DATAFLOW INTERCHANGE FORMAT AND A FRAMEWORK FOR
PROCESSING DATAFLOW GRAPHS

by

Fuat Kecdli

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partia fulfillment
of the requirement for the degree of
Master of Science
2004

Advisory Committee:

Dr. Shuvra S. Bhattacharyya, Chair
Dr. Ankur Srivastava
Dr. Gang Qu

DEDICATION

To my mother, father and brother.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2004 2 REPORTTYPE 00-00-2004 to 00-00-2004
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER
Dataflow Interchange Format and a Framework for Processing Dataflow | o o\ nUMBER
Graphs

5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Maryland,Department of Electrical and Computer REPORT NUMBER

Engineering,Institute for Advanced Computer Studies,College
Park,MD,20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 129
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

Title of thesis: DATAFLOW INTERCHANGE FORMAT

AND A FRAMEWORK FOR PROCESSING

DATAFLOW GRAPHS

Fuat Keceli, Master of Science, 2004
Thesis directed by: Dr. Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering

and Institute for Advanced Computer Studies

University of Maryland at College Park

Digital Signal Processing (DSP) applications are often designed with tools based on

dataflow graphs and the increasing number of such tools shows the need for a common
intermediate graph representation for exchanging dataflow information. In this work, we
present the dataflow interchange format (DIF), a platform-independent textual language
that is geared towards capturing the semantics of graphical design tools for DSP system
design. A key objective of DIF is to facilitate technology transfer across dataflow-based
DSP design tools by providing a common, extensible semantics for representing
coarse-grain dataflow graphs, and recognizing useful subclasses of dataflow models. This

thesis also develops the framework for a Java-based software repository that provides

dataflow analysis and optimization algorithms for DIF representations. The featured

framework is accompanied by toolboxes for hierarchical design support and visualization

of graphs.

ACKNOWLEDGEMENTS

| would like to acknowledge the patient help and guidance given to me by my advisor,
Dr. Shuvra S. Bhattacharyya, throughout the course of developing thisthesis. | would also
like to thank Shahrooz Shahparnia, Ming-Y ung Ko and the members of the DSP-CAD
group for their assistance, support and friendship.

This research was sponsored in part by the Defense Advanced Research Projects
Agency (Contract number F30602-01-C-0171, through the University of Southern

California Information Sciences Institute).

TABLE OF CONTENTS

LISt OF FIQUI ...ttt b bbb bbb nne e Vi
(@4 gF=To 1 (= ot S I 014 0o 11 Tox 1 o o USRS 1
1.1 DIF PaCKAOE......cceeiteeiesieeie e see e eee st te et nse e aesneenes 2

1.2. Organization Of TNESIS.......ccciveiieiiecie et 2

IR I (o) = 1o ISR 3

(O{gF=To] (= ZAd = T Tox 1qo | € 011 | o o HEu SRS 4
2.1 GrapNS......ceiiceeeee bbb 4

2.2. DAafloW Graphs........cceeiiiiee e 8

2.3. Defining Formal LangUagEScoeevereenieneenieneene e 9

2.4. The Java Programming LangUAaJEccceverererererieeneeneeseesee e e 13

Chapter 3: Dataflow Interchange Format ... 16
3.1. TRELANQUAGEoveeeeeeieeee ettt 18

3.1.1. Lexical CoNVENLIONScccceveereirieeieniesiee e 18

3.1.2. The Body of a DIF SpeCifiCation...........cccecvevverenenenierienne 19

3.1.3. Defining the Topology of a Graph..........ccccceeeevceeivcceesieenee. 20

3.1.4. Hierarchical Graphs..........cccccvevieiiiivie e 22

3.1.5. User-defined and Built-in Attributesccoccoveeveeieeneenee. 25

3.1.6. PAramELersS........ccooieireeieeiee e 26

3.1.7. The basedon Feature............ccoceeveerenienieie e 27

3.1.8. PreproCessor SUPPOITeecvereereerrineesreere e 28

3.1.9. Scope Of aGraph......ccccceeierieese e 28

3.1.10. Summary of Keywords..........ccceveeveeiiireiieie e 30

3.2. SUpPOrted Graph TYPES ..o 30

3. 2.1 DIF Graphs ...cc.coiiieieieee et 31

3.2.2. CSDF Graphs.......coereiierieriesiesiesie st sie st 31

3.2.3. SDF Graphs.......ccveeeieieieieiesese e 32

3.2.4. Single Rate and HSDF Graphs.........ccccoeevevvvceveeseceesieene, 32

3.3. A Complete DIFGraph Definition Example..........ccccoovevieiieeineinnn, 33

Chapter 4: DIF PaCKAQEccoeieerieeeere ettt st e e 36
4.1. Organization Of ClaSSESccoveerererrienienee e e 37

4.2. GENENIC GIapNS ..ottt 39

4.2.1. Overview of Elementary Classes.........cccccceveevenieesecieesnnenn 40

4.2.2. Cloning and Mirroring Graphscccccveeveninnienenienene 43

4.3. The DIFGraph Class and mapss.dif Package...........cccceverenencrinnnene. 44

Chapter 5:

Chapter 6:

Appendix A:
Appendix B:
Appendix C:

Appendix D:

The Attribute M eChani SIMveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenennenes 44

Parametrization of AttribULeS..........cccovverierieieninece e 45

4.3.1. DIF Language Conversion from DIFGraph Objects........... 46

4.3.2. Dataflow Graph Classes.........ccoovevirenenieeeresese e 47

4.4. The Hierarchy Package.........cccceevvieeriieiese e 49
4.4.1. Overview Of ClaSSESccoooveveriinieie e e 51

4.4.2. Hierarchy Related FUNCLIONSc.ccooeverieeencene s 54

4.4.3. Extending the Hierarchy Classcccccceveeveecesieesecie e, 58

4.4.4. DIF Language Conversion from DIFHierarchy Objects.....58

4.5. The DIF COMPIIENcoiiiieeeeee e 58
4.5.1. SAPIECC ...t 59

DIF Parser Design with SableCCccooveieriiieeniennne 60

The Language Specification File.........c.ccccvvevineiencnene. 60

The COMPILES ...c.oeieeececeee e 64

4.5.2. The Language AnalySiS CIass........cccovveveeneninneenenie s 64

4.5.3. Extending the DIF Language For A New Graph Type........ 65

4.5.4. The Reader Class— The Front-End Compiler 66

A.6. TNE DIF WIILEN ..ottt st 67
4.7. Graph ViSUATIZBLIONcoueeuiiiiieiesiesie e 68
4.8. Summary of DIF APl Packages and Classes.........ccccceveveveeveciesneennn. 69
Application Examplesand Tutorials.........ccocoeverininienenenenesesee 71
5.0, APPIICAIONS ... e 71
5,11 PLOIEMY .o 71

5.1.2. MCCI Autocoding TOOISELccceevereerieiece e 72

5.1.3. Benchmark Generationc.ccooceeveneeneenienieeseesie s 74

oI U 10 = SRS 76
5.2.1. A Tutorial Example for the Visuaization Todl 76

5.2.2. Tutorial Examplesfor the Hierarchy Mechanism................ 79
Hierarchy EXample ... 80

Directed Hierarchy Exampleccccccevvvevveienecce e 87

5.2.3. A Tutorial Example for the DIF Compilerccccuvenennee. 91
CONCIUSION ..ottt s 95
The Complete DIF LanQUAagE.cccooererirereneniesiesiesiesiesiesie e 96
SableCC Language Specification [NPULccccoevereeieniinieneee e 101
Class Designsin the Unified Modeling Language.........c.cccceeveveevenee. 105
DIF Graph and Hierarchy Specification Examples...........ccccocevenene. 111

LIST OF FIGURES

Figure 2-1. Examples of graph tyPeS.coieieeieiieeeesee et 6
Figure 2-2. Illustration of adepth first treewalk.cccocceevveviiieiececeee e, 7
Figure 2-3. A dataflow graph example and firing of adataflow graph.ccccccvvrenene. 8
Figure 2-4. Parse tree and the AST for the String y=2* 3- 546.......cccceeivnienerinneenenne 14
Figure 3-1. A sketch of adataflow graph definition inDIF.cccoovveiiiieiecce e, 17
Figure 3-2. An example of agraph and its topology definition specified in DIF.............. 21
Figure 3-3. Definition of DIF graphs with interfaces and super nodes.cccceeeeveenne 24
Figure 3-4. Definition of ahigh level graph with two subgraphs. ..., 33
Figure 3-5. Definitionsfor Graphs 2, 3 a0 4.......cccooeieiinenene e 34
Figure 4-1. DIF package deSIgN.coviriiiieieniesie ettt 39
Figure 4-2. An example of defining abasic graph.cccocoeiveieicececceccceee e, 42
Figure 4-3. Source DIF specification used in FIgUred-4.cccveviieeieieneneneseseenes 47
Figure 4-4. A conversion from a DIF specification to Java code with the DIF package API.
48
Figure 4-5. A summary of connection schemesfor aport.........ccccvceeverienienenin e 50
Figure 4-6. The Java code that defines and flattens the nested hierarchy 2. 53
Figure 4-7. DIF parser design fIOW.coiiiiiiiiieeeeee e 61
Figure 4-8. A simple SableCC generated compiler front-end.ccoceeveieiininneenenene 64

vi

Figure 5-1. Ptolemy Il model of a pulse amplitude modulation system that is exported to

I3 ST 71
Figure 5-2. The top-level partitioned application graph of a SAR application and arange

processing graph in the MCCI Autocoding TOOISEL.ccccevvveeivcceiieceee 72
Figure 5-3. Range processing and range processing instantiation in SAR.c.cccceveaee. 73

Figure 5-4. A synthetic DIFGraph generated by the DIF package and dot generator output

FOr the graph. ... 75
Figure 5-5. Undirected and directed layouts of the same graph with false and true options

set in DotGenerator.toFile method. ... 76
Figure 5-6. A customized graph with circular and colored nodes.ccccooeeeeieeniennenne 77
Figure 5-7. A clustered graph eXample...........ccceiieieieeie e 80
Figure 5-8. Dot output for hierarchy O.coceeeieiieieeeee e 81
Figure 5-9. Dot outputs for hierarchy 1 before and after it isflattened.............cccoceevenne 83
Figure 5-10. Dot outputs for hierarchy 2 before and after it isflattened..............cc.c......... 84
Figure 5-11. Dot outputs for hierarchy 3 before and after it isflattened...........ccoceveeenee. 86
Figure 5-12. Dot outputs for hierarchy tree graph.ccocvveierinienee e 87
Figure 5-13. Hierarchy 3 with itsfirst level subgraphs.cccccecevieiieeieiiesecce e 89
Figure 5-14. Hierarchy 3 after the deep-flatten command............ccocevererierieneneneseneene, 90
Figure C-1. UML diagram for the basic classes of mapss.dif..........cccoevvninininnenne 106
Figure C-2. UML diagram for the utility classes of mapss.dif.cccovevveceieccenenne, 107
Figure C-3. UML diagram for the classes of mapss.dif.language.cccccocevveninennene 108

Vii

Figure C-4. UML diagram for the classes of mapss.graph.hierarchy.c.cc.cooe.e. 109
Figure C-5. UML diagram for the classes of mapss.graph.cccccooevriniineninnene 110

Figure D-1. GraphViz outputs for the hierarchies defined in this appendix - all hierarchies
areflattened ONEIEVEL. ..o 117

viii

CHAPTER 1

I ntroduction

Modeling of DSP applications based on coarse-grain dataflow graphsiswidespread in
the DSP design community, and alarge and growing set of DSP design tools support such
dataflow semantics [3]. Since avariety of dataflow modeling styles and accompanying
semantic constructs have been developed for DSP design tools (e.g., see[2,5,6,8,12,13]), a
critical problem in the process of technology transfer to, from, and across such toolsisa
common, vendor-independent language and associated suite of intermediate
representations and algorithms for DSP-oriented dataflow modeling.

As motivated above, DIF is not centered around any particular form of dataflow, and
isdesigned instead to express different kinds of dataflow semantics. The present version of
DIF includes built-in support for synchronous dataflow (SDF) semantics[12], which have
emerged as an important common denominator across many DSP design tools and support
powerful algorithms for analysis and software synthesis [4]. DIF also includes support for
the closely related cyclo-static dataflow (CSDF) model [5], and has specialized support for
various restricted versions of SDF, in particular, homogeneous and single-rate dataflow,
which are often used in multiprocessor scheduling and hardware synthesis. Additionally,
support for dynamic, variable-parameter dataflow quantities (production rates,
consumption rates, and delays) is provided in DIF. DIF also captures hierarchy, and
arbitrary non-dataflow attributes that can be associated with dataflow graph nodes (also

caled actors), edges, and graphs.

1.1 DIF Package

The DIF package is a Java-based software package for DIF that is being developed
along with the DIF language. Associated with each of the supported dataflow graph types
is an intermediate representation within the DIF package that provides an extensible set of
data structures and algorithms for analyzing, manipulating, and optimizing DIF
representations. In addition, conversion algorithms between compatible graph types (such
as CSDF to SDF or SDF to single-rate conversion) are provided. Presently, the collection
of dataflow graph algorithmsis based primarily on well-known algorithms (e.g., algorithms
for iteration period computation [9], consistency validation [12], and loop scheduling [4]),
and the contribution of DIF in thisregard is to provide a common repository and front-end
through which different DSP tools can have efficient access to these algorithms. This
repository is being actively extended with additional dataflow modeling features and
additional algorithms, including, for example, more experimental algorithms for data
partitioning and hardware synthesis.

1.2 Organization of Thesis

Thisthesisisorganized in six chapters. Chapter2 provides the background on graphs,
formal language definitions and the Java programming language. In Chapter3, the formal
language definition of DIF is established and alist of supported dataflow graph modelsis
introduced. Chapter 4 describes the DIF software package with code examples. Chapter5
presents a set of applications and examples for DIF and the DIF package. This thesis ends

in Chapter 6, with conclusions and recent work.

1.3 Notation

In the notation used in through thisthesis, code examples and DIF language keywords
areindicated by Arial font. Italic Arial font is used for replaceable parts of code examples
or in-code comments and Italic Times New Roman font is used for examples, definitions,
emphasis or terms used for the first time. The specia syntax notation of formal language

definitionsis explained in Section2.3.

CHAPTER 2
Background

2.1 Graphs

Mathematical graphs have been studied for yearsin many fields of science including
computer science. Computer scientists have formulated numerous interesting problemsin
terms of graphs, including dataflow programming modelswhich are formulated in terms of
aspecia case of graphs called directed graphs. This section reviews types of graphs that
will be used throughout this thesis and graph representations in computers.

Definition 2-1 A simple graph G consists of a finite set V(G) of objects called vertices
together with a set E(G) of unordered pairs of vertices; the elements of E(G) are called
edges. In an edge definition e=(v; ,v;), v and v; are called the endpoints. Two vertices
connected with an edge are called adjacent vertices.

Graphs are usually represented by diagrams, in which avertex is drawn as a small
circleand an edge e= (v ,v;) isshown asalinefrom vertex v, tov,. Verticesare also referred
as nodes.

Definition 2-2 A directed simple graph G consists of a finite set V(G) of vertices and a set
E(G) of ordered pairs of vertices. In an edge definition e=(v; .v;), v; and v; are called the
source and the sink respectively.

Multigraphs are defined in the same way as ssimple graphs except there may be more
than one edge corresponding to the same pair of vertices. Pseudo graph definition adds
self-loop edgesto this definition. A self-loop edge is an edge of the form (v,v), where both

nodes of the pair are the same.

Definition 2-3 Two graphs G and H are said to be isomorphic if there exists a one-to-one
map fromV(G) to V(H) with the property that a and b are adjacent verticesin G if and only
if maps of a and b are adjacent in H.

For directed multigraphs, this definition should be extended to include matching edge
directions and equal number of edges between mapping nodes. Pseudographs should have
the same number of self-loop edges on mapping nodes as well.

Definition 2-4 A graph H is called a subgraph of agraph G, if and only if V(H) I V(G)
and E(H) I E(G).

The term subgraph is also used in hierarchical designsfor indicating amodule that is
logically associated with a node. This usage is different than the above definition.
Definition 2-5 Let G be a directed or undirected graph with a vertex set {1, 2, ..., v} and
anedge set {(1, 2), (2, 3), ..., (v-1, V), (v, D)} where v3 1. Any graph that has an
isomorphism of G as a subgraph is called a cyclic graph. Any graph that is not cyclicis
called acyclic.

Note that this definition states that pseudographs are always cyclic.

Directed acyclic graphs (DAG) are especially important in picturing hierarchical

relations.
Definition 2-6 Awalk in a graph is a finite sequence of vertices vy, v4,...,\ and edges
e, e,,...,6 of theformvg, e, vy, &,...,8, v, Where the endpoints of each g arev;_; and
Vi.

A walk does not consider the edge directionseven in adirected graph. Thetype of walk

that considersthe edge directionsis called apath fromy, to v,,. Given the definition of path,

O 0 b

a (b) (©

g}@@' :

Figure 2-1. Examples of graph types.

acyclic directed graph can also be defined as a graph with a path that starts and ends at the
same node.
Definition 2-7 If athereexistsawalk for graph G that coversall verticesin V(G), Gissaid
to be a connected graph.
Definition 2-8 A treeis a connected DAG in which all nodes except one are connected to
only oneincoming edge. The one node with no incoming edge is called theroot of thetree.
In atree, the sink of an edge is called the child of the source. Verticeswith no children are
called leaves of the tree.

Figure2-1 demonstrates examples graph types that are commonly mentioned in this
thesis: (a) A DAG (b) A directed cyclic graph (c) A tree.

