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ABSTRACT 
 
 
 

Internal solitary waves, or solitons, are often generated in coastal or continental 

shelf regions when tidal currents advect stratified water over bathymetric relief, creating 

an internal tide which non-linearly evolves into one or more solitons.  A major 

consequence of solitons in a stratified environment is the vertical displacement of water 

parcels which can lead to sound speed variability of order 10m/s with spatial scales of 

order 100 meters and timescales of order minutes.  Thus significant variations in sonar 

performance on both surface based ships and submarines can be expected.  An 

understanding into the nature of acoustic propagation through these waves is vital for 

future development of sonar prediction systems.  This research investigates acoustic 

normal mode propagation through solitons using a 2D parabolic equation simulation and 

weak acoustic scattering theory whose primary physics is a single scatter Bragg 

mechanism.  To simplify the theory, a Gaussian soliton model is developed that compares 

favorably to the results from a traditional sech2 soliton model.  The theory of sound 

through a Gaussian soliton was then tested against the numerical simulation under 

conditions of various acoustic frequency, source depths, soliton position relative to the 

source and soliton number.  The theoretical results compare favorably with numerical 

simulations at 75, 150 and 300-Hz.  Higher frequencies need to be tested to determine the 

limits of the first order theory.  Higher order theory will then be needed to address even 

higher frequencies and to deal with weakly excited modes.  This research is the first step 

in moving from a state of observing acoustic propagation through solitons, to one of 

predicting it. 
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I. INTRODUCTION  

In the oceanography community as a whole, internal solitary waves (ISW) have 

attracted great interest in recent times (Warn-Varnas et al., 1998).  First noted by the 

engineer and ship builder John Scott Russell, in 1834, it was not until the 1960s that they 

were first studied in depth by Martin Kruskal and given the name “Solitons” (Weisstein, 

2006a).  

Although these waves can occur in the open ocean, they are common on the 

continental slope regions of the world (Preisig & Duda, 1997).  They are often generated 

when tidal currents advect stratified water over the bathymetric relief, thus creating an 

internal tide which non-linearly evolves into one or more solitons.  They appear as 

“propagating pulse-like depressions of the thermocline” (Preisig & Duda, 1997).  A 

major consequence of solitons in a stratified environment is to vertically displace surface 

water to lower levels.  This can have significant effects on temperature, salinity, density 

and therefore sound speed below the surface layer.  Past studies have shown that, for 

frequencies of several hundred hertz, solitons can cause “erratic exchanges of acoustic 

energy between normal modes” (Duda & Preisig, 1999).  In a study by Zhou, Zhang and 

Rogers (1991) acoustic fluctuations of order 20-40 dB were observed in the Yellow Sea.  

It is likely that these exchanges can cause significant variations in sonar performance on 

both surface based platforms and submarines. 

In 1992 the United States Navy and Marine Corps white paper, entitled “From the 

Sea,” outlined the Navy’s strategic shift from an “open-ocean” focus toward the littoral 

zone.  As a result of this shift, a significantly greater number of maritime exercises and 

operations are being conducted in regions which are commonly affected by solitons; 

hence an understanding into the nature of acoustic propagation and scattering through 

these waves is vital for future development of sonar prediction systems. 

A. BACKGROUND 

1. Shallow Water Acoustics and the Importance of Internal Solitary 
Waves 

The growth in research into the effects of ISWs on acoustic propagation was 

sparked by the paper by Zhou et al. (1991); which hypothesized that large transmission 
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losses of order 20-40 dB that were observed in the Yellow Sea could be attributed to 

interactions with solitons (Shang, Wang & Ostrovsky 1998; Zhoe et al.).  Subsequent 

experiments, such as the Shallow-Water Acoustic Random Media Experiment 

(SWARM), conducted in 1995, provided measured variability in the sound speed-field 

caused by the passage of internal solitary wave packets (Chiu,1998).  In an attempt to 

better understand the causes of this large variability, a number of numerical simulations 

have been conducted.  For shallow water problems, the most fruitful approach to 

understanding acoustic variability has been through the method of normal modes.  The 

acoustic field at a particular frequency can be thought of as the sum of n  propagating 

modes, with each mode carrying part of the energy of the wave.  The energy distribution 

between modes is uneven such that for deep sources most energy tends to be in lower 

modes whilst for shallow sources the reverse is true.  When an acoustic pressure wave 

makes contact with a soliton, the result is to redistribute the energy of the acoustic wave, 

among the various modes.  This phenomenon of a particular mode losing energy to 

another, or alternatively, gaining energy from another, is termed mode coupling and the 

effects on the total acoustic field are for the amplitude and phase to fluctuate. 

In 1997 Preisig and Duda investigated acoustic mode propagation through a 

single soliton using three different techniques.  The first technique involved a wide-

vertical-angled 2D parabolic equation method using a mode starting field and a standard 

sech2 shaped soliton.  The second approach approximated the soliton using the so called 

“sharp interface approximation” (SIA).  This replaces the smooth sech2 form with a 

boxcar shape, providing a useful method of analyzing mode coupling for small horizontal 

length scales.  The third technique was based on an analytical derivation of the length 

scales which separate adiabatic and coupled mode propagation.  The results from all three 

techniques showed that acoustic propagation through solitons resulted in mode coupling.  

The SIA technique explains some aspects of the coupling, based on both the spatial scale 

of the soliton and the modal phase, in three regimes.  The first regime occurred for small 

scale solitons (less than 75m) which showed coupling to higher modes at the first 

interface of the soliton and an effective “uncoupling” at the second interface: the end 

result being no net mode coupling.  The uncoupling phenomenon is called “cancellation” 

when the length scales are small but is termed “transparent resonance” for large length 
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scales (as the ISW is effectively transparent to the mode energy).  The second regime, for 

soliton scales between 75 and 200m showed both coupling and transparent resonance.  

The dominant factor governing coupling in this region was the relative phase of the 

modes.  The third regime for large scale ISWs showed predominately adiabatic 

propagation as “the horizontal gradients in the sound-speed profile are insufficient to 

induce coupling between acoustic modes” (Preisig & Duda, 1997).  Naturally this third 

regime can not be approximated by the SIA technique as the very nature of a “Sudden 

Interface” describes a relatively sharp gradient. 

In 1999 Preisig and Duda extended their study to include the more realistic case 

of a soliton wave packet with a 400-Hz sound source.  Of primary importance in the 

study was the finding that wave packets close to a sound source, with most of the energy 

in the higher modes, caused a net coupling to lower order (hence lower attenuation) 

modes.  This resulted in an amplification of acoustic energy at distant ranges.  For a wave 

packet far from the sound source, the converse was true.  Energy was coupled into even 

higher modes (Duda & Preisig, 1999).  

2. Statement of Research 
The objective of this paper is to examine acoustic normal mode propagation 

through solitons using a 2D parabolic equation simulation and weak acoustic scattering 

theory whose primary physics is a single scatter Bragg mechanism; as opposed to the SIA 

technique of Preisig and Duda (1997).  This new theoretical approach is conceivably 

valid in all three of the regimes previously pointed out by Duda and Priesig.  The theory 

will be tested against the simulation to determine if the total acoustic pressure field can 

be predicted in a soliton environment.  A positive comparison between the theoretical 

results and the simulation could lead to the theory ultimately being incorporated in to 

sonar prediction software; providing increased accuracy in predicted acoustic ranges in 

littoral waters.  The theory will be tested specifically in relation to acoustic frequency, 

soliton position with respect to the sound source and source depth.  Frequencies of 75, 

150 and 300-Hz will be examined, as well as source depths of 60m and 10m to cover the 

deep (submarine) and the shallow (surface ship) cases respectively. As it is more 

common for solitons to appear in a packet, rather than individually (Duda & Preisig, 

1999), this paper will also examine mode coupling through soliton wave packets.  Rather 
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than propagating individual modes, as done in previous research, this paper will focus on 

the more realistic case of a point source. 

