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Chapter 1
Introduction

This report documents air combat analyses performed from 06 June 2005 to 28
July 2006 for the Tactical Air Division of the Program Analysis and Evaluation
Office of the Office of the Secretary of Defense (OSD PA&E TACAIR). The fo-
cus of our analyses was air campaign modeling to support the Quadrennial Pro-
gram Review (QDR). Specific technical efforts included improving and
employing the Stochastic Lanchester Air-to-Air Combat Model (SLAACM).

To support analysis of QDR issues, we added the following features to SLAACM:
# Increased types of Red and Blue aircraft
& Selectable “smart” battle management capability for Blue

+ Capability to identify each Red aircraft as fighter only, fighter or bomber,
or bomber only

& Capability to identify Blue aircraft types as operating in the continuous
combat air patrol (CAP) mode, in which the defensive force is managed so
that Blue can maintain aircraft on station continuously

& A battle management factor for engagements between Red packages and
“non-smart” Blue aircraft, reflecting the possibility that not all randomly
dispatched aircraft actually find targets

& Integer programming optimization for both Red attack and “smart” Blue
defense

& Automated conversion of loss (exchange) ratio data to kill-rate ratios
& Display of dispersion measures (standard deviations) of Blue losses.

To improve the general usefulness of SLAACM, we developed functionally iden-
tical classified and unclassified versions. The classified model includes weapon
and scenario data, provided by PA&E TACAIR, that are necessary for QDR
analyses.

During the year, under the technical direction of PA&E TACAIR, we conducted
several classified analyses of QDR scenarios. We briefed the results of these
analyses to TACAIR and to senior PA&E personnel. In addition, we provided ex-
amples of both classified and unclassified results in a presentation at the Military
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Operations Research Society (MORS) Symposium held at the U.S. Air Force
Academy in June 2006.

Mathematical analyses during the current task included development of the cam-
paign optimization tools and analysis of phased attack and defense strategies.

This report is organized as follows:

L 4

*

Chapter 2 describes the current SLAACM and presents example analyses.

Chapter 3 contains a mathematical analysis of optimization and battle
management in SLAACM.

Chapter 4 contains a mathematical analysis of phased attack and defense.

Chapter 5 recommends future improvements for SLAACM.
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Chapter 2
SLAACM Overview and Example Analyses

This chapter updates and supplements the August 2004 SLAACM User Guide
with descriptions of new SLAACM features and formats. We introduce the cur-
rent model structure by demonstrating the battle management features of
SLAACM.

The chapter begins with a discussion of loss ratio input and Kill-rate ratio calcula-
tions. It then presents example analyses that include

& Red and Blue force inputs,
& Blue battle management options, and

& Campaign result plots and data displays.

LOSS RATIO INPUT AND KILL-RATE RATIO
CALCULATIONS

Loss ratios for small-scale engagements are fundamental inputs for SLAACM.
Assuming that air-to-air combat can be modeled as a series of Poisson events, and
given the basic assumption of Lanchester modern firing logic, we derive kill-rate
ratios (KRRs) from the loss ratio data and use these KRRs to model engagements
of arbitrary numbers of aircraft. The loss ratios have historically been provided by
PA&E TACAIR and are based on simulation results and military judgment.

KRRs corresponding to the loss ratios are obtained by iterative calculation of loss
ratios given trial KRR inputs. We seed our engagement model with high- and
low-bounding trial KRRs and iterate using a bisection technique until we match
the target loss ratio. For KRR derivation, the engagement model must be config-
ured to match the engagement from which the loss ratios were derived. Engage-
ment configurations include both the basic “n Blue vs. m Red” information, and
any “side conditions,” such as both sides fighting to the death or Blue leaving af-
ter two losses. Kill-rate ratio calculations were previously done offline, but as we
expanded the number of Red and Blue aircraft options, it became necessary to
automate the calculation of the KRRs and include them in SLAACM.

Figure 2-1 shows the nominal loss ratios for a dominant Blue force. These ratios

are contained in the current unclassified version of SLAACM and in the controls
for the KRR calculation.
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Figure 2-1. Loss Ratio Table and KRR Calculation Controls

Loss Ratios
Usage* Name payload, Ib cepr Fv.Blul Fv.Blu2 Fv.Blu3 Fv.Blu4 Fv.Blu5 Fv.Blu6 Fv.Blu7 Fv.Blu8 Fv.Blu9 Bv.Blul Bv.Blu2 Bv.Blu3 BVv.Blud
1|Red F1 1000 1.0 21 101 19 24 19 10 11 12 13 57 202 48
1|Red F2 1000 1.0 12 51 10 12 10 6 7 8 9 29 102 25
1|Red F3 2000 1.0 11 39 8 10 8 4.4 5.4 6.4 7.4 23 77 19
1|Red F4 3000 0.6 8 26 6 7 6 3.3 4.3 5.3 6.3 16 52 13
O|Red F5 6000, 0.10 4.4 13.5 3.1 4.4 3.1 1.3 2.3 3.3 4.3 8.7 27.1 8.7
1|Red F6 3000 0.10 5.6 17.5 4.0 5.6 4.0 1.6 2.6 3.6 4.6 11.3 34.9 11.3
1|Red F7 2000 0.5 12 40 8 10 8 4 5 6 7 23 81 20
O|Red F/B 2000 0.6 28 101 19 24 19 10 11 12 13 57 202 48
-1|Red B1 6000 0.4 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
-1|Red B2 18000 0.10 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
-1|Red B3 12000 0.10 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

* Usage = -1 => a/c is bomber only; 0 => bomber OR fighter; 1 => fighter only.

Info for Calculating Kill-Rate Ratios Get Kill Rate
Blue Start Red Start Blue Quit _Red Quit Ratios
4 8 0 0

The loss ratios in Figure 2-1 are based on engagements of four Blue aircraft vs.
eight Red aircraft, with both sides fighting to the death. The controls for the en-
gagement configuration and side conditions are shown at the bottom left of the
figure.

