next hop, then that becomes the automatic choice.

Node n5's only valid predecessor is node n1, therefore, the successor to reach node n5

is node b. Fig. 3.7(c) shows the minimal source tree drawn from the �nal results in

the last column of Table 3.2.

The complexity of the above two operations is O(nd + 2nd2). Accordingly,

by considering each step taken for the path selection, the complexity of the entire

80

path selection algorithm becomes O(nd2) where d is the node density. In comparison,

the complexity of Dijkstra's algorithm is O(n2) which implies the new path selection

algorithm will scale well with the number of nodes in the network, when the network

density remains constant.

movement from source to leaf nodes (denoted by REVERSE y)

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5 REVERSE 1

REVERSE 2

REVERSE 3

REVERSE 4

 REVERSE 5

n n

n

n

n

n n

n n

n

n

43 1 2

7 6 5

10 8

11 9

c b a

(c,1)

i

(c,1)

(c,1)

(a,1; b,1)

(a,2; b,2)

(a,3; b,3) (a,1; b,1)

(b,1)

(c,2)

(c,3)

(c,4)

(c,4)

these paths are ruled out

min dist = 3

min dist = 4

min dist = 5

min dist = 2

min dist = 1
(c,6) (b,5)

movement from leaf nodes to source (denoted by STEP x)

Tuple: (x,n) for node v => x: neighbor, n: number of potential successors of v
if x is chosen as next hop

Figure 3.8: Depiction of the last phase of the new path selection algorithm

81

3.2.4 Optimizing the Source Tree

According to the example of Fig. 3.7, node n6's only valid path is through

neighbor c with predecessor n1, but node n1 is reachable through neighbor b in the

�nal source tree. Therefore, node n6 has to be excluded from the �nal source tree. If

the label of link (n1, n6) is b, instead of node c node n6 can be included in the �nal

source tree. This shows that a change in label can improve the reachability of the

nodes.

Next we describe how the changes in the labels can be computed such that

the �nal source tree becomes the optimal source tree. Using the Dijkstra's algorithm

without considering any constraint in the choice of the next hop, the minimum distance

to reach any node v (dvmin) and the predecessor for that path (�vmin) is �rst computed.

If dvmin is less than the distance ds of the shortest path taking into consideration the

constraint in the choice of next hop, then the label changes for the link incident on

node v are computed. Procedure computeLabelChanges shows that process.

||{
Procedure computeLabelChanges
||{
1 foreach node v 2 NLs
2 v:label = v

3 diameter = max(dvmin)8v 2 V

4 for(i = 2; i � diameter;i++)
5 foreach v 2 V if (v:dmin = i)
6 if (ds > dvmin)
7 label of link(v:�vmin; v) = v:�min:label ; LABEL CHANGE COMPUTED HERE
8 v:label = v:�vmin:label
9
10 else

11 v:label = label obtained from constraint-based path selection algorithm
12 endif

13 end

14 end

||{

82

3.3 Correctness of the Constrained Path-Selection Algo-

rithm

Theorem 5 If STi = (V
0

; E
0

) is the �nal computed source tree, the distance to each

node v 2 V
0

, according to STi is the smallest for node v based on the given topology

G = (V;E) under the constraints of Rule 1, Rule 2 and Rule 3.

Let dv be the distance to node v 2 V
0

according to STi and Æ�(i; v) be the

shortest distance from i to v under the constraints of Rule 1, Rule 2 and Rule 3,

given a topology at node i and the set of labels for each edge in the topology. Using

depth-�rst traversals through the source graph, corresponding to each neighbor, we

compute Æn(i; v), i.e., the distance from i to v through neighbor n.

Let dnv = Æn(i; v) 8n 2 Ni (Ni : neighbor set).

According to the algorithm, the best next hops (bnh 2 Ni) for any destination

v are chosen such that the following is satis�ed,

dbnhv = min[Æn(i; v)] 8n 2 Ni.

Because of Rule 1, dbnhv = Æ�(i; v) for each bnh. In STi, snh is the �nally

selected next hop for reaching v and snh is selected from the set of bnhs, which implies

that dv = dsnhv = Æ�(i; v).

Theorem 6 Using a given topology if one run of the path selection algorithm does not

yield optimal solution, the optimal solution can be obtained by message passing with

certain relevant nodes.

Let v be any node that is included in STi, i.e., v 2 V
0

. Let nhv be the

83

next hop to reach v according to STi. This implies that countv:nhv = max[countv :ni]

8 ni 2 Ni, where countv:n is the total number of nodes in the subtree rooted at v

when an edge with label n is selected to be the incident edge on node v.

Assume that a node u has been left out of STi (i.e., u 2 (V � V
0

)). Let an

upstream node of u according to one possible least cost path from node i to node u

(through neighbor nhv) be node v and let node v be the last node in the path to node

u that belongs to STi.

A routing protocol based on link-state information can be de�ned such that,

a node could ask its neighbor(s) to enact a form of forced routing along the path [nhv ,

...., v] such that v; ::::; nhv would be forced to advertise to node i the subtree (SUBT
v),

rooted at node v, containing path to node u and that has been excluded from STi.

Let c be the total nodes in SUBT v excluding v. Then after the exchange of

messages, the new count value, count
0

v:nhv = (countv:nhv + c) > max[countv:ni] =

max[count
0

v:ni], because forced routing through nhv increases countv:nhv only.

This implies that nhv would be selected as the next hop for v, and any node

u left out in STi before would be included, hence giving the optimal solution.

Based on our observations and experimental �ndings, we have found that

sending a source tree is not a good utilization of the available topology information

because of the constraint that a single path is only allowed for a node. Advertising and

computing source graph would be a more eÆcient method to approach the problem.

We have found that the approximating solution can be for policy based routing in

today's Internet.

84

3.4 Policy-Based Routing Using Path Selection Algorithm

Today's Internet is divided into several autonomous domains and each do-

main independently de�nes its own policies based on which routes for destinations are

chosen, rather than on the basis of distance-based metrics like delay or hop-count. Bor-

der Gateway Protocol (BGP) is an inter-domain routing protocol that is extensively

used today and does policy-based routing. However, there is an intrinsic problem in

BGP, where certain speci�cations of policies in di�erent domains can cause BGP to

continuously exchange routing messages [47].

Similar situation can arise in secured routing, in which trust relationships

between nodes can demand that certain nodes cannot be used for forwarding data to a

certain subset of destinations although if physical topology is taken into consideration,

those untrusted nodes can provide the shortest paths. Here we present a link-state

based routing protocol that addresses the problem of policy-based routing, where rout-

ing updates are sent in the form of source trees and computation of source tree is done

using the path selection algorithm, presented in the previous section after converting

the policies at each domain into labels. Simple Path Vector Protocol (SPVP) has

been proposed by GriÆn and Wilfong [14] as a form of safe BGP. It suppresses routes

automatically when a history attribute corresponding to each route detects a cycle.

However, it adopts a reactive approach which takes actions based on past history of

route oscillations, while our solution is a proactive approach that ensures that there

is convergence under any condition.

85

3.4.1 Link Vector Protocol

In today's Internet, the well-known existing routing protocols can be broadly

classi�ed into two categories : (a) distance-vector protocols (e.g., RIP [16], EIGRP [1],

BGP [37]) in which routers exchange vectors of distances of the paths used for all des-

tinations and (b) link-state protocols (e.g., OSPF [28], IS-IS [31]) where a topology

is built at each router using
ooding of link-state information and each router runs a

path-selection algorithm on this topology for �nal computation of routes. Link-state

routing protocols solve the in�nite-looping problems of old distance-vector protocols

but incur substantial communication overhead [48]. To reduce the huge communica-

tion overhead associated with
ooding the entire topology in these link-state routing

protocols, a new class of distributed routing algorithms has been introduced, e.g., LVA

(link-vector algorithm) [3] where links belonging to preferred paths to destinations are

exchanged between neighboring routers. The combination of the preferred paths for

all destinations forms a source graph. A router builds a partial view of the topology

based on adjacent links and the links in the source graphs of its neighbors. Each router

runs local path-selection algorithms on its topology to compute its own source graph.

A source tree is a subset of a source graph, in which there is only one preferred path for

any destination. Because the present-day Internet architecture does not yet support

multipath routing and a source-tree exchange mechanism is more bandwidth-eÆcient,

we will assume a source-tree based approach, limiting the number of paths to any des-

tination to one. The Adaptive Link-state Protocol (ALP) [24] is a link-state protocol

that uses selective link-state updates like LVA with the contrast that it reduces the

86

message overhead by not exchanging information regarding explicit deletions of links.

STAR (Source Tree Adaptive Routing) [24] is another source-tree based protocol, in

which it tries to minimize overhead in lieu of less optimal paths. Link-state updates

in STAR are reported to neighbors only if there can be potential loops.

The correctness of the operations of Link Vector Algorithm (LVA) was veri�ed

by Behrens and Garcia-Luna-Aceves [3] for any arbitrary type of routing (shortest-

path routing, multi-constrained routing or policy routing) under the assumption that

a correct and deterministic path-selection algorithm is used and freshness of link-state

information can be determined using a mechanism like usage of timestamps. Cor-

rectness of a routing protocol implies that it converges within a �nite time and it

converges to loop-free, correct paths. The correctness proof for LVA can be summa-

rized as follows: following a change in network topology, the head node of the link

that undergoes change sends a link-state update. Because the link-state updates can

be validated at every node using sequence numbers, no node can continue generat-

ing updates inde�nitely for any link. Therefore, within a �nite time, every node has

consistent information about adjacent links and the preferred paths to each of the des-

tinations from each of its neighbors. This information is a subset of the entire topology

and is exactly suÆcient for computing correct loop-free paths to all destinations.

The correctness proofs of other routing protocols (ALP [26], STAR [24] or

SOAR (Chapter 2)) have been presented in literature. The correctness of each of

these protocols is based on the assumption that links belonging to preferred paths to

destinations are exchanged. The basis of selection of the preferred paths is not relevant

87

for the correctness of the routing protocol, provided that the path-selection algorithm

is correct and deterministic. In order to provide a loop-free solution to the problem of

policy-based routing, we advocate the source-tree based routing information exchange.

However, we need a unique path selection algorithm that takes into consideration the

policy constraints and the path selection algorithm, which has been shown to be correct

in the previous section, can serve the purpose. The next step is to show how the policies

de�ned independently at each autonomous system can be represented in the form of

labels.

3.4.2 Conversion of Policies to Labels

In policy-constrained inter-domain routing for today's Internet, policies are

used to decide (1) which routes to accept from a neighbor (import policy) and (2) the

preference with which those routes should be treated (we call it metric policy) and (3)

which routes to advertise to neighbors (export policy). The import policy determines

how the outgoing traÆc is going to be forwarded while the export policy decides how

the external traÆc enters the domain. The metric policy gives higher preferences to

certain paths over other possible paths, such that traÆc is mostly sent along those

paths.

We are looking at a routing solution, where the gateway routers exchange

the routes to network pre�xes in the form of source trees. The entire source tree

can be sent by a router to its neighbors when routing information is exchanged for

the �rst time between them. Incremental changes to the source trees can next be

88

advertised. Links are extracted from the source trees of each neighbor to form the

topology database at any router.

First we look at the source trees, advertising reachability information for ad-

dress pre�xes and how the import policy would determine which links in the neighbor's

source tree would be considered for inclusion in the topology database. Fig. 3.9 shows

an example of a source tree, advertised by a router x in Autonomous System x (ASx)

and received at router i.

AP

AP

AP

5

10

9

87

64

3

2

AS

AS

AS

AS

AS

ASAS

AS

AP
AP : Address Prefix
AS : Autonomous System

x

1AP

1AS

9

10
87

654

3

2
AP

AP
APAP

AP

ASAS

Figure 3.9: Source tree advertised by the router x in autonomous system x (ASx)

Each node in Fig. 3.9 is either a circle, which represents an autonomous

system or a rectangle, which represents an address pre�x. An import policy is now

used to extract relevant links from these source trees and include them in the �nal

topology. Because the links can be advertised by multiple neighbors, the links need to

be validated and they can be done using timestamps, sequence number or by trusting

the entry advertised by the neighbor of router i, which is nearest to the head of the

89

link. Each of the links, which is added to the topology database, is assigned a set

of labels, where each label corresponds to the neighbor from which the router has

accepted the link-state advertisement.

Let us assume according to the import policy at router i, the routes for

address pre�xes AP3, AP4 and AP9 as advertised by router x would not be accepted.

Let neighbors y and z also advertise links, (AS3; AP3), (AS4; AP4) and (AS5; AP5)

and the import policy accepts the links advertised by those two nodes. Therefore, the

label set for link (AS3; AP3) would be fy; zg while that of link (AS5; AP5) would be

fx; y; zg.

The next step is to translate the metric policy (according to which higher

preferences are given to some routes over others) to a quantitative form that facilitates

the path selection process. Let us assume, according to the metric policy the route for

address pre�x AP5 advertised by router x is given a lower preference, i.e. higher cost

compared to the routes advertised for address pre�x AP5 by neighbors y and z. In

order to translate the metric policy to a link-cost value, the label set of the incident

link on address pre�x AP5 i.e. the label set of link (AS5; AP5) has to be modi�ed and

new links and nodes have to be added to the main topology, according to the method

shown in Fig. 3.10. The route for AP5 is given lower priority by adding redundant

node R5 and redundant links (AS5; R5) and (R5; AP5) (each with cost 5 and label-set

fxg), while the label set of link (AS5; AP5) is changed from fx; y; zg to fy; zg.

We have just described the �rst step for path computation, where the routes

from neighbors are added to the topology database. Next step would be to build a

90

COST :

LABEL :

COST :

LABEL :

1

{x, y, z}

1

{y, z}

{x}LABEL : {x}

5 5

5

5

5

(a) Original Link−State Representation

(b) New Link−State representation after incorporating METRIC POLICY

LABEL :

COST :f(preference)

COST : f(preference)

AS

AS AP

AP

R

Figure 3.10: Method of conversion of metric policy to cost parameters

source tree by running the path-selection algorithm which has been described in the

previous sections. After the source tree has been built, the export policy can be used

to �lter several parts of the source tree and the �ltered source tree is then advertised

to neighbors.

3.5 Conclusions

In this chapter we have described why a new path selection algorithm is

necessary for computation of source trees when the network topology is built using

on-demand link-state advertisements. We have shown that building a source tree that

enables correct data packet forwarding is an NP-complete problem. Therefore, in

SOAR or any on-demand link state routing protocol source graphs rather than source

trees are required to be built at each node for computation of routes. For that purpose

we have used a modi�ed form of the Bellman-Ford algorithm.

We have also developed a polynomial-time approximation algorithm for build-

91

ing source tree when there is a constraint that for each destination only a subset of

possible next-hops can be actually used. Subsequently we have used this algorithm

for loop-free link-state policy based routing, where the basis of routing information

exchange is a source tree and the forwarding structure maintained at each node is also

a tree.

92

Chapter 4

On Demand Link-Vector

Protocol (OLIVE)

In this chapter we are going to present the on-demand link vector (OLIVE) protocol.