In addition to mode coupling, the shape of the soliton will be given consideration.  

Historically a hyperbolic secant form has been used to model solitons.  This sech2 wave 

form is used because the amplitude and horizontal displacement are solutions of the 

Korteweg de Vries (KdV) non linear wave equation which was first developed in 1895, 

51 years after John Scott Russell first proposed the existence of solitary waves 

(Weisstein, 2006b).  As a Gaussian shape is very similar to a hyperbolic secant, the 

Gaussian form may yield similar results with greater theoretical ease (Colosi, 2006).  The 

difference between the two forms will be examined to determine if a Gaussian form can 

replace a sech2 form for mathematical efficiency.  The most appropriate form will be 

used in the comparison of the theory and the simulation.  It is expected that the Gaussian 

approximation combined with weak acoustic scattering theory will allow for variations in 

both the spatial scale of the soliton and modal phase; therefore, a more realistic 

representation of mode coupling should be achievable compared to previous 

approximations, such as the boxcar or SIA method, whilst maintaining the benefits of 

these methods.  The weak scattering theory presented in this thesis also points out the 

importance of Bragg scattering in acoustic / soliton interactions, a point that has not 

previously been appreciated. 

Variations in the soliton structure will not be examined in this paper.  A typical 

soliton profile has been chosen with length scale of 100m and amplitude of 10m. 
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II. METHODS OF ANALYSIS 

A. PARABOLIC EQUATION METHOD 

1. The Parabolic Equation 
The parabolic equation method has become the most popular means of solving 

range dependent propagation problems since it was introduced into the field of 

underwater acoustics in 1973 by Hardin and Tappert (Jensen, Kuperman, Porter & 

Schmidt, 2000).  This paper follows the derivation of the PE method given by Jensen et 

al. 

The PE method begins with the Helmholtz equation which describes the 

development of acoustic pressure as a function of (in cylindrical coordinates) range ( )r , 

azimuth ( )ϕ  and depth ( )z .  As with Jensen et al., azimuthal symmetry is assumed such 

that the ϕ -coordinate need not be considered.  Hence, ( , )p r z  is the acoustic pressure 

and the Helmholtz equation is thus, 

2 2
2 2
02 2

1p p p k n p
r r r z

∂ ∂ ∂
+ + +

∂ ∂ ∂
      (1) 

Where 0
0

k
c
ω

=  is a reference wavenumber, 0( , )
( , )
cn r z

c r z
=  is the index of refraction and 

( , ) ( ) ( , )c r z c z c r zδ= + .  The solution to the Helmholtz equation is assumed to be of the 

form, 

(1)
0 0( , ) ( , ) ( )p r z r z H k r= Ψ       (2) 

Where ( , )r zΨ  is the wave envelope function and (1)
0H is a Hankel function of the first 

kind.  Substituting this solution in to Equation (1) and making the small angle, or 

paraxial, approximation, 

2

02 2ik
r r

∂ Ψ ∂Ψ
∂ ∂

�        (3) 

yields the standard parabolic equation, first introduced by Hardin and Tappert (Jensen et 

al, 2000): 
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2
2 2

0 022 ( 1) 0ik k n
r z

∂Ψ ∂ Ψ
+ + − Ψ =

∂ ∂
     (4) 

To analyze acoustic propagation it is often desirable to study modal behavior 

rather than the entire pressure field defined by the wave function ( , )r zΨ .  The normal 

modes are extracted from the pressure field by first expanding the wave function in terms 

of the unperturbed modes (Colosi, 2006), 

1
( , ) ( ) ( )

N

n n
n

r z A r zφ
=

Ψ =∑       (5) 

and 

2
2 2

2 ( ) 0n nk z k
z

φ
⎡ ⎤∂

− − =⎢ ⎥∂⎣ ⎦
, k

c
ω

=      (6) 

where ( )nA r  are the mode amplitudes and ( )n zφ  are the unperturbed mode shapes.  The 

mode amplitude can be obtained from the PE solution ( , )r zΨ  using,  

0

( ) ( , ) ( )
D

m mA r r z z dzφ= Ψ∫       (7) 

This result can be obtained by multiplying Equation (5) by the unperturbed modes mφ  and 

integrating from the surface to depth D .  The quantity ( )mA r  will be our primary 

observable in the analysis of this thesis. 

2. Boundary Conditions 
In ocean acoustics it is customary to treat the surface as a reflecting, or pressure 

release, boundary; represented by the boundary condition ( ,0) 0rΨ = .  This is easily dealt 

with in the PE method by the implementation of an image ocean.  A second sound source 

is created in a reflected position above the ocean surface.  By simply subtracting the input 

of the image source from that of the source at depth, the boundary condition is satisfied 

(Jensen et al., 2000): 

(0, ) (0, ) (0, )s sz z z z zΨ = Ψ − −Ψ +      (8) 

where sz  is the source depth.  
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The bottom boundary is more complex and is treated by applying some form of 

attenuation function, or “sponge layer.”  This is needed because the FFT solution 

(discussed later) has periodic boundary conditions.  This means that a wave can exit the 

domain at the bottom and effectively re-enter the domain at the top if it is not attenuated 

via an absorption layer. To avoid this wrap-around-effect, a sponge layer used by Colosi 

and Flatté (1996) is reproduced for this paper: 

2

( ) exp exp b

b

z zL z dx
z

β
α

⎧ ⎫⎡ ⎤⎛ ⎞−⎪ ⎪⎢ ⎥= − × −⎨ ⎬⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

    (9) 

where bz is the bottom of the computational domain.  The β  term represents the relative 

strength of the loss and the α term represents where the loss is applied relative to the 

bottom. The chosen values of 0.04β = and 0.05α =  will stop acoustic energy from 

penetrating beyond 3.75m above 750m (10x the bottom of 75m); we do not model 

bottom attenuation. 

3. Starting Field 

An analytical starting field, in the form of a Gaussian point source is used to 

provide a realistic starting environment with little computational effort.  The derivation in 

Jensen et al. yields the standard Gaussian point source used in this paper: 

20 ( )
2

0(0, )
k z zs

z k e
− −

Ψ =       (10) 

Where 0k is the effective source level and 0

2
k represents the beam width.  Applying 

Equation (8) to take into account the surface boundary condition yields the starting field: 

( ) ( )2 20 0
2 2

0(0, )
k kz zs z zs

z k e e
− − − +⎡ ⎤

Ψ = −⎢ ⎥
⎣ ⎦

     (11) 

where 0k can also be represented in terms of the initial frequency 0f and the initial sound 

speed 0c such that, 

0
0

0

2 fk
c
π

=         (12) 
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4. Background Environment  

The background environment is set up in three layers: A surface layer, a 

thermocline with a central depth of 30m, and an isovelocity profile below the thermocline 

to the bottom.  A hyperbolic tangent function is used to transition the sound speed 

between the layers and the thermocline; and between the water column and the bottom.  