The first column in Figure 2-1 contains flags that indicate whether the Red air-
craft can be configured as a fighter only (1), bomber only (-1), or both (0). The “F
vs. Blu” columns contain loss ratios for Red fighter configurations, and the “B vs.
Blu” columns contain loss ratios for Red bomber configurations. The numbers in
the columns are the Red losses compared to one Blue loss, so that the most effec-
tive Reds have the lowest ratios and the most effective Blues have the highest ra-
tios. We see in Figure 2-1 that Red F5 is the most effective Red fighter and Blu2
is the most effective Blue fighter. The extremely high loss ratios for Red bombers
indicate that they have essentially no air-to-air capability against the Blue aircraft.

Column 3 in Figure 2-1 contains the bomb payload in tons for bombers and
fighter-bombers. Column 4 contains the circular error probable (CEP) ratio of the
bomb payload compared to the CEP of a 500-pound gravity bomb. Small ratios
indicate precision-guided munitions. The optimizer uses both the payload tonnage
and CEP ratio of the munitions to determine the destructive effectiveness of the
payload. Red B2, with an 18,000-pound payload of 0.10 CEP ratio munitions, is
the most effective Red bomber.
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Usage*

Name payload, Ib cepr
1 Red F1 1000
1 Red F2 1000
1 Red F3 2000
1 Red F4 3000
0 Red F5 6000
1 Red F6 3000
1 Red F7 2000
0 Red F/IB 2000
-1 Red B1 6000
-1 Red B2 18000
-1 Red B3 12000

SLAACM Overview and Example Analyses

Figure 2-2 shows the KRRs that result from the Figure 2-1 loss ratios. The calcu-
lation time for the complete table of KRRs is approximately 20 seconds on a 1
GHz PC.

Figure 2-2. Kill-Rate Ratios

Kill-Rate Ratios

1 25.7 1155 23.7 28.8 23.7 135 14.6 15.8 16.9 656  229.1 45.2 55.4 45.2

1 15.6 59.3 135 16.1 135 8.2 9.4 10.6 117 35.0 116.6 24.8 29.9 24.8
1 14.8 45.3 10.9 12.9 10.9 6.9 8.1 9.3 10.4 27.4 88.5 19.8 23.6 19.8
0.6 10.9 31.3 8.2 9.6 8.2 5.4 6.7 7.9 9.1 19.8 60.4 14.7 17.2 14.7
0.1 6.8 17.3 5.2 6.8 5.2 2.6 4.0 5.4 6.6 119 325 9.0 11.9 9.0
0.1 8.3 21.7 6.4 8.3 6.4 31 4.5 5.8 7.1 14.8 41.2 111 14.8 11.1
0.5 15.2 475 11.1 13.2 11.1 6.9 8.1 9.2 10.4 28.2 93.0 20.2 24.2 20.2

0.6 33.8 115.5 23.7 28.8 23.7 135 14.6 15.8 16.9 65.6 229.1 45.2 55.4 452
0.4 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127
0.1 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127
0.1 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127 1127

With the KRRs established, the next task is to define the Red and Blue orders of
battle using one input table for the Red force and one for the Blue force. When an
aircraft can be a fighter or a bomber, the SLAACM optimizer (heuristic or integer
program solver) chooses the mix of configurations that provide the highest pay-
off; thus, we need only specify the quantity of the basic Red type and the model
determines its optimum use.

EXAMPLE ANALYSES

Background

To set the stage for the scenarios below, we note that the current SLAACM sce-
nario matches a package of four Blues against Red packages containing four ad-
vanced escort fighters, four close escort fighters, and four bombers. The defenders
must defeat, in turn, the advanced escorts and the close escorts to reach the bomb-

ers.

In developing the order of battle for each day, Red optimizes his attack based on
the payoffs for the potential attack packages. Package payoffs are based on the
destructive power of the bombers, the value of enemy aircraft killed, and the po-
tential for success based on the kill-rate ratios of the combatants.

Blue has input options of designating individual aircraft “Smart” or “Smart Local
Area Defender (LAD).” Both Smart and Smart LAD Blue aircraft are assumed to
have sufficient battle management to identify and choose their target Red pack-
ages, and the Blue side performs the optimizations for those aircraft so desig-
nated. Smart Blues calculate payoff based on the destructive power of the
bombers, the value of enemy aircraft killed, the value of own-side aircraft killed,
and the potential for success based on the kill-rate ratios of the combatants. Smart
Blue aircraft are relatively loss averse, while Smart LAD Blue aircraft, as local
area defenders, are indifferent to Blue-side loss.
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Blues not selected as Smart or Smart LAD engage randomly with no considera-
tion of target value or own-side risk. The randomly assigned Blue aircraft are sub-
ject to a battle management factor, with values between 0.0 and 1.0, that defines
the probability that they will be able to locate and engage any Red packages.

Note that one Blue aircraft type is labeled “LAD” and belongs to the indigenous,

“Green,” force. We assume Green is defending home ground and is indifferent to
losses. We typically either have the Green LAD aircraft attack randomly or select
for it both Smart and LAD options.

SLAACM includes both a “greedy algorithm” heuristic optimizer that identifies,
sorts, and selects the highest-payoff packages to engage, and a link to a commer-
cial program, LINGO™, that performs a complete integer program optimization.

Scenarios

In the examples that follow, we consider a simple case with one type of Blue de-
fender of moderate strength opposed by two types of Red fighters escorting two
types of Red bombers. Table 2-1 shows quantities and performance parameters
for the combatants. Blue Blu6 in the KRR table corresponds to Blue NF1 in the
Blue supply figure. For clarity, we use the label “Blu6 (NF1)” in the discussions

below.
Table 2-1. Scenario Input Data
Aircraft Blu6 (NF1) Red bomber Red bomber
Aircraft initial to red aircraft payload weight payload quality

designation quantity kill-rate ratio (ton) (CEP ratio)
Blue Blu6 (NF1) 100
Red F1 600 13
Red F5 100 3
Red B1 300 >1,000 6,000 0.4
Red B2 200 >1,000 18,000 0.1

Figures 2-3 and 2-4 show the SLAACM input worksheets for Blue and Red sup-
ply. The input tables allow day-by-day replacements or phased deployments
(which are not used for the current example).