Like SOAR it is an on-demand link-state routing protocol. However, unlike SOAR it

is guaranteed to be loop-free at every instant and does not depend on traversed path

information to detect loops. After a change in network conditions, if a node running

OLIVE �nds that the selected route for a destination can lead to a loop, it forces its

upstream nodes for the same destination to release it as successor. After the upstream

nodes release it as successor, the node can choose a new path that is guaranteed to

be loop-free. This process requires co-ordination only with one-hop neighbors, and

unlike ROAM [36] does not require synchronization traversing multiple hops. OLIVE

exchanges routing information in the form of paths in which each path consists of

several links. The combination of paths advertised by a node to any neighbor form a

93

source graph in OLIVE and at any node the combination of paths advertised by its

neighbors provides a partial topology of the network. This topology information is

used at each node for selecting routes with active destinations, as well as for �nding

potential alternate paths when the original route breaks.

Section 4.1 provides the motivation and intuition behind OLIVE's design

which originates in the implicit source routes attained in DSR [20]. According to

implicit source routing, routers can attain loop-free routing by �rst exchanging path

information in route requests and replies, and then performing packet forwarding over

\default
ows" for which no path information is needed in packet headers. Therefore,

the question becomes whether one can improve on the exchange of path information

among routers in such a way that a router can have as its default
ow a multipath

(multiple paths) that never contain a cycle. Sec. 4.2 provides a detailed description of

OLIVE and illustrates its operation. Sec. 4.3 demonstrates the correctness of OLIVE.

Sec. 4.4 compares the performance of OILVE with two on-demand routing protocols,

DSR, AODV and two proactive routing protocols, TBRPF and OLSR. Sec. 4.5 gives

our conclusions.

4.1 Motivation Behind Design of OLIVE

The main question that leads to the design of OLIVE is how should one

design a loop-free routing algorithm that uses path information on-demand, although

allows local route repairs and no source routes or
ow identi�ers in the headers of data

packets?

94

OLSR and TBRPF are link-state based routing protocols that disseminate

topology information about all routers and compute routes to each destination using a

shortest-path algorithm. On the other hand, Spohn and Garcia-Luna-Aceves [24] have

proposed STAR, a proactive link-state routing protocol in which each router receives

\source tree" information from each of its neighbors consisting of links in the paths

to all reachable destinations and forms a partial network topology and uses that for

computing its own source tree.

We have already presented SOAR, which adapts the notion of source trees

to on-demand routing. In SOAR, a router noti�es a source tree to its neighbors that

consists of paths to those destinations for which the router has traÆc. It uses a

modi�ed form of Bellman-Ford algorithm to compute feasible routes to destinations,

and creates a source graph at each router with the aggregate of the paths chosen

to destinations. However, routers exchange source trees, and a router needs to force

its neighbors to establish paths to destinations so that its source tree becomes valid.

Therefore, in certain scenarios routes to destinations are exchanged in the form of

trees, while the forwarding data structure is a graph. The key problem is that it is

not free of temporary routing table loops. Consequently, data packets in SOAR carry

path-traversed information to detect loops.

The question then is whether an on-demand routing protocol can be devel-

oped that is loop-free and uses source tree information.

In an on-demand routing protocol, a node may not know of any route for a

destination, although based on physical connectivity, its neighbor might �nd that it is

95

on the shortest path to that destination. Therefore, to prevent incorrect packet for-

warding the node cannot be used by its neighbor as the successor for that destination.

This leads to several constraints in the choice of the shortest path for any path selec-

tion algorithm. These constraints have already been described in Chapter 3. Because

of the constraints, while computing a source tree, �nite cost paths for all destinations

cannot be obtained, although some neighbors might have explicitly advertised those

paths. In such a case, an optimal path-selection algorithm has to be developed that

maximizes the number of nodes for which �nite-cost paths can be obtained. This

problem of �nding the source tree with the maximum number of vertices has been

termed as the OPT-TREE problem and has been de�ned in Chapter 3.

We have shown that the problem of computing a source tree using a routing

protocol that exchanges path or link-state information on-demand, is NP-complete.

Therefore, our design goal is to develop an on-demand protocol that exchanges path

information without forcing the creation of a source tree. In other words, we must

augment the use of path information implicitly adopted in DSR, which consists of

a router choosing paths based solely on complete paths reported by its neighbors,

rather than trying to adopt the approach used in proactive protocols based on link-

state information, which merge the links of reported paths into a topology graph from

which shortest paths are derived with a local path selection algorithm.

96

4.2 Description of OLIVE

4.2.1 An Overview

In OLIVE, a router sends route requests (RREQs) to establish routes for

destinations with which it needs to communicate. The destinations, themselves or

nodes having active routes to those destinations respond with route replies (RREPs).

RREPs contain paths for destinations and are sent back towards the initiator of the

route discovery process, very much like RREPs in DSR do. The aggregate of path

information obtained in RREPs forms a partial topology.

i

g

f

d

b

a
k

c’s advertised paths
d’s advertised paths
b’s advertised paths

aAT NODE
SOURCE GRAPH

at node a
active destinations

j

(a) Network Topology at Node a

(b) Source Graph, the output of path selection algorithm in OLIVE

k

j

i

g

f

e

d

c

b

a
���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���

���
���
���
���

paths for other destinations
paths for active destination

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

Figure 4.1: Path selection in OLIVE

A router selects paths for destinations for which it has active
ows only

from paths explicitly advertised by neighbors. The path-selection algorithm is: if P ni
j

97

(ni 2 Ni, where Nii is the set of neighbors) is the path for destination j advertised

to node i by neighbor ni and P ni
j .cost refers be the cost of the path, then path P nx

j

is chosen as the active path if P nx
j .cost = min(P ni

j .cost). Fig. 4.1 shows the method

of computation based on the above path selection algorithm. Fig. 4.1(a) shows the

network topology formed by combining paths advertised by neighbors b; c; and d. Node

a has active
ows with nodes g, f and k and therefore, needs to set up routes for them.

For destination g, the advertised paths are aceg and adg, of which the path adg is

chosen because it is smaller in cost. Similarly among advertised paths adfik and

acegjk for destination k, abfik is chosen. For destination f , the only path possible is

adf , because neighbor d has reported only this path for destination f .

For other non-active or active destinations for which there are no explicit path

advertisements, the plausible routes are computed using the Dijkstra's algorithm, in

which there is no constraint in the choice of the successor. In the example of Fig. 4.1

for non-active destination j, for which there is no path advertised explicitly by any

neighbor, the plausible path adgj has been selected using the Dijkstra's algorithm,

which comprises of links advertised by di�erent neighbors. Routes for destinations,

for which no up-to-date explicit advertisement is present, are never installed in the

main routing table. Forced routing is done �rst to check whether those paths are

correct, and then data forwarding is carried out.

In Fig.4.1(b), the edges with solid lines form a source graph, where it contains

routes for destinations g, f and k. When node a gets a route request for any of these

destinations, it will reply with the relevant paths of the source graph. It forwards the

98

route request for other destinations.

d

a b

j

i

a b

j

i

d

a b

j

i

d

apath from i
to j

R
R

E
PA

C
K

RREP
RREP

A
CK

FRREQ

FR
R

E
Q

FR
R

E
P

FRREP

to j
from i

new path

d RREP

R
R

E
PA

C
K

RREQ

R
R

E
PA

C
K

b

j

i

link
failure

(a) (b) (c) (d)

RREQ

R
R

E
P

R
R

E
P

R
R

E
P

R
R

E
Q

R
R

E
Q

R
R

E
Q

e

c c c c

e e e

Figure 4.2: Route discovery and route repair methods in OLIVE

When a path breaks, an intermediate node attempts to locally repair the

routes, i.e., establish an alternate path without informing its upstream neighbors. To

do so, the node uses its partial topology information to �nd whether an alternate route

exists. If such a path exists, nodes along the possible alternate path exchange forced

route requests (FRREQs) and replies to FRREQs (FRREPs) to ensure the viability

of that path. If the local route recovery process fails, route errors (RERRs) are sent

upstream advertising link failures.

4.2.2 Example of OLIVE Operation

Fig. 4.2 shows an ad-hoc network of seven nodes. Each edge in the network

connects those nodes who can hear each other directly. Assume that node i has data

packets for node j and therefore, has to set up a route for destination j. Nodes a and b

initially have active
ows with node j and therefore, have valid routes for node j. Node

i initiates a route discovery process for destination j. First it queries its neighbors for

99

a route and when it does not get a reply, it sends network-wide queries. Fig. 4.2(a)

shows the
ow of the Route Requests (RREQs) across the network, after it originates

from node i. Fig. 4.2(b) shows how the route replies (RREPs), carrying routes for

destinations and the acknowledgments to route replies (RREPACKs) are exchanged

between routers for �nal path set-up between node i and node j. The RREQs contain

information regarding the initiator and the target of route discovery process. The

target or any intermediate node that has a valid path for the target can respond to

the RREQ with a route reply (RREP). RREQs also carry information about the paths

along which they travel and this information helps to route the RREPs back towards

the initiator of route requests. In this example both nodes a and b have active routes

for node j. Therefore, when each of these nodes receives a RREQ, it responds with

a RREP containing a path for node j. Node a's RREP is meant for node d, while

node b's RREP is sent to node c. When node a has sent a RREP to node d containing

route to node j, it implies that it has a valid route for node j and it has included

node d in the predecessor list such that node d can be noti�ed when route for node j

changes. If node a does not receive any acknowledgment from node d within a certain

time interval, it removes node d from its list of predecessors. Therefore, when node d

selects its route for node j through node a, it sends a RREPACK to node a. Similar

messages are also exchanged between nodes c and b. At node e, RREPs containing

paths to node j are received from both the nodes c and d. Both the paths are equal

in cost; therefore, node e accepts the route it hears �rst. (When routes of unequal

cost are present, shorter routes are always selected.) Let us assume, node e hears the

100

RREP from node c �rst. Therefore, node e sends RREPACK to node c only and not

to node d. However, an entry for the advertised route of neighbor d will be present

in node e's network topology and this information will be helpful to set up alternate

paths, when the original route breaks. Node e sends RREP to node i which sends

RREPACK back to node e after it selects the �nal path, iecbj.

Next assume that link (e; c) fails. Fig. 4.2(c) and Fig. 4.2(d) illustrate how

alternate paths are created when original paths break due to link-failures.

Because successor c for destination j is no more reachable from node e, node

e removes the route for node j from the routing table. After node e detects that its

route to destination j has broken, �rst it attempts to locally repair routes based on

its topology information without informing the upstream nodes. Node e �nds from its

network topology that there is a plausible path edaj to reach node j. However, for

destination j node e is not the current predecessor of node d. Therefore, node e may

not have up-to-date path for destination j. Node e initiates the validation process,

which we call forced routing in which nodes exchange messages to check the viability

of the path. Forced Route Requests (FRREQ) get forwarded along the path, edaj

and any node (node a for this example) that has an active route sends a response

(FRREP). FRREP is sent from node a to node d and then to node e and node e sets

up the alternate route, edaj.

Unlike the case described above, if the situation would have been that local

route recovery is not possible because of non-availability of any alternate route infor-

mation, node e has to send a route error (RERR) to node i, containing failed route

101

information. Node i has to then restart the route discovery process, because it does

not know of any alternate path.

4.2.3 Detailed Description

In this section we give the detailed description of OLIVE. The operations of

OLIVE can be broadly classi�ed into three phases: (a) route discovery for setting up

new paths, (b) local route repair for �nding alternate paths when the original breaks,

and (c) route failure noti�cation for updating neighbors of route failures.

Route Discovery

There are three types of control packets used during the route discovery

phase: (1) RREQ, (2) RREP and (3) RREPACK.

Route Request (RREQ):

RREQ packets are used to discover routes for unknown destinations. Route

discovery is always initiated by the source node, when it does not have routes for the

destinations for which there are active
ows.

Requests for routes by the source are either limited to neighbors or sent

throughout the network. For the second case, each node forwards others' route requests

and the route requests
ow like an expanding ring search. Nodes forward a RREQ

only if:

� The node has no valid route for the destination;

� No RREQ initiated by the same source has been forwarded within certain spec-

102

i�ed time;

� RREQ has not traversed beyond the zone within which the route search was

limited.

Each RREQ contains information regarding the initiator and target of route

discovery process and each forwarder of RREQ adds its own identity to RREQ's list

of forwarding nodes such that this information can be used for forwarding replies back

along the reverse path towards the source.

Route Reply (RREP):

Route replies are sent by nodes having active routes for the targets of RREQs

and contain paths for the targets. RREPs are either sent in response to RREQs or

forwarded in response to a RREP.

To avoid duplicate RREPs, a RREP sent in immediate response to a RREQ

is broadcast to all neighbors. Before sending a broadcast RREP, a node waits for a

back-o� period (the length of back-o� period is proportional to the node's distance

from the target) and cancels the operation of sending RREP, if it receives RREP from

another node, meant to be sent to the same source. When RREPs are forwarded, they

are always sent unicast. Every node, before sending a RREP to a neighbor ensures

that the latter is included in the predecessor list, so that it can be noti�ed of route

failures if the original route breaks.

When a route for a destination is installed in the routing table, it is given

a lifetime of active route timeout, and a new predecessor entry has a lifetime of

(2�active route timeout). Every time a packet is forwarded for any destination, the

103

lifetime of the route to it is increased by active route timeout, while every time a

predecessor forwards a data packet the lifetime of the predecessor's entry is increased

by (2�active route timeout). The lifetime of the forward path to a destination is kept

much smaller (half for our purpose) than the lifetime of a predecessor entry, so that

upstream nodes are correctly updated about the changes in the forward path.

Route Reply Acknowledgment (RREPACK):

When a node establishes a route through a neighbor, using the path informa-

tion just received from it, it acknowledges the neighbor with RREPACK. The neighbor

on receiving the RREPACK cancels the ReplyAckTimer. After a RREP is sent Reply-

AckTimer is started at the sender for each receiver of RREP and if no acknowledgment

is received within a certain time frame, the timer times out and the predecessor entry

for that receiver is removed.

Local Route Repair

By local route repairs, we mean when the original route breaks, intermediate

nodes can repair the routes without informing the upstream nodes about the changes

that are happening in the forwarding structure. This in e�ect reduces the number

of mobile nodes that get a�ected due to network dynamics. When the source nodes,

instead of
ooding the entire network with RREQs, scope their searches among speci�c

nodes, we call the process local route repair. Therefore, the local route repair refers

to the process of repairing routes without always involving all nodes in the network.

Main two types of packets that are exchanged during this process are FRREQ

104

and FRREP.

Forced Route Request (FRREQ):

Alternate paths computed using network topology may not be up-to-date

because they are not used recently for data delivery. Therefore, before the �nal data

transfer FRREQs are sent along the alternate paths to check their viability.

Each FRREQ carries information about the plausible path to the destination

such that each node on the path, having an active route can compare the path with

its current route for the destination. The node either forwards FRREQ if it has

no information about the viability of the path or responds with a FRREP if it is

currently a source or relay for the destination and has de�nite information of the

path. When FRREQs do not yield any response within a certain time interval, the

alternate paths are assumed to be non-existent and information about failed routes is

sent to predecessors.

Forced Route Reply (FRREP):

FRREP is sent as a reply to the FRREQ. It either contains a valid route

for the destination or contains no route if the plausible path indicated in FRREQ is

invalid. If the FRREP carries no path information, then information about the �rst

link in the plausible path of FRREQ that is in�nite is reported in FRREP. Therefore,

the initiator of local route repair process will have a valid route or no route after

receiving the FRREP and if no alternate route of equal or lower cost than the original

is possible, RERRs (if it is relay) and RREQs (if it is source) are sent.