The use of a hyperbolic tangent function provides a more realistic ocean environment 

compared to a commonly used linear relationship, but provides less realistic transition at 

the ocean seabed interface.  This smooth transition is required for the split-step method of 

the PE solution (more later).  The total background sound speed is thus calculated as 

follows: 

( )4
1 tanh 1 tanh

2 2
bs l th l b

s
th

z z Lc c z z c cc c
L

⎛ ⎞⎛ ⎞ − +⎡ ⎤⎡ ⎤⎛ − ⎞ − −
= − + + +⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∆⎝ ⎠ ⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠

 (13) 

where sc is the surface sound speed, lc  is the lower layer sound speed, bc is the sound 

speed in the bottom, thz is the central depth of the thermocline, th∆  is the width of the 

thermocline and L is a transitional length scale based on the acoustic wave length, such 

that L λ
π

= . 

Figure 1 shows the background sound speed profile used for this paper and Table 

1 shows the values of the chosen parameters.  For simplicity, the bottom has been 

modeled with sound speed only, thus a constant density of 31000( / )kg m has been used 

for the entire domain. 
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Figure 1.   The background sound speed profile used in this study.  The water column is 
divided into three layers and a hyperbolic tangent function is used to transition 
between the layers and the thermocline; and between the water column and the 
bottom.  

 

Table 1. Background sound speed parameters 

Surface sound speed sc  1520 (m/s) 

Lower layer sound speed lc  1480 (m/s) 

Bottom sound speed bc  1980 (m/s) 

Thermocline width th∆  15 (m) 

Central depth of the thermocline thz  30 (m) 
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5. Solutions to the Parabolic Equation Using the Split Step Fourier 
Algorithm 

The Split Step Fourier method for solving the PE problem, introduced by Hardin 

and Tappert, has since become one of the most widely used methods in underwater 

acoustics (Jensen et al., 2000).  The advantages and disadvantages of this method, as well 

as the derivation have been covered sufficiently in other texts and will not be covered 

here.  This paper uses the following form of the Split Step Fourier Algorithm (Jensen et 

al 2006): 

2 20
0

0
[ ( , ) 1]21 2

0( , ) ( , )
z

i r ikk n r z rkr z F e F e r z
∆

− − ∆−
⎧ ⎫⎧ ⎫⎪ ⎪Ψ = Ψ⎨ ⎨ ⎬⎬
⎪ ⎪⎩ ⎭⎩ ⎭

   (14) 

The Split step algorithm is so called because it first marches the solution out in 

range using a phase screen which takes refractive effects into account.  It then advances 

the solution for a homogeneous medium to include diffraction (other forms of the 

algorithm produced by Jensen et al., consider the homogeneous solution first). 

To test the stability of the PE code, the model was run using a point source in the 

background sound speed environment (no soliton).  In this case there should be no mode 

coupling and the magnitude of the mode amplitudes nA  should be independent of r .  

The source was set at a depth of 60m, and the code was run at 75, 150 and 300-Hz 

respectively to a range of 5km.  Figure 2 shows the entire acoustic field to a depth of 

200m (noting the bottom is at 75m).  Figures 3, 4 and 5 show the mode energy 2 ( )nA r  

(lower panel) and the fluctuation, or variance, of mode energy (upper panel).  For 

frequencies of 75, 150 and 300-Hz there are 7, 12, and 20 trapped modes respectively, 

and for all these trapped modes, which carry all the energy, the fluctuation in mode 

energy is very small.  Thus the code is quite stable for all of the frequencies trialed. 

B. SOLITARY WAVE MODELING 

1. Single Soliton 
The solitary wave is incorporated into the PE model by producing a perturbation 

in the background sound speed.  The hyperbolic secant form of the soliton is a solution to 

the KDV wave equation.  After making the frozen field approximation, the soliton can be 

represented by the following mathematical representation: 
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2 0( , ) ( ) sec
s

r rr z B z hζ
⎛ ⎞−

= ⎜ ⎟∆⎝ ⎠
      (15) 

Figure 2.   Simulation of the total acoustic pressure field in decibels for a 75-Hz source at 
60m. 
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Figure 3.   To test mode energy conservation, the model is run with just the background 
sound speed environment, a frequency of 75-Hz and a source depth of 60m.  The 
first plot shows the mode variance for each mode with only the first 7 modes 
being trapped.  The mode energies 2 ( )nA r  are represented in the second plot. 
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Figure 4.   To test mode energy conservation, the model is run with just the background 
sound speed environment, a frequency of 150-Hz and a source depth of 60m.  The 
first plot shows the mode variance for each mode with only the first 12 modes 
being trapped.  The mode energies 2 ( )nA r  are represented in the second plot. 
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Figure 5.   To test mode energy conservation, the model is run with just the background 
sound speed environment, a frequency of 300-Hz and a source depth of 60m.  The 
first plot shows the mode variance for each mode with only the first 20 modes 
being trapped.  The mode energies 2 ( )nA r  are represented in the second plot. 

 

where the sech2 function represents the soliton shape, 0r  is the soliton central location, 

s∆ is the soliton width; and the amplitude ( )B z  is the depth structure of the soliton which 

should approximate a sinusoidal form such as 0 sin z
D
πζ ⎛ ⎞
⎜ ⎟
⎝ ⎠

, where 0ζ  is the maximum 

amplitude of the soliton.  To limit the sinusoidal function influence to the water column, 

a hyperbolic tangent function is again used to transition from the soliton to the 

background environment.  Figure 6 demonstrates the effect of applying the hyperbolic 

tangent function to the soliton amplitude.  The total soliton is thus represented by: 
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( ) 2 0
0

1( , ) sin 1 1 tanh 2 sec
2 s

z D L r rzr z h
D L
πζ ζ

⎧ ⎫⎛ ⎞⎡ ⎤⎛ ⎞− − ⎛ ⎞−⎪ ⎪⎛ ⎞= − +⎜ ⎟⎢ ⎥⎨ ⎜ ⎟ ⎬ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ∆⎝ ⎠ ⎢ ⎥ ⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎝ ⎠⎩ ⎭
 (16) 

The perturbed sound speed profile can now be calculated using the relationship, 

( ) ( ) ( ),cc z c z r z
z

ζ ζ∂
+ = +

∂
      (17) 

Figure 7 shows the total sound speed field for a single soliton of width 100m, 

maximum amplitude of 10m, at a range of 2.5km from the intended sound source. 

 

Figure 6.   A hyperbolic tangent function is used to transition the soliton amplitude to the 
background environment. 
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Figure 7.   Total sound speed field with a sech2 shaped soliton at a range of 2.5km.  The 
soliton width is 100m and the maximum amplitude is 10m. 
 
2. Soliton Wave Packet 
Solitons tend to appear in the environment as a wave packet rather than 

individually (Duda & Preisig, 1999).  To consider this more realistic scenario, a wave 

packet is created in the same manner as a single soliton.  The total sound speed field is 

simply the background sound speed plus the perturbation contribution made by each 

wave in the packet.  Figure 8 shows a typical soliton wave packet with each consecutive 

soliton decreasing in amplitude.  The soliton widths have been kept constant at 100m and 

they are each separated by 500m. 
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Figure 8.   Total sound speed field with a sech2 shaped soliton wave packet.  The solitons are 
at ranges of 2.5, 3 and 3.5km and have constant width of 100m.  The maximum 
amplitudes are 10, 5 and 2.5m respectively. 