SLAACM Overview and Example Analyses

Figure 2-3. Blue Supply

NOTE: A/C shown on this sheet are available for service on the indicated days. Day 0 is the initial load-out. Day

0 1 2 3 4 5 6 7 8

Blue_F1
Blue_F2
Blue_F3
Blue_F4
Blue_F5
Blue_NF1
Blue_NF2
Blue_NF3
Blue_LAD

=
o
[=l[=l[=l[=l[=ll=]ll=]ll=]=]

Figure 2-4. Red Supply

NOTE: A/C shown on this sheet are available for service on the indicated days. Day O is the initial load-out. Day 1

New Row

0 1 2 3 4 5 6 7 8
Red F1 600
Red F2 0
Red F3 0
Red F4 0
Red F5 100
Red F6 0
Red F7 0
Red F/B 0
Red B1 300
Red B2 200
Red B3 0

Figure 2-5 shows the Blue order of battle (OOB) worksheet that includes input,
output, and run controls. Control inputs at the top of the worksheet set the number
of days in the campaign, the battle management factor for random defense, and
the CAP factor. (“Days” refers to individual engagement periods, between which
each side has time to reorganize his forces. There could easily be more or less
than one such engagement in a single day; the number of days selected should be
based on the expected individual engagements.)

2-5



Enter Blue order of battle under day 0

on BlueSupply sheet.
Enter Red OOB on RedSupply sheet.

Figure 2-5. Blue Order of Battle Worksheet

Days in Many-Blue Campaign: 8 LINGO? |CAP Factor Alerts
BMIO 1 No M 6 Off

v

[ Run Campaign ] { View Charts ]

Day

Index of Blue
Smart? LAD? CAP? a/c for Red's TYPE 0 1 2 3 4 5 6 7 8
nlanning.
O O ] O Blue F1 0
U U U O Blue F2 0
0 0 0 O Blue F3 0
O O O O Blue F4 0
U U U O Blue_F5 0
U U U ® Blue NF1 100
U U U O Blue NF2 0
0 0 0 O Blue NF3 0
U U U O Blue LAD 0

CAP (combat air patrol) refers to cases in which Blue is compelled to stage his
aircraft to maintain a continuous airborne defensive force over the battle space. If
a Blue aircraft is identified as a CAP aircraft, then the Blue aircraft available for a
day’s engagement is equal to the Blue quantity of that aircraft divided by the CAP
factor. The CAP factor is based on such information as distances of bases from
the battle space, aircraft range, crew rest, and related military considerations. Cur-
rently, the same CAP factor is used for all Blue CAP aircraft; the next version of
SLAACM will allow individual CAP factors. Because Blue always fights in four-
ship packages, if

#Blue Aircraft / CAP Factor < 4,

then Blue cannot maintain a full CAP and no Blues are sent. This is clearly too
conservative because Blue will likely maintain a partial CAP with his remaining
aircraft. Inclusion of a partial CAP in the closed-form analytic SLAACM algo-
rithms presents a mathematical challenge that we intend to address in the future.

The remaining two controls at the top of the worksheet toggle use of the integer
optimization (LINGO™) or the heuristic optimization, and toggle diagnostic pro-
gram halts at intermediate stages of the calculations.

The first three columns in the table allow selection of specific aircraft as Smart,
LAD, and/or CAP, as discussed above. The fourth column selects which Blue air-
craft Red will use as the basis for optimizing his attack packages. With the current
aircraft values and KRRs, the results are relatively indifferent to the selection in
column four.
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The order of battle information in the table is output information. The Day 0 col-
umn data are from the Blue supply worksheet, and the Day 2 through N column
data are from campaign results.

Results and Discussion

Figures 2-6 through 2-8 show the SLAACM output charts for this campaign, and
Figures 2-9 through 2-11 show the worksheet tables corresponding to the charts.
Figures 2-12 through 2-14 show the SLAACM Blue loss, Red loss, and Blue loss
standard deviation tables.

Figure 2-6. Blue Order of Battle

Blue Forces

120

—e—Blue_F1

100 ~ —=— Blue_F2
80 - —a—Blue_F3
Blue_F4

60 1 —%— Blue_F5
40 —e— Blue_NF1
—+— Blue_NF2
201 Blue:NF3

O % —% %% %%
0O 1 2 3 4 5 6 7 8 9 10 11 12
Days
Figure 2-7. Red Order of Battle

Red Forces —e—Red F1

—m—Red F2

700 —a—Red F3
600 - —x—Red F4
500 1 —%—Red F5
400 + —e—Red F6
300 - ——Red F7
200 + Red F/B
100 + g .;_:,; ; Red B1
0 - —+—Red B2

0 1 2 3 45 6 7 8 9101112 —a— Red B3

Days
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4,500

Figure 2-8. Bomb Tonnage Dropped

4,000
3,500 -
3,000 -
2,500 -
2,000 -
1,500
1,000 -

500 -

L 4
*
L d

Day

Figure 2-9. Blue Tabular Order of Battle

Day
Index of Blue
Smart?  LAD? CAP?  alc for Red's TYPE 0 1 4 5 6 7
planning
] O Blue F1 0 0 0 0 0 0 0 0 0
U U U O Blue F2 0 0 0 0 0 0 0 0 0
] U U O Blue F3 0 0 0 0 0 0 0 0 0
U U U O Blue F4 0 0 0 0 0 0 0 0 0
] U U O Blue F5 0 0 0 0 0 0 0 0 0
U U ® Blue NF1 100 83 69 57 47 38 35 35 35
] U U O Blue NF2 0 0 0 0 0 0 0 0 0
U U U O Blue NF3 0 0 0 0 0 0 0 0 0
[ 0] Ll O Blue LAD 0 0 0 0 0 0 0 0 0
Figure 2-10. Red Tabular Order of Battle
Red OOB DAY: 0 1 2 3 4 5, 6 7 8
AC TYPE QTY
1 Red F1 600 429 294 180 87 20 4 4 4
2 Red F2 0 0 0 0 0 0 0 0 0
3 Red F3 0 0 0 0 0 0 0 0 0
4 Red F4 0 0 0 0 0 0 0 0 0
5 Red F5 100 77 57 39 24 8 2 2 2
6 Red F6 0 0 0 0 0 0 0 0 0
7 Red F7 0 0 0 0 0 0 0 0 0
8 Red F/B 0 0 0 0 0 0 0 0 0
9 Red B1 300 258 225 198 177 164 160 160 160
10 Red B2 200 148 106 69 37 11 5 5 5
11 Red B3 0 0 0 0 0 0 0 0 0
TOTAL| 1200 | 912 682 486 325 20 | | i ] in
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Figure 2-11. Tabular Bomb Tonnage