105

Route Failure Noti�cation

When the original route for any destination breaks and no alternate path

of equal or lower cost is possible, the router initiates the process of route failure

noti�cation. During this process the upstream nodes are informed of the changes in

the routes, such that they either do the local route repairs or inform their predecessors.

RERRs and RERRACKs are exchanged for route failure noti�cation.

Route Error (RERR): Nodes send RERR to indicate route failures to

their predecessors such that the predecessors are noti�ed of the latest changes and

they stop using them as successors. Failure of routes can happen under the following

conditions:

� Adjacent Link Failure: The router can get noti�cation of adjacent link failure

from the network layer or link layer.

� Reception of Route Error (RERR): On reception of RERRs from neighbors, a

node may �nd that its active route through those neighbors have broken.

� Expiration of Routes : When routes are not used for a certain time interval, they

expire and the predecessors are noti�ed of the expired routes using RERRs.

RERRs are also sent by a node to the sender of a RREP, when the RREP

contains invalid routes.

RERRs for any destination contain information about the �rst downstream

link in the original path that has become in�nite.

Route Error Acknowledgment (RERRACK):

106

RERRACK is sent as acknowledgment to RERR to notify the sender of

RERR that the node has stopped using the sender of RERR as successor. The sender of

RERRACK is no longer considered a predecessor and when the number of predecessors

becomes zero for a destination, the node will be able to install a new loop-free route,

using the route discovery process.

4.2.4 Neighbor Relationship

Timely propagation of neighbor relationships is critical for eÆcient execution

of a routing protocol. To obtain correct information, a router depends on noti�cations

from the network layer or from the link layer.

At any node a link to a neighbor is up when any one of the following events

happens:

1. the node receives directly a control packet from the neighbor for the �rst time

2. the node receives the �rst network layer hello message from the neighbor

3. A neighbor protocol at the link layer that monitors MAC layer traÆc and also

exchanges beacons, advertises the presence of the new neighbor.

A node decides that its link with a neighbor is down when any of the following

events happens.

1. The router receives noti�cation from the link-layer when it fails to deliver data

packets along that link.

2. The network layer hello messages are missed several consecutive times.

107

3. A neighbor protocol at the link layer which monitors neighbor connectivity by

sending beacons informs about a failed link.

4. Acknowledgments for data packets have not been received after repeated network-

layer retransmissions.

If no network layer hello mechanism is available for neighbor discovery, and

a neighbor is silent for a certain time (i.e., the router has not received any data packet

or control packet from it for that period of time), the neighbor is assumed to be down

and all link entries advertised by it are considered invalid.

4.2.5 Handling Link Sequence Numbers

Every node maintains its own sequence number, and when any of its adjacent

links go up or down, it increments its sequence number and assigns that to the link,

which has undergone the recent change. The cost of the link is in�nite when the link

is down, otherwise the cost is �nite and can represent delay or capacity of the link.

Di�erent neighbors might advertise di�erent status for the same link. Under

those con
icting situations, links are validated using sequence numbers and links with

higher sequence numbers are trusted over links with lower sequence numbers. If there

is no entry for a link, then the router trusts the �rst link-state entry it receives.

Links with in�nite cost are never deleted and a node deletes information

about a link with �nite cost after each of its neighbors has removed that link from its

advertised paths.

If a node deletes all information about a link with in�nite cost and then re-

108

ceives link state information with �nite cost but of lower sequence number than the

sequence number of the recently deleted link with in�nite cost, the result would be

old link state information is injected for another time to the routers in the network.

Because links with in�nite cost should not be used for data delivery, extra control over-

head is necessary to purge the nodes of old routing information. Therefore, bandwidth

can be saved if failed link information is stored at each router.

4.3 Correctness and Loop Freedom

To prove OLIVE to be correct, following two conditions have to be satis�ed:

1. Safety Property : Given a network G = (V;E), and a destination j 2 V , the

successor graph SGj(= (V;E
0

)), where E
0

= f(i; sji) : i 2 V , sji : successor for

node j at node i, if sji 6= NULLg, is a directed acyclic graph and hence loop

free at every instant.

2. Liveness Property : Within a �nite time following an arbitrary number of

changes in network conditions and
ows, all nodes in the network have correct

paths for each reachable destination, to which they have active
ows.

We note that the above conditions leave open the possibility of nodes trying

to �nd persistently paths to destinations belonging to the partitioned network. In

practice, the routing protocol can infer that a destination appears to be unreachable

after a few failed attempts, and it is up to the higher-level protocol or application to

determine whether or not to continue looking for paths to unreachable destinations.

109

The correctness proof assumes the following:

1. After an arbitrary sequence of link cost changes, topology changes, and traÆc

ow changes, there is a �nite amount of time before the next change that is

suÆciently long for OLIVE to stop computing routes to active destinations.

2. All information is stored correctly and routers operate according to the speci�-

cations of OLIVE.

3. Changes in status of adjacent links are noti�ed within a �nite time.

The instantaneous loop freedom in OLIVE can be proved based on the fol-

lowing two important properties:

1. When a node has to change its route, and the cost of the new route is higher than

the cost of the old route, the node reports in�nite distance to its predecessors

and it changes to this new route only when the predecessors have removed it

as successor. Change in successor following the selection of an alternate path of

lower or equal cost do not lead to loops.

2. A node sets up a route for a destination only if the event that has forced the

re-computation of route is reception of FRREP or RREP and the route chosen

is the path speci�ed in that RREP or FRREP. (As mentioned before, the sender

of RREP or FRREP includes the recipient as the predecessor before sending the

packets). This means that at any instant of time t at a node i, if PREDj
i (t) is the

set of predecessors for destination j as known to node i, and PRED
j
i (t) is the set

110

of nodes at time t who have selected node i as successor to reach node j according

to an omniscient observer, then PRED
j
i (t) � PREDj

i (t). That implies if the

original route breaks, a node if it is using the route will be de�nitely updated by

its successor.

We can show by contradiction that loops can never form in OLIVE if the

above two conditions are always satis�ed. Let a; b; c::::::; x be the nodes (Fig. 4.3(a))

which form a loop for a destination j with the next hop for node x being node a, that

of node a being node b and so on. Let P j
i (t) be the path at node i for destination j

at time t. Let us assume that at time t, a is the node in the loop whose length of the

path for node j is maximum. Therefore, at time t, P j
a (t).cost � P j

x(t).cost. Assume

that the last change in successor occurred at time t0 < t, when node x chooses node

a as the next hop. Therefore P j
x(t).cost = P j

x(t
0).cost > P j

a (t
00).cost where P j

a (t
00):cost

is the cost of the path advertised by a in its RREP or FRREP at time t00 < t0 < t.

This implies P j
a (t).cost � P j

x(t).cost = P j
x(t
0):cost > P j

a (t
00).cost, which basically says

P j
a (t).cost > P j

a (t
00).cost, i.e. node a has experienced an increase in the cost of path

for node j in the interval (t"; t]. In that case, according to the �rst rule given above,

node a sends a route error to node x advertising in�nite cost, in which case node x

releases node a as next hop at time tx < t. Therefore, the loop cannot form and that

contradicts our assumption that there is a loop at time t.

Theorem 7 Within a �nite time after the last change in network conditions and

traÆc
ows, all nodes which are sources of data packets have correct paths to the

destinations.

111

p

q

r

s

j

c

b

a

x

l

m

x
a

b

c

d

(a) (b)

Figure 4.3: Loop-freedom and correctness of OLIVE

As described above, OLIVE ensures that the forwarding graph as visible to

an omniscient observer, SGj does not contain any transient loops. Let Sj � V be

the set of nodes that have active
ows with destination j, and Rj � V be the set of

nodes which act as relays for the data packets to node j. Let t1 be the time when SGj

is correct and loop-free. Then there are link cost changes and there are introduction

and termination of traÆc
ows. Let t2 be the time when the last traÆc
ow change

or the last link change occurs. Here we want to prove that within a �nite time after

t2, the paths from every v 2 Sj converge to j. In this context, we de�ne the active

graph AGj to be the graph formed by the links (v; svj) for each v 2 Sj or v 2 Rj (s
j
i :

successor for node j at node i). It is obvious that AGj � SGj. So AGj is guaranteed

to be a DAG but for correct operation of OLIVE, we show that AGj is a tree (rooted

at node j).

Assume that this theorem is not true. Therefore, AGj is not a tree and can

be a forest, as shown in Fig. 4.3(b). In Fig. 4.3(b) the black nodes of AGj denote the

members of set Sj while the other nodes shown act as relays. Because AGj is not a

112

tree, the path from any node v 2 Sj either (1) converges to j, or (2) does not have a

path for j, or (3) ends in a node with no path for j.

We have to consider the last two cases, as they contradict the theorem. To

illustrate, according to Fig. 4.3, the active graph for destination j shows that (a) after

�nite time node a does not have a path for node j and (b) nodes c and b think they

have a correct path for node j even though the downstream node a does not have a

path.

If node b is using node a as successor to reach j, it implies that node a

has reported a path of �nite distance for node j to node b and included node b as a

predecessor for the route to node j. Node j is an active destination for node a and

node a has no path for node j. Then, node a have reported path loss to node b.

Therefore, within a �nite time, node breceives the message that node a does not have

a path for node j and because the path to any destination j through a neighbor n has

to be reported by node n, it implies that node b will stop using node a as next hop

within a �nite time. So it is easy to show by induction that node c (2 Sj) will have

no path to node a within a �nite time; and all intermediate nodes will know about

path losses to j. Therefore, only the following scenario is possible that can disprove

the theorem: any node v (2 Sj) either has no path for j.

Within a �nite time after t2, a node v 2 Sj does not have a route for j, which

implies that v generates in�nite number of RREQs. The assumption here is that the

network is not partitioned and the network consists of �nite number of nodes, there

exists at least one node that generates in�nite number of RREPs and there exists

113

at least one node (that can include the source v) that receives an in�nite number

of RREPs, but does not get a new path. It implies the path sent in each RREP is

invalid at the receiving node and that can only happen if the advertised path contains

invalid links i.e., the receiving node has links with in�nite cost but of higher sequence

number. According to the rule of OLIVE, if after receiving a RREP a node does not

get a path to node j, the receiving node sends to the sender a RERR advertising the

invalid link. So within a �nite time the sender gets corrected and will have latest link

state information. Because the network consists of �nite number of nodes, within a

�nite time all nodes, which have outdated link state information and advertised that

in RREPs, will get updated. The link information with in�nite cost does not get aged

out or deleted. Therefore, the process of correcting neighbors cannot continue for

in�nite time. Within a �nite time at least one RREP will be accepted at each node v

(v 2 Sj) and each node v will have the correct path for destination j.

4.4 Simulation Results

We have compared the performance of OLIVE with two on-demand routing

protocols (DSR [25], AODV [34]) and two proactive routing protocols (TBRPF [30],

OLSR [22]), which have all been proposed for standardization in the IETF working

group on mobile ad-hoc networks (MANET) [17]. The performance evaluation has

been done in the ns2 simulation platform [19], using the code of DSR, AODV and

TBRPF provided with the simulator. TBRPF code conforms to version 4 of the

Internet draft. For OLSR, we have used the code available from INRIA website [4]

114

Table 4.1: Constants used for OLIVE
Constants Value

active route timeout 5.0 s
predecessor lifetime 2 � active route timeout
olive rreq gap time 0.4 s
olive rrep gap time 0.4 s
rerr ack wait 0.5 s
reply ack wait 1 s
one hop traversal 0.1 s
frreq time out value 2�one hop traversal � tot hops

and have added the code for handling link-layer noti�cations of adjacent link-failures.

The speci�cations of OLSR code match those in version 3 of OLSR Internet draft. The

constants for DSR, AODV and TBRPF have been used unchanged from the original

code, while the constants given in Table 4.1 have been used for OLIVE. The AODV

code conforms to the speci�cations mentioned in the version 3 of the Internet draft

of AODV. DSR code conforms to the version 1 of the Internet draft of DSR. The

link layer implements the IEEE802.11 distributed co-ordination function (DCF) for

wireless LANs. The broadcast packets are sent unreliably and are prone to collisions.

The physical layer approximates the 2 Mbps DSSS radio interface (Lucent WaveLan

Direct-Sequence Spread-Spectrum [46]). The radio range is 250m and for all the

simulations the run length is 600 seconds.

TBRPF, DSR, AODV, OLSR and OLIVE use link layer indications about the

failure of links when data packets cannot be delivered along a particular link. Except

for the noti�cation of the link layer about links going down, none of the protocols has

any other interaction with the lower layer. In particular, promiscuous listening was

disabled for both DSR and OLIVE. ARP has also been disabled and for the sake of

115

simplicity, the IP addresses of the nodes are used as the MAC addresses.

4 6 8 10
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

5

Packet Rate per Source

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

50 nodes, 20 sources, pause time = 0 sec, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

4 6 8 10
2

4

6

8

10

12

14

16

Packet Rate per Source

N
um

be
r

of
 C

on
tr

ol
 B

yt
es

 (
kb

ps
)

50 nodes, 20 sources, pause time = 0 sec, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

(a) Control packets (b) Control bytes

4 6 8 10
0

1

2

3

4

5

6

7

8
x 10

5

Packet Rate per Source

N
um

be
r

of
 M

A
C

 la
ye

r
pa

ck
et

s

50 nodes, 20 sources, pause time = 0 sec, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

4 6 8 10
20

30

40

50

60

70

80

90

100

Packet Rate per Source

P
er

ce
nt

ag
e

T
hr

ou
gh

pu
t

50 nodes, 20 sources, pause time = 0 sec, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

(c) MAC layer control packets (d) Throughput

4 6 8 10
10

−2

10
−1

10
0

10
1

10
2

Packet Rate per Source

E
nd

 to
 E

nd
 D

el
ay

50 nodes, 20 sources, pause time = 0 sec, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

4 6 8 10
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

Packet Rate per Source

A
ve

ra
ge

 H
op

 C
ou

nt
/O

pt
im

um
 H

op
 C

ou
nt

50 nodes, 20 sources, pause time = 0 sec, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

(e) End to end Delay (f) Optimality of Paths

Figure 4.4: Performance in a 50-node network with 0 second pause time and 20 sources with
varying packet load

116

4.4.1 Mobility Pattern

The movement of the nodes in the simulation is according to the random

waypoint model [9]. We have described previously in Chapter 2 the details of random

waypoint model. For our simulations we have 50 nodes moving over a rectangular area

of 1500m�300m.

Values of pause time used are 0, 15, 30, 60, 120 and 300 seconds.

4.4.2 Input TraÆc Pattern

Each
ow is a peer-to-peer constant bit rate (CBR)
ow and the data packet

size is kept constant at 512 bytes. Each
ow continues for 200 seconds and after

the termination of the
ow, within 1 second, the source randomly chooses another

destination and starts another
ow, which again lasts for 200 seconds.

4.4.3 Comparison Criterion

The following metrics are used to compare the performance of the routing

protocols:

� Packet delivery ratio: The ratio between the number of packets sent out by the

sender application and the number of packets correctly received by the target

destinations. The main objective of on-demand routing protocol is to achieve

maximum throughput using minimum control overhead.