 

C. THE PARABOLIC EQUATION IN MODE FORM 
As this paper focuses primarily on mode coupling, it is useful to express the 

parabolic equation in mode form.  The following derivation follows directly from Colosi 

2006.  Equations (5), (6) and (7) lead to an equation for mode amplitude in the form, 

2 2
0

10 02 2

N
n

n mn m
m

k k ii A C A
r k k =

⎡ ⎤−∂
− =⎢ ⎥∂⎣ ⎦

∑      (18) 

where mnC is the random mode coupling matrix defined by, 

( )2 2 2
0

0 0

( , ) ( ) 2 ( , )
D D

mn n m n mC k r z k z dz k r z dzφ φ µ φ φ= − −∫ ∫�   (19) 

and 
0

c
c
δµ = .  To simplify the notation, Equation (18) becomes, 
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2 2
0

102

N
n

n mn m
m

k ki A i A
r k

ρ
=

⎡ ⎤−∂
− = −⎢ ⎥∂⎣ ⎦

∑      (20) 

0
0

( ) ( , )
D

mn n mr k r z dzρ µ φ φ= ∫       (21) 

Equation (20) can be simplified further by using the following definitions: 

( )expn n nA il rψ = − ,  
2 2

0

02
n

n
k kl

k
−

=     (22) 

which gives the acoustic wave equation in mode form (an exact representation of 

Equation (4)): 

1

mn

N
il rn

mn m
m

i e
r
ψ ρ ψ

=

∂
= −

∂ ∑ , 
2 2

02
m n

mn m n
k kl l l

k
−

= − =    (23) 

1. Perturbation Theory 

Perturbation theory provides a useful method of analyzing the environmental 

effects on individual modes.  Again, from Colosi (2006), Equation (23) can be written as 

a series solution as long as mnρ  is sufficiently small (of the orderε ): 

( ) ( )0 1 2 0 1 2
1

... ...mn

N
il r

n n n mn m m m
m

i e
r
ψ ψ ψ ρ ψ ψ ψ

=

∂
+ + = − + +

∂ ∑   (24) 

where 0 1 2, , ...n n nψ ψ ψ etc are of the order 0 1 2, , ,...ε ε ε etc.  From this, it follows that 

0

1 0
1

1
1

0

( ) ( )

( ) ( )

mn

mn

N
il r

n mn m
m

N
il r

nj mn mj
m

r

i r e r
r

i r e r
r

ψ

ψ ρ ψ

ψ ρ ψ

=

−
=

∂
=

∂
∂

= −
∂

∂
= −

∂

∑

∑

#

     (25) 

with initial conditions, 0 1 2(0) , (0) (0) 0n n n nψ ψ ψ ψ= = = =… .  A solution is constructed to 

any order of ε , so that 
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0 0

1 0
1

( ) (0) (0)

( ) (0) ( ) mn

n n
N R il r

n m mn
m

R

R i dr r e

ψ ψ ψ

ψ ψ ρ ′

=

= =

′ ′= − ∑ ∫
#

   (26) 

where R is the final range, on the other side of the soliton.  For simplicity, the first order 

perturbation solution is, 

0
1

( ) (0) (0) ( ) mn

N R il r
n n m mn

m
R i dr r eψ ψ ψ ρ ′

=

′ ′= − ∑ ∫    (27) 

Finally, using the spectral notation, 

ˆ( ) ( ) ,ikr
mn r dk k eρ ρ

∞ −

−∞
= ∫  1ˆ ˆ( ) ( )

2
ikr

mn mn
k dr r eρ ρ

π
∞ −

−∞
= ∫   (28) 

the perturbation solution is, 

( )
0

1

ˆ( ) (0) ( ) (0) mn
N R i l k r

n n mn m
m

R i dk k dr eψ ψ ρ ψ ′−

=

′= − ∑∫ ∫   (29) 

2. Sound Through Solitons 
The more general form for ocean solitons (combining Equations 16 and 17) can 

be expressed as, 

0 1( , ) ( ) ( )r z W z F rµ µ=        (30) 

such that the mode coupling coefficients become 

0
0

( ) ( , ) ( ) ( )
D

mn n m mnk z r z z dz C F rρ φ µ φ= =∫     (31) 

Equation (29) (the modal evolution equation) is re-written as 

1

ˆ( ) (0) (0) ( ) (0) ( , )
N

n n m mn m mn
m

R i dk k H R kψ ψ ψ ρ ψ
=

= − ∑ ∫   (32) 

The last integral in Equation (29), mnH  has the form 
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( )

( )( ) ( )

0

2

( , )

sin 2 ( )
2

mn

mn

R i l k r
mn

i l k R
mn mn

H R k dr e

RRe c l k l kπδ

′−

−

′=

⎡ ⎤= − −⎢ ⎥⎣ ⎦

∫
� . (33) 

where the last step follows for large R .  This delta function reveals the Bragg scattering 

condition in which the solitary wavenumber, which resonates with the beat wavenumber 

between the modes n  and m , provides the important scattering. 

3. The Gaussian Soliton 
As discussed, the sech2 form of a soliton is chosen because it is an exact solution 

to the KDV wave equation.  For analytical efficiency it is convenient to approximate the 

sech2 soliton with a Gaussian form (see Figure 9) such that, 

( ) ( )2
0 02

2( ) sec exp
s s

r r r r
F r h

⎡ ⎤⎡ ⎤− −
= −⎢ ⎥⎢ ⎥∆ ∆⎢ ⎥⎣ ⎦ ⎣ ⎦

�     (34) 

The mode coupling coefficients can then be written as, 

( )2
0

2

2 2

1ˆ ( ) exp
2

exp
42

ikr
mn mn

s

ikrs s
mn

r r
k C e dr

kC e

ρ
π

π

∞

−∞

⎡ ⎤−
= −⎢ ⎥

∆⎢ ⎥⎣ ⎦
⎡ ⎤∆ ∆

= −⎢ ⎥
⎣ ⎦

∫

    (35) 

The first order result of the modal evolution Equation (32) can now be expressed as, 

0

2 2
1 2

1
( ) (0) (0) exp

4
mn

N
il r mn s

n n s m mn
m

lR i C e

I II III IV V VI

ψ ψ π ψ
=

⎡ ⎤∆
= − ∆ −⎢ ⎥

⎣ ⎦
∑

" """ """"" " " """ "

  (36) 

This appears to be a very useful approximation as all relevant characteristics of the 

soliton are included in the modal evolution equation.  Term I represents the complex 

mode amplitude after it has passed through the soliton. Term II  represents the initial 

mode amplitude.  Term III represents the contributions made to the initial mode n , by 

other m  modes as it passes through the soliton.  Term IV  is the random mode coupling 

matrix dependent on the vertical structure of the modes and the soliton.  Term V  is a 
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phase term which depends on the central position of the soliton; and the final term, VI , 

represents both the mode number difference 2
mnl  and the width of the soliton s∆ .   

Terms V and VI constitute what is known as the Bragg condition.  From the 

theory it can be seen that certain wavenumbers in the soliton resonate with the “beat” 

wavenumber ( beatk ) of the modes (Equation 33).  The beat wavenumber has special 

physical meaning and is the spatial frequency of the envelope of the interference pattern 

of two superposed waves.  2 beatkπ  can also be represented as a ray cycle distance.  Thus 

the meaningful quantity for the soliton to resonate with is the beat wavenumber.  This 

resonance can be related to the well known Bragg resonance which is usually expressed 

in terms of spatial dimensions instead of wavenumbers.  The traditional Bragg condition 

for scattering from a molecular lattice says that the strongest backscatter occurs when an 

integer number of wavelengths can fit between the Bragg planes of the lattice; for simple 

solids and at normal incidence the distance between Bragg planes is just the 

intermolecular distance d ; thus the expression 2n dλ = .  For our condition we have 

2 2soliton beatdπ π λ= or beat solitondλ = .  Essentially the width of the soliton is analogous to 

the molecular lattice spacing, thus first order theory deals with acoustic wavelengths 

which are equal to the soliton width.  Naturally a higher order theory would allow for 

multiple wavelengths to fit within the width of the soliton.  This paper only deals with 

first order theory. 