| day: 1 2 3 4 5 6 7 8
Bombs dropped
Ibs 3,305,005 2,333,251| 1,460,675| 772,712| 188,265 28,475 0 0
tons 1,653 1,167 730 386 94 14 0 0
cumulative) 1,653 2,819 3,549 3,936 4,030 4,044 4,044 4,044
Figure 2-12. Blue Loss Table
Blue Losses
1 2 3 4 5 6 7 8 Total Std. Dev.
Blue F1 0 0 0 0 0 0 0 0 0 0.00
Blue F2 0 0 0 0 0 0 0 0 0 0.00
Blue F3 0 0 0 0 0 0 0 0 0 0.00
Blue F4 0 0 0 0 0 0 0 0 0 0.00
Blue F5 0 0 0 0 0 0 0 0 0 0.00
Blue NF1 17 14 12 10 9 3 0 0 65 8.76
Blue NF2 0 0 0 0 0 0 0 0 0 0.00
Blue NF3 0 0 0 0 0 0 0 0 0 0.00
Blue LAD 0 0 0 0 0 0 0 0 0 0.00
0 0.00
0 0.00
0 0.00
TOTAL 17 14 12 10 9 3 0 0
cumulative 17 31 43 53 62 65 65 65
Figure 2-13. Red Loss Table
Red Losses
Red F1 171 135 114 93 67 16 0 0
Red F2 0 0 0 0 0 0 0 0
Red F3 0 0 0 0 0 0 0 0
Red F4 0 0 0 0 0 0 0 0
Red F5 23 20 18 15 16 6 0 0
Red F6 0 0 0 0 0 0 0 0
Red F7 0 0 0 0 0 0 0 0
Red F/B 0 0 0 0 0 0 0 0
Red B1 42 33 27 21 13 4 0 0
Red B2 52 42 37 32 26 6 0 0
Red B3 0 0 0 0 0 0 0 0
TOTAL 288 230 196 161 122 32 0 0
cumulative 288 518 714 875 997 1,029 1,029 1,029
Figure 2-14. Blue Loss Standard Deviation Table
Blue Standard Deviations
1 2 3 4 5 6 7 8
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Blue F3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Blue NF1 4.48 4.05 3.76 3.47 3.26 1.87 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
[Blue NF3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00




In the figures above, the losses occur monotonically for all aircraft types, which is
typical of random engagement logic. The last day of the campaign was Day 6. At
the end of Day 6, Red still has 160 RB1 bombers and 5 RB2 bombers, but be-
cause Red has only 4 RF1 and 2 RF5 fighters, he cannot provide the 8 fighter es-
corts required to generate an attack package.

The dispersion information contained in Table 2-14 is not currently used in our
campaign analyses. We hope, in future work, to use this information to develop
confidence intervals for campaign outcomes.

To demonstrate the impact of Blue battle management, we run the same case as
above, first with the Smart option selected and second with both the Smart and
LAD options selected. Figures 2-15 and 2-16 show the Blue order of battle and
bomb tonnage results for these cases, along with the results for the case above. In
the case of the Smart Blue, just one fewer Blue aircraft is lost (64 vs. 65), but the
delivered bomb tonnage is dramatically reduced (2,931 tons vs. 4,044 tons) com-
pared to the random case. In the case of Smart LAD Blue, one additional Blue
aircraft is lost (66 vs. 65) and delivered bomb tonnage is further reduced

(2,709 tons vs. 4,404 tons) compared to the random case.

Figure 2-15. Blue Order of Battle by Day
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Figure 2-16. Bomb Tonnage Dropped by Day
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In both the Smart and Smart LAD cases, the defenders focus on the Red packages
containing Red RB2 bombers. On Day 1, both Smart and Smart LAD Blues attack
RB2 packages escorted by Red RF1 fighters because they offer the highest prob-
ability of success. On Days 2 and 3, the Smart Blues and Smart LAD Blues con-
tinue to intercept RB2 packages, but the loss-averse Smart Blues switch much of
their defense to Red RB1 packages to avoid the RB2 packages escorted by Red
RF5 fighters. On Day 4, the Smart Blues finally must engage Red RF5 escorted
RB2 packages.

Figure 2-17 shows the order of battle for Red’s most valuable bomber, the RB2.
We see that RB2 is preferentially intercepted in both the Smart Blue and Smart
LAD Blue scenarios. The Red RF5 order of battle shows that the Smart Blues
avoid combat with Red RF5s until all lower risk, high-payoff options are ex-
hausted. The Blue Blu6 (NF1) and Red RF5 losses shown Figures 2-18 and 2-19
provide another display of the Blue strategies.

Figure 2-17. Red RB2 Bomber Order of Battle
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Figure 2-18. Blue Losses by Day
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Figure 2-19. Red RF5 Losses by Day
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In the results above, we see that both Smart Blue and Smart LAD Blue battle
management resulted in a 30 percent reduction in bomb tonnage compared to the
random case.! By being loss-averse, the Smart Blues lost one fewer aircraft than
the random case and two fewer aircraft than the Smart LAD case at the cost of
200 additional tons of bombs delivered.

SUMMARY

The discussion and simple examples in this chapter demonstrate the basic opera-
tion and the capabilities of the current version of SLAACM. Consideration of the
input sheets shows that SLAACM is capable of analyzing real-world scenarios of

! The reduction in destructive power is greater than the tonnage difference because the opti-
mizer considers the type of munition in valuing the packages for intercept, but it is not currently
plotted. Plots of destructive power will be added in future versions.
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high complexity with provision for true integer programming optimization by
both attackers and defenders. Even complex cases run in seconds, so analysts can
efficiently examine wide ranges of alternatives. These features make SLAACM a
valuable tool for the Department of Defense.
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Chapter 3
Mathematical Analysis: Battle Management,
Optimization, and Dispersion in SLAACM

This chapter explains the mathematical methods used in three features of the cur-
rent version of SLAACM: accounting for imperfect battle management, treating
Red and Blue forces’ optimization problems, and dealing with dispersion in the
two sides’ daily losses.

BATTLE MANAGEMENT

Battle management determines the ability of defensive counter air forces to en-
gage targets. SLAACM provides two kinds of battle management for defensive
aircraft, determined by whether or not the user identifies an aircraft type as
“smart.”