There exist variouswaysto represent agraph in terms of aprogramming datastructure.
The chosen structure often effects the efficiency of algorithms. Two commonly used data
structuresfor this purpose are adjacency lists and adjacency matrices. Both representations
only maintain references that contain the adjacency information of nodes. Whilethisisa

very efficient method for basic graph agorithms, no compact data structureis provided for

Figure 2-2. Illustration of a depth first tree walk.

additional information that might be associated with nodes or edges. An aternative graph
representation in object-oriented languages isto assign an object to each node and edge, by
which all node and edge information can be stored in the hierarchy of objects.

Depth First Tree Walk — Many applications, such as compilers, create atree
representation of the input data and then process the nodesin the tree. The order of visiting
the nodes of atree during the processis called atree walk or atree traversal. One of the
common tree traversals is the depth-first walk. In a depth-first walk, nodes are visited
following the edges. Starting from the root, the walk starts by going down to one of the
children and recursively continues, until aleaf isreached. After aleaf isreached the
algorithm walks back one step and checksiif there are any unvisited nodes. If there are, the
walk continues down the unvisited new path, otherwise algorithm walks back until a node
with an unvisited child isfound. Thewalk ends at the tree root when all the children of the
root arevisited. Every nodeisvisited twice during adepth-first walk: first during the down-

walk and second on the walk back. The tree-walks we will consider in this thesis will

assumethat alwaystheleftmost unvisited child is sel ected asthe next path to continue from.

Figure 2-2 illustrates a such tree-walk.

2.2 Dataflow Graphs

In dataflow programming model, a program is represented as a set of tasks with data
precedences. A dataflow graph consists of actors as nodes and unidirectional FIFO
channels as edges. In the semantics of dataflow graphs, actors consume, process (fire) and
produce data (tokens). Thefiring of actorsiscontrolled by the actor firing rules. Theserules
determine when enough data tokens are available to enable the actor. When firing rules are
satisfied, the actor fires, consumes a finite number of tokens and produces a finite number
of output tokens. Figure2-3 shows a dataflow graph in (a) and afiring example on (b).

Differences between dataflow graph types often involve production and consumption
rates. In the cyclo-static dataflow model [5], the numbers of tokens produced and consumed

by an actor can vary from one firing to the next in a cyclic pattern. In the synchronous

O

(D)—
(@) @

® O
@+€<@ N ®€i:@

Figure 2-3. A dataflow graph example and firing of a dataflow graph.

dataflow model [12] the rates stay constant. Even more constrained cases are single rate
graphs [4] and homogeneous synchronous dataflow graphs (HSDF). Single rate graph
actorsfire at the same averagerate: production and consumption rates on an edge are equal .

In HSDF, thisrate is set to unity.

2.3 Defining Formal Languages

A formal language is a set of finite length “strings’, over some finite alphabet. The
grammar of aformal language isaquadruple (N, T,R,S), where N is afinite set of
non-terminals, T isafinite set of terminal symbols, R isafinite set of productions, and
ST N isthestart symbol.

Theset T of terminal symbolsis also called the language al phabet. These symbols
both include the language keywords (see Section3.1.10 for a summary of DIF keywords),
operators and other separators. Non-terminals are symbol s representing language
constructs. The set N should be disoint from set T.

For context-free grammars, which DIF is a part of, productions are rules of the form
a ® b, wherea isanon-termina symbol and b isastring consisting of terminals or
non-terminals. The term context-free comes from the feature that a can aways be replaced
by b, in no matter what context it occurs. The same a might appear at the left-hand side of
more than one production. The notational shortcut for this caseis to use the | (pipe)

character to combine all such productions.

Example 2-1 Following is a context-free grammar that can be used to generate simple
mathematical expressions that only consist of four basic operations on digits — addition,
subtraction, multiplication and division:

N={S,O,A,B,C}T={a, b,...,2,0,1,2,...,9 ,+,-,*,/, =}
S® O=B

O® alb|c|¥% |z
A ® 0]1]2|3|%|9
B® BCA

B® A

C® +|-|*|/

Theexpressiony = 2* 3-5+ 6isoneof thevaluesthat Scan take, in other wordsthe given
grammar can generatethestringy=2* 3-5+ 6.

Regular Expressions— A regular expression is a string that describes a whole set of
strings, or a“language”, according to certain syntax rules. Regular expressions can be used
to express a language over an alphabet S as follows:

* eisaregular expression that denotes the empty language L()={}.
« If cT S thenregular expression (c) denotes the language L (c)={c}, which has
only one element of length one.

Let r and s be two regular expressions denoting the languages L(r) and L(S).

» (r)(s) isaregular expression that denotes L (r)L(s), concatenation of one element
from each language.

« (N|(s) isaregular expression that denotes L(r) E L(s).

o (r)* isaregular expression that denotes (L(r))*, where ‘*’ isthe Kleene closure

operation:

nE1/

oL‘,whereLi = LLLY

—— A S (i

i times

10

Frequently, regular expressions are extended with the following two operators.

(nN+ isaregular expression that denotes L (r)L(r)*.

(r)?isaregular expression that denotes L(r) E L(e).

Some additional rulesare used in thisthesisfor conveniently expressing sets of ASCI|

characters. Let x and y be two integers and a and b be two ASCII characters.

R = ximpliesthat R isthe character with the ASCII code ‘X’

R =[x .. y] impliesthat R isthelist of all characters with ASCII values starting
from x, up to and including y.

R =[a .. ‘b’] (with single quotes around a and b) impliesthat R isthe list of
ASCII characters starting from a, up to and including b, assuming that characters
are ordered according to their ASCII values.

+ and - characters, with no single quotes around, are used as the union and

exclusion operators on sets.

Subsets of terminal strings defined through regular expressions are called tokens. The

DIF specification utilizes the following set of tokensin conjunction with the Backus-Naur

form, which is explained next in this section. Note that eof, If and cr are abbreviations for

end-of-line, line feed and carriage return consecutively.

all=[0..127]

digit=['0".. ‘9]

octal_digit=['0".. ‘7]

hex_digit = digit + ['a’ .. 'f] + ['A" .. 'F]

non_digit=[A"..'ZT+[a ..'2]+[]

escape_sequence = simple_escape | hexadecimal_escape |octal_escape
simple_escape ="\""" ["\" | "\V' |[\b" | \f' | \n" | '\ |\

hex_escape = "\x' hex_digit+

octal_escape ="'\' octal_digit octal_digit? octal_digit?

tab=9
cr=13
If =10

eol=tab|cr|If

11

string = " ([all - [" + V' + ‘cr’ + ‘I’]] | escape_sequence)*
string_tail = '+ (' ' | eol | tab)* string

Backus-Naur Form (BNF) — BNF isawidely used syntax for defining languages with

context-free grammars. It wasintroduced by John Backus and wasfirst used to describe the

syntax of the ALGOL 60 programming language [1]. BNF syntax is very similar to the

notation used in the formal languages part of this section. There are many variants and

extensions of BNF, one of which isthe Extended BNF (EBNF). EBNF is enhanced with

regular expressions. In the DIF specification, regular expressions are integrated in EBNF

through tokens.

The following EBNF notation will be used for the formal definition of DIF:

Language specific terminals, that are language keywords, operators and other
separators, will be printed in boldface. If the terminal is a single character, it will
appear between double quotes.

Tokens, including strings, identifiersor numbers — see Section3.1.1 — are printed
as lightface plain text labels.

Non-terminals will be expressed with alabel enclosed between ‘ <’and ‘>’
characters.

The = character will be used to express a production.

The | character will be used to combine alternative productions with the same | eft
hand side.

The‘+’,“*’" and *? operators of regular expressions can also be used with
non-terminals.

The ‘[label]:" notation may be used before terminals for descriptive purposes.

The ‘{label}’ notation may be used before non-terminals for descriptive purposes.

The last two rules are not standard in BNF and they do not contribute to the language

definition. They are mainly defined for the reader’ s convenience and compiler

compatibility, which will be described in Chapter4).

12

Syntax Trees— A parsetreepictorially showshow the start symbol of agrammar derives
aparticular string in the language. Given a context-free grammar, a parse tree has the
following properties:

» Theroot isthe start symbol.

» Each leaf islabeled by atoken or by the empty string symbol e.

» Each interior node islabeled by a non-terminal.

« If Aisanon-terminal and X;, X5, ..., X,, are the children of node A (terminal or

non-terminal) ordered from left to right, thisimplies the production:

A® X X, VaX,

A dlightly different version of parsetreesisthe Abstract Syntax Tree (AST), which
eliminates the non-terminals from the tree by replacing them with operators.

Example2-4 shows the (a) parse tree and the (b) AST for the string y=2* 3-5+6
generated by the language in Example2-1.

Parse trees are often generated by the parser stage of compilers for processing the
tokens passed from lexer stage. The parse tree can be traversed in various ways depending
on the implementation and the desired transformation. The most common tree traversal is
the depth-first walk.

2.4 The Java Programming L anguage

Java[17] is aplatform-independent, object-oriented programming language. The DIF
package is developed with Java. The following isalist of Javaterminology that isusedin
the subsequent chapters:

* In Java, object types are also named as classes. Functions are called methods and
variables are sometimesreferred to asfields. Member methods and fields belong to

the instance of aclass (or object) and they produce object specific results. Static

13

S =

N /\
LN /\
INCL /N

N /N
|

A 2 3
531

N— O —— @

(@) (b)

Figure 2-4. Parse tree and the AST for the string y=2* 3- 5+6.

methods are different: rather than belonging to an object, they are accessed from
the class name. Their results don’t change dynamically depending on the state of
an object.

* Anobject isan instance of its class and its super-classes. A special method named
the constructor is called during instantiation of an object that defines the basic
properties of the object.

» The phrase“ extending a class’ isused for creating a new class modeled on the
original class, overriding some of the methods and fields and possibly imposing
more constraints. Thesuper andsub prefixes denote such hierarchical relationships
between classes. Except for the non-default constructors and overridden methods
and fields, agraph inheritsal the propertiesfrom its superclass. Javadoesn’t allow
multiple parents as in C++. All objects have Java Object class as the common

ancestor.

14

* A public method or amember can be accessed anywhere unlike protected methods
and members, which can only be accessed by package classes and subclasses. The
software convention used in thisthesis enforces prefixing underscore“_” character
to protected method and member names.

» Errorsarereported through classes called an exceptions. Usually, different kinds of
exceptions are thrown for different kinds of errors.

» Logically related classes can be collected in asingle directory which iscalled a
Java package. The sub-packages of a Java package are physically stored in
sub-directories of the parent package. A full class name is represented in

package.sub-package.sub-sub-package...Class_Name
format. Packages do not impose any constraints other than alogical relationship
between classes, for example, classes of a sub-package do not necessarily extend
the classes of its super package.

e Theperiod“.” operator in Javais used for accessing member fields and methods of
an object or static methods of aclass. It isalso used as the separator character in

full class names.

15

CHAPTER 3

Dataflow I nterchange For mat

DIF captures essential modeling information that is required in dataflow-based
analysis and optimization techniques, such as algorithms for consistency analysis,
scheduling, memory management, and block processing, while optionally hiding
proprietary details such as the actual code that implements the dataflow blocks.

DIF is designed to be exported and imported automatically by tools. However, unlike
other interchange formats, DIF is also designed to be read and written by designers who
wish to understand the dataflow structure of applications or the dataflow semantics of a
particular design tool, or who wish to specify an application model for one or more design
tools using the features of DIF. Indeed, DIF provides the programmer aunique, integrated
set of semantic featuresthat are relevant to dataflow modeling. Asaresult, DIF isnot based
on XML, which is more for pure data exchange applications, and is not well-suited for
being read or written by humans. Due to the emphasis on readability, DIF supports C and
Java-style comments, allows specifications to be modularized across multiple files
(through integration with the standard C preprocessor), and is based on a block-structured
syntax.

A dataflow graph definition in DIF consistsin general of six blocks of code: topology,
interface, refinement, user-defined and built-in attributes, and parameters. These code
blocks are contained in amain block defining the dataflow graph. Using the basedon

keyword, agraph can inherit the same topol ogy as another graph while overriding arbitrary

16

attributes and parameters. Figure 3-1 illustrates the general form of a graph definition
block. Itemsin boldface in this figure are DIF keywords, operators and other separators.
Italicized words areto be defined by the user. Partsin lightface square brackets are optional .
The order of the blocks should not be changed and a block can be excluded if it does not

contain any information. The optional keyword on the first line denotes the type (form of

[keyword] graph graphID [basedon graphliD] {
params {
prml:{-1,1,2.2,...};
prm2: [1, 5] + {8, 9, 10} + [20, 25);
prm3;

interface {
input portID portID ...;
output portlD portID ... ;

topology {
nodes { nodelD[:portID] nodelD[:portID] ...}

edges {
edgelD sourcelNodelD sinkNodelD;
edgelD sourcelNodelD sinkNodelD;

}

refinement {
subGraphlD nodelD
subPortlD:edgelD, subPortID:portlD, ... ;
subGraphID nodelD
subPortID:portID, subPortID:edgelD, ... ;

attribute attributeName {
edgelD value;
nodelD value;
nodelD;

}
builtinAttributeName {..}

Figure 3-1. A sketch of adataflow graph definition in DIF.

17

dataflow). Further details on the different graph types available are described in

Section3.2.

3.1 TheLanguage

This section focuses on formally defining DIF in the context of programming
languages, providing detailed information on the syntax of the language. It also intendsto
determine specifications of the required parsing functionality. An implementation of such
aparser isexplained in Chapter 4.

3.1.1 Lexical Conventions

Syntactical basics of DIF are kept consistent with the syntax of popular programming
languages such as C and Java. |dentifiers and numbers are defined in the same way as C.
Both block comments and line comments are supported.

DIF is acase sensitive language. Not using the correct type case for alanguage
keyword is asyntactical error. Literals with the same spelling but different type cases are
considered to represent different entities. White space characters, which aretabs, new lines
and form feeds, are ignored except when they separate identifiers, keywords and constants.

Thetokens defined in this section are added to the tokens that were previously defined
for EBNF.

Numbers— Two types of numbers are used in DIF, signed integers or signed numbers
with decimal point (double). 1, 1. 0, +0. 7, - . 9 are the examples of valid values.
double = (‘+' | *-")? (digit*) ‘.’ (digit+)

integer = (‘+' | *-")? (digit*)
number = double | integer

I dentifiers— Anidentifier isasequence of lettersand digits. Thefirst character must be a

letter or underscore. The maximum length of identifiersis not defined and usually bound

18

by the compiler implementation. Edge, node and attribute names in DIF are defined as
identifiers.

identifier = non_digit (digit | non_digit)*
Comments — The characters/ * introduce a block (long) comment, which terminates
with the characters*/ . The characters / / introduce aline (short) comment, which
terminates with an end-of-line or end-of-file, whichever comesfirst. Commentsdo not nest,
and they do not occur within string or character literals.

not_cr_If=all-[cr+If]

not_star = all - ™

not_star_slash = not_star -'/'

short_comment ="//' not_cr_If* eol

long_comment = '/*' not_star* *'+ (not_star_slash not_star* *'+)* /'
comment = long_comment | short_comment

3.1.2 The Body of a DIF Specification

A DIF specification begins with an optional type keyword. Presently, the type
keywords include dif, sdf, csdf, singleRate and hsdf. Thislist is tentative and will be
updated with more keywords as the development on DIF advances.

A graph defaults to type dif if the type keyword is not specified. As atype, thedif
keyword implies the most generic type of dataflow graph supported by DIF. Using a
different type keyword usually requires supplying additional information via built-in
attributes or accepting the default values for those attributes.

Following the graph type and the graph keyword comes an optional basedon
statement. A basedon statement isused for inheriting base features from another graph and
in some ways it is analogous to the inheritance operator “:” in C++ or “extends’ keyword

in Java.

19

A graph specification can have six types of blocks: parameter definitions, interface
declaration, topology definition, refinements and attribute definitions. Blocks should have
thesameorder asinthislist. If ablock doesnot contain any information, it can be excluded.
Two types of attribute definitions exist: built-inand user-defined. Multiple built-in and
user-defined attribute blocks in a graph are alowed.

Edge, node and port identifiers should be unique, for exampleit is erroneous to define
anode label that is already defined as an edge, node or port label. Likewise, an attribute
identifier should not be duplicated for using with another attribute.

Following isthe EBNF for the highest level definition for a DIF object. The
non-terminals at the right hand side of block production will be defined in the subsequent
sections.

<graph_list> = <graph_block>*

<graph_block> =
[type]:identifier? graph [name]:identifier <basedon>? “{" <block>* “}”

<basedon> = basedon identifier

<block> =
{params} params <params_body> |
{interface} interface <interface_body> |
{topology} topology <topology body> |
{refinement} refinement <refinement_body> |
{fixed_attribute} identifier <attribute_body> |
{attribute} attribute identifier <attribute_body>

3.1.3 Defining the Topology of a Graph

Thetopology definition of agraph consists of node and edge definition blocks, marked

by nodes and edges keywords. These define the sets of nodes and edges, and associate a

20

unique identifier with each node and each edge. Since dataflow graphs are directed graphs,
edges are specified by their source and sink node identifiers. A node definition may also
include a port association (described further in Section3.1.4) for interfacing to other
graphs. Figure3-2 shows an example of atopology definition block.
The EBNF for atopology definition block is as follows:
<topology body> = “{” <topology list>* “}”

<topology list> = nodes “{” <node definition block>? “}" |
edges “{” <edge definition>*“}"

<node definition block> = <node definition> <node definition tail>*
<node definition> = identifier | [node:] identifier “:” [port:] identifier
<node definition taib> = “,” <node definition>

<edge definition> = [edge:] identifier [source:] identifier [sink:] identifier *;”

graph Graphl {
topology {
e nodes {nl1 n2 n3 n4}
edges {

el nl n2;
€3 e2n2nl,;
e3 nl n3;
e4 n3 n4,

e4
e5n3 n4;
&5 e6 nl nl;
}

Figure 3-2. An example of a graph and its topology definition specified in DIF.