� Control packet overhead: The total number of control packets sent out during

the simulation. Each broadcast packet is counted as a single packet. Low control

117

packet overhead is desirable in low-bandwidth wireless environments.

� Control byte overhead: The total number of control bytes used in the control

packets. This gives an idea regarding the total bandwidth used by control pack-

ets.

� Total number of MAC packets : The total number of packets sent at the link-

layer for exchange of routing information. They include RTS, CTS, the control

packets and the ACKs. This parameter can give an idea regarding the amount

of battery power that is used for delivery of control packets. If the MAC layer

protocol is TDMA, then the total number of control packets would be equal to

the total number of packets sent by MAC layer. In such a scenario the control

byte overhead will re
ect the total energy usage for setting up routes.

� Optimality of paths: Ratio of the actual number of hops to the optimal number

of hops possible based on the given topology.

� Average end-to-end delay: The end-to-end delay measures the delay a packet

su�ers after leaving the sender and then arriving at the receiver application.

This includes delays due to route discovery, queueing at IP and MAC layers and

propagation in the medium.

4.4.4 E�ect of Increasing Load

We have evaluated the performance of each of the routing protocols under

varying packet load when the number of sources is 20 and nodes are constantly moving

118

(Fig. 4.4).

0 50 100 150 200 250 300
0

1

2

3

4

5

6
x 10

4

Pause Time

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts

50 nodes, 10 sources, load = 4 pkts/sec/src, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

Pause Time

N
um

be
r

of
 C

on
tr

ol
 B

yt
es

 (
kb

ps
)

50 nodes, 10 sources, load = 4 pkts/sec/src, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

(a) Control packets (b) Control bytes

0 50 100 150 200 250 300

0.5

1

1.5

2

2.5
x 10

5

Pause Time

N
um

be
r

of
 M

A
C

 la
ye

r
pa

ck
et

s

50 nodes, 10 sources, load = 4 pkts/sec/src, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

0 50 100 150 200 250 300
75

80

85

90

95

100

Pause Time

P
er

ce
nt

ag
e

T
hr

ou
gh

pu
t

50 nodes, 10 sources, load = 4 pkts/sec/src, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

(c) MAC layer control packets (d) Throughput

0 50 100 150 200 250 300

10
−1

10
0

Pause Time

E
nd

 to
 E

nd
 D

el
ay

50 nodes, 10 sources, load = 4 pkts/sec/src, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

0 50 100 150 200 250 300
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Pause Time

A
ve

ra
ge

 H
op

 C
ou

nt
/O

pt
im

um
 H

op
 C

ou
nt

50 nodes, 10 sources, load = 4 pkts/sec/src, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

(e) End to end delay (f) Optimality of paths

Figure 4.5: Performance in a 50-node network with load of 4 packets/s/source and 10 sources
under varying mobility

The control overhead of OLIVE remains unchanged with the increase of load.

DSR, TBRPF and OLSR exhibit similar behavior. However, AODV's control over-

head continuously increases with load. Even when nodes are physically close, due

119

to congestion the links are assumed to fail when data packets can not be delivered

along those links. In such cases increased number of route failures a�ects AODV most

because for each route failure it generates network-wide queries. (AODV increases

sequence numbers when there is a route failure and therefore, nodes with valid routes

and lower sequence numbers can not respond. That leads to increased dissemination

of route requests). The number of MAC layer control packets increases slightly for

DSR throughout all scenarios while for OLIVE it increases only when the network load

is maximum (41 kbps/source or 10 packets/source). This is because of the increased

number of broadcast RTSs, for which there is no collision avoidance mechanism. Hello

packets form the major percentage of packets for TBRPF or OLSR, therefore its con-

trol overhead stays unchanged. In terms of control overhead, there is no signi�cant

di�erence in performance between TBRPF or OLSR.

In terms of application-oriented metrics like throughput or network delay

(Fig. 4.4(d) and Fig. 4.4(e)), the performance of OLIVE is the best among all protocols

and remains almost una�ected by network load, while the performances of DSR and

AODV degrade signi�cantly. OLIVE, unlike DSR, TBRPF or OLSR, when it detects

a route is broken, uses FRREQs and FRREPs to �nd the viability of alternate paths

and data packets are forwarded only if the paths are usable. On the other hand, for

TBRPF, DSR or OLSR, packets are rescheduled along di�erent paths, without testing

their feasibility leading to higher waiting time in queues and more congestion. OLIVE

has a high range of delay values, like DSR, TBRPF, OLSR or AODV, which implies

that data packets in OLIVE also have long waiting time at the link-layer interface.

120

However, its 95 percentile delay value is far lower than that of DSR, OLSR, AODV or

TBRPF, which shows that on an average it has better delay performance. Network

topology information in OLIVE also helps it to �nd shorter paths (Fig. 4.4(f)).

For TBRPF, data packets always get re-scheduled along alternate routes,

when the original paths break. Therefore, they get circulated throughout the network

and there is huge amount of packet loss due to looping and TTL timeout. In TBRPF,

all the control packets are broadcast. Therefore, for sending any TBRPF control

packet, no extra MAC layer handshake is necessary. However, because the broadcast

TBRPF packets can lead to collisions, its performance degrades signi�cantly with

load. Same is the case for OLSR, whose proactive mechanism of route maintenance

is almost similar to that of TBRPF. This is also true for AODV, where queries which

form majority of its control packets are broadcast packets.

4.4.5 E�ect of Mobility

Fig. 4.5 and Fig. 4.6 show the performance of all the protocols for a 50-

node network with 10 sources and 20 sources respectively with each source generating

packets at the rate of 4 packets/s.

Except for TBRPF and OLSR, the control overhead of OLIVE, DSR and

AODV decreases with lesser mobility of the nodes. Higher mobility implies higher

rate of route failure leading to higher control overhead. For TBRPF and OLSR, the

control overhead remains almost unchanged with mobility, because the periodic hello

packets which are always sent irrespective of the reliability of links form the majority

121

of the control packets. For 10 and 20 sources, the control overhead of OLIVE in terms

of both bytes and packets is less than DSR, AODV, TBRPF or OLSR.

As we have seen before, because the majority of control packets in AODV

is broadcast queries that does need RTS/CTS to send data packets, the di�erence

between AODV and OLIVE in terms of MAC layer control packets (Fig. 4.5(c) and

Fig. 4.6(c)) is not so signi�cant as the di�erence in the number of network layer control

packets.

In general when the number of sources is ten, the on-demand routing proto-

cols use fewer network layer control packets compared to proactive routing protocols,

while for the high mobility scenarios with higher number of sources proactive routing

protocols start performing better. In all scenarios, OLIVE has less control overhead

than DSR or AODV.

OLIVE delivers the same number of data packets as TBRPF or AODV

(Fig. 4.5(d) and Fig. 4.6(d)). DSR su�ers a higher loss of data packets in all sce-

narios, because of the use of stale routing information in the RREPs. OLSR su�ers

considerable loss of data packets due to routing loops and TTL timeouts.

In terms of path optimality (Fig. 4.5(f) and Fig. 4.6(f)), OLIVE is best among

all the on-demand routing protocols. However, because TBRPF uses hello packets, it

can learn about a node which has moved closer faster than the on-demand protocols

that depend on reception of control packets to detect neighbor connectivity. In all

our experiments we have found that the paths in DSR are always longer than the

paths in AODV, contrary to the results in [9, 10]. The reason is that because of no

122

promiscuous listening DSR cannot learn about shorter routes

In terms of delay (Fig. 4.5(e) and Fig. 4.6(e)), OLIVE performs better or

equal to the other protocols. Queueing at link layer is the main cause for the delay

experienced by data packets in each of the routing protocols.

4.4.6 Looping Problem

Here we quantify the amount of bandwidth wasted in each routing protocol

due to packets going in loops or staying in the network for a considerable time. The

experiment is done for low to heavy load scenarios when the number of sources is 20.

Saving bandwidth is essential in ad-hoc networks especially when the load is heavy,

because then there is increased contention in the medium and more queueing at each

layer.

Fig. 4.7 shows the number of packets that have actually gone in a loop, or

have been dropped due to TTL timeout and have been dropped on detection of loops.

Loops can be detected in two ways in any routing protocol, in which no traversed path

information is present in the data packets: (a) the source �nds that the data packet

has come back to it (b) any forwarding node detects that it is passing the packet to a

node, which has actually forwarded the data packet.

In our experiments, the packet traces are used to detect the number of packets

that have gone in loops. From Fig. 4.7, we see that in both TBRPF and OLSR,

bandwidth is wasted due to looping and the e�ect becomes more prominent with

heavier load. Both OLSR and TBRPF are proactive link-state protocols, and their

123

routing exchange mechanisms do not ensure instantaneous loop freedom. Also they

always exchange unreliable control packets and that leads to longer convergence time.

Therefore, a signi�cant amount of bandwidth is wasted by packets going in loops.

Both these routing protocols have minimum packets dropped due to non-availability

of routes, which implies that the topology information always helps the data packets

to be re-scheduled along alternate paths. However, in heavy load scenarios, when

the links fail frequently due to congestion, alternate paths are not always the correct

options. The control packet exchanges in OLIVE and AODV ensure instantaneous

loop freedom. In DSR, the source routes carry information about path traversed and

the path to be traversed. Therefore, in DSR loops cannot form. Under high load, in

DSR some data packets go into loops when data packets are salvaged at intermediate

nodes. When an intermediate node in DSR �nds that the next link in the source route

is no longer available, it salvages the data packets by re-routing the packet using its

own cached routing information. Because path traversal information is not checked

for re-routing, loops can form.

Though AODV and OLIVE ensure instantaneous loop freedom, looping of

packets can still occur during the transient states, when routes change. However, due

to no routing loops, this e�ect is not persistent for AODV or OLIVE.

4.5 Conclusions

We have presented the on-demand link-vector (OLIVE) protocol, which is

the �rst protocol to ensure loop-freedom at every instant using the same path infor-

124

mation available in DSR while allowing destination-based incremental routing instead

of requiring source routing of data packets.

We have shown that selecting paths on-demand cannot be approached based

on the \source trees" used in proactive routing protocols. Therefore, routers in OLIVE

exchange path information and these paths combine to give the partial network topol-

ogy. A path selection algorithm is then run on the network topology to compute the

source graph. Source graphs are reported incrementally in the form of separate paths.

Topology information provides routing data to limit network-wide searches for routes

and do local route repairs. OLIVE has been shown to be loop-free at every instant

and to �nd correct paths to destinations in �nite time.

Our simulation results show that OLIVE performs much better than two

popular on-demand routing protocols DSR and AODV, and two proactive routing

protocols like TBRPF and OLSR in terms of control overhead, throughput or delay.

125

0 50 100 150 200 250 300
0

1

2

3

4

5

6
x 10

4

Pause Time

N
um

be
r

of
 C

on
tr

ol
 P

ac
ke

ts
50 nodes, 10 sources, load = 4 pkts/sec/src, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

Pause Time

N
um

be
r

of
 C

on
tr

ol
 B

yt
es

 (
kb

ps
)

50 nodes, 10 sources, load = 4 pkts/sec/src, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

(a) Control Packets (b) Control bytes

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 10

5

Pause Time

N
um

be
r

of
 M

A
C

 la
ye

r
pa

ck
et

s

50 nodes, 10 sources, load = 4 pkts/sec/src, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

0 50 100 150 200 250 300
75

80

85

90

95

100

Pause Time

P
er

ce
nt

ag
e

T
hr

ou
gh

pu
t

50 nodes, 10 sources, load = 4 pkts/sec/src, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

(c) MAC layer control packets (d) Throughput

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

10
0

10
1

Pause Time

E
nd

 to
 E

nd
 D

el
ay

50 nodes, 10 sources, load = 4 pkts/sec/src, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

0 50 100 150 200 250 300
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Pause Time

A
ve

ra
ge

 H
op

 C
ou

nt
/O

pt
im

um
 H

op
 C

ou
nt

50 nodes, 10 sources, load = 4 pkts/sec/src, 1500mX300m

DSR
OLIVE
AODV
TBRPF
OLSR

(e) End to end delay (f) Optimality of paths

Figure 4.6: Performance in a 50-node network with load of 4 packets/s/source and 20 sources
under varying mobility

126

OLIVE DSR AODV TBRPF OLSR
0

2000

4000

6000

8000

10000

12000

N
um

be
r

of
 D

at
a

P
ac

ke
ts

Protocol Name

Total Loops
TTL Drops
Loop Drops

OLIVE DSR AODV TBRPF OLSR
0

2000

4000

6000

8000

10000

12000

N
um

be
r

of
 D

at
a

P
ac

ke
ts

Protocol Name

Total Loops
TTL Drops
Loop Drops

(a) Rate = 4 packets/s (b) Rate = 6 packets/s

OLIVE DSR AODV TBRPF OLSR
0

2000

4000

6000

8000

10000

12000

N
um

be
r

of
 D

at
a

P
ac

ke
ts

Protocol Name

Total Loops
TTL Drops
Loop Drops

OLIVE DSR AODV TBRPF OLSR
0

2000

4000

6000

8000

10000

12000

N
um

be
r

of
 D

at
a

P
ac

ke
ts

Protocol Name

Total Loops
TTL Drops
Loop Drops

(c) Rate = 8 packets/s (d) Rate = 10 packets/s

Figure 4.7: Loops for a 50-node network with 20 sources under four di�erent load conditions

127

Chapter 5

Node-Centric Hybrid Routing

We have presented routing protocols for ad-hoc networks that use information about

destinations of traÆc
ows to set up on-demand routes. However, none of these

protocols or other state-of-the-art routing protocols designed for ad-hoc networks do

not make any assumption regarding the distribution of data traÆc in the network. In

this chapter, we will make a realistic assumption regarding the type of data traÆc that

can exist in the practical scenarios of ad-hoc networks and then propose a new genre

of routing that can enhance the performance over pure on-demand routing protocols.

Table-driven or proactive routing protocols can become expensive in mobile

ad-hoc networks. Control overhead in the proactive routing protocols increases with

the size of the network and becomes redundant if the number of communicating peers

is many fewer than the total number of nodes in the network. To address the scaling

problem of table-driven routing, on-demand routing protocols have been proposed for

ad-hoc networks. Nodes running such protocols set up and maintain routes to destina-

128

tions only if they are active recipients of data packets. When routes are not available,

network-wide queries are generated to establish routes to destinations. However, when

only a few nodes of the ad-hoc network must act as sources and sinks of data packets,

maintaining routing information to such nodes on-demand and treating those nodes

as any other node may not be as attractive as a proactive approach to establishing

routing information to them while on-demand routing is used between less accessed

nodes. This motivates the interest in a node-centric hybrid approach to routing in

ad-hoc networks, where traÆc would be mainly from common nodes towards certain

nodes that provide special services like Internet connectivity to all other nodes.

The Zone Routing Protocol (ZRP) [15] constitutes a framework for hybrid

routing in ad-hoc networks. ZRP adapts a hierarchical-routing approach based on

clusters (called zones) and maintains routes proactively to destinations inside a zone,

and on-demand routing is used to establish routing information spanning more than

one zone. We advocate a di�erent approach to hybrid routing that is node centric

rather than based on zones of the network.