Physically Equation (36) is a single scatter model; mode n couples to mode m 

with no intermediated state.  It should be noted that in evaluating mnH , it is assumed that 

R  is very large and that both the initial point 0r =  and the final range R  are well away 

from the soliton.  As this paper deals primarily with absolute mode energy, rather than 

individual mode amplitudes, we square Equation (36) and convert to the nA  

representation (Equation 22) to obtain the mode energy equation to first order 

2 2
2 2 1 2

0
1

( ) (0) 2 (0) (0) exp sin( )
4

N
mn s

n n s m n mn mn
m

lA R A A A C l rπ
=

⎡ ⎤∆
= + ∆ −⎢ ⎥

⎣ ⎦
∑ . (37) 

Since in this research we are examining relative mode energy change, we also have 
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2 2 2
1 2

02 2
1

( ) (0) (0)1 2 exp sin( )
4(0) (0)

N
n m n mn s

s mn mn
mn n

A R A A lC l r
A A

π
=

⎡ ⎤∆
= + ∆ −⎢ ⎥

⎣ ⎦
∑ .  (38) 

As this thesis also examines the more realistic case of a soliton packet, we can use 

the linearity of the Fourier transform to obtain the modal evolution equation for the 

packet: 

0

2 2
( )1 2

1 1

( )( ) (0) ( ) (0) ( ) exp
4

s
mn

N N
il r k mn s

n n s s m mn
k m

l kR i k C k eψ ψ π ψ
= =

⎡ ⎤∆
= − ∆ ∆ −⎢ ⎥

⎣ ⎦
∑ ∑  (39) 

Where sN  is the number of solitons in the packet, and ( )s k∆ , 0 ( )r k , and ( )mnC k  are the 

width, position, and coupling matrix of the thk  soliton.  Thus the first order mode energy 

equation for the wave packet case can be written as 

2 2
2 2 1 2

0
1 1

( )( ) (0) 2 ( ) (0) (0) ( ) exp sin( ( ))
4

sN N
mn s

n n s s m n mn mn
k m

l kA R A k A A C k l r kπ
= =

⎡ ⎤∆
= + ∆ ∆ −⎢ ⎥

⎣ ⎦
∑ ∑

(40) 

Figure 9 shows a comparison between the sech2 and the Gaussian shapes, both 

with relative amplitudes of 1, at an arbitrary distance.  Both of these forms have been 

incorporated into the PE model.  In a similar manner to Equation (16), the Gaussian 

soliton is represented by, 

( ) ( )2
0

0 2

1( , ) sin 1 1 tanh 2 exp
2 s

z D L r rzr z
D L
πζ ζ

⎧ ⎫ ⎛ ⎞⎛ ⎞⎡ ⎤⎛ ⎞− − −⎪ ⎪⎛ ⎞ ⎜ ⎟= − + −⎜ ⎟⎢ ⎥⎨ ⎜ ⎟ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟∆⎝ ⎠ ⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎝ ⎠ ⎝ ⎠⎩ ⎭
 (41) 

A comparison is made between the outputs of trapped modes for each shape with the 

results discussed in the next chapter. 
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Figure 9.   A comparison of the sech2 and Gaussian wave forms. 
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III. RESULTS 

A. SECH2 VERSUS GAUSSIAN SOLITON 

1. Single Wave 
The model was run with both soliton forms and a comparison was made using the 

mode energies, 2 ( )nA r . Only trapped modes are examined in the analyses for this thesis.  

These correspond to modes 1-7 for 75-Hz, modes 1-12 for 150-Hz and modes 1-20 for 

300-Hz and the trapped modes represent the dominant acoustic energy excited by the 

source.  Figure 10 shows an overlay of mode energy output for a point source at 

frequency of 150-Hz , depth of 60m and a soliton range of 2.5km.  Clearly there is very 

little difference between the final mode energy for both soliton models.  Similar results 

were obtained for a point source at 75 and 300-Hz.   

A plot of mode energy difference was then constructed.  Because of small 

numerical fluctuations in mode energy with range we averaged the mode energy for the 

last 1000m at the range, to get a single mode energy estimate 2 ( )nA r  after the soliton.  

Dividing this energy value by the initial mode energy and taking the log gives us the 

fractional energy change in dB.  This plot appears at Figure 11 but on initial inspection it 

appears that several modes display significant variation between the two wave shapes; for 

example, mode 9 at 150-Hz and mode 18 at 300-Hz.  To resolve this issue plots were 

constructed of the mode energy for these large deviation cases (mode 9 at 150-Hz and 

mode 18 at 300-Hz) compared to the neighboring mode energy.  Figure 12 shows modes 

1 and 2 for a 75-Hz source (where mode 2 has a large deviation).  Figure 13 is a plot of 

modes 8 and 9 for a 150-Hz source and Figure 14 is a plot of modes 17 and 18 for a 300-

Hz source.  For each case it is clear that for modes with sufficient energy, very little 

difference is seen between the sech2 and Gaussian solitons.  The modes which show 

significant difference are those with small energy values.  Clearly by calculating the 

logarithmic difference of two very small numbers, a relatively large number can occur.  

Low energy modes are very sensitive to the phase of the mode in relation to the soliton 

but as their energy contributes virtually nothing to the acoustic pressure field, they can be 

ignored. 
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A parametric plot of 2 ( )nA r  for the Gaussian verses 2 ( )nA r  for the sech2 was 

created for each frequency and is shown at Figure 15.  There is a clear linear relation 

exhibited in all three cases which further support that a Gaussian model provides a very 

good approximation to the sech2 form of the soliton for a single wave. 

Both shapes were also run with a soliton at 1.5km from the source with the same 

source depth and then at 2.5km with a source depth of 50m.  By moving the soliton closer 

the same modes are affected however, the values differ. By changing the source depth 

there is a different distribution of mode energy.  For each case the comparisons made 

reflected the results previously discussed. 

Figure 10.   Mode energy 2 ( )nA r  comparison between a sech2 (red) and a Gaussian (blue) 
soliton shape for a single wave with a source depth of 60m and a frequency of 
150-Hz.  Similar results appear for all three frequencies.  By visual inspection 
there is very little difference between the two shapes. 
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Figure 11.   Relative mode energy ( )2 2
10 010 log n nA A  between trapped modes for a single 

soliton, for all three frequencies at a range of 5km.  The soliton is located at 
2.5km.  These results were obtained from averaging the mode energy of the last 
1000m and comparing the difference between the two shapes in logarithmic form.  
The values which are not close to zero (e.g. mode 9 at 150-Hz and mode 18 at 
300-Hz) are discussed in Figures 12 to 14. 
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Figure 12.   Mode energy 2 ( )nA r  of a single soliton for both soliton forms, comparing the 
highest outlying mode to the adjacent mode energy at 75-Hz with a source depth 
of 60m.  Mode 2 showed the greatest energy difference in decibels.  Clearly mode 
1 energy values are virtually indistinguishable between both shapes.  The obvious 
difference between mode 2 values shows the sensitivity of shape to the phase at 
low energy modes.  These modes, however can be ignored as their mode energy 
contributes almost nothing to the entire acoustic pressure field. 
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Figure 13.   Mode energy 2 ( )nA r  of a single soliton for both soliton forms, comparing the 
highest outlying mode to the adjacent mode energy at 150-Hz with a source depth 
of 60m.  Mode 9 showed the greatest energy difference in decibels.  Clearly mode 
8 energy values are virtually indistinguishable between both shapes.  The obvious 
difference between mode 9 values shows the sensitivity of shape to the phase at 
low energy modes.  These modes, however can be ignored as their mode energy 
contributes almost nothing to the entire acoustic pressure field. 
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Figure 14.   Mode energy 2 ( )nA r  of a single soliton for both soliton forms, comparing the 
highest outlying mode to the adjacent mode energy at 300-Hz with a source depth 
of 60m.  Mode 18 showed the greatest energy difference in decibels.  Clearly 
mode 17 energy values are virtually indistinguishable between both shapes.  The 
obvious difference between mode 18 values shows the sensitivity of shape to the 
phase at low energy modes.  These modes, however can be ignored as their mode 
energy contributes almost nothing to the entire acoustic pressure field. 
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Figure 15.   Parametric plot of mode energy for the sech2 and Gaussian solitons; for 75, 150 
and 300-Hz.  The clear linear relationship demonstrates the validity of using a 
Gaussian shaped soliton in place of the sech2 form. 