Smart aircraft are able to locate advancing Red attack packages and identify the
types of aircraft in them and, by sharing targeting information, to conduct opti-
mized interceptions. Smart defenders always intercept their targets.

Blue aircraft not identified as smart encounter Red packages randomly. They do
not conduct optimized defensive encounters. There is still an element of battle
management for these aircraft, however, and that is the efficiency with which they
encounter Red attack packages.

With perfect battle management, if the number of defending flights is at least as
large as the number of attack packages, every attack package would be inter-
cepted. However, the intercepting aircraft types would be random, rather than op-
timal. If the number of attack packages is larger than the number of defending
flights, every defending flight would engage an attack package.

With less-than-perfect battle management, not every attack package would be in-
tercepted in the former case, and not every defending flight would be engaged in
the latter case. SLAACM’s battle management feature allows the user to enter a
“goodness” parameter that characterizes the effectiveness of battle management
for Blue aircraft that are not smart. The following paragraphs explain how that
parameter affects SLAACM’s calculations.

Let K distinct types of defender flights deal with an attack by J distinct types of
attack packages. The defenders are assumed not to know the makeup of individual
attack packages before interception, so that the type of attack package engaged by
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a given defending flight is the result of random selection from the set of attack
packages.

Let m; be the number of defender flights of type i, and let n; be the number of at-
tack packages of type j. Then the total number of attack packages, N, and the total
number of defending flights, M, are given respectively by

[Eq. 3-1]

First we consider the case of perfect battle management. If M > N, then every at-
tack package will be intercepted. Not all defending flights engage; in this simple
analysis, we assume that the fraction N/M of each defending flight type engages.*

Then, a measure of Ej , the central tendency of the number E;; of m; vs. n; en-
gagements, is
— N n; mn,

E,=—m, L =—1 Eq. 3-2
j MmlN M [q ]

For this simple analysis, we take Eij to be the number of m; vs. n; engagements.

Summing Ej over j shows that the fraction of each defending flight type engaged

is N/M, as it should be; summing over i shows that all attacking flights of each
type are engaged.

When M < N, every defending flight engages, but not all attack packages can be
engaged. The estimate for Ej analogous to the one given in (2) is

E Bt [Eq. 3-3]
. =1MN. = O
) "N N a

Summing this estimate forEj over i shows that the fraction M/N of each attack

package type is engaged; summing over j shows that every defending flight of
each type is engaged.

In some cases of interest, M and N are both O(10?). For such large M and N, pro-
viding this “perfect” defender’s battle management could exceed the capabilities
of available systems. We account for the limitations of the defender’s battle man-
agement with a simple adaptation of the “perfect” case. We make the adaptation
by introducing “ghost” attack packages or defender flights. A defender flight that
engages a ghost attack package does not actually engage; an attack package en-
gaged by a ghost defender flight is not actually intercepted.

! We fully appreciate the fact that this simple analysis treats a complex combinatoric problem
crudely.
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When M > N, we introduce mq defending flights of type “ghost,” and proceed as
in the above analysis (where the defender has perfect battle management). This

gives us a new estimate forEij :

— m;n; m;n;
ij = - 1
M + m, M [Eq. 3-4]
where
b= [Eq. 3-5]
M +m,
When M < N, we introduce nq attack packages of type “ghost,” and find
B, - Dy Eq. 3-6
ij_N+ng_ M 2 [Eq. 3-6]
where
b, =N [Eq. 3-7]
N +n,

Noting the similarity of (3-4) and (3-6), we introduced into SLAACM the simple
model

E.=— b [Eq. 3-8]

and allow the user to choose the “battle management efficiency factor” b, 0 <b <1.

Once seen, equation (3-8) is so simple, and seemingly obvious, that it is fair to ask
why we did not simply introduce it into SLAACM without analysis. The reason is
that we wanted to understand what that simple choice implied about how the bat-
tle proceeded. The analysis given here supplies that understanding.

OPTIMIZATION

This section discusses a formal integer programming optimization process that re-
places (or supplements) our original optimization heuristic. (The results of both these
analyses have been incorporated into the latest versions of SLAACM.) Here we for-
malize the integer programming problems performed in the LINGO model within
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LMI’s SLAACM. LINGO is a general linear, nonlinear, and integer programming
solver tool.? The version embedded in SLAACM is Extended LINGO 9.0.

The main idea behind using an integer programming tool is to solve the following
optimization problem. Red wishes to come with optimal attack packages based on
a determined payoff function (this is the first optimization). Then, the Blue air-
craft that are sophisticated enough to have a priori knowledge of what Red attack
packages are coming may optimize their defending packages accordingly (the
second optimization). The remaining Blue aircraft that do not have advanced
knowledge of Red’s attack compositions will encounter the attackers randomly,
often with less than perfect battle management. The random encounters were de-
scribed mathematically in the previous section.

A Red attack package consists of four advanced escorts, four close-in escorts, and
four bombers. Since some fighters may be bombers, we could have a set of possi-
ble attack packages T, where, given R types of fighters and bombers, we could

have that |T| = R®. In reality, however, most mathematically feasible combina-

tions of packages are unrealistic for warfare (one would not, for example, dispatch
a package of heavy bombers escorting fighters). Since the number of reasonable
attack packages is much smaller than the complete enumeration, we assume those
undesirable packages are removed in advance of the optimization; then, we limit
ourselves to those remaining, reasonable possibilities in the integer program. The
degree to which one wishes to limit the number of potential packages depends
primarily on the size of the integer program, which is a function of the size of R.

We define a set of a attack packages for Red as I = T. We define variable r; as

the number of Red aircraft of type j used in attack package i. To calculate its

payoff, Red plans its attack assuming each package will be confronted by one

specific Blue defender type, usually the most numerous Blues. Based on the pay-
off functions described previously, each attack package for Red has a certain pay-
off, denoted as p;. We denote the number of Red aircraft of type j as n;. At this

point, Red solves for its optimal attack strategy. We have the following integer
optimization problem:

max > pix;
i
st. Y rx, <n; Vje]
i

i j

x; €{01,2,..} [Eq. 3-9]

2 Lindo Systems, Inc., http://www.lindo.com/.
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This problem is a variant of the classic knapsack problem. The solution to this
integer programming problem provides the optimal set of attack packages dis-
patched by Red.