21

3.1.4 Hierarchical Graphs

Given the importance of hierarchical design in graphical design tools, a necessary
feature of the DIF language is the general ability to assign anode of a graph to a“ nested”
subgraph. Such hierarchical nodes are called supernodes in DIF terminology. In addition
to providing for hierarchy, the supernode feature allows for reuse of graph specifications:
atopological pattern that appears multiple timesin a graph can be defined as a separate
module and every occurrence in the original graph (parent graph) or in multiple graphs can
be replaced with a single node.

All graph modules, in other words subgraphs, should have an interface block, which
containsalist of ports. A listed port will then be associated either with anodein the graph
(in the topology/nodes block) or with a port of a subgraph (in the refinement block).
Internal association of a port with anode or another port is called an association.

Subgraph declarations appear in the refinement block of the parent graph. Every
subgraph is assigned to a node, which is called a supernode. A subgraph port can be
connected to an edge incident to the supernode or it can be connected to aport of the parent
graph. External association of a port with an edge or another port is called a connection.
Connecting and associating two ports are identical operations.

Ports can be directed (input or output) or bidirectional (inout). Port directions should
be consistent with edge directions. An incoming edge can be connected to port typesinput
and inout; an outgoing edge can be connected to port types output and inout. Port relations
can only take place between ports of the same type. Undirected hierarchies are created

using type inout ports.

22

Sets of supernodes and port nodes should be digjoint, anode cannot bein both setsin
asingle graph. Moreover, a supernode can only be assigned to a single subgraph.

Figure3-3 is a detailed example of the hierarchy mechanism in DIF. A dashed linein
the figure denotes a port association. The refinement expression in Graph 2 suggests that
n4 will be asupernode for Graph 1, for which the connections are defined ase3 toP1 and
P3 toP2. Figure3-3(c) illustrates Graph 2 after merging thelevels of the hierarchy, which
is also referred to asflattening. It is not defined how to label the nodes and edges of the
subgraph after they are moved into the parent graph. Thisisleft to the particular
implementation and applications.

A subgraph should be in the scope of its parent graph during compilation. Graph
scopes are explained exclusively in Section3.1.9. Cyclic hierarchy relations are not
permitted.

Below isthe EBNF for the interface block definition of a graph followed by the
refinement block definition:

<interface_body> = “{” <interface_expression>* “}"

<interface_expression> =

{input} input identifier <interface_identifier_tail>**;" |

{output} output identifier <interface_identifier_tail>* “;” |

{inout} inout identifier <interface_identifier_tail>**;”
<interface_identifier_tail>=",” identifier

<refinement_body> = “{” <refinement_expression>* “}”

<refinement_expression> =
[graph]:identifier [node]:identifier <refinement_definitions>? “;”

23

<refinement_definitions> =
<refinement_connection> <refinement_connection_tail>*

<refinement_connection> = [port]:identifier “:” [element]:identifier

<refinement_connection_tail> = “,” [port]:identifier “:” [element]:identifier

graph Graph1l {

interface {

input P1, P2;
} (@
topology {
nodes {n1:P1 n2:P2}

graph Graph2 {

féfinement{
Graphl n4 P1:e2 P2:P3;
(b)

Graph 2 after flattening

Figure 3-3. Definition of DIF graphs with interfaces and super nodes.

24

3.1.5 User-defined and Built-in Attributes

DIF supports assigning attributes to nodes, edges, and graphs. There are two types of
attributes: user-defined and built-in. User-defined attributes bear arbitrary names and can
take on any value assigned by the user. Built-in attributes are pre-defined with associated
keywordsin the DIF language. They are usually handled in a special way by the compiler
and have default values even if they are not defined in the graph specification. Depending
on the particular semantics of adesign tool and the type of the graph, acompiler might read
built-in attribute values into special fields of the edge-related data structures and it may
perform checks on the value to seeif it is acceptable (e.g. positive-valued). An exampl e of
abuilt-in attribute is the delay attribute of graph edges.

DIF supportsfour basic types of attribute values. Attribute types are not required to be
consistent within a single attribute block.

 Number An attribute value can be asigned integer or asigned double.

o 2-D Number Array Thistypeisintended for defining matrices. However,
comparing rows for matching lengths is not a context-free language operation,
therefore the matrix property is not enforced in the formal language definition.
Instead, it ishandled by the semantics analysis part following the parser. The syntax
of 2-D number array is rows of numbers separated by commas. An exampleis
(123,456).

o List Listisavery flexibletype. Elementsof alist can be of any type and typesare
not required to match among elements. Even though the list type is defined to be
one dimensional, its elements can be other lists, which in effect enables lists of any
dimension. A list exampleis|[[1, 2], [3, (4 5 6)], 7, 8].

« String C-language style strings are allowed in attributes. The concatenation

operator + can be used to collect multiple linesin asingle string.

25

An attribute can also be parametrized, refer to Section3.1.6 for parametrization. The
EBNF for the attribute block definition is as follows:

<attribute_body> = “{” <attribute_expression>* “}”

<attribute_expression> =
{element} identifier <value>? “;”

{graph} this <value>? “;”
<value> =
{number} number |
{param} identifier |
{concat_string} string string_tail* |
{array} “(" number* <array_row>* “)” |
{list} “I” value+ “]”
<array_row> = “,” number*

If avalueisnot defined in an attribute expression, the particular attribute is undefined
for that element or graph. Thisis afeature that applies to graphs that are based on other
graphs. If the graph definition does not have abasedon statement, a empty-valued
attribute expression has no effect.

3.1.6 Parameters

Parameterization of attribute valuesis possible in DIF with the params block. The
capability of defining a possible set of values (domain) for an attribute instead of a specific
value provides useful support for analyzing dynamic and reconfigurable dataflow graphs.
Thedomain of aparameter can be an enumerated set of values, aninterval, or acomposition
of both forms. A parameter can be defined only once and the + character should be used for

combining different intervals. An exampleisprml: {1, 2, 3.5} + [4, 5).

26

Parameters are defined in EBNF as follows;

<params_body> = “{" <params_expression>* “}"
<params_expression> =
{normal} identifier “:” <range_block> *“;" |
{blank} identifier “;”

<range_block> = <range> <range_tail>*

<range> =
{closed_closed} “I” [leftl:number “,” [right]:number “]" |
{open_closed} “(" [leftl:number “,” [right]:number “]” |
{closed_open} “I” [leftl:number “,” [right]:number “)” |
{open_open} “)” [leftl:number “,” [right]:number “)” |
{discrete} “}’ number <discrete_range_number _tail>*“}”
<discrete_range_number_tail> = “,” number

<range_tail> = “+” <range>
3.1.7 The basedon Feature

DIF supports extending a graph definition to create a new graph object that inheritsits
basic structure from the original model graph. Thisisagenera property of object-oriented
languagesand it isalso suitableto DIF, which essentially defines objects, graphs, nodesand
edges, and defines their properties, attributes and parameters. The extended graph inherits
itsfinal topology, interface, refinements and type from the model graph. It also inherits all
the parameters and attributes, however, overriding and extending these blocks with new
values and types are permitted.

Attributes can be undefined by leaving the value blank in a definition, which has no
effect if the attribute is not defined or the graph does not have a basedon statement. For

example, assume that Graph2 is based-on Graphl and the user-defined size attribute is

27

assigned to nodel in Graphl. The following code will result in erasing the user-defined
size attribute from nodel of Graph2.

attribute size {
nodel;

}

A basedon graph should haveitsmodel graphinits scope. Section3.1.9 explainsgraph
scopes in detail. Cyclic basedon relations between graphs are not permitted.

3.1.8 Preprocessor Support

The DIF preprocessor is defined to be the same as the ANSI-C preprocessor as
specified in [16]. The include command of the preprocessor is particularly useful in
conjunction with the hierarchy and basedon mechanisms since it can be used to
conveniently add graphs to the scope of the current graph.

3.1.9 Scope of a Graph

Two casesin DIF require agraph to be present in the scope of another graph. Thefirst
case occurs when a graph is basedon a model graph definition, requiring the model graph
to be in the scope of the extended graph . The second case is caused by the refinement
block. A subgraph should be in the scope of its parent.

There are two methods for including graph H in the scope of a graph G:

» Define H in the same text file following G,

» Usethe include statement of the preprocessor.

28

Example 3-1 Following is a demonstration of both methods on two text files containing a

total of three graphs:

o filel.dif:
#include “file2.dif”

dif graph Graphl {

refinement {
Graphl nodel portl:edgel;
Graph4 node2 port2:edge2;

}
dif graph Graph2 basedon Graph3{ ...}

o file2.dif:
#include “file3.dif”

dif graph Graph3 {

refinement {
Graph4 node3 port3:edge3;

}
}

o file3.dif:
dif graph Graph4{ ...}

Infilel.dif, Graph2, Graph3 and Graph4 are in the scope of Graph1: thefirst oneis
included by being in the samefile, Graph3 isimported by the preprocessor statement and
Graph4 isincluded indirectly through file2.dif. Note that if Graph4 wasdirectly included
from filel1.dif, the preprocessor would return an error for importing Graph4 twice,

therefore it is advisable to use include statements wrapped with ifndef statements. The

29

scope of Graph3 only includes Graph4, simply because graphs 1 and 2 are not referred to
from inside file2.dif, Graph4 does not have any graphsin its scope.

What paths to search and the order to search them for include statements are | eft to be
specified by the particular compiler implementation.

3.1.10 Summary of Keywords

Following isalist of keywords that are used in DIF grouped according to the places
they are used. The DIF language is case sensitive, therefore, specia attention should be
paid to using the keywords with correct case.

» Top leve definition: graph, dif, sdf, csdf, singleRate, hsdf.
» Topology definition: topology, nodes, edges.
» Interfacedeclaration: interface, input, output, inout.
» Subgraph declarations. refinement.
» Parameter definitions. params.
« Attributedefinitions: this
* User-defined: attribute

e Built-in: production, consumption, delay, transfer.

3.2 Supported Graph Types

The DIF language evolvesin parallel with an accompanying the software package, the
DIF package, that is developed in University of Maryland. Even though this chapter deals
with language constructs that are implementation independent, many of the language rules
are shaped according to needs that arise during the development of the DIF package.
Especially, the supported graph types are open to such development, therefore this section
is dedicated to graph types with associated keywords and built-in attributes and

compatibility issues of graphswith other graphsfor refinement definitions. All graph types

30

are assumed to be compatible with itself, meaning a graph can be a subgraph of another if
thelr types are the same.

3.2.1 DIF Graphs

DIF graphsare the default and most general class of dataflow graphs supported by
DIF. DIF graphs can be specified explicitly using thedif keyword. In DIF graphs, no
restriction is made on the rate at which datais produced and consumed on dataflow edges,
and other types of specialized assumptions, such as statically-known delay attributes, are
avoided as well. Hence an arbitrary attribute type can be attached to each node/edge
incidenceto represent the associated dataflow properties. In theinheritance hierarchy of the
DIF intermediate representations, DIF graphs are the base class of al other forms of
dataflow. In this sense, all dataflow graphs modeled in DIF are instances of DIF graph.
Furthermore, if atool cannot export to any of the more specialized versions of dataflow
supported by DIF, it should export to DIF graph. Naturally, a DIF graph can have all kinds
of graphs as subgraphs in its refinement definition.

3.2.2 CSDF Graphs

In restricted versions of the DIF graph model that are recognized in DIF, the numbers
of datavalues (tokens) produced and consumed by each node may be known statically and
edge delays may be fixed integers. For example, CSDF graphs, based on the cyclo-static
dataflow model [5], are specified by annotating DIF graph definitions with the csdf
keyword. In CSDF graphs, production and consumption rates can vary between node

executions, aslong asthe variation forms a certain type of periodic pattern. Consequently,

31

values of these rates are integer vectors. These vectors are associated with CSDF graph
edges using the production and consumption keywords. For example, the code fragment
production {el[1124];e2[223];}
associates the periodic production patterns
1,1,2,4,1,1,2,4,...and 2,2,3,2,2,3, ...
with edgesel, and e2. If production, consumption and delay values are not defined for a
CSDF graph, default values are [1], [1], and O respectively. CSDF Graphs are compatible
with SDF, single rate and HSDF graphs in refinement definitions.

3.2.3 SDF Graphs

Similar to CSDF graphs, token production and consumption rates of synchronous
dataflow (SDF) graphs [12] are known at compile time, but they are fixed rather than
periodic integer values. SDF graphs are specified using thesdf keyword, and the arguments
of production and consumption specifiersin SDF graphs arerequired to be integers, asin:

production { el 4;e23;}
consumption {el5;e22;}
delay { el 1; e2 2; }

The last statement, which is permissible in other DIF graph types as well, associates
integer-valued delays to the specified edges. If production, consumption and delay values
are not defined for an SDF graph, default valuesare 1, 1, and O respectively. SDF graphs
can have single rate and HSDF graphs as their subgraphs.

3.2.4 Single Rate and HSDF Graphs

Snglerate graphs are a special case of SDF graphs where the production and
consumption values on each edge areidentical. In single rate graphs, nodes execute (“fire”)

at the same average rate. In the slightly more restricted case of homogeneous SDF (HSDF)

32

graphs, production and consumption values are equal to one for al edges. Instead of
production and consumption attributes, DIF uses the transfer keyword for edgesin
single rate graphs. DIF does not associate an attribute for token transfer volume in HSDF
sinceit isnot variable. The default transfer rate for single rate graphsis 1 and the default
delay for both single rate and HSDF graphsis 0. HSDF graphs can be defined as subgraphs
of single rate graphs.

3.3 A Complete DIFGraph Definition Example

Figures 3-4 and 3-5 demonstrate a complete DIF examplethat is distributed over three

different text files. filel.difin Figure3-4 defines Graph 1, which isthe top of the modular

filel.dif:

#include file2.dif
e6 el #include file3.dif

csdf graph Graphl {
topology {
nodes { n1n2n3n4}
edges {
e3 el nln2; e2n2nl;
e3 nl n3; e4 n3 n4;
e4 e5n3 n4; e6 nl nl;

}
() et
e5 refinement {

Graph2 n2 P1:el P2:e2;
Graph3 n2 P1:e4 P2:e5;

(2)
©

e2

(&)

Graphl

production {
el[121];

attribute description {
this “Top level graph ”
+ “with two subgraphs”;

Figure 3-4. Definition of a high level graph with two subgraphs.

33

Graph2 and Graph3

file2.dif:
#include file3.dif

sdf graph Graph2 {
params {
VAR _DELAY: {0, 1, 2};
VAR_SIZE: [1, 5] + {7};

interface { input P1; inout P2; }
topology {
nodes { n5:P1 n6:P2}
edges { e7 n5 nG; }

refinement {
Graph4 n5 P3:P1 P4:e7,

}
delay {
e7 VAR_DELAY;

attribute size {
n5 VAR_SIZE;
né VAR_SIZE;

attribute description {
this
[[0 “parametrized graph”]
[1“subgraph”]];

}

sdf graph Graph4 {
interface { input P3; output P4; }
topology {
nodes { n7:P3 n8:P4}

file3.dif:

#ifndef file3
#define file3

sdf graph Graph3 basedon Graph2 {
params {
VAR_DELAY: {1, 2};

attribute size {
n57; n6 5;

attribute description {
this
[[0 “parametrized graph”]
[1“subgraph”]
[2 “basedon Graph2”]];

#endif

Figure 3-5. Definitions for Graphs 2, 3 and 4.

hierarchy. Graph 1 requires Graphs 2 and 4 to be in its scope, therefore file2.dif and
file3.dif are imported withinfilel.dif. Graphs 2 and 4 are defined in file2.dif, which
automatically puts Graph 4 in the scope of Graph 2. Finally, Graph 3, which is based-on
Graph 2, isdefined infile3.dif and file2.difisimported to add Graph 2 to its scope. Note
that text in file3.dif is wrapped around by an ifndef preprocessor statement. Without this
statement Graph 4 would be imported twice in file1.dif: first, directly by the include
statement and then indirectly through file2.dif.

All edge production and consumption rates of Graph 1 are set to[1] by default, except
for the production rate of €1, which isset to the array [1 2 1]. A string attribute named
description is also defined for Graph 1. Two parameters are defined and used in Graph?2,

one of which is overridden in Graph3.

35

CHAPTER 4

DIF Package

This chapter introduces the framework in which graph-based algorithms are devel oped
and presents the graph support toolsin this framework. In Sections 4.2 and 4.4, internal
representations of topologies and hierarchies are discussed in detail, including low level
programming considerations. This discussion is followed by the introduction of the DIF
parser and writer in Sections 4.5 and 4.6, afront-end for converting DIF filesto DIF API
objects and awriter for performing the reverse operation. In conclusion, an additional tool
for visualizing DIF graphsis explained and discussion about the content of the DIF package
iscompleted (Sections 4.7 and 4.8).

The software explained in this chapter is a subset of an infrastructure for system
synthesis research that is being developed by the DSP-CAD Research Group in the
University of Maryland at College Park. Generic graph representations used by this
package is maintained as a part of Ptolemy |1, a set of Java packages supporting
heterogeneous, concurrent modeling and design. Ptolemy Il isapart of the Ptolemy project
[11] conducted in University of Californiaat Berkeley. Therest of the representations and
tools reside in the Maryland Package for System Synthesis (MAPSS).

The documentation in this chapter targets two kinds of users. developers and
non-developers. Non-developer userstypically utilize the provided tools on supported
graphs but are not particularly interested in extending the DIF package for any purpose. On
the other hand, devel opers might heed to extend classes for unsupported graph types and

other features.

36

The DIF packageis devel oped using the Java programming language. Extensibility of
classes and interface definitions of Javafit well to the layered software design of the DIF
package. Platform independence and inherent compatibility with graph notation through
object oriented programming are some of the other advantages of Java.