 
2. Wave Packet 

Soliton packets of both sech2 and Gaussian forms were incorporated into the 

model with a comparison made in the same manner as with the single wave.  Again a plot 

of mode energy difference was constructed by averaging the mode energy of the last 

1000m for each packet, at each frequency and then forming the relative mode energy 
2 2

0n nA A  in logarithmic form (Figure 16).  Similar results were observed compared to 

the single wave case.  Certain modes demonstrated significant variability but when tested 

in the same manner as the single wave case, these modes proved to have insignificant 

energy values and could thus be ignored.  Figure 17 shows a comparison between energy 

values for modes 8 and 9 for 150-Hz; this again demonstrates that variability occurs only 

with very low energy value modes, which can be ignored.  The parametric plot in Figure  
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18 shows the same linear relationship as the single wave scenario.  We thus conclude that 

the Gaussian form soliton can be used as a very good approximation to the sech2 form for 

both single and multi-wave cases. 

Figure 16.   Relative mode energy ( )2 2
10 010 log n nA A  between trapped modes for a soliton 

packet, for all three frequencies, at a range of 5km.  The soliton packet is located 
at 2.5km.  These results were obtained from averaging the mode energy of the last 
1000m and comparing the difference between the two shapes in logarithmic form. 
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Figure 17.   Mode energy 2 ( )nA r  for both forms of a soliton packet, comparing the highest 
outlying mode to the adjacent mode energy at 150-Hz with a source depth of 60m.  
Mode 9 shows the greatest energy difference in decibels.  Clearly mode 8 energy 
values are virtually indistinguishable between both shapes.  The obvious 
difference between mode 9 values shows the sensitivity of shape to the phase at 
low energy modes.  These modes, however can be ignored as their mode energy 
contributes almost nothing to the entire acoustic pressure field.  This is a similar 
result to the single soliton case. 
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Figure 18.   Parametric plot of mode energy for the sech2 and Gaussian soliton packets; for 75, 
150 and 300-Hz.  The clear linear relationship demonstrates the validity of using a 
Gaussian shaped soliton in place of the sech2 form. 

 

B. VARIATION OF SINGLE SOLITON POSITION 

1. Numerical Results 

The model was run by moving the soliton central range 0r  from 1500 to 3000m; 

at 5m intervals; for 75, 150 and 300-Hz sound.  Again to remove small fluctuations, the 

average mode energy between 4000 and 5000m was calculated and divided by the initial 

mode energy to form the relative mode energy.  This gave a relative increase or decrease 

in mode energy as the sound passed through the soliton.  Figure 19 shows the amplitude 

variations for the moving soliton compared to the initial energy of the respective modes 

at 75-Hz.  As the actual energy in mode 2 is very low, the relative change in energy is 

quite high!  To give a better perspective of the other modes, Figure 20 shows the same 

plot as Figure 19 but with mode 2 removed.  Figures 21 and 22 show the 150, and 300-Hz 

cases respectively.  All four plots demonstrate some important issues.  Firstly, that there 



35 

is no repeating pattern in the mode energies as a function of soliton position.  Secondly, 

at higher frequencies the mode amplitude pattern shows larger deviations as a function of 

soliton range; and finally, the pattern of energy change is more structured, or shows a 

higher degree of granularity, at high frequency.  Subsequent sections will discuss the 

theoretical underpinnings of these results. 

Figure 19.   Relative mode energy 2 2
0n nA A  at 5km (averaged over the last 1000m) for a 

75-Hz sound source and a source depth of 60m.  This demonstrates a non-
repeating mode pattern.  Figure 20 shows the same plot with mode 2 removed to 
give a better perspective of the other modes.   
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Figure 20.   Relative mode energy 2 2
0n nA A  at 5km (averaged over the last 1000m) for a 

75-Hz sound source and a source depth of 60m.  This plot excludes mode 2 to 
give a better perspective of the other modes. Again, this demonstrates a non-
repeating mode pattern. 
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Figure 21.   Mode energy 2 2
0n nA A  at 5km (averaged over the last 1000m) for a 150-Hz 

sound source and a source depth of 60m.  This demonstrates a non-repeating 
mode pattern. 
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Figure 22.   Mode energy 2 2
0n nA A  at 5km (averaged over the last 1000m) for a 300-Hz 

sound source and a source depth of 60m.  This demonstrates a non-repeating 
mode pattern. 
 
2. Theoretical Results 

The theoretical results were calculated and compared to the simulation discussed 

in section 1.  Figures 23 to 25 show a comparison between simulation and theoretical 

results (Equation 37) of the seven highest energy modes for the three respective 

frequencies (naturally all seven trapped modes are represented for 75-Hz).  All three 

cases compare extremely well with the simulation.  The mode patterns are virtually 

identical and there is almost no difference in the mode energy.   

The 300-Hz result is very surprising as it was expected that at higher frequencies, 

higher order theory would have been required to resolve both the mode pattern and the 

mode energy variations, to some degree of accuracy.  This result, though surprising, is 

very promising.  Higher frequencies will need to be tested in future research to determine 

the limit of the first order theory. 
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Figure 23.   Comparison of simulated (blue) and theoretical (green) results for a 75-Hz sound 
source at 60m, and a single wave moving between 1.5 and 3km.  There is clearly 
very good agreement between the two results with almost identical mode pattern 
and virtually the same mode shape. 
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Figure 24.   Comparison of simulated (blue) and theoretical (green) results for the seven 
highest energy modes of a 150-Hz sound source at 60m, and a single wave 
moving between 1.5 and 3km.  There is clearly very good agreement between the 
two results. 
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Figure 25.   Comparison of simulated (blue) and theoretical (green) results for the seven 
highest energy modes of a 300-Hz sound source at 60m, and a single wave 
moving between 1.5 and 3km.  The similarity in both the mode pattern and mode 
energy is surprising at this relatively high frequency. 

 

Figure 26 shows a parametric plot of actual (simulated) versus theoretical mode 

energies for all three frequencies for all trapped modes.  Figure 27 shows the same plot 

but only for the 7 highest modes for 150 and 300-Hz.  These plots demonstrate a number 

of important aspects.  Firstly, the disorganization in the plot is an indication of mode 

pattern similarity; the less disorganized the plot, the closer the pattern of the theory 

matches the simulation.  There is a clear linear relationship between the theory and the 

actual results which becomes progressively more disorganized with higher frequency; 

however, the strength of the linear relationship at 300-Hz was unexpected.  Secondly, the 

slope of the line relative to the slope of one, gives a comparison of energy values between 

the theory and the simulation.  If the plot sits below the line, the theory under predicts 

energy values and if above the line the theory over predicts.  For all three cases the theory 
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predicts the mode energy values to a high degree of accuracy though there is a very slight 

tendency toward over prediction at 300-Hz.  Finally, a comparison between Figures 26 

and 27 shows that there are areas which demonstrate significantly more disorganization 

with lower energy modes; for example, 150-Hz with 2
na  values between 0.05 and 0.08.  