As stated previously, Blue responds with optimal defenses of Red’s attack if a
given aircraft is “smart” enough to have a priori knowledge of Red’s attack pack-
age composition. We assume Red has obtained its solution for (3-9) before Blue
does its optimal response. We denote the optimal solution for Red—that is,

X = (X1,Xy,...,X1) = (a3,a5,...,a;)—as constraints for Blue’s optimization. In
other words, a, is the number of Red attack packages of type i.

Blue has its own payoff function for each type of potential Red attack package.
We denote p;, as the payoff to Blue for intercepting a Red package i with the

Blue four-ship package of aircraft type k. Again, the components of the payoff
function have been described previously; they include a loss-aversion factor for
Blue, along with positive payout for expected Red kills and bombs stopped. We
denote the set of Blue aircraft types with a priori knowledge of Red’s attack pack-
ages as K' c K. We denote the number of Blue aircraft of type k € K" as m,_ .

We then formulate and solve the following integer programming problem for
Blue. In short, we want to solve for the optimal number of Blue four-ship package
of type k that intercepts Red attack package i, denoted by vy, .

max > PuYix
ik

st. Y4y, <m, VkeK

dYyx<a Viel
K

v €1012,...} [Eq. 3-10]

The integer programming model written in LINGO is embedded into SLAACM.
LINGO solves the integer programming problem and returns the solution to
SLAACM. At this point, the remaining “dumb” Blue aircraft, denoted by

K"c K, where K'UK" =K and K'nK" =0, engage the Red packages that
were not selected by the “smart” Blues. That is, the Blue aircraft without a priori
knowledge engage randomly the Red packages that remain after (3-10) is solved,
i.e., those Blue aircraft engage a set of attack packages (aj,a5,...,ay), where

a; = max(ai > Vs Oj . Those encounters were described in the previous sec-
K

tion on battle management. Since the previous section described a slightly differ-
ent problem, the notation from this section and the previous is not to be
considered interchangeable.



DISPERSION

SLAACM engagements between a four-ship defender flight and a 12-ship attack-
ing package have 16 possible outcomes.® They may be described as absorbing
boundary states (a, ¢, b, d), where a is the number of advanced escorts, ¢ the num-
ber of close escorts, b the number of bombers, and d the number of defenders. In
four outcomes, the advanced escorts defeat the defenders, and the system state is
(i, 4,4,0),1<i<4. Infour other outcomes, the defenders defeat the advanced
escorts, but are themselves defeated by the close escorts; the corresponding sys-
tem states are (0, i, 4, 0), 1 <i < 4. The defenders may defeat both advanced and
close escorts but lose to the bombers (some bombers have substantial defensive
capability). Then the system states are (0, 0, i, 0), 1 <i < 4. Finally, the defenders
may prevail, with system states (0, 0, 0, i), 1 <i <4,

SLAACM presently calculates the probabilities of all 16 outcome states, for every
Blue vs. Red engagement that takes place. Part of this year’s work was to review
these statistics, and upgrade SLAACM to display appropriate measures of disper-
sion. Table 3-1 shows an example of the probabilities of the 16 outcome states.

Table 3-1. Outcome State Probabilities

alc|b|d Probability
1({4(|(41|0 7.52E-08
2|14 |41|0 1.23E-07
3 4 4 0 1.14E-07
4141410 5.59E-08
oOo|1|4]|0O0 0.000121
0| 2|4]|0O0 0.000203
0| 3|4]|O0 0.0002
0|4 |4]|0O0 0.000112
oj|0|1]0O0 1.91E-06
0| 0|2]|O0 3.82E-06
0|0]| 3]0 5.69E-06
0O|0|4]0O0 7.54E-06
0| 0]|O0{|1 0.002155
0| 0| 0|2 0.01635
0O0|0]| 0|3 0.132935
0 0 0 4 0.847904

In this example, which is representative of many cases considered in this year‘s
studies for OSD/PA&E/TACAIR, the defenders are significantly stronger than the

¥ LMI, Stochastic Models of Air Superiority Engagements and Campaigns, Report PA104S1,
David Lee, Scott Houser, Robert Hemm, and Jeremy Eckhause, June 2003.
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Red aircraft in the attack package. Consequently, probabilities of cases in which
Red aircraft prevail over the Blue defenders are all much less than one. The cen-
tral tendencies of the losses for all Red aircraft—advanced escorts, close escorts,
and bombers—are quite close to four, and the standard deviations for losses of all
the Red aircraft are small compared to one (the probability that fewer than four
advanced escorts are lost is less than 10°; the probability that fewer than four
close escorts or fewer than four bombers are lost is less than 107%).

The situation is somewhat different for the Blue defenders. While the probability
that the defenders prevail is very nearly one (it is larger than 0.999), there is con-
siderable dispersion in the number of Blue losses. The probability of no Blue
losses is 0.85; the probability of one Blue loss is 0.13; the probability of two Blue
losses is roughly 0.02; and the probability of three Blue losses is less than 0.01.
Table 3-2 shows the marginal distribution functions of losses for all four combat-
ants: advanced escorts, close escorts, bombers, and defenders.

Table 3-2. Marginal Loss Distributions

Probability (ad- Probability Probability Probability
Losses vanced escorts) (close escorts) (bombers) (defenders)
0 5.5879E-08 0.000112 0.000645 0.847904
1 1.1365E-07 0.0002 5.69E-06 0.132935
2 1.22778E-07 0.000203 3.82E-06 0.01635
3 7.52281E-08 0.000121 1.91E-06 0.002155
4 0.999999632 0.999363 0.999344 0.000656

In view of these types of results, which were common in the cases studied this
year, we decided to track the dispersion of Blue losses in SLAACM outputs, but
not to track dispersion in Red losses.

Also, these typical results show that it is reasonable to propagate only central ten-
dencies (expected values) of Red losses to obtain day-to-day Red orders of battle.
In addition, while it is not unreasonable to propagate only central tendencies of
Blue losses to obtain day-to-day Blue orders of battle, SLAACM will give better
understanding of overall dispersion if a few representative values of Blue losses
are propagated day to day.

We report dispersion (standard deviation) of Blue losses in the present version of
SLAACM. We intend to propagate three representative values of Blue losses
day-to-day.