We call those nodes that support special services for the rest of the nodes

(and therefore have a high likelihood of communicating with the rest of the ad-hoc

network) netmarks. This scenario is illustrated using Fig. 5.1, where there is a single

netmark and an ad-hoc network of mobile nodes a; b; :::::::; t. The netmark can be �xed

as well as mobile depending on the type of ad-hoc networks. Under a node-centric

hybrid routing approach, paths (shown with solid lines) will be constantly maintained

between a; b; c; ::::; t and the netmark. If node e wants to communicate with node f and

129

node j talks with node p, the paths between those nodes are set up in an on-demand

basis and are shown with dashed lines in the �gure. Observe that node c does not

need to know how to reach node r, so no route for node r is created at node c. The

most important advantage of this approach is that it is an enhancement over the basic

on-demand routing protocol such that it can utilize the non-uniform distribution of

traÆc, if it is present, to improve performance. However, the basic on-demand routing

protocol can be used unchanged when the traÆc distribution is random.

The landmark hierarchy [45] is an earlier node-centric approach to hierar-

chical routing designed for proactive routing in large networks. The key di�erence

between node-centric routing described and the landmark hierarchy is that a land-

mark becomes the address of a common node, while a netmark is a destination that

provides services.

Section 5.1 introduces two approaches to node-centric hybrid routing. Sec-

tion 5.2 describes how SOAR can be modi�ed to adopt the principle of hybrid routing.

Section 5.3 describes the challenges in the routing approaches when there are multiple

netmarks in the system. Section 5.4 shows through the simulation results the advan-

tages of node-centric hybrid routing over pure on-demand routing protocols in the ad

hoc networks, which act as wireless extensions of the Internet. Section 5.5 concludes

the chapter.

130

���
���
���
���
���

���
���
���
���
���

a

b

c

d

e

f

g
h

i j

k

lm

n

o

p

q
r

s

t

netmark

Figure 5.1: An ad-hoc network with a single netmark

5.1 Approaches to Node Centric Hybrid Routing

5.1.1 Extended Caching of Netmarks

In pure on-demand routing protocols, routers set up paths to other nodes

based on the existence of
ows with them. Routes are cached once they are obtained

using a route discovery mechanism and they are modi�ed when they become invalid

due to link failures. Among the on-demand routing protocols proposed in literature,

the basic di�erence is in how routes are cached and invalidated, and how route changes

are reported to other nodes. Here we present an extension to the rules of on-demand

routing protocols as an approach towards node-centric hybrid routing, in which in the

absence of data traÆc the routes for netmarks are stored and maintained for longer

periods of time compared to the caching time used for common nodes. Let that time

interval be cache time. This leads to the following two main changes to the basic

mechanism in which pure on-demand routing protocols work:

� during cache time, it sends a route request for a netmark whenever the router

131

looses all routes to the netmark, irrespective of whether there exists any
ow

with the netmarks.

� During cache time, route errors are generated for netmarks by intermediate

nodes when they loose their routes for them, irrespective of whether there exists

any
ow with the netmarks.

Here we focus on how we can adapt the idea of extended caching in existing

on-demand routing protocols, namely AODV, DSR and SOAR.

The ad-hoc on-demand distance vector (AODV) protocol uses sequence num-

bers to prevent permanent loops and relies on hop-by-hop routing, rather than source

routes. RREQs are generated by the sources of data packets and forwarded by in-

termediate nodes. When RREQs get forwarded, reverse routes for the source are

installed. Route Replies (RREPs) can be sent by the destination or an intermediate

node with an unexpired route entry for the destination. The RREP message initiates

the creation of a path for the destination in intermediate nodes that forward the RREP

back to the sender of the RREQ. Each routing table entry has an expiration period

(active route timeout) associated with it.

The speci�cation of AODV [34] states that AODV can use the periodic

network-layer hello packets or link-layer noti�cations for determining connectivity

with neighbors. When a node detects that its path to a destination is broken due

to failure of a link with a neighbor, it sends a route error (RERR) packet to its active

predecessors for that destination.

132

AODV can easily incorporate the idea of extended caching by increasing the

expiration period of the route for the netmarks to a higher value than that assigned to

the expiration period for the routes for other common nodes in the network. Therefore,

every time the paths to a netmark fail due to link failures, the nodes can send RERRs

to active predecessors, which travel upstream. When a node looses route for a netmark,

it starts the route discovery mechanism irrespective of the presence of traÆc
ows for

netmarks. Royer et al. [43] suggest a pro-active foreign agent discovery mechanism

using AODV, but do not modify the basic route repair technique of AODV for the

foreign agents, such that the routes to foreign agents remain current even in the absence

of data traÆc.

The dynamic source routing (DSR) protocol uses source routes to forward

data packets and exchanges routes in the form of paths [21]. Routes are stored in a

cache, until an indication that a link in the route is broken is obtained through route

error (RERR) messages or link layer noti�cations. A route discovery cycle is started

by a source if it looses all routes to the required destination. DSR can determine on

its own whether a link is broken by doing multiple retransmissions, or can depend on

the link layer for link failure noti�cations.

DSR keeps routes for destinations until RERRs or link layer noti�cations

indicating failure of routes are received. These events are triggered only by the failure

of transmission of data packets over links, which implies that route failure propaga-

tion will not improve by extended caching of netmarks, in which the basic idea is to

maintain correct paths in absence of data traÆc. However as in AODV, DSR can be

133

easily modi�ed to send RREQs for netmarks, irrespective of the presence of traÆc.

As described in Chapter 2, the source tree on-demand adaptive routing

(SOAR) protocol is a link-state routing protocol in which routers exchange minimal

source trees in their control packets, consisting of the state of the links along the paths

used by the routers to reach active (important) destinations. Important destinations

are determined at any node based on whether it is currently carrying any data packet

for it. The basic principle by which on-demand routing works in SOAR can be easily

extended to incorporate the idea of extended caching of netmarks. The only change

needed for SOAR is that netmarks would be considered important for longer periods

of time than the common nodes and depending on the level of importance of a partic-

ular node, paths to nodes will remain fresh for di�erent intervals of time. We call this

modi�cation netmark-aware on-demand link state routing (NOLR).

5.1.2 Proactive Routes to Netmarks

Here we present the second approach to hybrid routing in which proactive

routes are maintained for the netmarks while on-demand routes are used with other

nodes. The modi�cations required for any on-demand routing protocol to adopt this

approach are the following:

1. Adding a route for a netmark for the �rst time necessitates sending updates to

neighbors, so that they can also set up new paths to the netmarks.

2. Route errors and route requests are generated for netmarks irrespective of the

presence of traÆc to the netmarks.

134

3. A netmark can advertise its presence by sending hello packets to enable new

neighbors to set up paths to it, and to help the old neighbors check whether the

netmark is still reachable without having to depend on link-layer noti�cations

i.e. the presence of data traÆc. This makes paths to netmarks proactive, rather

than being data-packet driven.

Now we look at how DSR, AODV or SOAR can be changed to incorporate the

above concepts of hybrid routing. Implementing a network-layer Hello mechanism at

the netmarks is easy in any of the three protocols. hello packets sent by the netmarks

in AODV should contain the highest sequence number for the netmarks, so that the

receiving node can install new routes for the netmarks.

Propagation of new route information for netmarks in SOAR only requires

a change in the rules for sending an update. SOAR, in its pure on-demand routing

form send updates when there is an increase in distance in any of its routes. Here

the change in the rule that is necessary is that the node should send updates when it

discovers routes for the �rst time. SOAR does not need a new type of control packet

while both AODV and DSR need the introduction of a new broadcast control packet

that propagates paths to netmarks when a route is �rst found for the netmarks. As

described earlier, SOAR contains routes to important nodes. Therefore source trees

in SOAR always contain links to netmarks, irrespective of the presence of traÆc.

Because DSR sends RERRs only to the source of data packets, adding a

hello mechanism at the netmark will not help DSR, because it is not clear how failure

information for netmark-routes can be propagated to other nodes in the network when

135

��
��
��

��
��
��

e

g

f

���
���
���

���
���
���

���
���
���

���
���
���

Source Tree advertised
by e in SOAR

Source Tree advertised

Source Tree at e

(b)

(a)

(c)

e

a

m

b

d

g

hf

e

a g

f

netmark

netmark

by e in hybrid routing

Figure 5.2: Di�erence in control information in SOAR and node-centric hybrid routing pro-
tocols like NEST or NOLR

the route failure is determined by loss of hello packets, rather than by the failure of

delivery of data packets. An improvement can be achieved if a node keeps track of the

neighbors who use it for data delivery to netmarks for the last pre-de�ned amount of

time, so that route failures to netmarks can be reported to those predecessors.

5.2 Netmark-aware Source Tree Routing (NEST)

To illustrate the bene�ts of node-centric hybrid routing over pure on-demand

routing SOAR is chosen to incorporate the above two approaches for node-centric

hybrid routing. The reasons behind this :

1. As shown in Chapter 2, SOAR is more eÆcient than DSR and AODV.

2. Modi�cations required in SOAR to adopt hybrid routing are much simpler than

in both DSR or AODV. As discussed above, DSR may not be able to take

advantage of the proactive or extended route maintenance for netmarks because

its route maintenance mechanism is not purely data-packet driven.

136

As discussed earlier, extended caching of netmarks can be adopted in SOAR

by considering paths to di�erent destinations as important for di�erent periods of

time. We call the modi�ed version of SOAR as netmark-aware on-demand link-state

routing (NOLR).

The netmark enhanced source tree (NEST) routing protocol incorporates in

the basic routing mechanisms of SOAR the changes needed to maintain proactive

routes for netmarks and on-demand routes for other nodes in the network. Next we

provide the details of NEST.

Fig. 5.2 shows the di�erence in the control message between NEST and SOAR

for the network shown in Fig. 5.1. In NEST, unlike in SOAR every node has a proactive

path with the netmark and common nodes e and i have on-demand routes set up for

nodes f and p respectively. The source tree at node e (Fig. 5.2(a)) is the tree consisting

of links that node e uses to reach the netmark and other nodes in the netmark. Router

e advertises a part of this complete source tree to its neighbors, which is called the

minimal source tree. For SOAR the minimal source tree would only consist of links

needed to reach nodes with which it has active
ows. In this example, because node e

has active
ow with node f , the minimal source tree advertised by node e would be as

shown in Fig. 5.2(b). In NEST, even if node e does not have active communication with

the netmark, it advertises links belonging to the path to it (as shown in Fig. 5.2(c)),

along with the links of the path to node f .

In case of bi-directional
ows, the netmarks need to establish reverse routes

to all the common nodes. Because the netmarks need to communicate to each mobile

137

node in the network, �nding routes to such nodes using a route discovery mechanism

is not an attractive approach. In NEST, the facts that (a) nodes maintain loop free

proactive routes to the netmark, and (b) data packets toward a netmark are forwarded

along that route, can be utilized to set up the reverse paths. The solution is based

on the assumption that the links are bi-directional in nature. When an intermediate

node forwards a data packet from any source towards a netmark, it can record in

its routing table the previous hop from which it has received the data packet as the

next hop towards the source. This entry is kept soft state and is removed if the

route is not refreshed by another data packet within a prede�ned amount of time.

This process enables the netmark and the intermediate nodes to know the next hop

to reach any mobile node, without incurring extra control overhead. In on-demand

routing protocols, the path towards a source of query is set up according to the route

traversed by the query. The reverse path in NEST is similarly validated by the forward

path traversed by the data packets.

5.2.1 Netmark Discovery

In NEST, netmarks send hello packets to inform their neighbors of their

presence. Netmark advertisement can be done by sending beacons at the MAC layer.

When a node receives a hello packet, it assumes the presence of netmark in its neigh-

borhood or the neighbor protocol can send such indication. At the routing layer, if

the hello packet is lost several consecutive times, then the router can declare that the

link to its neighbor is down. The MAC layer can also notify the routing layer about

138

link failures when it cannot deliver data packets. The later mechanism helps to detect

link failures faster than using the hello mechanism.

When a node has a new entry for the netmark, it updates it neighbors about

the new route, which in turn will choose to send an update if it discovers the netmark

for the �rst time. Therefore, through recursive advertisement every node in the net-

work will know about the path to the netmark. For example, in Fig. 5.1, when node a

learns about the existence of the netmark in its neighborhood, it advertises its path to

it, and its neighbors b and e re-advertise. The updates in NEST are broadcast packets

and hence unreliable. If the updates are lost, some nodes may not know about the

route to the netmark. When a node comes up, it will also not be aware of the routes

to netmarks. Under such circumstances, NEST will initiate queries. Because paths

to netmarks are maintained proactively by all nodes, complete
ooding might not be

necessary always.

Another important issue to consider is how to make the nodes in the network

aware of the identities of netmarks. This can be done in two di�erent ways :

� The netmarks are known previously and all common nodes are pre-con�gured

statically with the identities of netmarks.

� If the nodes that have netmark status are not �xed, then nodes that obtain

netmark status can advertise this fact by sending hello packets and all the nodes

can mark the netmarks in the control packets. When a node ceases to be a

netmark, it can notify all nodes by
ooding the information that it is no longer

a netmark. This situation can happen in relief scenarios or battle�elds, where

139

the group leaderships change over time.

In this context another issue is to decide which nodes can be netmarks.

For the ad-hoc networks which are wireless extensions of the Internet, this case is

simple. The gateways or DNS resolvers can be netmarks. Otherwise, depending on

the applications di�erent conditions can be checked for deciding which nodes can be

netmarks.

5.2.2 Maintaining Bi-directional Paths

In the previous section, we have seen how every node in the network estab-

lishes a route for the netmark. When data packets are forwarded along the path from

any source to a netmark, reverse routes can be set up as soft state from the forwarder

towards the source node. Fig. 5.3 illustrates this process.

���
���
���
���
���

���
���
���
���
���

r

e

qd
b

c

a

x

y

a,c
a,e

a,b

a,d

a,a

a,b

p

Netmark

Figure 5.3: Setting up of paths between netmarks and nodes

In Fig. 5.3, when node c learns of the netmark, it advertises the netmark

140

in its source tree and therefore, node b will know about the netmark and also about

neighbor c. When node b re-advertises, node a will know about the path to netmark

and the intermediate nodes b, c. Similarly, node b will know about an alternate path

[b; d; e; netmark] from neighbor d, but node b chooses the path through node c because

it is of smaller length. If link (b; c) fails, then node b can choose the alternate path

to netmark through neighbor d. When node b advertises its source tree, it may not

advertise the link to node a because node a is not an important destination. In such

a case, node c will know only about node b, but not about node a. Similarly, the

netmark may know about node c, but not about nodes a and b. In order to send data

packets to node a, the netmark in such a case would have to initiate a route discovery

for node a. To prevent a query from being initiated by the netmark for every common

node in the network, the following mechanism is adopted to set up the reverse paths

without introducing any extra control overhead.

When data packets start
owing from a node toward the netmark, the in-

termediate nodes along the path toward the netmark can set up paths toward the

source of the data packets. For example, when the data packet from node a reaches

node c from node b and �nds that the destination is a netmark, then node c adds

an entry in its routing table for node a as [destination = a; nexthop = b]. Similarly,

the netmark will keep an entry [destination = a; nexthop = c]. These routing entries

will expire after a soft state interval. When link (b; c) breaks, data packets will be

forwarded along the path [a; b; d; e; netmark] and netmark will replace the route for

node a, [a; c] with [a; e] when the data packets arrive from node e. Similarly, when

141

nodes d and e forward packets, they set up soft-state entries for the destination a.