This is not to say that all low energy modes are irresolvable with the first order theory.  

Figure 26 shows a clear linear relationship for both 150 and 300-Hz for many low energy 

modes.  The reason as to why some low energy modes are more affected than others is 

possibly due to the inability of the theory to deal with mode coupling from a high energy 

mode to a low energy mode or vice versa.  It is expected that modes which couple from a 

relatively low energy mode to another low energy mode maintain good agreement 

between theory and simulation results.   

The results for all three frequencies demonstrate that the acoustic pressure field 

can be predicted in the presence of a soliton environment.  It is expected that many of the 

discrepancies between the theoretical and the actual results, for low energy modes, will 

be resolved with higher order theory. 
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Figure 26.   Parametric plot of simulated versus theoretical mode energies (for all modes) for a 
single soliton with a 60m source depth.  The red line shows a linear relationship. 
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Figure 27.   Parametric plot of simulated versus theoretical mode energies (for the seven 
highest energy modes) for a single soliton with a 60m source depth. 

 

The strong agreement between the theory and the simulated results makes the 

theory useful in interpreting the simulations from section 1.  First we address the issue of 

the non-periodic structure of 2
0( )nA r .  From the theory (Equation 37) the parameter 0r  

appears as 0sin( )mnl r .  Thus the pattern 2
0( )nA r  is controlled by the beat frequency mnl .  

A plot of mode number versus horizontal wave number nl  is shown in Figure 28.  The 

Figure shows a non linear relationship between horizontal wave number and mode 

number for all frequencies.  This means that the wavenumbers are not commensurate, 

thus the 0sin( )mnl r  term will not give a repeating pattern when summed in Equation (37).  

This explains the non-periodic structure of 2
0( )nA r  observed in the simulation. 

Next we address the issue that the mode energy fluctuations seem to grow with 

frequency.  Figures 19 to 22 revealed that the strength of mode coupling increased with 
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increasing frequency.  Terms III , IV  ( mnC ) and VI  (which we will call mnD ) of the 

modal evolution Equation (36) all contribute to the strength of mode coupling.  Figure 29 

shows a plot of terms IV  and VI  as well as the combination to the two.  There is a clear 

linear increase in mnC  values with increasing frequency (primarily due to the 0k  term) 

while mnD  remains relatively unchanged with frequency in spite of the fact that mnl  can 

have smaller values at high frequency.  The net result is that the coupling terms 

(predominately mnC ) always increase the coupling strength.  Figures 19 to 22 however, 

show that coupling strength does not increase for all modes with frequency.  Figure 30 is 

a plot of the log of the initial amplitude values, or the excitation energy which appears in 

Equation (38) as 2(0) (0) (0)m n nA A A  (which we will call mnψ ); and demonstrates that 

the complexity of this excitation energy has a strong effect on the coupling magnitude.  

This term can either magnify or diminish the coupling strength with frequency, caused by 

the other coupling terms; thus the coupling magnitude does not necessarily increase for 

all modes with increasing frequency. 

Finally we address the issue of the increased structure of the pattern 2
0( )nA r  for 

higher frequencies.  The sensitivity of 2
0( )nA r  is naturally dependent on the 0sin( )mnl r  

term of the modal power Equation (37) as this is the only term dependent on the soliton 

location.  Thus the structure of the pattern 2
0( )nA r  depends on the beat wavenumbers 

mnl ; if mnl  is small this contributes to slow variation with 0r  while for mnl  large, this 

contributes to rapid variations with 0r .  Figure 31 shows a plot of allowable difference 

wave number verses frequency.  There is an obvious increase in the mnl  values with 

frequency, thus the increase in granularity with increasing frequency, observed in Figures 

19 to 22, is explained. 
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Figure 28.   Horizontal wavenumber versus node number, for all three frequencies, computed 
by the solution of the unperturbed mode equation (Equation 6). 
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Figure 29.   Terms IV  and VI  of the modal evolution Equation (36).  There is a clear linear 
increase of mnC  with frequency while mnD  shows vary little variation with 
frequency.  Together, these terms always act to increase the coupling strength 
with increasing frequency. 
 
 

Figure 30.   The complex nature of the excitation energy shows that it can magnify or 
diminish the increase in mode coupling strength with frequency, caused by the 
terms mnC  and mnD . 
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Figure 31.   Allowable difference wavenumbers as a function of increasing frequency.  The 
clear increase in allowable mnl  values with increasing frequency explains the 
increased granularity (or structure) observed with increasing frequency in Figures 
19 to 22. 
 

 

C. VARIATION OF POSITION WITH A SOLITON WAVE PACKET 

1. Numerical Results 

The model was run again with a source depth of 60m for all three frequencies, but 

with a wave packet in place of the single soliton.  The results were very similar to the 

previously discussed single soliton case where we observed a non repeating beat pattern; 

larger deviations in mode amplitude pattern as a function of range; and a higher degree of 

granularity at higher frequencies.  Figure 32 shows the amplitude variations for the 

moving packet compared to the initial energy of the respective modes at 150-Hz. 
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Figure 32.   Mode energy 2 2
0n nA A  at 5km (averaged over the last 1000m) for a wave 

packet with a 150-Hz sound source and a source depth of 60m.  This demonstrates 
a non-repeating mode pattern. 
 

2. Theoretical Results 
Figure 33 shows the comparison between the theory and the simulation for a wave 

packet moving between 1.5 and 3km, with a source depth of 60m and a frequency of 150-

Hz.  For the sake of continuity the same modes are used as in the single wave case (mode 

12 would be replaced by mode 5 in the wave packet case if the highest seven energy 

modes were used).  The results for all three frequencies again show excellent agreement 

between the theory and the simulation.  The similarity in mode pattern to the single wave 

case leads to the assumption that the first soliton in the packet has the greatest impact on 

mode energy variations at these frequencies.  Even the 300-Hz case (Figure 34) shows 

that the first wave in the packet is the most important; however, higher frequencies are 

expected to show more sensitivity to additional waves. 
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Figure 33.   Comparison of simulated (blue) and theoretical (green) results for a 150-Hz sound 
source at 60m, and a wave packet moving between 1.5 and 3km (the same modes 
are compared as in the single wave case).  There is clearly very good agreement 
between the two results; and the similarity in the pattern to the single wave case 
indicates that the first soliton is the most important in determining mode coupling 
at this frequency. 
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Figure 34.   Comparison of simulated (blue) and theoretical (green) results for a 300-Hz sound 
source at 60m, and a wave packet moving between 1.5 and 3km (the same modes 
are compared as in the single wave case).  Again, the agreement between the two 
results in both the mode pattern and the mode energy is very good.  The lack of 
variation in the wave pattern between the single wave case indicates that even at 
this frequency, the first wave in the packet dominates the coupling regime. 