Chapter 4
Mathematical Analysis: Phased Attack
and Defense

In air defense, it is sometimes necessary to provide continuous combat air patrol
coverage of the battle space. The current SLAACM includes the option for Blue
defense aircraft to be time phased over the battle space in order to provide con-
tinuous defense CAP. The inclusion of a phased Blue defense led to discussions
with TACAIR about whether Red could phase its attack to take advantage of
Blue’s phasing. In response to these discussions, we addressed the problem in two
substantially different ways, and include both in the sections that follow. Ap-
proach 1 demonstrates a method for generating probabilistic results for a well-
defined, specific scenario. Note that in this analysis the postulated parameters are
selected solely to demonstrate the approach. While these parameters are generally
reasonable, they do not represent any known operational scenario. Approach 2 is a
generalized combinatorial analysis that explores the probability space for random
selections of phasing strategies for both Blue and Red.

APPROACH 1

We are interested in the way CAP attrition is treated in SLAACM. Presently,
SLAACM assumes that all the packages Red sends in a “day” are simultaneously
observable by Blue’s battle management, which may include target identification
onboard certain aircraft. This allows certain Blue aircraft to selectively engage
high-threat packages. This assumption of high-threat Red attacks seems plausible
when saturating Blue’s defenses is an attractive option for Red.

But for a scenario in which Blue’s target identification/battle management, and
the two sides’ available forces, would allow Red to saturate Blue’s defense with
relatively low-value attack packages while Blue remained unaware of upcoming
attacks by high-value packages, the SLAACM assumptions are optimistic for
Blue. This is particularly true when target identification is onboard aircraft that fly
combat air patrols from bases far from the theater.

Full exploration of the options available to each side by time phasing of attacks
and defenses will involve considerations of target and basing geographies and
may well require case-by-case analysis. Here we consider some specific, simple
examples to illustrate the potential significance of these effects.

Suppose that Blue has a fleet of 192 aircraft, which must accomplish a 2-hour
flight to the theater. Suppose also that their aircraft can remain on station for 1
hour, that they carry six missiles, that they will keep one missile for self-
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protection while returning to base, and that their turnaround time is 1 hour. This
gives the Blue aircraft 1 hour out of six on station, so that six flights must be
available to keep one flight continuously on station. Suppose that Blue aircraft
always fight in four-ship packages.

Suppose that Red attacks always come in 12-ship packages, made up of advanced
escorts, close escorts, and bombers, and that the Blue aircraft must defeat the es-
corts in order to engage the bombers. Then each 4-ship flight, having 20 usable
missiles, can defeat only one attacking package before rearming.

Now, Blue’s 192 aircraft provide eight, six-flight groups, so that Blue can keep
eight flights on station continuously. In this simple example, Blue controls only
the time phasing of the eight groups’ CAPs.

Figure 4-1 shows an example of the build-up of Blue forces when the CAPs relief
times are evenly spaced.

Figure 4-1. Arrival Process for Evenly Spaced CAPs

Flights on Station

0 20 40 60 80 100
Time, minutes

By sending eight attacking packages, Red can at any time “reset” Blue’s strength

to the start of the buildup, because defeating eight packages exhausts the missiles
available to the eight Blue flights on station." In this way the Reds can give them-
selves intervals of time in which there are fewer than eight Blue flights.

Let us look first at a bad Blue option for the CAPs’ relief times. Suppose that,
rather than the uniform spacing of Figure 4-1, the eight groups’ CAPs are exactly
in phase. That is, the flights of all eight groups relieve their predecessors at the
same time. Then, by sending eight low-value packages, Red can exhaust the mis-
siles available to the Blue force, and there will be no more Blue aircraft for
roughly 1 hour. This gives Red considerable scope to dispatch higher-value pack-
ages unopposed.

! Blue flights might regroup so that the remaining missiles available to two or three flights
could be used against another Red package, but this appears to call for complicated reorganization
and to give only a second-order effect anyway.
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Presumably, Blue will not arrange the groups’ CAPs in this way. To consider
other Blue options and Red tactics in more detail, we must be more specific about
the time required for Red to carry out missions and about the area in which Red
packages are vulnerable to Blue’s flights.

Let us say, then, that Red’s packages are vulnerable for 10 minutes ingress, 5
minutes delivering bombs, and 10 minutes egress. To focus strictly on time phas-
ing, suppose that the Blue defenders are invincible, so that any Blue flight in
Red’s vulnerable zone, with at least as many Red packages as Blue flights are also
in the zone, destroys a Red package.

For further simplification, let us suppose that Red has eight low-value packages
and eight high-value packages to dispatch. For specificity, suppose that bombers
in the high-value packages carry three times the weight of bombs as those in the
low-value packages.

Let us also assume that all eight Blue CAPs are in place, and that the Blue aircraft
unfailingly attack high-value packages in preference to low-value packages.

Now, if Red dispatches all 16 packages at once, the eight defending flights will
eliminate all eight high-value packages, and Red will deliver eight low-value
bomber loads (we’ll call this eight “units”) of bombs. No aircraft in the low-value
packages will be lost.

For completeness, let us treat the above “bad” Blue option in detail. If all eight
CAPs were in phase, it seems incredible that Red would not know the times at
which the CAPs were relieved. Then Red can send eight low-value packages to ar-
rive just after a relief time. All eight will be destroyed. But the missiles of all eight
CAPs will be exhausted too. If the eight high-value packages were undetectable
while, say, 20 minutes behind the low-value packages, they could ingress, bomb,
and be out of the vulnerable area 15 minutes before the relieving CAPs arrived.

Blue would, however, want to arrange the CAPs’ phases to avoid such an out-
come. One option would be to space the CAPs’ relief points evenly as shown in
Figure 4-1.

If Red sends the eight low-value packages to arrive just at one CAP’s relief time,
and delays the eight high-value packages for, say, 20 minutes to make sure that
Blue does not know they are coming, the high-value packages will face only two
defending flights, with a third defending flight joining after 2.5 minutes. One
more Blue flight will arrive just as the five Red packages start bombing; it will
destroy a Red package, and four high-value Red packages will drop their bombs.