4.1 Organization of Classes

Theinheritance hierarchy of dataflow graph typesin the DIF API mimicsthe dataflow
graph type-hierarchy explained in Chapter 3 (e.g. CSDF graph is a constrained version of
directed graph and SDF graph isderived from CSDF graph with additional constraints, etc).
The careful design of the most generic graph type greatly facilitates the inheritance
hierarchy chain.

An exampleisthe validNodeWeight method in the Graph class, which checksif a
weight object (see nodein Section4.2.1) associated with anode is an acceptable type while
adding the node to a given graph.

public boolean validNodeWeight(Object object) {
return true;

}

Clearly, this method will identify al node weights as valid. However, a graph type
such as DIFGraph that extendsGraph, overridesthevalidNodeWeight method to require
aweight type, DIFNodeWeight, which is specifically defined for DIF graphs.

public boolean validNodeWeight(Object object) {
return object instanceof DIFNodeWeight;

}
Thisis atop-down design methodol ogy equipped by the detailed understanding of
similaritiesand differences of the classtypesthat root from the generic graph. All segments

that might possibly deviate from the base class are model ed as methods that can be

37

overridden. The advantage of a thorough high level definition is the reduction in the
complexity of al extending classes and prevention of code duplication in many cases, for
exampleaddNode methods do not need to be defined repeatedly in all subclasses sincethe
differences are captured in validNodeWeight method.

The convention used in the DIF package enforces a uniform use of protected and
public methods. Public methods are the complete set of functions that are needed by a
non-devel oper user, whereas protected methods are typically used for generic modeling
purposes as described above. Protected methods are occasionally used for communication
between closely coupled classesin the same Java package aswell. Some modeling methods
may be defined as public for general convenience. The validNodeWeight method is one
such example: it is used internally for node verification and it is aso set public so a user
can check and filter a set of node weights before adding them to agraph. The combined set
of public and protected methods form the developer API.

Thelogical structure of the Java packages in the DIF package generally follow the
hierarchy of the dataflow graph types. Different dataflow graph types are packaged
separately and placed into the package hierarchy according to their types. One addition to
the dataflow graph types is the DIFGraph which was explained in Chapter 3. The
DIFGraph classis developed with the purpose of enhancing the representation capabilities
of Graph objectsfor dataflow support, without changing the topological properties of basic
mathematical graphs. It is defined to be the most generic type of dataflow graph in the DIF
API. The DIFGraph classis equipped with an advanced data structure for storing dataflow

related parameters and attributes.

38

Figure4-1 summarizesthe hierarchical design of the DIF software at the level of Java
packages. Presented isalogical diagram, partly based on classinheritance hierarchy, rather
than the package hierarchy. An arrow implies that some classes in the package are derived
from the classes in the package that the arrow head pointsto. A diamond shape attached to
a package indicates that the package uses classes from the package that is attached to the
other end of the connection. The diagram is not exact and aimsto present the general
structure and highlight important relationships.

4.2 Generic Graphs

Focused around processing graph objects, most structuresin the DIF package are
developed for either extending the functionality of graph objects or supporting them
through additional features. Therefore, one key point relevant to the design of the DIF

package is the internal representation of topologies. A graph topology can be expressed in

mapss.dif.attributes

mapss.dif.sdf

<mapss.graph.hi erarchy

Figure 4-1. DIF package design.

39

more than one way as described in Section2.1 and the decision on how to represent graphs
directly affects the design of algorithms and procedures that operate on graphs.

For many of its representations and manipul ations pertaining to generic graphs, DIF
employs the ptolemy.graph package from Ptolemy I1 [11].
4.2.1 Overview of Elementary Classes

This section gives an overview of major featuresfrom ptolemy.graph that are used in
DIF.

Following are the classes that are used for constructing basic directed and undirected
graphs. For the complete package documentation of the base graph package, refer to
Ptolemy Il documentation.

Element — Element isabase class for the nodes and edges of agraph. Each node and edge
in agraph can optionally have aweight object associated with it. While element weights
are arbitrary objects in the base graph type, they are typically restricted for the classes that
extend Graph class. An element said to be weighted if it isassigned aweight and it is
referred to as unweighted otherwise.

Node — All verticesin agraph are instances of this simple class independent of directed
and undirected graph contexts.

Edge— All edgesin agraph are instances of the Edge class. The connectivity of edgesis
specified by source nodes and sink nodes. The graph model does not differentiate between
edge types of directed and undirected graphs. In the context of a directed graph, an edgeis
directed from its source node to its sink node. In case of an undirected graph, there exists
no difference between source and sink nodes. This convenient notation simplifies the

logical conversion between directed and undirected graph types.

40

In support of pseudographs, self-loop edges and multiple edges between the same set
of nodes are allowed. Source and sink nodes of an edge are immutable: they cannot be
changed after being set.

Graph — This class models a graph with optionally-weighted edges and nodes, all of
which areinstances of the Elementclass. A collection of edges and nodes does not form a
graph until all of them are added to a graph object, which inherently requires the edges and
the nodes of agraph to be unique. Both directed and undirected graphs can be implemented
using this class due to the combined support in the Edge class.

Each node (edge) is associated with aunique, integer label inagraph. Theselabelscan
be used, for example, to index arrays and matrices whose rows/columns correspond to
nodes (edges).

A node or an edge can exist as an element in multiple graphs, but any given graph can
contain only one instance of the node. Node (or edge) labels, however, are local to
individual graphs. Thus, the same node may have different labels in different graphs.
Furthermore, the label assigned in a given graph to a node may change if the set of nodes
in the graph changes over time. As opposed to elements, weights of graph elements do not
need to be distinct. In other words, only oneinstance of an element can exist in agraph, but
distinct elements can share the same weight object.

If an edgewill be removed from agraph and be re-added | ater, it can be hiddeninstead
of being removed from the graph. This method is more efficient than removing edges, in
terms of algorithm complexity and allows the same label to be used if the edge is restored

|ater.

41

Directed Graph — TheDirectedGraph class implements a transitive closure matrix,
which efficiently supports operations such as strongly connected component
decomposition, or finding reachable nodes. The transitive closure matrix is a boolean
matrix, whose indexes correspond to node labels. Theentry is(i, j) trueif and only if there

exists a path from the node with label i to the node with label j.

€6 el

1110
1000
0001
0000

Transitive Closure=

import ptolemy.graph.Graph;
import ptolemy.graph.DirectedGraph;
import ptolemy.graph.Edge;
import ptolemy.graph.Node;

public class Example {
public Example () {

/I Construct the graph object.

Graph graph = new Graph();

Node nl = graph.addNode();

Node n2 ':"graph.addNode();

Edge el = addEdge(n1, n2);

Edge e2 = addEdge(n2, nl);

Edge e6 ;addEdge(nl, nl);

/I Convert to DirectedGraph and find transitive closure.

DirectedGraph graph2 = grap.cloneAs(new DirectedGraph());
boolean[][] matrix = graph2.transitiveClosure();

Figure 4-2. An example of defining a basic graph.

42

Figured-2 presents simple Java code that constructs the graph shown in the figure.
addNode and addEdge methods are shortcuts for instantiating weightless elements and
adding them to the graph. The graph is then copied into a DirectedGraph object which
provides a method to find the transitive closure matrix. Note that the cloneAs method
requires an empty graph of the desired type as aparameter to clone the current graph. Nodes
(and edges) are assigned integer labels starting from 0, in the order they are added to the
graph, which are used in the transitive closure matrix.

4.2.2 Cloning and Mirroring Graphs

Graphs can be copied by two methods: cloning and mirroring. Both methods produce
an isomorphic graph, however, they differ in the degree to which information is replicated.
Cloning — The clone of agraph uses the exact same element objects asthe original graph,
thus original and clone graphs share the same node and edge obj ects. On the other hand, the
data structure that records the nodes and edges contained in the graph is copied.
Consequently, the Graph.equals method will return true for the clone and the original
graphs, unless the clone graph object is modified by adding, removing, hiding or restoring
elements.

The clone method has an extension that can be used to transform a graph into a
different type. The Graph.cloneAs method can clone agraph into a subtype of the original
graph. For instance, assume that a graph object is of type Graph,

DirectedGraph cloneGraph = graph.cloneAs(new DirectedGraph())
clones the graph object into a new object of type Directed Graph. The parameter in the

cloneAs method determines the graph type to clone as.

43

Mirroring — Mirroring agraph is effectively copying the complete data structure as
opposed to only copying the lists that record the edge and node objectsin agraph. Asa
result, the obtained graph object is not equal to the original graph when compared with the
Graph.equals method. The MirrorTransformerStrategy class of the
ptolemy.graph.analysis.strategy package should be used to mirror graphs. The same
class provides amethod to search for a particular element that is mirrored from the original
class. Thefollowing is an example of mirroring agraph. Assume that graph is an object of
type Graph and e isan edgein graph.

MirrorTransformerStrategy transformer =

new MirrorTransformerStrategy(graph);
Graph mirror = transformer.mirror();
Edge mirrorEdge = (Edge)transformer.transformedVersionOf(e);

It is optional to copy or share the weights between the elements of the original and the
mirror graphs. The default behavior isto share, which can partly be viewed as a protection
against non-cloneable weights.

4.3 The DIFGraph Class and mapss.dif Package

The DIFGraph class caches frequently-used data associated with generic dataflow
graphs and acts as the base class of an intermediate representation for performing datafl ow
graph transformations, analyses, and optimizations.

The Attribute M echanism

The attribute mechanism of theDIFGraph class can be used to bind arbitrary attributes
to elements or to the graph object itself. An attribute is an arbitrary object with alabel
assigned to it. The object remains arbitrary even in sub-types of DIFGraph unlike weight

objects. Thereis no limit to the number of attributes an element or graph can possess.

Another important feature introduced by the attribute mechanism is element and graph
names. Elements and graphs can have string labels as names with the condition that these
names, as the rest of the attribute |abels, should follow the label convention established in
the DIF Language specification. Name attributes are not handled as ordinary attributes, but
hard-coded in the DIFGraph class for convenience.

The following classes are involved in the attribute mechanism:

DIF Graph — The DIFGraph class provides the front-end interface for the attribute
mechanism, however, the mechanism is externally implemented and is |eft open for
changes. Methods in the DIFGraph class are sufficient for non-devel oper users.
Attribute Container — The attribute mechanism isimplemented in the
AttributeContainer class. A separate attribute container is assigned to each graph element
and the graph object. Ptolemy |1 objectsfrom theptolemy.data package are used internally
in the Attribute Container.

mapss.dif.attributes Package — Besides the parameter mechanism classes, the attributes
package al so contains an enumeration class that can be used to store types of common user
defined attributes.

Parametrization of Attributes

The attribute mechanism in DIF is further enhanced by a mechanism that enables
parametrization of attribute values. Once parameters are defined for the graph, an attribute
value can be set to areference that points to one of the parametersin the graph. Parameter
values can be discrete double numbers, double number intervals or acombination of both.
The parameter mechanism is composed of three classes in the mapss.dif.arttributes

package:

45

Parameter — Parameter isan inner class that serves as the parameter reference. A
parametrized attribute value is required to instantiate of this class.

I nterval — This class represents a double number or asingle interval with double number
boundaries. Each boundary can be defined to be inclusive or exclusive.

I nterval Collection — The domain of a parameter value is modeled as a set of intervals.
All Intervals defined for a parameter are collected under a named IntervalCollection
object after going through some simple transformations such as merging with neighboring
intervals.

4.3.1 DIF Language Conversion from DIFGraph Objects

The DIFGraph class and other classes previously described in this section form the
infrastructurethat is capable of importing thetopology, parameter and attribute information
from a DIF specification without any dataloss. An example of how a DIF specification can
be coded with the DIF package AP is presented in Figures 4-3 and 4-4.

The DIF compiler and writer (see Sections 4.5 and 4.6) resolve some of the conversion
issues as follows:

» Element, graph, parameter and attribute names should be consistent with the DIF
specification of labels as explained in Section3.1.1. All such namesin the DIF
package are checked by the mapss.util. Conventions class for errors. The default
check is consistent with the DIF specification, therefore no ambiguity exists during
conversions.

» User-defined attribute value types in the DIF language map to the following Java
objectsin the DIF API: String, Double, 2-D double matrix —double[][] and List for

object arrays.

46

dif graph Graph1 {
params {
V_SIZE: [1,5) +{7};

}
el topology {
@,@ nodes { n1 n2}
edges {elnln2;}
production {

Graphi el(121,212);

attribute size {
nlV_SIZE;
n2 10;

attribute description {
this “example graph”;
}

Figure 4-3. Source DIF specification used in Figure4-4.

 Intheconversionsfrom the DIF language to the DIF package objects, user-defined
attributes are handled by the attribute mechanism and built-in attributes are usually

handled by node and edge weights.

4.3.2 Dataflow Graph Classes

The inheritance hierarchy of dataflow graph classes currently implemented in DIF
followsthe list below:

1. DIFGraph

2. CSDFGraph

3. SDFGraph

4. SingleRate Graph

5. HSDF Graph

a7

import ptolemy.graph.Graph;
import ptolemy.graph.DirectedGraph;
import ptolemy.graph.Edge;
import ptolemy.graph.Node;

public class Example {
public Example () {

/I Construct the graph object, set the built-in attribute “production”.
Graph graph = new Graph();
Node nl = graph.addNode();
Node n2 = graph.addNode();
DIFEdgeWeight weight =

new DIFEdgeWeight(new double[J[]{{121},{212}})
Edge el = addEdge(nl, n2, weight);

/I Set the graph and element names to the labels.
graph.setName(“Graph1l”); graph.setName(el, “el");
graph.setName(nl, “nl1*); graph.setName(n2, “n2%);

// Add the parameter values.

IntervalCollection value = new IntervalCollection(“V_SIZE");
value.add(new Interval(1, true, 5, false));

value.add(new Interval(7));

/I Set the user-defined graph attribute “description”.
graph.setAttribute(“description”, “example graph®);

/I Set the user-defined element attribute “size”.
graph.setAttribute(n2, “size”, new Double(10));

/I Set the user-defined element attribute “size” with a parametrized
Il value.
graph.setAttribute(nl, “size”, new DIFGraph.Parameter(*V_SIZE");

}

Figure 4-4. A conversion from a DIF specification to Java code with the DIF
package API.

Inthislist, every graph extends the previous graph by extending the associated graph
class, EdgeWeight class and in some cases theNodeWeight class. Section4.8 includes a
list of extended classes for different graph types. Compared to the other extended classes,

EdgeWeight isthe most distinctive sinceit contains the production and consumption rates.

48

4.4 The Hierarchy Package

Modular design support is not provided directly through the Graph class. Instead,
subgraph information and hierarchical relations between graphs are captured in the classes
of the mapss.graph.hierarchy package, preserving the simplicity of the basic graph type.

The purpose of the Hierarchy package isto form awrapper around Graph objectsto
implement hierarchical graphs. Using this package, subgraphs can be defined within
graphs, nodes of a subgraph can be connected to its parent graph via ports and supernodes
(nodes that contain subgraphs) can be flattened to merge different levels of the hierarchy.
A hierarchy-enabled graph is called a hierarchy for brevity. The term subgraph is used
interchangeably with subhierarchy.

Defining a hierarchy requires two steps.

» Constructing a hierarchy object that contains the graph.
 Constructing the ports of the hierarchy object.

Once graphs are hierarchy enabled, they can be modularized. Following are the steps
for adding a subgraph to a graph:

» Assigning anode, called a super node of the super-graph, to the subgraph,
» Connecting the ports of the subgraph to edges or ports of the super-graph. Ports

can be directed or undirected. Undirected ports can be used as bidirectional ports.
A port can be connected to an edge or a port of its parent graph. It can also be
associated with a node or a subgraph port inside the graph. Figure 4-5 shows all the
schemes for port connections. Two possible connections, labeled as 1 and 2 in the figure,

and two possible associations, labeled as a and b, exist for a port. Connection 1 and

49

(1a) (1b)

ﬂ e

e

O :

(2a) (2b)

Figure4-5. A summary of connection schemes for a port.

50

association b are, in fact, identical, i.e. connection 1 is an association to port PP and
association b is a connection to port PS.

Flatten methods are provided in the Hierarchy class for replacing super nodes with
their assigned subgraphs. This method places amirror of the graph object into the parent
graph and removes the super node. Port connections are handled as shown in Figure4-5.
The top of the figure demonstrates al possible connections and relations on port P. Thick
lines denote graph boundaries. The letters P, n and e are used for ports, nodes and edges
respectively. Superscripts p and s areabbreviations for parent (outermost) graph and
subgraph (innermost graph), n° isthe label of the super-node that contains the graph
outlined by the dark contour and n*isthelabel of the super-node that containsthe innermost
subgraph. Dotted lines represent port connections on the outside and port relations on the
inside. The sub-figures show how the connection and relations are resolved after flattening
the intermediate graph for different cases.

4.4.1 Overview of Classes

The hierarchy package contains six classes:
Hierarchy — Hierarchy isthewrapper classthat storesthetarget graph initsdatastructure.
It provides methods to create, del ete and flatten super-nodes among other methods, such as
clone and mirror.
Port — A hierarchy object interfaces with other hierarchies through Port objects. A port
belongs to the hierarchy object that is passed in its constructor. The port-hierarchy
association isimmutable, meaning aport cannot be used as aport of another hierarchy after

it iscreated. The port class contains (dis)connect and (un)relate methods to handle

51

connections and a dispose method to remove it from the hierarchy. A disposed port cannot
be used any further.

Port List — PortList isan internal class that maintains the list of portsin a hierarchy. It
provides methodsto check if aport label ispreviousy defined or if an edgeis connected to
another port prior to a connection. Unused port labels can safely be obtained through the
newName method. The order that the ports are added to thislist is preserved in getAll and
iterator methods.