Node c removes entry [a; b] after the soft state interval due to the absence of any data

packets from node a towards the netmark from node b. A node changes the next hop

for the reverse path towards any destination only if the previous route has not been

used for soft state interval. This prevents route-
apping in case routes for di�erent

netmarks from the same source pass through the same set of intermediate nodes. This

situation can arise due to changes in network conditions and delayed reporting of route

changes.

The reverse routes are set up towards the source based on
ow of data packets

only if the destination of the data packets is a netmark. This is because each node

maintains up-to-date paths only to netmarks, and because the paths from a node to

any other node may not be current, a similar reverse path set up process would lead

to stale routes. Assuming links are bi-directional, during the steady state, the reverse

route from a netmark is essentially the same as the forward path. Therefore, the reverse

paths are going to be correct because the forward routes to the netmarks are correct.

In the absence of data packets, when there is no forward
ow, the netmark must resort

to queries to �nd paths to the destinations. However, in case of bi-directional
ows

when data starts
owing in both directions the route needs to be established only

for the �rst time using queries. So if the
ow stays continuously ideally no further

control packets should be needed to maintain the reverse paths. This mechanism of

reverse path set up and maintenance also ensures symmetry of the paths taken by

data packets, which is bene�cial for bi-directional
ows like tcp
ows.

142

5.2.3 Packet Forwarding

When a packet is received from the application layer and it is meant for a

node in the ad-hoc network, it forwards the packet provided that it has a route. When

the packets are meant for a node outside the subnet of ad-hoc network, the common

nodes would determine that by looking at the IP address of the destination. And in

such a case the data packets would be encapsulated and the new destination would

be the netmark. The netmark would decapsulate the packet and forward it to the

destination, which can be in the wired Internet or another ad-hoc network.

5.3 Multiple Netmark Scenarios

When multiple netmarks are present in the network, depending on the pur-

pose the netmarks serve, the routing can be adapted to further improve performance

of routing protocols. How to do this depends on the way in which nodes aÆliate

themselves to netmarks.

5.3.1 Static AÆliation

Irrespective of the position of a node with respect to the netmark, a node

can be made to always use a particular netmark. This can happen in a battle�eld

scenario, where a group of mobile soldiers always communicate with the group leader.

In those scenarios, irrespective of the position of a soldier, each soldier has to report

to his or her group leader. Depending on the mobility of a node, in order to reach

the netmark aÆliated to it, it might have to use another node, which is aÆliated to a

143

di�erent netmark, which implies every router has to know the routes to all netmarks,

though packets from a node would always be forwarded to a particular netmark.

5.3.2 Dynamic AÆliation

In this scenario, a node need not be aÆliated with any particular netmark.

This can happen when the ad-hoc network is an extension of the Internet, and there

are multiple Internet access points and a common node in the ad-hoc network can

communicate with any access point to reach the wired Internet. Because packets can

be forwarded to any netmark, routing becomes eÆcient in terms of control overhead

because (a) redundancy of routes to the Internet helps to reduce the number of route

requests for the netmarks; (b) paths taken by outgoing packets within the ad-hoc net-

work become shorter; and (c) anycast route discovery mechanism can help to reduce

the control overhead. Queries are not required to be sent individually for each net-

mark. Anycast queries can be sent asking for a route to the anycast address of all

the netmarks. In such a case, any router who has a route to any netmark can reply

and in case of availability of multiple routes, the reply would contain the route to the

nearest netmark. This process will reduce number of queries, path lengths, and time

to discover routes.

5.3.3 Hybrid AÆliation

There can be scenarios where the aÆliations of the nodes can be both static

and dynamic. Packets for some nodes are always forwarded to certain �xed netmarks,

144

while packets for others can be forwarded to the nearest netmark. For a example, it is

easier to communicate with a netmark that hosts a proxy server in its subnet rather

than those netmarks which do not have the proxy server in their networks. Packets

meant for networks remote to any of the netmarks' networks can be forwarded to

any of the access points. The routing information maintained in the case of hybrid

aÆliation would be the same as in static aÆliations.

Depending on how the packets enter the ad-hoc network and how the out-

going packets are forwarded, paths followed by data packets can be symmetric or

asymmetric. In case of static aÆliation, as shown in Fig. 5.4(a), if the incoming pack-

ets for a common router enter the network through the netmark with which it is always

aÆliated, then the data-path can be symmetric. For the example shown in Fig. 5.4(b),

due to dynamic aÆliation though the data packets arrive for router i from netmark 1,

the outgoing packets are forwarded towards netmark 2, thereby making the data-path

assymetric.

netmark 1 netmark 2

i

netmark 1 netmark 2

i

(a) Static AÆliation (b) Dynamic AÆliation

Figure 5.4: Data paths in an ad-hoc network with multiple netmarks

When the netmark is an Internet access point, it will advertise routes to

subnet but not host routes. So it may happen netmark1 advertises path to subnet,

which includes the identity of node i. However, due to network partitioning, netmark1

145

may not have any route for node i. Therefore, packets for node i are dropped if they

are forwarded to netmark1. However, node i can still be reached through netmark2.

Therefore, if the netmarks form a fully connected overlay network using the wired

Internet, reachability can be improved even with partitioning in the wireless part of

the network.

5.4 Performance Evaluation

We evaluate using simulations whether node-centric hybrid routing approaches

can give improved performance over pure on-demand routing protocols. We have com-

pared the performance of node-centric hybrid routing approaches, NEST and NOLR

with pure on-demand routing protocols SOAR, DSR and AODV using the ns2 network

simulator (ns-2.1b6 [18]). For AODV, we have used the code available from Marina

et. al. [27]. The AODV code conforms to the speci�cations mentioned in the version

3 of the Internet draft of AODV. However, the values of constants used for AODV are

according to the values given in the code. DSR code conforms to the version 1 of the

Internet draft. SOAR has been implemented according to the speci�cations described

in Chapter 2. NOLR is the modi�cation of SOAR that does extended caching of rout-

ing information for netmarks. NEST uses the same values for the constants common

with SOAR. The values of NEST-speci�c constants are shown in Table 5.1.

In Table 5.1, Hello Interval is the interval between the sending of consecutive

hello packets by the netmark while Dead Time Interval is the time interval during

which if a netmark remains silent, the adjacent nodes assume that the link to the

146

Table 5.1: Constants for NEST
Hello Interval : 3 s
Dead Time Interval : 9 s
soft state duration : 1 s

netmark is no more valid. In case a broadcast control packet is sent, the netmark

defers the next transmission of hello packet for Hello Interval seconds. The constant

soft state duration is the maximum time a soft-state routing entry can stay in the

routing table without being refreshed. As explained before, soft state entries are

maintained in response to data packets that
ow from a common node to the netmark.

DSR, AODV, SOAR, NOLR and NEST do not depend on link layer for

neighbor discovery. All protocols use link-layer indications for link failures when data

packets cannot be delivered along a particular link. Use of a neighbor protocol at

the link-layer for discovering neighbors can signi�cantly improve the performance of

routing-layer protocols. However, because our objective is to test the routing protocols

as stand-alone protocols, we have not considered the e�ects of MAC layer interactions

on the routing protocols' performance. Promiscuous mode of operation has been dis-

abled. As described in Chapter 2, promiscuous listening improves the performance

of any routing protocol that does not depend on a neighbor protocol, but practical

implementation of promiscuous listening faces several obstacles. The link layer pro-

tocol used is the IEEE802.11 distributed co-ordination function (DCF) for wireless

LANs, which uses RTS/CTS/DATA/ACK pattern for all unicast packets. Broadcast

packets are always sent unreliably. The physical layer approximates the 2 Mbps DSSS

radio interface (Lucent WaveLan Direct-Sequence Spread-Spectrum [46]). The range

147

of the radio is 250m. In our experiments at the start of the simulations all the nodes

know the identities of the netmarks and the netmarks do not loose their special status

anytime during the entire length of the simulations.

5.4.1 Mobility Patterns

Nodal movement in the simulation occurs according to the random waypoint

model introduced by Broch et. al. [9] and described in Chapter 2.

5.4.2 TraÆc Patterns

We have introduced two di�erent traÆc models for performance evaluation,

which we call the INTNET model and the RELIEF model. These traÆc models are

more realistic compared to the traÆc models used in [9, 8], where continuous CBR

traÆc
ows exist between randomly chosen nodes making the traÆc pattern more or

less uniform throughout the network. Moreover, the data packets in a
ow do not

follow a continuous CBR pattern, the
ows in INTNET and RELIEF model assume

that packets can come in bursts and in between bursts there can be zero data packets.

The INTNET model is applicable for ad-hoc networks that are wireless ex-

tensions of the Internet. The communication is mainly from each of the common nodes

towards the netmark which can host commonly-accessed servers or act as the access

point to the Internet. In comparison to the number of
ows between nodes and net-

mark, the
ows strictly between common nodes is much smaller in number. The traÆc

pattern between any common node and the netmark is based on a FLOW OFF/ON

148

FOFF FLOW-OFF

FLOW-ONFON
constant bit rate

FONFON FONFON

FOFF

FOFF FOFF

exponential on/off

(a) INTNET MODEL

(b) RELIEF MODEL

FON FON FON FONFOFF FOFF

FOFF

Figure 5.5: TraÆc
ow scenarios

Table 5.2: Speci�cations for INTNET model

FLOW ON period : Uniform Dist (30,120) s
FLOW OFF period : Uniform Dist (50, 120) s
Packet Size : 66 bytes
Rate : 2, 3, 4 ,5 packets/s per node

model, as shown in Fig. 5.5(a). The parameters of the INTNET model are shown in

Table 5.2.

During the FLOW ON period, there exists a cbr traÆc and there is no packet

ow during the FLOW OFF period. The motivation behind simulating the INTNET

model against a model in which the
ows are ON continuously is that web traÆc [7]

consists of FLOW ON/OFF periods where the OFF periods correspond to the user's

think time, while the ON period represents download time. In our experiment with

the INTNET model at all times there are four random
ows between two randomly

selected nodes. The duration of these
ows is always 200 seconds. All the
ows are

bi-directional.

149

Table 5.3: Speci�cations for RELIEF model

FLOW ON period : uniform (30,150) s
FLOW OFF period : uniform (10, 20) s
Packet Size : 66 bytes
Rate [2] : 17 packets/s (9 kbps)
talkspurt [2] : 350 ms
silence [2] : 650 ms

RELIEF traÆc model has been introduced to simulate traÆc in relief or

battle�eld scenarios where the group members report to the group leaders while the

group members also exchange information. The group leader is the netmark who is

contacted more frequently compared to other nodes. There are four random
ows

only between common nodes and at most six random
ows from a common node

towards the netmark. We have logically divided the set of common nodes into �ve

groups and only one member in the group can talk at a time with the netmark.

The packet arrivals during the FLOW ON period follow an interrupted deterministic

process (IDP) as shown in Fig. 5.5. The IDP model has been used to simulate the voice

traÆc. ON/OFF periods during a FLOW ON period correspond to talkspurt/silence

period of the speaker. The parameters for the RELIEF model have been speci�ed in

Table 5.3.

5.4.3 Performance Criteria

We have evaluated the routing protocols based on the following metrics: (a)

Packet delivery percentage, (b) control packet overhead (c) average hop count (d)

end-to-end delay (e) overhead due to queries (f) overhead due to replies.

150

5.4.4 Experimental Scenario 1

0 50 100 150 200 250 300
93

94

95

96

97

98

99

100

Maximum Pause Time

P
er

ce
nt

ag
e

P
ac

ke
t D

el
iv

er
y

Percentage of Data Packet Delivery with load per source = 3 packets/sec

NEST
SOAR
DSR
AODV

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3
x 10

4

Maximum Pause Time

C
on

tr
ol

 P
ac

ke
t O

ve
rh

ea
d

Control Packet Overhead with load per source = 3 packets/sec

NEST
SOAR
DSR
AODV

0 50 100 150 200 250 300
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Maximum Pause Time

A
ve

ra
ge

 H
op

 C
ou

nt

Average Hop Count with load per source = 3 packets/sec

NEST
SOAR
DSR
AODV

(a) Percentage data delivery (b) Control overhead (c) Average hop count

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 10

4

Maximum Pause Time

T
ot

al
 N

um
be

r
of

 Q
ue

rie
s

Queries Generated with load per source = 3 packets/sec

NEST
SOAR
DSR
AODV

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Maximum Pause Time

T
ot

al
 N

um
be

r
of

 R
ep

lie
s

Replies Generated with load per source = 3 packets/sec

NEST
SOAR
DSR
AODV

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

Maximum Pause Time

N
um

be
r

of
 P

ac
ke

ts

 NEST vs. SOAR with load per source = 3 packets/sec

NEST−Q
SOAR−Q
NEST−U
SOAR−U

(d) Total queries (e) Total replies (f) NEST vs. SOAR

Figure 5.6: Performance of NEST, SOAR, DSR, AODV in a 31-node network with a �xed
netmark at load generated per node of 3 packets/s

This scenario consists of a network of 31 nodes moving over a rectangular

area of 1000m�500m. There is a single netmark in the system, which is placed at

co-ordinates (500, 250) and is �xed throughout the length of simulation. The pause

time during one simulation run is uniformly distributed between zero and a maximum

value. The possible maximum values for pause time are 0, 15, 30, 45, 60, 120 and

300 seconds. The simulation length is 600 seconds, while the results are presented on

the basis of at least 3 simulation runs where each run is having a di�erent randomly

generated mobility scenario but same traÆc model (this is also true for subsequent

experiments). The traÆc model is according to the INTNET model. The performance

results have been presented for two di�erent load scenarios of three and �ve packets/s

151

0 50 100 150 200 250 300
93

94

95

96

97

98

99

100

Maximum Pause Time

P
er

ce
nt

ag
e

P
ac

ke
t D

el
iv

er
y

Percentage of Data Packet Delivery with load per source = 5 packets/sec

NEST
SOAR
DSR
AODV

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3
x 10

4

Maximum Pause Time

C
on

tr
ol

 P
ac

ke
t O

ve
rh

ea
d

Control Packet Overhead with load per source = 5 packets/sec

NEST
SOAR
DSR
AODV

0 50 100 150 200 250 300
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

Maximum Pause Time

A
ve

ra
ge

 H
op

 C
ou

nt

Average Hop Count with load per source = 5 packets/sec

NEST
SOAR
DSR
AODV

(a) Percentage data delivery (b) Control overhead (c) Average hop count

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 10

4

Maximum Pause Time

T
ot

al
 N

um
be

r
of

 Q
ue

rie
s

Queries Generated with load per source = 5 packets/sec

NEST
SOAR
DSR
AODV

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Maximum Pause Time

T
ot

al
 N

um
be

r
of

 R
ep

lie
s

Replies Generated with load per source = 5 packets/sec

NEST
SOAR
DSR
AODV

0 50 100 150 200 250 300
0

1000

2000

3000

4000

5000

6000

Maximum Pause Time

N
um

be
r

of
 P

ac
ke

ts

 NEST vs. SOAR with load per source = 5 packets/sec

NEST−Q
SOAR−Q
NEST−U
SOAR−U

(d) Total queries (e) Total replies (f) NEST vs. SOAR

Figure 5.7: Performance of NEST, SOAR, DSR, AODV in a 31-node network with a �xed
netmark at load generated per node of 5 packets/s

per node during the FLOW ON period.