 

Figures 35 and 36 show the parametric plots of actual verses theoretical mode 

energies, for the wave packet case.  The results confirm the ability to predict the acoustic 

pressure field in the presence of a wave packet, for the frequencies trialed.  Future 

research should test the higher frequencies than those examined here, to determine when, 

if ever, the pattern becomes sensitive to multiple solitons.  Again, it is expected that the 

discrepancies between the theoretical and actual mode energies, for higher frequencies 

and lower energy modes will be resolved with higher order theory. 
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Figure 35.   Parametric plot of actual (simulated) versus theoretical mode energies (for all 
modes) for a wave packet with a 60m source depth. 
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Figure 36.   Parametric plot of actual (simulated) versus theoretical mode energies (for the 
seven modes compared in the single soliton case) for a wave packet with a 60m 
source depth. 

 

D. VARIATIONS IN SOURCE DEPTH 

1. Single Soliton 
Figure 37 shows the comparison between the theory and the simulation for a wave 

packet moving between 1.5 and 3km, with a source depth of 10m and a frequency of 150-

Hz, for the seven highest energy modes.  There is clearly good agreement between the 

theory and the actual results in both the mode pattern and the mode energy values.  In 

fact, the parametric plots (Figures 38 and 39) shows a better agreement in both pattern 

and energy values for 150 and 300-Hz, compared to a source depth of 60m.  The same 

relationships seen in the 60m case are apparent in the shallow water case.  An increase in 

frequency leads to a slightly greater disagreement in mode pattern and energy values 

when comparing the theory and the actual results.  The conclusion is made that the theory 

is valid for predicting the acoustic pressure field in a single soliton environment for both 

a deep and a shallow source depth. 
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Figure 37.   Comparison of simulated (blue) and theoretical (green) results for the seven 
highest energy modes of a 150-Hz sound source at 10m, and a single wave 
moving between 1.5 and 3km.  There is clearly very good agreement between the 
two results. 
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Figure 38.   Parametric plot of actual (simulated) versus theoretical mode energies (for all 
modes) for a single soliton with a 10m source depth. 
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Figure 39.   Parametric plot of actual (simulated) versus theoretical mode energies (for the 
seven highest energy modes) for a single soliton with a 10m source depth. 
 
 

2. Wave Packet 

As with the single soliton case, with a source depth of 10m, the wave packet case 

shows better agreement between the theory and the actual results compared with the deep 

source of 60m.  Parametric plots at Figures 40 and 41 again show the same relationships 

in discrepancies between theoretical and actual results, previously observed.  Once again 

the conclusion is reached that the theory can predict the acoustic pressure field in a multi-

wave environment for both a deep and shallow source depth. 
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Figure 40.   Parametric plot of actual (simulated) versus theoretical mode energies (for all 
modes) for a wave packet with a 10m source depth. 
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Figure 41.   Parametric plot of actual (simulated) versus theoretical mode energies (for the 
seven modes compared in the single soliton case) for a wave packet with a 10m 
source depth. 
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IV. CONCLUSION 

A 2D parabolic wave simulation was developed to model acoustic propagation 

and mode coupling through internal solitary waves; and to test against a weak scattering 

theory (developed by Colosi), whose primary physics is a Bragg scattering mechanism. 

Historically a sech2 form has been used to model internal solitary waves as it is a 

solution to the KDV wave equation.  A Gaussian form is very similar to the sech2 form 

but is mathematically more expedient when looking at weak scattering theory.  To see if 

the Gaussian form could replace the sech2, the two forms were incorporated into the 2D 

parabolic wave equation simulation and tested for frequencies of 75, 150 and 300-Hz; 

with a point source at a depth of 60m.  Both forms were then tested for the more realistic 

wave packet (three waves) scenario.  Both tests showed that the Gaussian soliton is an 

excellent approximation to the traditional form.  Large differences were observed only 

for initially low energy modes but as the low energy modes contribute virtually nothing 

to the total acoustic pressure field they can be ignored. 

Acoustic propagation through a Gaussian form soliton, and a soliton packet was 

then simulated.  The solitons were moved from 1.5km to 3km range from the sound 

source, at 5m increments for the single wave case with a 60m source; and at 10m 

increments for all remaining cases.  The mode amplitudes were then plotted for each 

incremental step. The simulation was run for frequencies of 75, 150 and 300-Hz and for 

source depths of 60m (submarine case) and 10m (surface ship case) respectively.  The 

following main points were observed:  Firstly there was no repeating pattern in mode 

energies as a function of soliton position; secondly, at higher frequencies the mode 

energy had larger changes as a function of soliton range; and finally, the pattern of energy 

change was more structured at higher frequency.  The simulation was compared to the 

theoretical results produced by weak scattering theory to firstly see if the theory was 

valid, and secondly, to use the theory to explain the results obtained in the simulation. 

For all cases excellent agreement was observed between the simulation and the 

theory.  Although a poor comparison for 300-Hz was expected (as the theory is only 

calculated to the first order) the close comparison in both the mode shapes and energy 
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values was surprising.  Even though the results remained consistently good for all cases 

(even at 300-Hz), there was a slight tendency for the theory to over predict mode energy 

values at higher frequencies. 

Some low energy modes did contribute to discrepancies between the results.  

Whilst not all low energy modes added to the discrepancies, it is believed that the theory 

did not handle mode coupling from high to low energy, or vice versa, as effectively as 

coupling between two relatively low energy modes; since the theory is a single, weak 

scattering approach. 

For all wave packet cases very little difference was observed in the mode pattern 

compared to the single wave cases.  This leads to the conclusion that, at the frequencies 

trialed, mode coupling is dominated by the first wave in the packet.  Higher frequencies 

will need to be tested to determine when the pattern is significantly affected by other 

waves in the packet. 

It is expected that the discrepancies observed between the simulation and the 

theoretical results will be resolved with higher order theory but it is clear that even with 

only first order results, the acoustic pressure field can be accurately predicted in both a 

single and a multi-wave, soliton environment.  Using this premise, the theory (Equations 

(36) and (37)) were used to explain the observations made with the simulation. 

A plot of horizontal wave number versus mode number was constructed using the 

theory and showed a non linear relationship between the two terms.  This lead to the 

conclusion that horizontal wave numbers and mode numbers are not commensurate, thus 

explaining the non-periodic structure of 2
0( )nA r .  The coupling terms of the modal 

evolution equation were also plotted and showed that they always act to increase 

coupling strength with increasing frequency.  The reason not all modes increase in 

coupling strength with frequency was explained by the complex nature of the excitation 

energy term in Equation (37).  This term can either magnify or diminish the increase in 

coupling strength with frequency, caused by the coupling matrix terms.  The increase in 

structure as a function of range, with increasing frequency, was clearly caused by the 

increase in allowable difference wave numbers mnl  with increasing frequency.  This was 
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governed by the phase term in the modal evolution equation, which is the only one 

dependent on the soliton position. 

It is recommended that future research test higher order theory against simulation 

to determine if the discrepancies observed in the first order theory can be resolved, 

particularly for the low energy modes.  Both the theory and the model need to include 

density and bottom attenuation to represent a more realistic study.  The theory may also 

be modified to include stochastic soliton parameters like amplitude, width and 

wavepacket shape; and to predict other observables like total pressure field scintillation, 

phase variance, or coherence.  Finally, a “real world” study will be required to prove the 

validity of the weak scattering theory in a soliton environment. 

These preliminary results on acoustic field predictability in a simulated single and 

multi-wave soliton environment are very promising.  This research is the first step in 

moving from a state of observing acoustic propagation through solitons, to one of 

predicting it.  It is expected that with further research, soliton models and weak scattering 

theory will ultimately be incorporated into sonar prediction software, thus providing more 

accurate acoustic range predictions in littoral waters. 
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