A port can be of typesin, out or inout. Types in and out should be consistent with
directions of edges and ports that they are connected and related to. Type inout is
compatible with all directions, except that it can only be related to an inout type port.
Super Node Map — Super node map is another classinterna to the hierarchy class. It
stores supernode/subhierarchy object pairsin adoubly-linked, ordered map. Due to the
double-link property both super-nodes and sub-hierarchies can be used askeysto obtain the
other pair from the map. TheisDefined method is provided to check if ahierarchy nameis
previously defined. Unused hierarchy names can safely be obtained through thenewName
method. The order in which the pairs are added to this map is preserved in the getAll and
iterator methods.

Cyclic Hierarchy Exception — A cyclic hierarchy exception occursif a nested hierarchy
definition isfound to be cyclic, for instance a hierarchy cannot haveitself asasubgraph. In
addition to being an exception type, this class provides a method to check if a subgraph

definition will create a cyclic relationship.

52

(a)

’ —_— — — — —/

|
(b)]
i
|

()

—_ — —

Graph 2 after flatten
@) (b) (©

import mapss.graph.hierarchy.Hierarchy;
import mapss.graph.hierarchy.Port;

public class Example2 {

public Example2 () {

/Il Graph dﬁjects are created here.

// Constructing hierarchyl.

Hierarchy hierarchyl = new Hierarchy(graphl, “Graphl”);
Port P1 = new Port(hierarchyl, “P1“, Port.IN);

Port P2 = new Port(hierarchyl, “P2“, Port. OUT);

// Constructing hierarchy?2.

Hierarchy hierarchy2 = new Hierarchy(graph2, “Graph2”);
hierarchy2.addSuperNode(n4, hierarchyl);

Port P3 = new Port(hierarchy2, “P3“, Port. OUT);

// Connecting ports.
P1.connect(e2);
P2.connect(P3);

/l Merging the hierarchy levels.
hierarchy?2.flatten(n4);

Figure 4-6. The Java code that defines and flattens the nested hierarchy 2.

53

Hierarchy Exception — All hierarchy related errors except the cyclic hierarchy error will
cause ahierarchy exception. Most of the error checking methods of the Hierarchy package

are defined in this class.

4.4.2 Hierarchy Related Functions

Hierarchical and topological structures of modular graphs are distributed over several
classes: Graph, Hierarchy, Port, etc. Consistency across these objects can be provided in
astrict or loose fashion. Strict consistency isaccomplished by continuous verification. The
advantage of strict consistency is a persistently valid state, and the trade-off is close
coupling between all classes. This conflicts with the philosophy of the Hierarchy package,
whichisto keep the hierarchy mechanism related code separate from the Graph class since
the latter isto be used purely for representing generic mathematical graphs. Therefore, the
loose-consistency scheme is found more suitable for DIF hierarchies. In the loose
approach, consistency verification is performed less frequently rather than with each
operation. In particular, graph operations, such as edge/node addition and removals are not
subject to any hierarchy related checks since there is no communication from the Graph
classto the Hierarchy class.

This section aims to describe how several functionsin the Hierarchy package are
achieved while maintaining the desired |oose consistency.

Adding a supernode to a hierarchy — Adding a supernode to a hierarchy only assigns a
subhierarchy with a node in the hierarchy. No connections or relations are defined at this
stage. The subhierarchy isremoved from its previous parent, if it exists. The potential
supernode is unassigned from its previous subhierarchy as well. Then the supernode-

subhierarchy pair is added to the SuperNodeMap object in the Hierarchy and the parent

reference in the subhierarchy object is set. Before this procedure the following checks are
performed:

* The parent hierarchy does not contain another subhierarchy with the same name.
» The new supernode definition does not cause a cyclic relationship, i.e. the new

subhierarchy is not already an ancestor of the parent hierarchy.

Both of these properties cannot be violated once they are avoided at this step. Note that
the supernode is not checked to verify that it isanode in the parent graph, which is not an
essential check at this point since the node can later be removed from the graph.

The reverse of this process, called disconnecting, removes the parent referencein a
subhierarchy, removes the corresponding entry from the SuperNodeM ap of the parent and
disconnects all the subhierarchy ports.

Defining a Port — A Port object is added to aHierarchy through its constructor. In the
port constructor, the hierarchy reference and the name of the port is set and the port isadded
to the PortList of the Hierarchy object. The hierarchy reference and the name field of the
Port class are immutabl e after they are created; a port can be removed from its hierarchy
but it cannot be used again (Port.dispose method). Also the port name is checked against
other port namesin the hierarchy for uniqueness, a property that retains validity since port
names are immutable.

The Port.dispose method disconnects all connections and removesthePortList entry
initshierarchy. Any attempt to use the member methods of adisposed port will resultinan
error.

Connecting a port to an edge — The Port class provides a member method for

connecting an edge to a port object. It ssmply sets the connection field in the port,

55

overriding it if another connection is defined. When connectingeto P (see Figure4-5), the

following properties are verified.

eisincident to n®

If eisnot a self-loop edge, it is not connected to another port of n°.

If eisaself-loop edge, it is not connected to two other ports of nC.

The direction of e matches the port direction: if n%is the source of e, P should be of
type out, otherwise P should be of typein. If P istype inout both connections are
valid.

If eisaself-loop edge and it is connected to two ports, both ports cannot be of type

in or typeout at the same time.

Source and sink nodes of Edge objects are immutable, therefore the checks will

remain valid after the connection.

Associating a port to a node — Associate method in Port classfirst removes any previous

associations and then setsthenode field in the Port object. No checks are performed in this

method.

Associating/connecting a port to another port — The port class contains both connect

and associate methods for ports. These methods are identical, for example, P.connect(PP)

has the same effect as P”.associate(P) where P isaport in the subhierarchy and P” isa

port in the parent hierarchy. During this connection, associatedPortand node fields of

PP and the connection field of P are set, overriding all previous field values. All portsin

overridden connections and associations are a so disconnected/disassociated. Considering

the port connection (1) in Figure4-5, following statements are verified.

H is a subhierarchy of HP.

P and PP have the same directions or P istype inout.

Note that type inout ports cannot be related to typein or type out ports.

56

Flattening a supernode — Following is the algorithm for the Hierarchy.flatten function.

It isassumed that ny in Figure4-5 is being flattened.

1.
2.
3.

5.
6.

For all P store PSand n°.
Add all edges and nodes in H to HF.
Add all supernodes of H to HP:
Prefix all HS names with the name of H followed by a period “.”
For all HS, store all port-edge connection pairs.
Add all HS - n® pairs to the superNodeMap of H”.
Restore edge connections for all HS.
For all P (ports of H) handle the connection/relation:
connection = P.connection
N = P.node
if connection is a Port
PP.unrelate()
if P is related to a node
PS.disconnect()
PS.connect(PP)
else
PP relate(n)
else
/I Means connection is an edge.
If relation is a node
Connect the edge to n
else
Connect the edge to n®
PS.connect(e)
HP.disconnectSuperNode(r°)
HP .removeNode(n°)

The steps labeled “ Connect edgeto ...” are not realizablein the Hierarchy APl because

edgesareimmutable. The actual stepsinclude instantiating new edges and replacing theold

edges with the new ones. Self-loop edges require specia attention during this process.

Before the algorithm is run, the graph and the hierarchy objects are verified for

consistency. If an error isfound, they are returned with no modification. An adternativeis

calling the Hierarchy.purge method in advance to remove all faulty connections and

57

associations. After the purge method is run the Hierarchy object is guaranteed to be free of
errors. Below are the conditions that should be verified before flattening.

« n%isanodein the graph of HP and n®is a supernode in HP.
« All ports P of H are connected and related. All related nodes n or nS are elements

in the graph of H. All connected edges e are edges in the graph of HP.

4.4.3 Extending the Hierarchy Class

The Hierarchy class can be extended for handling different kind of graphs. Even
though most methods do not depend on the type of the backing graph object, mirror and
flatten methods require graph specific information. All extending classes should provide at
least one constructor with exactly two parameters:. the graph and the name of the graph. The
_copyEdge method should be overridden to return an edge with the correct weight object
type, the _mirrorGraph method should return a MirrorTransformerStrategy object that
mirrors the backing graph in the desired way and the _graphType method should return
an empty graph with the graph type supported by this hierarchy.

4.4.4 DIF Language Conversion from DIFHierarchy Objects

The mapss.dif.language.Writer class can be used to write a DIFHierarchy object
into aDIF text file. Thisclassisdiscussed in Section4.6. All port labels and the hierarchy
name are kept consistent with the DIF conventions. If the hierarchy name is different than
the graph name, the graph nameisignored.

4.5 TheDIF Compiler

The DIF API provides acomplete parser that translates DIF language text into graph
and hierarchy objects. This parser is automatically generated by the SableCC [7], a

compiler-compiler for building compilers in the Java programming language.

58

Parser related classes and packages are managed under mapss.dif.language. Thelist

of these classes areisfollows:

SableCC/compiler.Grammar SableCC language specification file for DIF.

SableCC subpackages node, lexer, parser and analysis packages compose the
SableCC generated compiler framework.

Language Analysis Contains the action code for compiling default DIF graphs.
New graph types are added to the compiler API by extending thisclass. Thiswill be
covered in Section 4.5.3.

analyzers.txt Containsthelist of full names of default language analysis classes.
All default graph typesin DIF are associated with an entry in thislist. If aclassis
not found in the VM path or if an error occurs during initialization of alanguage
analysis, the corresponding graph type will be ignored from subsequent
compilations. Whitespaces and line or block commentsin analyzers.txt are
ignored.

Reader Front-end compiler interface. Accommodates the preprocessor, lexer and
parser functions. Compiled objects are accessed through getGraphs and
getHierarchies methods of this class.

Graph Modifier A mini-compiler for reduced DIF languagefiles. A reduced DIF
graph definition contains only a params block and attributes. It is very similar to
the basedon featurein regular DIF files except the graph to be modified is externally
loaded in the GraphModifier class.

DIF Language Exception Thrown in case of language related errors.

4.5.1 SableCC

This section isatutorial on SableCC features that were used in the design of the DIF

parser. As opposed to being a complementary guide, some features of SableCC are

deliberately ignored for brevity purposes. Refer to [7] for an complete tutorial.

SableCC employsthe Visitor Design Pattern and takes advantage of the Javatype

system to deliver modular, abstract syntax tree (AST) based, object-oriented compilers.

59

SableCC does not require any action code in specification files, rather it builds the
framework, in which actions can be added as Java code. Aside from ease of debugging, this
approach benefits from another major advantage: More than one compilers for the same
language can share a common framework. For example, the DIF package contains a
mini-compiler for reduced DIF, GraphModifier, in addition to the main compiler class.
DIF Parser Design with SableCC
The DIF parser was designed in five major steps:
1. Thelexicon and the grammar of the language was defined in a SableCC
specification file.
2. The framework was generated by SableCC.
3. Action code was defined in the working-class, LanguageAnalysis, utilizing the
SableCC generated AST objects.
4. The main compiler class, Reader, was created to activate the lexer, the parser and
the analysis functions.
5. The parser was compiled with Java.
The steps of the design flow with the files or subpackagesinvolved areillustrated in
Figure 4-7. Each step in the figure is numbered according to the list above.
The Language Specification File
SableCC language specification input iswritten in EBNF. Asaresult, the specification
file given in AppendixB is almost identical to the language specification in AppendixA.
The only major differenceisthat the specification file of SableCC contains another section,
that is helpers. Helpers are logical macros for using in the tokens section. Unlike text

macros, regular expressions in helpers are evaluated before substitution.

60

Example 4-1 Consider the helper h=‘a’ | ‘b’ andthetokent=*a h‘b’. The set that t
representsis{“aab”, “ abb” } whereasin case of a text macro t would represent
‘a‘a |'b ‘b ={"aa",“bb"}.

Asageneral practice, complicated and low-level regular expressions are defined in the
hel pers section. The language specification file al so contains an ignor ed tokens section that
lists the tokens, such as whitespaces and comments, to be ignored during parsing.

The AST generating process requires the following conventions for resolving node
names.

* |f there are dternative productions for a non-terminal, each alternative should be
labeled as described in Section2.3 except that one alternative can be left without a
label.

Garser.grammar
1

v

sablecc.node
sablecc.analysis
sablecc.lexer
sablecc.parser

v

Java Compiler @j

v

Parser classfiles

Figure 4-7. DIF parser design flow.

61

« |f the same token is used more than once in a production, each token should be
labeled as described in Section2.3, except that only one token can be left
unlabeled.

SableCC generates four subpackages to build the compiler framework in the second
step of compiler design: lexer, parser, nodes and analysis. Among these, nodes and
analysis packages are used in the action code definition.

* nodespackage This package contains the classes that represent the nodes of the
AST. Naming conventions for the parse tree are as follows
— A node representing an unnamed alternative of a production, is named by the

production name, prefixed with an uppercase “A”, first letter replaced by an
uppercase, each letter following an underscore replaced with an uppercase and
all underscores removed.

— Named dlternatives trandate into similar node names except, the alternative
label is placed between the “ A" and the production name after the aternative
label goes through the same underscore conversion process.

— Named and unnamed tokens follow the preceding two rules with a minor
differencethat “T” isused asthefirst |etter.

AST noes are also equipped with accessor methods that return their children

tokensin the tree.

» analysispackage The analysis package provides the tree traversal classes for
implementing the action code. The LanguageAnalysis class extends
analysis.DepthFirstAdapter for adepth first traversal onthe AST. It also inherits
alist of node visitor methods, two for each node, which are called by the parser
during the first visit and the second visit of a node. These methods are overridden
by LanguageAnalysis to implement the action code for nodes. Node objects are
passed to the corresponding visitor methods as parameters, thisis how the
LanguageAnalysis classinteracts with the nodes package and accesses the token
strings. Visitor method names are obtained from the name of the corresponding
node object by adding one of the suffixesin (for the first visit) and out (for the

second visit).

62

Example 4-2 Following is the SableCC specification input for the language defined in
Example2-1 with a minor improvement. This version allows a string that terminates with

an equalssignsuchas“y=".

Helpers:
letter = ['a’ .. ‘2]
digit=['0".. ‘9]
Tokens:

label = letter+
number = digit+\

operator =+ |- | ¥ |
equals ='=’
Productions:
S = {defined} [answer]:label equals B |

{not_defined}[answer]:label equals
B = number tail*
tail = operator number

The DepthFirstAdapter class will define the following list of visitor methods. The
second method in each entry is the accessor method for accessing the token.

* in/outADefinedS(ADefinedS node) — node.getAnswer()

* in/outANotDefinedS(ANotDefinedS node) — node.getAnswer()
* in/outAB(AB node) — node.getNumber()

* in/outATail(ATail node) — node.getNumber()

63

The Compiler

The compiler isafront-end interface for combining the lexer, the parser and the action
code. Reader classin the DIF API implements the top-level compiler. The structure of a
very ssmple compiler, reading its input from standard input, is given in Figure4-8.

4.5.2 The Language Analysis Class

Thisclassis normally beyond the scope of a non-developer user and it is of interest to
developers for defining new graph types or custom compiler front-ends. The
LanguageAnalysis API features three kinds of methods:

 Public methods for compiler front-end use.
» Protected methods for defining new graph typesin DIF.
* Public methods inherited from the SableCC adapter class, names starting within or

out.
Thelast category of methods is unavoidably defined public even though such methods
are supposed to be invisible to the users: Java does not allow overriding a method to have
amore constricted scope. These methods contain the basic action code and they do not

change unless the language grammar or the semantics change.

public class Compiler {
public static void main(String[] args) throws Exception {
Il Create a parser.
Parser p =
new Parser(
new Lexer(
new PushbackReader(
new InputStreamReader(System.in), 1024)));
I/l Parse the input.
Start tree = p.parse();
/I Apply the action code.
tree.apply(new Analysis());

}
Figure 4-8. A smple SableCC generated compiler front-end.

The remainder of the public methods, externalHierarchies, getHierarchy and
getKeyword are utilized by the compiler front-end. The compiler provides previously read
graphs to the parser through the externalHierarchies method. These graphs build the
scope of the graph being parsed.

Protected methods in LanguageAnalysis constitute a generic API for defining new
graph typesin DIF. Thisis covered in detail in the next section.

4.5.3 Extending the DIF Language For A New Graph Type

In DIF, the differences between graph types typically arise from built-in attributes.
Therefore anew graph type definition mainly consists of new built-in attribute definitions.
A new graph typeisintroduced in two steps:

1. Extending the LanguageAnalysis class and overriding the following list of

methods:

— getEmptyXXX methods return an empty graph/edge/node that is of the type
that the input topology will be converted to.

— getKeyword returns the keyword for the new graph type.

— acceptableSubHierarchy(DIFHiearchy hierarchy) returns true if
hierarchy can semantically be a subhierarchy of the parsed graph.

2. Writing the action code to process fixed attributes. _processFixedAttributes
method should be overridden with appropriate code for each for each type of built-
in attribute. This method returns false if the attribute cannot be processed, which
will induce an error thrown by compiler.

3. Adding the full name of the new analysisto analyzers.txt.

65

4.5.4 The Reader Class— The Front-End Compiler

The reader class of the DIF compiler is more advanced than the front-end in Figured4-
8. Default graph analyzers listed by analyzers.txt areinitialized by Reader. If desired,
custom analyzers can be added through the compile method. The Reader class also
contains the preprocessor mechanism of DIF, which isimplemented through a system call
to the GNU C preprocessor.

A DIF fileis compiled by passing the input file name in the constructor, running the
compile method and calling the getGraphs or getHierarchies methods for the output.

Following is an informal pseudocode that explains the compile method of Reader. It
isassumed that all analyzersareread into alistanalyzers duringinitialization and alsocpp
isafunction that runs the preprocessor on the input. The cpp function reads all the files
indicated by theinclude statements and creates an ordered map of the file namesto the DIF
filetexts. The keys are ordered from the most dependent file to the files with no include
statements. This meansthat given any entry on the list; the scope of the file in the entry
consists of the subsequent entriesin thelist. For thisreason, thelist iscompiled in reverse
order.