Most of the �ndings on AODV, SOAR and DSR from our experiments con-

form to the results published previously [8, 9] and to those results described in

Chapter 2. As shown in Fig. 5.6(b) and 5.7(b), AODV's control overhead is sig-

ni�cantly higher than DSR's or SOAR's control overhead except for the high mobility

scenarios. AODV's control overhead consists primarily of queries (Fig. 5.6(d) and

Fig. 5.7(d)), while the control overhead of DSR consists mainly of replies (Fig. 5.6(e)

and Fig. 5.7(e)). This is because AODV resorts to route discovery more often than

DSR, while DSR sends multiple replies to queries. Contrary to previous �ndings [8, 9]

we have observed that AODV's control overhead in highly mobile scenarios is lower

than DSR's. Because each node in the INTNET model sends and forwards packets for

152

a netmark, each node in DSR ends up having more cached entries for the netmarks as

opposed to the case where the netmark is accessed by only a small number of sources.

That e�ectively leads to a signi�cantly high overhead of cached replies and when the

cached entries become stale, the e�ect of cached replies becomes counter productive.

In low mobility scenarios where path information becomes stale less often, the number

of replies is reduced due to fewer route requests and due to the reduction of the e�ect

of injection of old routes due to multiple replies.

SOAR sends fewer control packets compared to DSR or AODV under all

mobility scenarios with varying loads. This is because SOAR resorts to less route dis-

covery because it utilizes redundancy in control information and during link-breakages

minimizes the number of a�ected nodes by locally repairing routes. Because SOAR

and DSR both can use stale information, under heavy load scenarios and high mobil-

ity, SOAR and DSR su�er slightly more in terms of data delivery compared to AODV.

The e�ect is less in SOAR compared to DSR because SOAR uses sequence numbers to

validate link state information while in DSR explicit route error messages are required

to invalidate link-state information.

NOLR performs same as SOAR. Therefore, though we have also tested the

performance of NOLR in our simulation experiments, for clarity we have not included

any results of NOLR in Fig. 5.6 and Fig. 5.7. Unlike SOAR, NOLR maintains routing

information for netmarks for longer periods of time compared to the time for main-

taining information for other nodes. In our simulations because each node all the time

either sends or forwards packets for netmark, any node in SOAR also ends up treating

153

the netmark important throughout the simulation. So the advantage due to prolonged

caching is not easily noticeable.

Under all scenarios, NEST has been found to perform much better compared

to any other purely on-demand routing protocols, both in terms of data delivery and

control overhead. NEST (Fig. 5.6(a) and Fig. 5.7(a)) always delivers more data packets

compared to other protocols, with the e�ect being more prominent under heavy load.

In NEST each node always maintains proactive paths to the netmark. Therefore, the

paths to netmarks are always more up-to-date in NEST than in a pure on-demand

routing protocol. SOAR maintains information for netmarks for signi�cant length of

time; however, NEST paths are more accurate, because the netmark advertises itself

periodically to force its routing information in other nodes and nodes using NEST

update their neighbors when they �rst discover routes to netmarks. This conclusion is

validated by the results of Fig. 5.6(f) and Fig. 5.7(f), where we see that more updates

(NEST-U and SOAR-U) are needed in SOAR compared to NEST to purge wrong

link state information. On an average, NEST produces around 30% fewer updates

than SOAR. We also �nd that NEST uses fewer number of queries (NEST-Q and

SOAR-Q in Fig. 5.6(f) and Fig. 5.7(f)) compared to SOAR, which is desirable in large

networks where queries can be expensive. The reduction of queries in e�ect causes

reduction of replies in NEST (Fig. 5.6(e) and Fig. 5.7(e)). Queries are sent by NEST

for common nodes always and for netmarks during network partitioning. We also see

from Fig. 5.6(c) and Fig. 5.7(c) that on an average, hop count in NEST is the smallest.

This is because, the hello mechanism helps to detect faster the direct links to netmarks

154

and hence the paths can get shortened.

5.4.5 Experimental Scenario 2

This scenario consists of a network of 30 nodes and one netmark with common

nodes moving with speed selected from a uniform distribution between 5m/s and

20m/s. (Pause time of the netmark is uniformly distributed between 0 seconds and

30 seconds). Three di�erent movement scenarios for the netmark are analyzed while

keeping the mobility pattern for other nodes the same. The netmark in these scenarios

is either static (model s), mobile (model m : the netmark moves over a rectangular

area 250m�250m) or very mobile (model vm : the netmark can move over the entire

area). Motivation behind using di�erent mobility models is that in relief scenarios the

group leaders, which are the netmarks can be either static or mobile. Because most

of the traÆc is towards the netmark, the routing protocols would be more stressed

to maintain routes when the mobility of the netmark increases. The netmark moves

with speed similar to the speed of other common nodes with pause time between 10

seconds and 30 seconds. We use two di�erent traÆc models : INTNET and RELIEF,

which are respectively indicated as INT and REL in Fig. 5.8. A static netmark model

with INTNET traÆc pattern is indicated as sINT , while a vm netmark model with

RELIEF traÆc pattern is represented as vmREL.

From Fig. 5.8 we see that there is no appreciable di�erence in performance

between the m and s model. This is because the radio range is 250m and the netmark

moves over an area of (250m�250m) for the m model, which does not contribute to

155

too many additional path changes. The performance of each of the routing protocols

su�ers when the netmark becomes very mobile. From Fig. 5.8, we �nd that INTNET

model produces more stress on the routing protocols than the RELIEF model with

DSR being a�ected the most. Though the traÆc pattern is di�erent in both cases,

the total number of data packets sent throughout the simulation is the same and the

network does not get overloaded.

 sREL mREL vmREL sINT mINT vmINT
90

91

92

93

94

95

96

97

98

99

100

P
er

ce
nt

ag
e

D
at

a
P

ac
ke

t D
el

iv
er

y

Percentage Data Packet Delivery

NEST
SOAR
DSR

 sREL mREL vmREL sINT mINT vmINT
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

C
on

tr
ol

 P
ac

ke
t O

ve
rh

ea
d

Control Packet Overhead

NEST
SOAR
DSR

(a) Percentage data delivery (b) Control overhead

Figure 5.8: Performance in a 31-node network with three mobility models for netmark and
two traÆc models

From Fig. 5.8(a), we see that, in terms of data delivery, SOAR and NEST

deliver on an average same number of data packets in both traÆc models, which we

have also seen in our results of Sec. 5.4.5 for the low-load scenarios. DSR's percentage

data delivery is 4%-7% less than SOAR or NEST, with the performance becoming

worse with higher mobility of the netmarks. This is mainly because DSR has stale

path information and su�ers from packet losses when data packets get forwarded to

nodes who have actually deleted those routes.

In terms of control overhead, DSR's control overhead is comparable to that

of SOAR or NEST for sREL or mREL models (Fig. 5.8(b)). However, DSR sends

156

signi�cantly more control packets for the INTNET model because in INTNET model

the number of
ows is more.

SOAR and NEST have similar control overhead for the RELIEF model, al-

though in the INTNET model, NEST outperforms SOAR and DSR. This is because

the RELIEF model has fewer
ows (about six) toward the netmark compared to INT-

NET model. NEST depends on the
ow of data packets for detecting link failures

for routes between common nodes. Therefore, when the number of
ows in the net-

work decreases, stale links due to less usage of links for data packet delivery make

the routing information for NEST outdated and force NEST to send same number of

updates as in SOAR. This indicates that the node-centric approach to proactive route

maintenance for special nodes can improve performance with higher di�erentials with

increased amount of communication from mobile node towards the netmark.

We also see that the proactive route maintenance in NEST does not su�er in

higher degree than DSR or SOAR when netmarks are very mobile, which could have

been an argument for using purely on-demand approaches in these practical scenarios.

We have analyzed the delay performance for the voice traÆc in each exper-

imental scenario (Table 5.4). The results presented are for a randomly chosen run,

so as not to average out the high frequency components of individual runs. This is

important for voice traÆc performance because worst-case performance results limits

the quality. The conclusions that can be drawn from the data of Table 5.4 are:

� Range is signi�cantly high under all cases. This is because the time between

two route discovery cycles increases after each unsuccessful attempt and when

157

Table 5.4: End to end delay distribution of voice traÆc for di�erent netmark mobility models

Static Relief Model Mobile Relief Model Very Mobile Relief Model
(sREL) (mREL) (vmREL)

Percentile NEST
(s)

SOAR
(s)

DSR
(s)

NEST
(s)

SOAR
(s)

DSR
(s)

NEST
(s)

SOAR
(s)

DSR
(s)

90 0.01 0.01 0.01 0.01 0.01 0.01 0.06 0.08 0.1
95 0.11 0.15 0.07 0.11 0.18 0.09 0.32 0.39 0.37
97 0.27 0.33 0.22 0.21 0.38 0.21 0.68 0.86 0.64

range 19.89 13.73 19.33 2.50 14.44 49.08 17.28 23.41 13.12

the partitioned network re-groups, it takes long time to re-discover the routes.

The range for DSR (Table 5.4) for Mobile Relief Model is as high as 49 seconds.

NEST also su�ers from high range because it maintains on-demand routes to

common nodes.

� There is an increase in delay when the netmark is more mobile.

� NEST has better delay performance than SOAR because NEST has fewer queries

and the paths tend to be more correct, so that less time is spent queueing packets

at the routing layer or at the link layer. This indicates that the hybrid routing

approach helps to reduce the end-to-end delay of the data packets.

5.4.6 Experimental Scenario 3

In this scenario there are two netmarks and 30 mobile nodes. The netmarks

are placed at co-ordinates (250, 250) and (750, 250) and are �xed through out the

simulation. The traÆc pattern is according to the INTNET model. Packets from the

Internet can enter the ad-hoc network through either of the two netmarks. Because

158

the netmarks advertise routes for the subnets and do not report the host routes,

it can be safely assumed for the experiments that the incoming
ows are randomly

distributed between the two netmarks. Packets for the Internet are always forwarded

to the nearest netmark. After a node decides which netmark to use, it encapsulates

the IP packet with an IP header with destination being the netmark's address. In case

of netmark-route unavailability, anycast queries (as discussed in Sec. 5.3) are sent and

routes are established based on the anycast replies. We compare the performance of

NEST with SOAR (denoted as anycast-enabled SOAR or A-SOAR in Fig. 5.9) and

NOLR. Like A-SOAR, if necessary, NOLR and NEST also use anycast queries for

netmarks.

From Fig. 5.9, we see that SOAR and NOLR both perform as well as NEST

in terms of data delivery and control overhead under all three mobility scenarios.

This is in contrast to the results presented in Sec. 5.4.4 and Sec. 5.4.5, where both

SOAR and NOLR produce higher control overhead than NEST. This improvement of

performance in SOAR can be attributed to the following three reasons: (a) If a route

to a given netmark is not available, packets can still be sent to other netmarks, which

helps in reducing the number of queries; (b) anycast route replies help to prevent

ooding of queries and speed up the process of route discovery; and (c) reducing the

number of query-reply packets prevents old link-state information from being injected

into the network, which in e�ect reduces the number of updates. In our experiment

involving multiple netmarks in a small network, these become dominant factors behind

improving performance rather than node-centric routing. However, the proposed node-

159

 0 15 30
95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

P
er

ce
nt

ag
e

P
ac

ke
t D

el
iv

er
y

 Percentage Packet Delivery with load per source = 3 packets/sec

Maximum Pause Time

 NEST
A−SOAR
NOLR

 0 15 30
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

C
on

tr
ol

 P
ac

ke
t O

ve
rh

ea
d

 Control Packet Overhead with load per source = 3 packets/sec

Maximum Pause Time

 NEST
A−SOAR
NOLR

(a) Percentage Data Delivery (b) Control Overhead

Figure 5.9: Performance of NEST, SOAR and NOLR for a network with 30 nodes and two
netmarks

centric hybrid approach with proactive routes for netmarks is still attractive for this

small network if the static or the hybrid method (Sec. 5.3) is used for forwarding

outgoing packets because in those scenarios every node has to obtain path to every

netmark.

5.5 Conclusions

We have presented node-centric approaches to hybrid routing for ad hoc

networks that distinguish between normal nodes and special nodes called netmarks,

which host popular network services or function as points of attachment to the Internet.

With node-centric hybrid routing, netmarks force other common nodes to maintain

routing information for them by either advertising their routing information as in table-

driven routing protocols, or by requiring nodes to maintain routing entries towards

them for extended periods of time. This reduces the network-wide
ooding and the

corresponding delay for route set up every time a session needs to be established

between a normal node and a netmark. Routes between peer nodes are set up on-

160

demand. We have evaluated the changes needed to incorporate node-centric hybrid

routing in the basic mechanism of routing for some pure on-demand routing protocols,

namely AODV, DSR and SOAR and compared the performance of AODV, DSR and

SOAR with the hybrid approaches, NEST and NOLR.

On the basis of ns2 simulations, we have found that, if a node in the ad hoc

network acts as a source or relay of data packets for signi�cant portion of its lifetime,

the bene�t of extending caching information in a purely on-demand routing protocol

is not noticeable. However, maintaining proactive routes as in NEST o�ers better

performance than any on-demand routing protocol, both in terms of data delivery and

control packet overhead when the traÆc
ow is mostly from common nodes towards

the netmark. We have also found that the performance of NEST is not a�ected by

the mobility of netmarks. In a moderately-sized network served by multiple netmarks,

the performance of on-demand routing protocols can be signi�cantly improved by

maintaining routes to any of the netmarks and then sending anycast queries asking

for a route to the nearest netmark.

161

Chapter 6

Summary and Future Work

6.1 Contributions

The goal of this thesis has been to use link-state information on-demand for

developing eÆcient routing protocols for mobile ad-hoc networks. The �rst protocol

presented is source tree on-demand adaptive routing (SOAR) protocol that exchanges

source-tree information, represented by links in an on-demand manner. This is the

�rst routing protocol that uses link-state information in an on-demand manner. All

the prior link-state routing protocols are proactive. Our study shows that SOAR is an

e�ective protocol for mobile ad-hoc networks, and its approach to route reporting and

route maintenance is more eÆcient than DSR and AODV, which are representative

of the state-of-the-art on-demand routing protocols for mobile ad-hoc networks. The

performance improvements obtained in SOAR compared to DSR and AODV is a

direct result of communicating source trees rather than distances or paths to active

162

destinations in route requests and route replies. The source trees provide much more

redundancy compared to other approaches and therefore, reduces the frequency with

which network-wide route discoveries are needed. Moreover, SOAR can locally repair

routes without sending route error noti�cations to the upstream nodes all the time,

thereby minimizing the number of nodes a�ected due to network dynamics.

One of the novel design aspects for an on-demand link-state routing protocol

is the path-selection algorithm. The constraint that the route through a neighbor

is valid if it has been advertised by that neighbor makes the path selection problem

a challenging one. We have at �rst presented a modi�ed form of the Bellman-Ford

algorithm that computes shortest valid routes for destinations, the combination of

which forms a source graph. We have shown that the formation of a source tree based

on constraints of on-demand link-state advertisements is an NP-complete problem and

we have developed a polynomial-time approximating solution. Finally we have seen

how the exchange of source tree combined with a path selection algorithm can be used

for loop-free link-state policy based routing.