FUNCTION: Reader Main Function
INPUTS: analyzers: LanguageAnalysisList, fileName: String
RETURNS: hierarchies: DIFHierarchyList

files = cpp— fileName

/[Start reading files from the least dependent one.

for (name, text) in files following reverse order
/I Pass each text through lexer & parser for error check.
Il'If error check is performed later, file names and line
/I numbers will be lost and errors will be harder to
/ track by the user.
parser- lexer— text

66

for graphText in test following order
if graphText.keyword == null then
graphText. keyword = dif
analyzer = analyzers.find(keyword)
if “basedon modelName” exists in graphText
if modelName == graphText.name then
throw "Graph cannot be based on itself"
modelObj = hierarchies.find(modelName)
if modelObj == null then
throw "Model graph not found"
mirrorObj = modelObj.mirror()
GraphModifier.modify(mirrorObj, graphText)
hierarchies.add(mirrorObj)
else
/I All semantic checks on the input is performed
/l by the analyzer in the action-code.
graphObj = analyzer- parser- lexer—- text
hieracrchies.add(graphObj)
return hierarchies

46 TheDIF Writer

DIF conversion considerations involving DIFGraph and Hierarchy objects were
discussed in Sections 4.3.1 and Section4.4.4. The DIFWriter class follows the guidelines
provided in those sections. Following is apartial list of DIF Language constructsin
Figure 3-1 and the methods they are obtained from in DIFWriter. Types of the values
returned by some of the methods are indicated in italic font.

keyword ® DIFWriter._graphType()

graphlD ® DIFGraph.getName()

prm; ® List DIFGraph.getParameterNames()

parameter values ®
IntervalCollection DIFGraph._getParameterValue(prm)
IntervalCollection.toString()

67

portID ® PortList Hierarchy.getPorts() and Port class methods

node/edgelD ® DIFGraph.getName(node/edge)

refinement block ® SuperNodeMap Hierarchy.getSuperNodes()
and SuperNodeMap class methods

attribute name and values ® AttributeContainer class methods

The AttributeContainer.objectToString method defines which attribute values are
convertible to the DIF language. Built-in attributes, such as EdgeWeight information are
handled in the DIFWriter._readBuiltinAttributes method.

A new graph writer class can be defined by extending the DIFWriter class and
overriding the following methods:

* A new type keyword should be added to the isKeyword method.
» _getEmptyGraph should return an empty graph for type-checking the input

graphs.
» _graphType should return the type keyword.
* _readBuiltinAttributes should be overridden to process the built-in attributesin

the graph.

4.7 Graph Visualization

DIF specifications and hierarchy/graph objects of the DIF API can a so be converted
automatically into the input format of dot [10], awell known graph-visualization tool. dot
isdistributed by AT& T Research Labs as apart of GraphViz - open source graph drawing
software.

The mapss.graph package provides default dot generators for Graph objects and
Hierarchy objects. These classes can be extended to define type specific dot generators.

A tutorial example of dot generator classes can be found in Section5.2.1.

68

4.8 Summary of DIF APl Packages and Classes

» Graph Classes Graph classesfor dataflow models presently supported in DIF are
collected under three packages.
— mapss.dif DIF graph classes.
— mapss.csdf CSDF graph classes.
— mapss.sdf SDF graph, single rate graph, and hsdf graph classes

Every graph type may consist of up to nine kinds of classes at its core:

1. xxxGraph

2. xxxEdgeWeight

3. xxxNodeWeight

4. xxxHierarchy

5. xxxToDot

6. xxxHierarchyToDot

7. xxxMirrorTransformation
8. xxxLanguageAnaysis

9. xxxToDIFWriter

“xxx” in these class namesis replaced by the specific graph type name. Followingisa
list of graph types with defined classes, ordered according to the type hierarchy. Numbers

denote classes according to the previous list.

— DIF 1,2,3,4,56,7
— CSDF 1,2,35,8,9

- SDF 1,2,35,8,9

— SingleRate 1,289

— HSDF 1,289

For CSDF, SDF, SingleRate and HSDF, the classes that are not present are used from
the closest parent in the hierarchy that owns that class type. For example, HSDF does not

possess aHSDFNodeWeight class, instead SDFNodeWeight classis used.

69

LanguageAnalysis and ToDIFWriter classes for DIF graph are placed under

mapss.dif.language.

Attribute Mechanism mapss.dif.attributes package and
mapss.dif.AttributeContainer class.

Hierarchy Mechanism mapss.graph.hierarchy package.
DIF Compiler and Writer mapss.dif.language package and
mapss.dif.language.sablecc package.

Graph Visualization Base Classes mapss.graph package.
DIF Naming Conventions mapss.util.Conventions class.
Demo Utilities mapss.util.demo package.

Demos mapss.graph.demo, mapss.graph.hierarchy.demo,

mapss.dif.attributes.demo, mapss.dif.language.demo packages.

70

CHAPTER S
Application Examplesand Tutorials

5.1 Applications

5.1.1 Ptolemy

We have developed a back-end for Ptolemy 11 that generates DIF graphs from
dataflow-based Ptolemy 11 models. An example of Ptolemy-to-DIF conversion through this
back-end is shown in Figure5-1. This example represents the functionality of each node as
acomputation attribute, whichisderived from the Ptolemy 11 library definition. A front-end

that converts DIF specificationsinto Ptolemy |1 models is under devel opment.

Random Symbal Sournce Square Reot Raised Conime Pulse Shaper

Adder Watched Fiiter Scops

-+
Caugsian Nolse Source N H h. }-@E
[
sdf graph _graph { consumption {
topology { e01; el 1,
nodes { e21; e3 1,
n0 n1 n2n3 n4 n5 e41;
} }
edges { delay {
e0 nOn1; e00; el O;
el nl n2; e20; e3 0,
e2 n2 n4; e4 0,
e3 n3 nz;
e4 n4 n5; computation {
} nO DiscreteRandomSource;
} nl RaisedCosine;
production { n2 AddSubtract;
e01; el 16; n3 Gaussian;
e2l; e3 1; n4 RaisedCosine;
ed 1, n5 SequenceScope,;
} }
}

Figure 5-1. Ptolemy Il model of a pulse amplitude modulation system that is
exported to DIF.

71

5.1.2 MCCI Autocoding T ool set

Another application example of DIF isin the Autocoding Toolset of Management,
Communications, and Control Inc. (MCCI) [14]. Thistool is designed for mapping large,
complex signal processing applications onto high-performance multiprocessor platforms.
Through a DIF-generating back-end developed by M CCI, the Autocoding Tool set supports

generation of DIF specifications after partitioning the application.

@) (b)

in_sar

_@

out_rng

%
'§< %

out_azil

out_azi2 '

BB
D
:

Figure 5-2. The top-level partitioned application graph of a SAR application and a
range processing graph in the MCCI Autocoding Tool set.

72

graph rangeGraph {
interface {
inputrng_in;
output rng_out,

}
topology {
nodes {
pad:rng_in
wght fft comp:rng_out

edges {
padded pad wght,
weighted wght fft;
compressed fft comp;

(@)

production {
padded 1048576;
weighted 1048576;
compressed 1048576;

consumption {
padded 1048576;
weighted 1048576;
compressed 1048576;

}
delay {

padded O; weighted O;
compressed 0;

graph SAR {

refinement {
(b) rangeGraph range
rng_in:in_sar rng_out:out_rng;

Figure 5-3. Range processing and range processing instantiation in SAR.

73

Figureb-2 shows a synthetic aperture radar (SAR) application developed in the
Autocoding Toolset. The functional requirements of SAR processing consist of four logical
processes. data input and conditioning, range processing, azimuth processing and data
output. The Autocoding Toolset partitions the application into five parts dividing the
azimuth processing into two parts. Figure5-2(a) shows the top level functional definition
graph and Figure5-2(b) shows the range subgraph. DIF definitions of these graphs can be
found in Figure5-3. Range processing of data includes conversion to complex floating
point numbers, padding the end of each data row with zeros, multiplying by a weighting
function, computing the FFT, and multiplying the data by the radar cross-section
compensation. Note that although Figure5-3(a) is asingle rate graph, the Autocoding
Toolset presently exports this in the more general form of a DIF graph. This exampleis
adapted due to space constraints.

5.1.3 Benchmark Generation

The DIF package contains facilities to generate DIF specifications of
randomly-generated, synthetic benchmarks. This can be useful for more extensive testing
of tools and algorithms beyond the set of available application models. The benchmark
generator isbased on an implementation of Sih’ sdataflow graph generation algorithm [15],
which constructs application-like graphs by mimicking patternsfound in practical dataflow
models. Figure5-4 shows asynthetic DIFGraph generated by the DIF package and laid-out

through the dot generator.

74

sdf graph _graph{
topology {
nodes {
n0 nl
n3 n4
né n7
n9 nlo
nl2 nl3
nl5 nl6
nil8 nl9

}

edges {
e0 n0 n1;
el n0 n2;
e2 nl n3;
e3 n2 n5;
e4 n5 n4;

n2
n5
n8
nil
nl4
nil7
n20

e31 n20 n13:

production {
e0 1;

e31 1

consumption {
e0 1;

e31 1

}
delay {
e00;

e31 0

Figure 5-4. A synthetic DIFGraph generated by the DIF package and dot generator

output for the graph.

5.2 Tutorials

5.2.1 A Tutorial Example for the Visualization T ool

The mapss.graph package contains atutorial example for the graph visualization

tool, provided by the DotGenerator class. DotGenerator generates dot files for the

Figure 5-5. Undirected and directed layouts of the same graph with false and true
options set in DotGenerator.toFile method.

76

GraphViz tool. Thistutorial is created using the Demo API of the graph.util.demo
package.
1. The DotGenerator class provides a one-step static function for generating directed
or undirected dot files. This method can be used draw graphs with default settings

of GraphViz. The following code is for generating directed and undirected graph

+ D)
O

demol

Figure 5-6. A customized graph with circular and colored nodes.

77

visualization files for a hypothetical Graph object named graphQ. The last
parameter should be set to true for adirected output.

DotGenerator.toFile(graphO, fileName, true or false);

2. DotGenerator can be configured for a customized look. For changing default
options of the tool, a DotGenerator object isrequired to be created instead of
using the static function. The following is the code that generates the look in
Figure5-6.

/I Create the DotGenerator object.
DotGenerator dot = new DotGenerator(myGraph);

/I Add some attributes to the graph to make it look nicer.

/I Note that attributes that belong to the graph (not specific

// to an edge or a node) should be added with addLine method.
dot.setGraphName("demol");

dot.addLine("node[shape = circle];");

dot.addLine("center = true;");

// Add an attribute to a node in the graph.
dot.setAttribute(node4, "color", "red");

/I Set the graph as directed.
dot.setAsDirected(true);

/I Call toFile function to create the file.
dot.toFile(path + "demo1");

3. GraphViz can also cluster graph nodes. Invisible nodes can be used to fine-tune the

alignment of nodesin clusters. In the graph of Figure5-7, invisible edges connect

78

nodes 2 and 5 to an invisible node at the bottom of the figure, which helps
GraphViz to place cluster nodes in two rows.

// Add a dummy node and two dummy edges to the graph for alignment
/I purposes.

myGraph2.addNode(node7);

Edge edge2_7 = myGraph2.addEdge(node2, node7);

Edge edge5_7 = myGraph2.addEdge(node5, node7);

/I Cluster the nodes after creating the DotGenerator object.
DotGenerator dot2 = new DotGenerator(myGraph?2);
Collection clusterl =

Arrays.asList(new Node[] {node0, nodel, node2});
Collection cluster2 =

Arrays.asList(new Node[] {node3, node4, node5});
dot2.setCluster(clusterl);

dot2.setCluster(cluster2);

/I Set some attributes for a nice look.
dot2.setAttribute(clusterl, "label = \"cluster1\"");
dot2.setAttribute(clusterl, "color = blue");
dot2.setAttribute(cluster2, "label = \"cluster2\"");
dot2.setAttribute(cluster2, "color = red");

/I Use this part of the graph for alignment purposes so set it
/I invisible.

dot2.setAttribute(node?, "style", "\"invis\"");
dot2.setAttribute(edge2_7, "style”, "\"invis\"");
dot2.setAttribute(edge5_7, "style”, "\"invis\"");

/| Set as directed.
dot2.setAsDirected(true);

/I Call toFile function to create the file.
dot2.toFile(path + "clusterExample");

5.2.2 Tutorial Examplesfor the Hierarchy Mechanism

The mapss.graph.hierarchy package contains atutorial example for the hierarchy

mechanism. Thistutoria is created using the Demo API of the graph.util.demo package.

79

clusterl cluster2

Figure5-7. A clustered graph example.

All graph and hierarchy figures related to this example are generated by the dot generator
and GraphViz tool. The dot generator automatically placesalist of ports with associations
and supernodes under each figure.
Hierarchy Example
1. Setting up ahierarchy and its ports. A hierarchy object is built on a previously
constructed graph object. Two kinds of connections can be made to a port from
inside the hierarchy: A node or a port of a subhierarchy. In thisexample, all ports
are connected to nodesinside the hierarchy, which is also called relating aport with
anode. The code that generateshierarchy O is as follows:

/I Define HierarchyO.
Hierarchy hO = new Hierarchy(gO0, "HierarchyQ");

80

Il Set up ports for HierarchyO.
Port pO1 = new Port("P01", h0);
pOl.relate(n0l1);

Port p02 = new Port("P02", h0);
p02.relate(n02);

Port p03 = new Port("P03", h0);
p03.relate(n03);

2. Defining a subhierarchy, hierarchy O, and connecting it to its parent hierarchy,
hierarchy 1. Hierarchy O is placed in super node, n13. Two kinds of connections
can be made to aport from the outside: An edge or aport of the parent hierarchy. In
this case, P03 is connected to P13 and other ports of hierarchy O are connected to
edges. Note that only the self loop edge of n13 is connected to the ports of the
subhierarchy and other incident edges are left unconnected. This leads to removal
of those upon flatten of n13. The code that generates hierarchylis below:

/I Construct Hierarchyl.
Hierarchy h1 = new Hierarchy(gl, "Hierarchyl");

/I Define a subhierarchy.
hl.addSuperNode(n13, h0);

niil nl)2 n)3

Hicrarchy()
Ports are:

PO1:n01 PO2:n02 PO3:n03

Figure 5-8. Dot output for hierarchy O.

81

/I Make connections from outside (Hierarchyl) to the subhierarchy
/I (HierarchyO).

p0l.connect(elb);

p02.connect(elb);

/I Set up ports for Hierarchyl and connect them with nodes
Il from the inside.

Port p11 = new Port("P11", hl);

pll.relate(nll);

Port p12 = new Port("P12", hl);

pl2.relate(nl4);

/I The following port is connected to a port from a subhierarchy instead
Il of a node.

Port p13 = new Port("P13", hl);

pl3.relate(p03);

3. Thistime hierarchy 1 is defined as a subhierarchy of hierarchy 2 in the code
example below.

/I Construct Hierarchy2
Hierarchy h2 = new Hierarchy(g2, "Hierarchy2");

/I Define a subhierarchy.
h2.addSuperNode(n23, hl);

/I Make connections from outside (Hierarchy?) to the subhierarchy
/I (Hierarchy1l).

pll.connect(e22);

pl2.connect(e23);

/I Set up ports for Hierarchy2 and connect them with nodes
/l from the inside.

Port p21 = new Port("P21", h2);

p2l.relate(n2l);

Port p22 = new Port("P22", h2);

p22.relate(n22);

82

Hierarchy0

(] (=
O} @ &
=)

Hierarchyl Hierarchyl
Ports are: Ports are:
Pll:ll P12l14 P13:P03 P11:nl1 P12ml14 P13:n03
Super nodes are:
nl3
(@ (b)

Figure 5-9. Dot outputs for hierarchy 1 before and after it is flattened.

/I The following port is connected to a port from a subhierarchy instead
/I of a node.

Port p23 = new Port("P23", h2);
p23.relate(pl3);

4. Defining a more complicated hierarchy structure: hierarchies 2 and O are to be

defined as subhierarchies of hierarchy 3. It is not alowed to have multiple parents

83

Hierarclyl

Hierarchy2
Ports are;
P21:n21 P22n22 P23:P13 g ™
Super nodes are: k\“’z)
nz3 S
Hievarcln:
Porig are;
P2l n2l PZ2n2E PZ3:PO3
Super nodes are:
nl3
@ (b)

Figure 5-10. Dot outputs for hierarchy 2 before and after it is flattened.

therefore hierarchies 2 and O cannot be defined as subhierarchies again. Instead,
their mirrors are used.

/I Construct Hierarchy3.
Hierarchy h3 = new Hierarchy(g3, "Hierarchy3");

/I Define a port.
Port p31 = new Port("P31", h3);

/I Mirror HierarchyO and Hierarchy?2 for reusing in Hierarchy3.
Hierarchy mO = hO.mirror(false);

mO0.setName("Mirror0");

Hierarchy m2 = h2.mirror(false);

m2.setName("Mirror2");

/I Define sub-hierarchies.

h3.addSuperNode(n31, h2);
h3.addSuperNode(n32, m0);
h3.addSuperNode(n33, m2);

/l Make connections from outside (Hierarchy3) to the sub-hierarchies
/I (mirrors of HierarchyO and Hierarchy?2).

p21.connect(e3l);

p22.connect(e33);

p23.connect(e32);

m2.getPorts().get("P21").connect(e33);
m2.getPorts().get("P22").connect(e32);

/I Following line is an alternative

I/ to "p31l.relate(m2.getPorts().get("P23"))"
m2.getPorts().get("P23").connect(p31);

mO.getPorts().get("P01").connect(e31);
mO.getPorts().get("P02").connect(e34);
mO.getPorts().get("P03").connect(e34);

. Listing the hierarchical relationship between hierarchy objects can be achieved by
the following line of code:

ptolemy.graph.DirectedAcyclicGraph relations = h3.hierarchyGraph();

To get a dot representation of these relations following code can be used:
HierarchyToDot.hierarchyGraphToDot(h3, fleName);

In Figure5-12, even though hierarchies 1 and O seem to be used twice, it isonly

because names of the mirrors are not changed.

85

Hierarchy2

Mirror2

Hierarchy3
Ports are;
P31:P23
Super nodes are:
n3l n32 n33
Hierarchy3
Ports are:
P31:P13
Super nodes are:
n23 n23
@ (b)

Figure 5-11. Dot outputs for hierarchy 3 before and after it is flattened.

86

Starting from Hierarchy3

Figure 5-12. Dot outputs for hierarchy tree graph.

Directed Hierarchy Example

1. Directed hierarchies are defined in the same way as hierarchies. The differenceis
the additional direction parameter in the Port constructor and also the visualization
tool is configured to show edge directions aswell. The code that defines a directed
portis

Port directedPort = new Port("Name", hierarchy, direction);

87

where the values that the direction parameter can take are Port.IN are Port. OUT.
An undirected port can be used as a bidirectional port. This example uses the same
graphs as the previous example.

. Directed hierarchies require extra attention to maintain consistency between
connections and port directions. Trying to connect an incoming edge to an output
port or vice versawill result in an error. Likewise, if ports are connected together,
their directions should be the same, with the exception of undirected ports. A
bidirectional (or undirected) port can be connected to an edge or port regardless of
the direction, however it cannot be related to a directed port. One example of port
direction matching is PO1 of hierarchy O (Figure 5-13(a)). Despite the fact that PO1
isan OUT port in the original hierarchy, the same port in the mirror of hierarchy O
is connected to an incoming edge of Hierarchy 3. Thisisonly possible by manually
removing that port and defining another port with IN or no direction
(Figure5-13(b)):

// Remove Port 01 in the mirror.

Port oldPort = mirror0.getPorts().get("P01");
Node relatedNode = oldPort.getNode();
oldPort.dispose();

/I Replace the old port with a new port with no direction.
(new Port("P01", mirrorQ)).relate(relatedNode);

/I Connect the port to the incoming edge.
mirror0.getPorts().get("P01").connect(e31);

Finally, hierarchy 3 is deep-flattened, merging all levels of the hierarchy inasingle

graph. Note that some of the node labels are duplicated. Thisis because same node

88

Hierarchy0
Ports are:

PO1(OUT):n01 PO2(IN):n02 PO3(OUT)m03

Hierarchy2

(©

Mirror0
Ports are:
POZ(IN):n02 PO3(OUT):n03 PO1:n01

Mirror2

Mirror0

"d

Hierarchy3

Ports are:

P31(OUT)P13
Super nodes are:

n23n23

Figure 5-13. Hierarchy 3 with itsfirst level subgraphs.

89

names are imported from mirror graphs. The Graph class API does not impose any
restrictions on node name duplication.

h3.deepFlatten();

.

Hierarchy3
Ports are:
P31(OUT)m03

Figure 5-14. Hierarchy 3 after the deep-flatten command.

90

5.2.3 A Tutorial Example for the DIF Compiler

Following isatutorial example on the compiler features of the DIF API. Theinput files
used in this example are listed in AppendixD. This demo can aso be accessed in the
mapss.dif.language.demo package.

1. Thisdemo is an example of how to read and write atext file in DIF. DIF allows
usage of C preprocessor commandsin files so definitions are divided into files that
start from graphl.dif going up to graph5.dif.

2. Compiling graph4.dif which has direct or indirect references to all graphi.dif files.

Reader reader = new Reader("files\\graph4.dif");
reader.compile();

3. Reading the graphs and hierarchies from the reader object.

Collection hierarchyCollection = reader.getHierarchies();
Collection graphCollection = reader.getGraphs();

4. Creating dot files from all hierarchies for displaying the graphs with GraphViz.

for(lterator hierarchies = hierarchyCollection.iterator();
hierarchies.hasNext();) {
DIFHierarchy hierarchy = (DIFHierarchy)hierarchies.next();
(new HierarchyToDot(
hierarchy,
hierarchy.getSuperNodes().getNodes(),
false)).toFile(directoryPath + "/[" + hierarchy.getName());
}

5. Reading the attributes of the graphs.

out.append("Parameters:\n\n");
for(lterator parameters = graph.getParameterNames().iterator();
parameters.hasNext();) {
String name = (String)parameters.next();
out.append(name +": "
+ graph.getParameterValue(name).toString()
+"\n");

91

out.append("\nGraph attributes:\n\n");

out.append(graph.getAttributeDescriptions() + "\n");

out.append("Node attributes:\n\n");

for(lterator nodes = graph.nodes().iterator(); nodes.hasNext();) {
Node node = (Node)nodes.next();
out.append(graph.getAttributeDescriptions(node) + "\n");

}

out.append("Edge attributes:\n\n");

for(lterator edges = graph.edges().iterator(); edges.hasNext();) {
Edge edge = (Edge)edges.next();
out.append(graph.getAttributeDescriptions(edge));
out.append(graph.getName(edge.source()) + " ->"

+ graph.getName(edge.sink()) + "\n\n");
}

return out.toString();

The output of this code for only _graphl isgiven below:

Parameters:

PRM1: {1.0} + (-1.0,0.0] + [2.0,3.0)
PRM2: {0.0, 0.1}
PRM3:

Graph attributes:

Name: _graphl

Attribute name: codeSize
Value: "Sum of n1 and n2"
Attribute name: totalSize
Value: "Unknown"

Node attributes:

Name: nl

Attribute name: attbl
Value: "\"n1\n\\nZ\"\\\\"
Attribute name: attb2
Value: "n1"

Attribute name: codeSize
Value: PRM1

92

Name: n2

Attribute name: attbl
Value: 5.0

Attribute name: attb2
Value: 5.0

Attribute name: codeSize
Value: PRM2

Name: n3

Attribute name: attbl
Value: "n3"

Attribute name: attb2
Value: "n2"

Name: n4
Attribute name: attb1
Value: [[(3.9-4.00.5)[3.0"n4" ["n4" "n4"]]] [10.0 11.0 "n4"]]

Edge attributes:

Name: el
ni->n2

Name: e2
n2 ->n3

Name: e3

Attribute name: attbl

Value: (0.01.0 2.0 3.456,1.0 2.0 3.0 4.0,5.06.0 7.0 8.0)
Attribute name: attb2

Value: [0.0 1.0 2.0]

n3 ->n4

Name: e4

Attribute name: attbl
Value: ()

n4 ->nl

93

6. All graphsthat are read are now written to asingle file. Note that SDF graph
requires an SDFToDIFWriter.

for(Iterator graphs = reader.getHierarchies().iterator();
graphs.hasNext();) {
DIFHierarchy hierarchy = (DIFHierarchy)graphs.next();
if(hierarchy.getGraph() instanceof SDFGraph) {
out.printin((new SDFToDIFWriter(hierarchy)).toString());
} else {
out.printin((new Writer(hierarchy)).toString());

}
}

7. Onefeature of the compiler isthe ability of changing the parameters and attributes
of a DIFGraph without defining a new one. The GraphModifier classis created
for this purpose. It isalimited version of the compiler with no preprocessor. It will
ignore all fields except the parameter and attribute fieldsin a DIF file and change
the input graph accordingly. This provides afast way of dynamically modifying
graphs.

(new GraphModifier(graphl))
.modifyGraph(new FileReader("./files/graph1Modify.dif"));

8. A feature similar to the GraphModifer is the basedon keyword in the DIF
language. A graph can be accepted as a model for topology and hierarchy and its
parameters and attributes can be defined differently in a separatefile. Thisis
different than the usage of GraphModifier sinceit is not dynamic but carried out at

the compile time instead. The example file for this example is graph1Modify2.dif.

94

CHAPTER 6

Conclusion

Thisthesis has presented thefirst version (version 0.1) of dataflow interchange format
(DIF), atextual language for writing coarse-grain, dataflow-based models of DSP
applications, and for communicating such models between DSP design tools. The
objectives of DIF are to accommodate a variety of dataflow-related modeling constructs,
and to facilitate experimentation with and technology transfer involving such constructs.
The DIF language is actively being extended, including the set of supported dataflow
modeling semantics, language features and repository of intermediate representations and
algorithms. Many of these extensions will be contained in the forthcoming next version,
DIF 0.2. Support for DIF has already been incorporated in an individual datafl ow-based

design tool - the MCCI Autocoding Toolset [14].

95

APPENDIX A

The Complete DIF Language

Below is acomplete definition of the DIF language version 0.1. The tokens part
specifiesthe regular expression tokensto be used with the productions and the productions
part defines the language rules in Extended Backus-Naur Form. For more information on

formal language definitions, refer to Chapter 2.

e Tokens:
all=[0 .. 127]
digit =['0" .. ‘9]

octal_digit=[0".. ‘7]

hex_digit = digit + ['a’ .. ']+ ['A" .. 'F]

non_digit=[A"..‘'Z1+[a .. Z]1+[_]

escape_sequence = simple_escape | hexadecimal_escape |octal_escape
simple_escape ="\""" ['\" | "\V' |[\b" | \f' | \n" | '\ | '\

hex_escape ="\x' hex_digit+

octal_escape ='\' octal_digit octal_digit? octal_digit?

tab=9
cr=13
If =10

eol=tab|cr|If
string = ([all - ["” + V" + ‘cr’ + ‘I]] | escape_sequence)*
string_tail ='+' (' | eol | tab)* string

double = (‘+" | *-")? (digit*) ‘.’ (digit+)
integer = (‘+' | *-")? (digit*)
number = double | integer

identifier = non_digit (digit | non_digit)*

96

not_cr_If=all-[cr+If]

not_star = all - ™

not_star_slash = not_star -/’

short_comment ="//' not_cr_If* eol

long_comment = '/*' not_star* *'+ (not_star_slash not_star* *'+)* /'
comment = long_comment | short_comment

Productions:

/I Defining graph blocks in a file:
<graph_list> = <graph_block>*

<graph_block> =
[type]:identifier? graph [name]:identifier <basedon>? “{" <block>* *}”

<basedon> = basedon identifier

<block> = {params} params <params_body> |
{interface} interface <interface_body> |
{topology} topology <topology body> |
{refinement} refinement <refinement_body> |
{fixed_attribute} identifier <attribute_body> |
{attribute} attribute identifier <attribute_body>

97

// Defining the topology:
<t0pology bOdy> = “{” <t0p0|ogy list>* u}n

<topology list> = nodes “{” <node definition block>? “}" |
edges “{" <edge definition>* “}”

<node definition block> = <node definition> <node definition tail>*
<node definition> = identifier | [node:] identifier “:” [port:] identifier
<node definition taib> = “,” <node definition>

<edge definition> = [edge:] identifier [source:] identifier [sink:] identifier “;”

/I Defining the interface:

<interface_body> =*“{" <interface_expression>*“}”
<interface_expression> =

{input} input identifier <interface_identifier_tail>* *;” |
{output} outputidentifier <interface identifier_tail>*“;”|

{inout} inout identifier <interface_identifier_tail>* “;”

<interface_identifier_tail>=",” identifier

98

/I Defining the refinement:
<refinement_body> = “{” <refinement_expression>* “}”

<refinement_expression> =
[graph]:identifier [node]:identifier <refinement_definitions>? “;”

<refinement_definitions> =
<refinement_connection> <refinement_connection_tail>*

<refinement_connection> = [port]:identifier “:” [element]:identifier

<refinement_connection_tail> = “,” [port]:identifier “:” [element]:identifier

// Defining attributes:
<attribute_body> = “{” <attribute_expression>* “}”

<attribute_expression> = {element} identifier <value>?*“;”
{graph} this <value>? “;”

<value> = {number} number |
{param} identifier |
{concat_string} string string_tail* |
{array} “(” number* <array_row>*")" |
{list} “I” value+“]”
<array_row> =",” number*

99

I/l Defining the parameters
<params_body> = “{" <params_expression>* “}"

<params_expression> = {normal} identifier “:” <range_block> “;" |
{blank} identifier “;”

<range_block> = <range> <range_tail>*

<range> =
{closed_closed} “[” [left]:number “,” [right]:number “]” |
{open_closed} “(” [leftl:number“,” [right]l:number “]” |
{closed_open} “[” [leftl:number “,” [right]:number*)” |
{open_open} “)” [left]:number*“,” [right]:number “)” |
{discrete} “}” number <discrete_range_number_tail>*“}”

<discrete_range_number_tail> = “,” number

<range_tail> = “+” <range>

100

APPENDIX B

SableCC L anguage Specification I nput

Package mapss.dif.language.sablecc;

Helpers
all=1[0..127];
digit=[0"..'97;

non_digit = [[['a' .. '2'] + [A" .. 'Z] + "'

double = (('+'|-')?) (digit*) " (digit+);
integer = (('+'|'-")?) digit+;

tab = 9;

cr=13;

If = 10;

eol =cr If | cr | If; // This takes care of different platforms

not_cr_If = [all -[cr + If]];
not_star = [all -"*];
not_star_slash = [not_star -'/];

short_comment ='//' not_cr_If* eol;
long_comment ='/*' not_star* *'+ (not_star_slash not_star* *'+)* '/";
comment = long_comment | short_comment;

simple_escape_sequence ="\""" | \"" | \\' |

\b' |\ \n']\]
octal_digit=[0"..'77;
octal_escape_sequence = '\' octal_digit octal_digit? octal_digit?;
hexadecimal_digit = [digit + [['a’ .. 'f] + ['A" .. '"F1]];
hexadecimal_escape_sequence = "\x' hexadecimal_digit+;
escape_sequence = simple_escape_sequence | octal_escape_sequence |
hexadecimal_escape_sequence;
s_char=TJall -["" + ['\' + [10 + 13]]]] | escape_sequence;
s_char_sequence = s_char*;
string ="' s_char_sequence ";

Tokens

blank = ("' | tab | eol);
comment = comment;

101

semicolon =";";
colon=""
comma ="
s_qte =",
plus = '+,

graph = 'graph’;

attribute = "attribute’;
interface = 'interface’;
params = 'params’;
refinement = 'refinement’;
topology = 'topology’;

input = "input’;
output = 'output’;
inout = "inout’;

param = 'param’,
domain = 'domain’;
nodes = 'nodes’;
edges = 'edges’;

this = 'this";

basedon = 'basedon’;

identifier = non_digit (digit | non_digit)*;
number = double | integer;

string = string;
string_tail ="'+ (' ' | eol | tab)* string;

Ignored Tokens

blank,
comment;

Productions
graph_list = graph_block?;

graph_block = [type]:identifier? graph [name]:identifier basedon_definition?
|_bkt block* r_bkt;

basedon_definition = basedon identifier;

block =
{params} params params_body |
{interface} interface interface_body |
{topology} topology topology _body |
{refinement} refinement refinement_body |
{fixed_attribute} identifier attribute_body |
{attribute} attribute identifier attribute_body;

102

/*************************************

* Definitions for params block:
*/

params_body =|_bkt params_expression* r_bkt;

params_expression = _
{normal} identifier colon range_block semicolon|
{blank} identifier semicolon;

range_block = range range_tail*;

range =
{closed_closed} |_sqr [left]:number comma [right]:number r_sqr |
{open_closed} |_par [left]:number comma [right]:number r_sqr |
{closed_open} |_sqgr [left]:number comma [right]:number r_par |
{open_open} |_par [left]:number comma [right]:number r_par |
{discrete} |_bkt number discrete_range number_tail* r_bkt;

discrete_range_number_tail = comma number;

range_tail = plus range;

/*************************************

* Definitions for interface block:

*/

interface_body = |_bkt interface_expression* r_bkt;

interface_expression =
{input} input identifier interface_identifier_tail* semicolon |
{output} output identifier interface_identifier_tail* semicolon |
{inout} inout identifier interface_identifier_tail* semicolon;

interface_identifier_tail = comma identifier;

/*************************************

* Definitions for topology block:
*/

topology_body = |_bkt topology_list* r_bkt;
topology_list =

{nodes} nodes | bkt node_definition_block? r_bkt |

{edges} edges | bkt edge_definition* r_bkt;
node_definition_block = node_definition node_definition_tail*;

node_definition = {plain} identifier |
{port} [node]:identifier colon [port]:identifier;

node_definition_tail = comma node_definition;

103

edge_definition = [edge]:identifier
[source]:identifier
[sink]:identifier
semicolon;

/*************************************

* Definitions for refinement block:
*/

refinement_body =|_bkt refinement_expression* r_bkt;

refinement_expression = [graph]:identifier
[node]:identifier
refinement_definitions?
semicolon;

refinement_definitions = refinement_connection refinement_connection_tail*;
refinement_connection = [port]:identifier colon [element]:identifier;

refinement_connection_tail = comma
[port]:identifier
colon
[element]:identifier;

/*************************************

* Definitions for attribute block:
*/

attribute_body = |_bkt attribute_expression* r_bkt;

attribute_expression =
{element} identifier value semicolon |
{graph} this value semicolon;

value =
{number} number |
{param} identifier |
{string} concatenated_string_value |
{array_of _numbers} |_par number* array_row* r_par |
{list_of values} |_sqr value+ r_sqr;

array_row = comma number*;

concatenated_string_value = string string_tail*;

104

APPENDIX C

Class Designsin the Unified M odeling L anguage

UML (the unified modeling language) defines a suite of visual syntaxesfor describing
various aspects of software architecture. This appendix will use the class diagram syntax
of UML to visualize the class structures and rel ationships between classes of the DIF API.
In these diagrams, classes will be denoted by boxes. The class name s at the top of each
box, class variables are below that and methods are the last segment. Public variable or
methods are prefixed by a“+” symbol and protected ones are prefixed by “#’. Static
methods are underlined.