Building a source tree while satisfying the above path-selection constraint

will make routes for several destinations in�nite. Determining �nite-cost routes for

those destinations would involve extra control overhead if instantaneous loops must

be prevented. Therefore, we developed the on-demand link-vector (OLIVE) protocol in

which source graph is computed and the source graphs are advertised incrementally. In

SOAR a source tree is advertised and source graph is computed locally. Instantaneous

loop-freedom is ensured in OLIVE through synchronization with one-hop neighbors.

163

OLIVE does not need extra overhead in the data packets for detection of loops and the

partial topology at any node provides suÆcient information to prevent network-wide

searches and repair routes locally.

We have introduced a novel node-centric hybrid routing approach for ad-hoc

networks that distinguishes between common nodes and special nodes called netmarks,

which host popular network services or function as points of attachment to the Inter-

net. With node-centric hybrid routing, netmarks force other common nodes to main-

tain routing information for them by either advertising their routing information as

in table-driven routing protocols, or by requiring nodes to maintain routing entries

towards them for extended periods of time. This reduces network-wide
ooding and

the corresponding delay for route set up every time a session needs to be established

between a normal node and a netmark. Routes between common nodes are set up on-

demand. We have evaluated the changes needed to incorporate node-centric hybrid

routing in the basic mechanism of routing for some pure on-demand routing protocols,

namely AODV, DSR and SOAR and compared the performance of AODV, DSR and

SOAR with the hybrid protocols NEST and NOLR. Simulation results have indicated

node-centric hybrid routing approaches can signi�cantly improve performance over

pure on-demand routing protocols.

This dissertation includes materials that have been previously published

in [38, 42, 40, 39, 41]. Co-author, JJ Garcia-Luna-Aceves listed directed and su-

pervised the research that forms the basis of this dissertation.

164

6.2 Future Work

One important piece of future work is to develop a hierarchical version of

OLIVE that can scale to a large network. Moreover, it would be interesting to de-

termine how much improvement in performance can a node-centric hybrid version of

OLIVE provide.

Most of the simulations done to date concentrate on networks with an average

hop count smaller than two and a high node-density. Few research results are available

for �nding the impact of node-density and path-length on the performance of the

routing protocol. One reason for this is the absence of a mobility model that can

be parameterized by node density and path length. Therefore, one challenging future

research work would be to develop such a mobility model and compare the performance

of DSR, AODV, OLIVE, TBRPF and OLSR by varying node-density and average path

length.

When networks become large,
ood-search messages become very expensive

making localized search highly preferable. Solutions proposed in literature to prevent

complete
ooding focus on dividing the network into clusters in which proactive routing

is used in clusters and reactive routing happens between clusters.

We seek a solution that is simple and practical and does not have the com-

plexity of hierarchical address maintenance. A possible solution consists of dividing

the network into clusters without the added complexity of cluster formation and main-

tenance. In a large network. when there are multiple netmarks each mobile node based

on any metric can select any of the netmarks as the "closest" netmark. If we group the

165

nodes based on their \closest" netmark, then it will automatically lead to the forma-

tion of non-overlapping clusters (see Fig. 6.1), without the extra overhead of explicit

cluster formation and maintenance.

Assume A, B, C, D are four netmarks which are serving the mobile ad-hoc

network. When common nodes aÆliate themselves with the nearest netmarks, clusters

CA, CB, CC and CD get formed automatically. The basic idea is that each mobile node

knows the nearest netmark, and when it changes aÆliation from one netmark to the

other, it sends an update to the old and the new primary netmark, informing them

of their new aÆliations. Accordingly, each netmark knows which mobile nodes are

aÆliated to it. Every node maintains a sequence number for the aÆliation message it

sends to a netmark, so that in case of collisions, con
icts can be resolved easily. When

a node s wants to communicate with another mobile node d (Fig. 6.1), if it does not

have a route for the destination, it asks each netmark whether node d is aÆliated to

any one of them. When a netmark (D) responds that node d is aÆliated with netmark

D, node s will send a query towards that netmark. The �rst node x within Cluster

CD will initiate a
ood-query search that will be limited among nodes aÆliated with

D i.e. in cluster CD. The destination or the intermediate node who has a path to node

d will respond to node x who replies back to node s. It is interesting to note that node

x automatically starts working as a boundary router without the added complexity of

selecting the boundary routers.

166

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�
�CA

CB

CC

CD

CE

s

A

B

E

D

C

x

d

Figure 6.1: Cluster formation in multi-netmark networks

167

Bibliography

[1] R. Albrightson, J. J. Garcia-Luna-Aceves, and J. Boyle. EIGRP-A Fast Routing
Protocol Based on Distance Vectors. In Proc. Networld/Interop 94, Las Vegas,
Nevada, June, 1988.

[2] C.R. Baucgh, J. Huang, R. Schwartz, and D. Trinkwon. TraÆc Model for 802.16
TG3 MAC/PHY SImulations. In http://ieee802.org/16, 2001.

[3] J. Behrens and J. J. Garcia-Luna-Aceves. Distributed, Scalable Routing Based
on Link-State Vectors. In ACM Special Interest Group on Data Communication
(Sigcomm), pages 136{147, 1994.

[4] T. Clausen. OLSR ns2 simulation code . In http://hipercom.inria.fr/olsr/. INRIA,
October 18 2000.

[5] IEEE Computer Society LAN MAN Standards Committee. Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Speci�cations. The
Institute of Electrical and Electronics Engineers, 1997. IEEE Std 802.11.

[6] T. H. Cormen, C. H. Leiserson, and R. L. Rivest. Introduction to Algorithms.
Prentice-Hall, 1999.

[7] K. Leibnitz D. Staehle and P. T. Gia. Source TraÆc Modeling of Wireless Appli-
cations. In CNO Activity Report 1999/2000, June, 2000.

[8] S. R. Das, C. E. Perkins, and E. M. Royer. Performance Comparison of Two
On-Demand Routing Protocols for Ad-Hoc Networks. In Proc. IEEE Conference
on Computer Communications (Infocom), pages 3{12, Tel Aviv, Israel, March 26
- 30 2000.

[9] J. Broch et. al. A Performance Comparison of Multi-Hop Wireless Ad Hoc Net-
work Routing Protocols. In Proc. ACM International Conference on Mobile Com-
puting and Networking (MobiCom), pages 85{97, Dallas, Texas, October 25-30
1998.

168

[10] P. Johansson et. al. Scenario Based Performance Analysis of Routing Protocols
for Mobile Ad-Hoc Networks. In Proc. ACM International Conference on Mo-
bile Computing and Networking (MobiCom), pages 195{206, Seattle, Washington,
August 15-20 1999.

[11] L.M. Feeney. Investigating the Energy-consumption Model of a Wireless Network
Interface in an Ad Hoc Networking Environment. In Proc. IEEE Conference
on Computer Communications (Infocom), pages 1548{1557, Anchorage, Alaska,
April 22-26 2001.

[12] E. Gafni and D. Bertsekas. Distributed Algorithms for Generating Loop-Free
Routes in Networks with Frequently Changing Topology. IEEE Transactions on
Communications, 29(1):11{15, 1981.

[13] M. Garey and D. Johnson. Computers and Intractability. A Guide to the theory
of NP-completeness. W. H. Freeman and Company, 1979.

[14] T. GriÆn and G. T. Wilfong. A Safe Path Vector Protocol. In Proc. IEEE
Conference on Computer Communications (Infocom), pages 490{499, Tel-Aviv,
Israel, March 22-26 2000.

[15] Z. Haas and M. R. Pearlman. The Zone Routing Protocol (ZRP) for Ad Hoc Net-
works. In http://www.ee.cornell.edu/ haas/Publications/draft-ietf-manet-zone-
zrp-02.txt, June 1999.

[16] C. Hedrick. Routing Information Protocol. In RFC 1058, June, 1988.

[17] Mobile Ad hoc Networks (manet). http://www.ietf.org/html.charters/manet-
charter.html.

[18] http://www.isi.edu/nsnam/ns/. The Network Simulator - ns-2. ns-2.1b6.

[19] http://www.isi.edu/nsnam/ns/. The Network Simulator - ns-2. ns-2.1b8.

[20] Y. C. Hu and D. Johnson. Implicit Source Routes for On-Demand Ad Hoc Net-
work Routing. In Proc. ACM Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc), pages 1{10, Long Beach, California, October 4-5 2001.

[21] Y.C. Hu and David Johnson. Caching Strategies in On-Demand Routing Pro-
tocols for Wireless Ad Hoc Networks. In Proc. ACM International Conference
on Mobile Computing and Networking (MobiCom), pages 231{242, Boston, Mas-
sachusetts, August 6-11 2000.

[22] P. Jacquet and et al. Optimized Link State Routing Protocol. In
http://hipercom.inria.fr/olsr/draft-ietf-manet-olsr-09.txt, April 15 2003.

169

[23] H. Jiang and J.J. Garcia-Luna-Aceves. Performance Comparison of Three Rout-
ing protocols for Ad Hoc networks. In Proc. Twelfth International Conference on
Computer Communications and Networks (ICCCN), Phoenix, Arizona, October
15-17 2001.

[24] J.J.Garcia-Luna-Aceves and M.Spohn. Transmission-EÆcient Routing inWireless
Networks using Link-State Information. ACM Mobile Networks and Applications
Journal, 6(3):223{238, 2001.

[25] D. B. Johnson and D. A Maltz. Dynamic source routing in ad hoc wireless net-
works. In Imielinski and Korth, editors, Mobile Computing, volume 353. Kluwer
Academic Publishers, 1996.

[26] J. J. Garcia Luna-Aceves and M. Spohn. Scalable Link-State Internet Routing. In
Proc. IEEE International Conference on Network Protocols (ICNP), pages 52{61,
Austin, Texas, October 13-16 1998.

[27] M. Marina. AODV code for CMU Wireless and Mobility Extensions to ns-2 . In
http://www.ececs.uc.edu/ mmarina/aodv/, last updated on 12/07/2000.

[28] J. Moy. OSPF Version 2, July 1991. RFC 1247.

[29] R. Ogier. A Simulation Comparison of TBRPF, OLSR, and AODV. In
http://www.erg.sri.com/projects/tbrpf/, July 2002.

[30] R. G. Ogier, F. L. Templin, B. Bellur, and M. G. Lewis. Topology Broadcast Based
on Reverse-Path Forwarding (TBRPF). In http://www.potaroo.net/ietf/ids/draft-
ietf-manet-tbrpf-08.txt, April 22 2003. Internet Draft.

[31] International Standards Organization. Intra-Domain IS-IS Routing Protocol. In
ISO/IEC JTC1/SC6 WG2 N323, Sep, 1989.

[32] V. D. Park and M. S. Corson. A Highly Adaptive Distributed Routing Algo-
rithm for Mobile Wireless Networks. In Proc. IEEE Conference on Computer
Communications (Infocom), pages 1405{1413, Kobe, Japan, April 7-12 1997.

[33] C. E. Perkins and E. M. Royer. Ad Hoc On-Demand Distance Vector Rout-
ing. In Proc. of IEEE Workshop on Mobile Computing Systems and Applications
(WMCSA), pages 90{100, New Orleans, LA, February 25-26 1999.

[34] C. E. Perkins, E. M. Royer, and S. R.Das. Ad Hoc On-Demand Distance Vec-
tor (AODV) Routing. In http://www.potaroo.net/ietf/ids/draft-ietf-manet-aodv-
13.txt. Mobile Ad Hoc Networking Working Group, February 13 2003. Internet
Draft.

[35] J. Raju and J. J. Garcia-Luna-Aceves. EÆcient On-Demand Routing Using

170

Source-Tracing in Wireless Networks. In Proc. IEEE Global Telecommunications
Conference (Globecom), San Francisco, CA, November 27-30 2000.

[36] J. Raju and J.J. Garcia-Luna-Aceves. A New Approach to On-Demand Loop-Free
Multipath Routing. In Proc. IEEE Twelfth International Conference on Computer
Communications and Networks (ICCCN), pages 522{527, Boston, Massachusetts,
October 11-13 1999.

[37] Y. Rekhter and T. Li. A Border Gateway Protocol (BGP-4). In RFC 1771 (BGP
version 4), 1995.

[38] S. Roy and J.J. Garcia Luna Aceves. Using Minimal Source Trees for On-Demand
Routing in Ad Hoc Networks . In Proc. IEEE Conference on Computer Commu-
nications (Infocom), pages 1172{1181, Anchorage, Alaska, April 22-26 2001.

[39] S. Roy and J. J. Garcia-Luna-Aceves. Node-Centric Hybrid Routing for Ad Hoc
Networks. In 10th IEEE/ACM International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunications Systems-Workshops (MAS-
COTS 2002 Workshops), Fort Worth, Texas, October 12-16 2002.

[40] S. Roy and J. J. Garcia-Luna-Aceves. Node-Centric Hybrid Routing for Ad Hoc
Wireless Extensions of The Internet. In Proc. IEEE Global Telecommunications
Conference (Globecom), Taipei, Taiwan, November 17-21 2002.

[41] S. Roy and J. J. Garcia-Luna-Aceves. Node-Centric Hybrid Routing for Wireless
Internetworking. In K. Makki, editor, Mobile and Wireless Internet, pages 191{
216 (Chapter 7). Kluwer Academic Publishers, 2002.

[42] S. Roy and J.J. Garcia-Luna-Aceves. An EÆcient Path Selection Algorithm for
On-Demand Link-State Hop-by-Hop Routing. In Proc. IEEE International Con-
ference on Computer Communications and Networks (ICCCN), Miami, Florida,
October 14-16 2002.

[43] E. M. Royer, Y. Sun, and C. Perkins. Global Connectivity for IPv4 Mobile
Ad hoc Networks. In www.cs.ucsb.edu/ ebelding/txt/globalv4.txt. Mobile Ad Hoc
Networking Working Group, November 14 2001. Internet Draft.

[44] M. Spohn and J. J. Garcia-Luna-Aceves. Neighborhood Aware Source Routing. In
Proc. ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
pages 11{21, Long Beach, California, October 4-5 2001.

[45] P. F. Tsuchiya. The Landmark Hierarchy: a New Hierarchy for Routing in very
Large Networks. In ACM Special Interest Group on Data Communication (Sig-
comm), pages 35{42, Stanford, CA, August 16-18 1988.

171

[46] B. Tuch. Development of WaveLAN, an ISM band wireless LAN. AT&T Technical
Journal, 72(4):27{33, July/Aug 1993.

[47] K. Varadhan, R. Govindan, and D. Estrin. Persistent route oscillations in inter-
domain routing. Computer Networks (Amsterdam, Netherlands: 1999), 32(1):1{
16, 2000.

[48] W.T. Zaumen and J.J. Garcia-Luna-Aceves. Dynamics of Distributed Shortest-
Path Routing Algorithms. In ACM Special Interest Group on Data Communica-
tion (Sigcomm), pages 31{43, Zurich, Switzerland, September 3-6 1991.

[49] Z. Zhan. One in Three SAT (1in3SAT) Problem. In
www.eecs.wsu.edu/ cs516/notes34.ps, 2000.

172