Subclasses are indicated by lines with arrow heads. The class on the side of the
arrowhead isthe super classand the class on the other end isthesubclass. Normally, classes
are grouped according to their packages however an empty dashed class box with only a
name can be placedinaUML diagram if it isextended by any of the classesin that package.

Aggregations are shown with diamonds instead of arrow heads. For example, aGraph
isan aggregation of any number (0..n) instances of Edge. More strongly, aPort is contained

by O or 1 instances of Graph.

105

r—————— — — = a
is.di |
synthesis.dif | tolemy.graph.DirectedGraph‘ DIFGraph.Parameter
| |
[= A
L |
IL J +Parameter(name : String)
*****) /T - - +getName() : String
#Parameter()
1.n
1.1
DIFGraph

+DIFGraph()

+DIFGraph(nodeCount : int)

+DIFGraph(nodeCount : int, edgeCount : int)

+getAttribute(name : String) : Object

+getAttribute(element : ptolemy.graph.Element, name : String) : Object
+getAttributeDescriptions() : String

+getAttributeDescriptions(element : ptolemy.graph.Element) : String
+getAttributeNames() : List

+getAttributeNames(element : ptolemy.graph.Element) : List

+getName() : String

+getName(element : ptolemy.graph.Element) : String

+getObject(name : String) : Object

+getParameterNames() : List

+getParameterValue(name : String) : attributes.IntervalCollection
+removeAttribute(name : String) : Object

+removeAttribute(element : ptolemy.graph.Element, name : String) : Object
+removeParameterValue(name : String) : attributes.IntervalCollection
+setAttribute(element : ptolemy.graph.Element, name : String, value : Object) : Object
+setAttribute(name : String, value : Object) : Object

+setName(name : String) : String

+setName(element : ptolemy.graph.Element, name : String) : String
+setParameterValue(parameter : attributes.IntervalCollection) : attributes.IntervalCollection
#_getAttributeContainer(object : Object) : AttributeContainer
#_setAttributeContainer(object : Object, container : AttributeContainer) : AttributeContainer

1.1

AttributeContainer

+getAttribute(name : String) : Object 1.n
+getAttributeNames() : List

+getName() : String
+removeAttribute(name : String) : Object DIFNodeWeight
+setAttribute(name : String, value : Object) : Object

+setName(name : String) : String

+obijectToString(value : Object) : String +DIFNodeWeight()
+DIFNodeWeight(computation : Object)
+getComputation() : Object
+setComputation(computation : Object)

DIFEdgeWeight

+DIFEdgeWeight()

+DIFEdgeWeight(sourcePort : IOPort, sinkPort : IOPort, productionRate : Object, consumptionrate : Object, delay : int)
+DIFEdgeWeight(productionRate : Object, consumptionRate : Object, delay : Object)
+getConsumptionRate() : Object

+getDelay() : Object

+getProductionRate() : Object

+getSinkPort() : ptolemy.actor.|OPort

+getSourcePort() : ptolemy.actor.|IOPort

+setConsumptionRate(consumptionRate : Object)

+setDelay(delay : Object)

+setProductionRate(productionRate : Object)

+setSinkPort(sinkPort : ptolemy.actor.|IOPort)

+setSourcePort(sourcePort : ptolemy.actor.|OPort)

#_getConsumptionRate() : Object

#_getProductionRate() : Object

#_setConsumptionRate(consumptionRate : Object)
#_setProductionRate(productionRate : Object)

Figure C-1. UML diagram for the basic classes of mapss.dif.

106

DIFMirrorTransformation

— 1

+mirrorAttributes(state : boolean) : boolean

DIFHierachyToDot

+DIFHierarchyToDot(hierarchy : DIFHierarchy, flattenSet : Colleaction, useElementNames : boolean)

DIFHierachy

DIFToDot

+DIFHierarchy(graph : DIFGraph)
+DIFHierarchy(graph : DIFGraph, name : String)

+DIFToDot(graph : DIFGraph)

Figure C-2. UML diagram for the utility classes of mapss.dif.

107

synthesis.dif.language

Reader

#_analysers : LanguageAnalysis[] I

+compile(analysers : LanguageAnalysis[]) I
+getGraphs() : Collection
+getHierarchies() : Collection
+getProblemHierarchies() : Map

#_fileName : String |synthesis.dif.language.sablecc.analysis.DepthFirstAdapter
+Reader(fileName : String) L_______________________l
+compile() | |

LanguageAnalysis

+LanguageAnalysis()()

+getHierarchies() : Collection

+getKeyword() : String
+getProblemHierarchies() : Map
#_getEmptyEdge() : ptolemy.graph.Edge
#_getEmptyGraph() : synthesis.dif. DIFGraph
#_getEmptyNode() : ptolemy.graph.Node
#_getKeyword() : String

#_processFixedAttribute(object : Object, id : String, value : Object, graph : synthesis.dif.DIFGraph) : boolean

Writer

+Writer(graph : synthesis.dif. DIFGraph, useNames : boolean)

+Writer(hierarchy : graph.DirectedHierarchy, useNames : boolean)
+isKeyWord(word : String) : boolean

+objectToString(value : Object) : String

+toFile(fileName : String)

+toString() : String

#_getEmptyGraph() : synthesis.dif. DIFGraph

#_graphType() : String

#_readBuiltinAttributes(graph : synthesis.dif. DIFGraph, useNames : boolean) : String

GraphModifier

#_graph : synthesis.dif. DIFGraph

#:hierarchy : graph.DirectedHierarchy
+GraphModifier(graph : synthesis.dif. DIFGraph)
+GraphModifier(hierarchy : graph.DirectedHierarchy)
+modifyGraph(fileName : String) : boolean

I |
|java.lang.Exceptioq
.]

[|

|

DIFLanguageException

Figure C-3. UML diagram for the classes of mapss.dif.language.

108

synthesis.graph.hierarchy

Hierarchy
#_graph : Graph
#_hierarchyName : String
#_parent : Hierarchy
#_ports : PortList
PortList #_superNodes : SuperNodeMap
+addSuperNode(node : Node, hierarchy : Hierarchy)
#_analysers : LanguageAnalysis[] +deepPurge() : List
#_fileName : String +disconnect()
+PortList() +disconnectSuperNode(node : Node)
+disconnectAll() +flatten() : boolean
+get(name : String) : Port 1n +flatten(superNode : Node) : Hierarchy
+get(node : Node) : String - 1.1 |+getGraph() : Graph
+getConnectedPort(edge : Edge) : Port[] +getName() : String
+getAll() : java.util.List +getParent() : Hierarchy
+isDefined(name : String) : boolean +getPorts() : PortList
+isDisconnected(edge : Edge) : boolean +getSuperNodes() : SuperNodeMap
+iterator() : Listlterator +hierarchyGraph() : DirectedAcyclicGraph
+newName() : String +isDirected() : boolean
+toString() : String +mirror(cloneWeights : boolean) : Hierarchy
#_add(port : Port) +purge() : List
#_remove(port : Port) +setName(name : String) : String
+toString() : String
1.1 #_copyEdge(edge : Edge, source : Node, sink : Node) : Edge
#_graphType() : Graph
#_mirrorGraph(graph : Graph) : MirrorTransformerStrategy

e

Port

SuperNodeMap
+IN : int
+OUT : int
+INOUT : int #SuperNodeMap()
+Port(name : String, hierarchy : Hierarchy) +contains(hierarchy : Hierarchy) : boolean
+Port(name : String, hierarchy : Hierarchy, direction : int) +contains(node : Node) : boolean
+connect(edge : Edge) : Object +get(hierarchy : Hierarchy) : Node
+connect(port : Port) : Object +get(superNode : Node) : Hierarchy
+disconnect() : Object +get(name : String) : Hierarchy
+dispose() +getNodes() : List
+getConnection() : Object +isDefined(name : String) : boolean
+getDirection() : int +isSubHierarchy(hierarchy : Hierarchy) : boolean
+getHierarchy() : Hierarchy +isSuperNode(node : Node) : boolean
+getName() : String +iterator() : Listlterator
+getNode() : Node +newName() : String
+getRelatedPort() : Port +_put(node : Node, hierarchy : Hierarchy)
+isConnected() : boolean +_remove(superNode : Node)
+isDisposed() : boolean
+isRelated() : boolean
+mirror(hierarchy : Hierarchy, transformation : MirrorTransformaterStrategy) : Port -~ |
+relate(node : Node) : Object liava.lang.RuntimeExceptior
+relate(port : Port) : Object \ I
+toString() : String | |
+unrelate() : Object = !

HierarchyException

CyclicHierarchyException

+HierarchyException(message : String)

+checkConnection(edge : Edge. port : Port) : HierarchyException

+checkConnection(superPort : Port, subPort : Port) : HierarchyException — . S
+checkFlatten(hierarchy : Hierarchy. superNode : Node) : HierarchyException | |*CYclicHierarchyException(violation : Edge)
+checkPort(hierarchy : Hierarchy, port : Port) : HierarchyException +checkCycle(parent : Hierarchy, child : Hierarchy)
+checkSuperNode(parent : Hierarchy. child : Hierarchy) : HierarchyException | |[*getViolation() : Edge

B |

Figure C-4. UML diagram for the classes of mapss.graph.hierarchy.

109

synthesis.graph

DotGenerator

#_clusterAttributes : HashMap

#_clusters : Vector

#_elementAttributes : HashMap

#_extraLines : StringBuffer

#_graph : Graph

#_isDirected : boolean

#_name : String

+DotGenerator(graph : Graph)

+addLine(line : String)

+isCLusterNode(node : Node) : boolean
+setAsDirected(directed : boolean) : boolean
+setAttribute(clusterNodes : Collection, line : String) : boolean
+setAttribute(graphElement : Element, attribute : String, value : String) : String
+setCluster(clusterNodes : Colleaction) : boolean
+setGraphName(name : String) : String

+toFile(graph : Graph, fileName : String. isDirected : boolean)
+toFile(fileName : String)

+toString() : String

HierarchyToDot

#_dotGenerator : DotGenerator
#_hierarchy : Hierarchy

+HierarchyToDot(hierarchy : Hierarchy, flattenSet : Collection, useElementNames : boolean)
#_elementName(element : Element) : String

+hierarchyGraphToDot(hierarchy : Hierarchy) : DotGenerator

+toFile(fileName : String)

+toString() : String

Figure C-5. UML diagram for the classes of mapss.graph.

110

APPENDIX D

DIF Graph and Hierarchy Specification Examples

o graphl.dif

[* A graph definition with an interface.
*/
dif graph _graphl {
params {
PRM1: {1.0} + (-1.0, 0.0] +[2.0, 3.0);
PRM2: {0.0, 0.1},

}

interface {
/l You can use labels for interfaces as in the following line.
/ Node n3 is labeled as N3 and n4 is labeled as _N4.
input _N3;
output N4,

}

topology {
nodes { n1, n2, n3:_N3, n4:_N4}
edges {
el nl nZ;
e2 n2 n3;
e3 n3 n4;
e4 n4 nl,

}
}

/I This is a user defined attribute.
attribute attb1 {
/I String attribute. (Concatenation of strings is allowed)
nl"\"n1\n" + "\n1\"\\" ;
// Double attribute.
n2 5;
// Double matrix attribute.
e3(0123.456,1234,5678);
ed ();

111

/I Another string attribute.

n3 "n3";

/I Object array attribute.

n4[[(3.9 -4 +.5) [3 "n4" ['n4" "n4"]] [10 11 "n4"]];

}

/I Another attribute block.
attribute attb2 {

nl"nl";

n2 5;

e3[01 2]

n3 "n2";
}

/I Some parametrized attributes.
attribute codeSize {

nl PRM1;

n2 PRM2;

this "Sum of n1 and n2";

}

/I One more graph attribute.
attribute totalSize {
this "Unknown";

}
}

» graphlModify.dif

/* A modified graph is parsed by the graph modifier tool instead of the
* default parser.
*/
dif graph _graphlModified {
params {
PRM3: {10};
}

/I User defined attributes.
attribute attbl {
nl ["Changed attribute” 100] ;
el (12,34)

112

e4 "Another changed attribute";

}

attribute attb3 {
nl "Defined new";

}

attribute codeSize {
nl "changed";
n2 PRM1;

}

attribute totalSize {
this "Changed graph attribute”;
}
}

» graphlModify2.dif

[* Modifying the graph using the basedon feature of DIF. This gives

* the same result as graph1Modify.dif however this is a feature defined
* in the DIF parser.

*/
#include "graphl.dif"
dif graph _graphlModified basedon _graphl {

params {

PRM3: {10};
}

/I User defined attributes.
attribute attb1 {
nl ["Changed attribute” 100] ;
el (12,34),
e4 "Another changed attribute™;

}

attribute attb3 {
nl "Defined new";

}

113

attribute codeSize {
nl "changed”;
n2 PRM1;

}

attribute totalSize {
this "Changed graph attribute”;

}
}

o graph2.dif

#include "graphl.dif"
#define DELAY 3.0
dif graph _graph2 {
interface {
inout _N21;
}

topology {
nodes { n21:_N21, n22, n23}

edges {
e21 n21 n22;
e22 n22 n23,;
e23 n23 n21;

}
}

/I An example of a refinement expression.
/In23 is connected to _graphl via edges e22 and e23.
refinement {

_graphl n23 N3:e22, N4:.e23;

}

/I The following three blocks are built-in attribute definitions
/[for an edge: production/consumption rates and delay of the edge are
I/ defined.
production {
e2l [2['1""2"] (1 2 3)];
}

114

consumption {
e2l 2.0;

}

delay {
e21 DELAY;

}
}

o graph3.dif

#include "graph2.dif"
dif graph _graph3 {
interface {
input _N31;
}

topology {
nodes { n31, n32, n33}

edges {
e31 n31 n32;
e32 n33 n31;

}
}

refinement {
_graph2 n32 _N21:e31;
_graphl n33 _N3:_N31, N4:e32;
}
}

o graph4.dif
#include "graph3.dif"
#include "graph5.dif"
dif graph _graph4 {
topology {
nodes { n41, n42}
edges {
e41 n41 n42;
}
}

115

refinement {
_graph3 n42 _N31:e41;
_graph5 n4l Nb51:e41;
}
}

o graph5.dif
sdf graph _graph5 {
interface {
output N51;
}

topology {
nodes { n51: N51}

}
}

116

raphl

o
_graphl ° ®
° _graphs
o Ports are:
_N51(0OUT):0

_graph5
&

_gtiaph3

3

ap

=)
s

O

& O)
5 Ay)
O O BT

Ports are:
_graphl _graph2 _N31(IN):6 _graphd
Ports are: Ports are: Super nodes are: Super nodes are:
_N3(IN):2 N4(OUT):3 _N21:0 3 12

Figure D-1. GraphViz outputs for the hierarchies defined in this appendix - all
hierarchies are flattened one level.

117

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Peter Naur, Revised Report on the Algorithmic Language ALGOL 60. Communica-
tions of the ACM, Vol. 3 No.5, pp. 299-314, May 1960

B. Bhattacharyaand S. S. Bhattacharyya. Parameterized dataflow modeling for DSP
systems. |IEEE Transactions on Sgnal Processing, 49(10):2408-2421, October
2001.

S. S. Bhattacharyya, R. Leupers, and P. Marwedel. Software synthesis and code gen-
eration for DSP. |EEE Transactions on Circuits and Systems—|I1: Analog and Digi-
tal Sgnal Processing, 47(9):849-875, September 2000.

S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Synthesis of embedded software
from synchronous dataflow specifications. Journal of VLS Sgnal Processing Sys-
tems for Sgnal, Image, and Video Technology, 21(2):151-166, June 1999.

G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. Cyclo-static data flow.
In Proc. ICASSP, pages 3255-3258, May 1995.

J. T. Buck and E. A. Lee. Scheduling dynamic dataflow graphs using the token flow
model. In Proc. ICASSP, April 1993.

E. Gagnon. SableCC, an object-oriented compiler framework. Master's thesis,
School of Computer Science, McGill University, Montreal, Canada, March 1998.

G. R. Gao, R. Govindargjan, and P. Panangaden. Well-behaved programs for DSP
computation. In Proc. ICASSP, March 1992.

K. Ito and K. K. Parhi. Determining the iteration bounds of single-rate and multi-
rate data-flow graphs. In Proc. IEEE Asia-Pacific Conference on Circuits and Sys-
tems, December 1994.

E. Koutsofiosand S. C. North. dot user's manual . Technical report, AT& T Bell Lab-
oratories, November 1996.

E. A. Lee. Overview of the Ptolemy project. Technical Report UCB/ERL M0O1/11,
Department of EECS, UC Berkeley, March 2001.

E. A. Lee and D. G. Messerschmitt. Synchronous dataflow. Proceedings of the
|EEE, 75(9):1235-1245, September 1987.

118

[13]

[14]

[15]

[16]

[17]

M. Pankert, O. Mauss, S. Ritz, and H. Meyr. Dynamic data flow and control flow in
high level DSP code synthesis. In Proc. ICASSP, 1994.

C. B. Robbins. Autocoding Tool set software tools for automatic generation of paral-
lel application software. Technical report, Management, Communications & Con-
trol, Inc., 2002.

G. C. Sih. Multiprocessor Scheduling to account for Interprocessor Communication.
Ph.D. thesis, Department of EECS, UC Berkeley, April 1991.

B. Kernighan, D. Ritchie, The C Programming Language, 2nd Edition. Prentice
Hall, 1988.

G. Bracha, J. Godling, B. Joy and G. Steele, The Java Language Specification, 2nd
Edition. Addison-Wesley, 2000.

119