Two defending flights will arrive before the four packages that survive ingress
and bombing leave the vulnerable area (the second arrives just as they leave, but it
seems reasonable to give Blue the benefit of a tie), so that the outcome of the at-
tack is six high-value and eight low-value packages destroyed, with four high-
value bomber loads of bombs delivered.
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Thus, spacing the CAPs’ relief times evenly allows Blue to destroy six more high-
value packages, and allows four fewer bomber flights to "leak" through Blue's
defenses, than would have been the case if the relief times coincided. Red, on the
other hand, gets four high-value bomber flights through, delivering 50 percent
greater weight of bombs, and loses two fewer high-value packages, than he would
have done by sending all the packages simultaneously (as SLAACM now as-
sumes he would do) against the evenly spaced CAPs.

As a final example, we suppose that the eight CAPs’ relief times are randomly
shifted in time and that Red sends eight low-value packages at a random time. Let
us generalize the discussion, assuming that the defending flights’ time-on-station
is S minutes and that Red follows up eight high-value packages D minutes later.
Further suppose that ingress and egress require | and E minutes, respectively, and
that bombing takes B minutes.

Then, the number j of Blue defending flights arriving while the high-value pack-
ages ingress and drop bombs has the binomial distribution B(j, 8, [D + | + B]/S).
The number p of flights that do not arrive during that period is, of course, distrib-
uted as B(p, 8, [S— D — 1 — B]/S).

When k defending flights arrive during ingress and bombing, then 8 — k flights
arrive in the interval S — | — B, and their arrival times are uniformly distributed
over that interval. Thus, the number m of defending flights arriving during egress
has the binomial distribution B(m, 8 — k, E/[S—1—B]), for0<m <. 8 — k.

These results give the distribution of the number p of bomber-loads of bombs
dropped as B(p, 8, [S— D — I — B]/S), and the distribution P(n) of the total num-
ber n of attack packages destroyed as

M=

P(n)=2.B(n~-j8,p;)B(j8-n+jp,)

j=0

where p; = (D + | + B)/S, and p, = E/(S — D — | — B). With this information, one
can plot the statistics of bomb units dropped and Red packages destroyed (each
high-value package delivers three bomb units). Figures 4-2 and 4-3 show the re-
sults for S=60,D =20, =E=10,and B =5.
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Figure 4-2. Probability Distribution of Bomb Units Dropped
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Figure 4-3. Probability Distribution of Red Packages Lost
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By sacrificing eight low-value packages, Red has 72 percent confidence of deliv-
ering more bomb units than with the simultaneous assault now assumed in
SLAACM, and a 90 percent confidence of losing fewer high-value packages
(these marginal statistics may not, of course, occur together).

APPROACH 2

As discussed above, we are interested in determining if Red can systematically
phase his attack to maximize the success of his high-value attack packages. We
assume here, as above, that both the Red attack and the Blue defense can be time
phased within the engagement period, and each four-ship Blue flight can engage
and defeat only one 12-ship Red package. We further assume that the Red attack
is numerous, and Red is actually time phasing his high-value packages within a
large number of low-value packages, such that Blue defense flights will engage
the high-value Red packages available immediately on arrival and will engage the
lower value packages if no high-value packages are available. All Blue defense
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flights will be absorbed by low-value Red packages whenever high-value pack-
ages are not available.

Consider the example in which eight Blue flights can arrive during a single en-
gagement. We assume the engagement is divided into equal periods correspond-
ing to the number of Blue flights, eight in this example. Blue can distribute his
flights, and Red can distribute his high-value packages arbitrarily among the eight
periods. Because each Blue flight engages only one Red package, Blue can kill
(and Red can lose) a maximum of eight high-value Red packages.

We wish to determine if there is a way to phase the Blue arrivals to ensure maxi-
mum Kills of high-value Red packages. Our assumptions are as follows:

€ Blue is invincible and kills Red packages with 100 percent probability.
€ Blue flights can preferentially detect and attack high-value Red packages.

€ All Blue flights will be committed (or consumed) in each period either by
high- or low-value Red packages.

€ Red must commit all of his high-value packages during the engagement.

By inspection we can deduce that Blue can guarantee at least one high-value pack-
age kill by distributing his arrivals equally. Beyond that, the results are not obvious.

To address the Blue and Red options, we need to determine the number of ways
Blue and Red can distribute eight flights over eight time slots. This is a multinomial,
combination-permutation in which order is important among different quantities,
e.g., (1, 2) #(2,1), but not important among multiple occurrences of the same quan-
tities, e.g., (21, 22) = (22, 21). We first demonstrate a calculation method using four
balls in four bins, and later apply the method to eight flights in eight time slots.

FOUR BALLS DISTRIBUTED AMONG FOUR BINS

First, we note that there are 4! ways to distribute four distinguishable items, such as
4 colored balls among 4 bins, 1 to a bin. In our problem, however, the 0, 1, 2, 3, and
4 counts of balls in a bin are distinguishable, but the balls themselves and multiple
occurrences of the counts are indistinguishable. The choice of placing 0, 1, 2, 3, or 4
balls in a given bin restricts the options for the remaining bins. For example, if 4
balls are placed in any 1 bin, the rest of the bins must hold 0. (This is same as having
1 red ball and 3 blue balls.) The order of the bin containing the 4 balls is significant,
so there are 4 ways to distribute the 4-ball set among the 4 bins. There is only 1!
way to arrange the single bin containing 4 indistinguishable balls. If the Os were dis-
tinguishable, there would be 3! ways to distribute them among 3 bins, but we do not
distinguish differences in order among the bins containing 0s. When we reduce the
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4! maximum options to account for the indistinguishable bins containing the same
counts of balls, i.e., the three 0s, we get 4!/(3! * 11) = 4 unique distributions. Table
4-1 confirms this by showing the complete set of 4 unique states.

Table 4-1. State Count for Four
Balls in a Given Bin

S Bins
Distribution
count 1 2 3 4
1 4 0 0 0
2 0 4 0 0
3 0 0 4 0
4 0 0 0 4

To determine the total number of unique distributions for 4 balls in 4 bins, we
need to identify all the positional distributions of unique ball counts. This we do
by hand. Table 4-2 shows the unique distributions for 4 balls in 4 bins and the
corresponding calculations of state counts.

Table 4-2. Unique Distributions and State Counts for Four Balls in Four Bins

Bins Distribution | Distribution

1 2 3 4 counts counts
1 1 1 1| aya 1
Unique 2 1 1 0 | au@ar2e1n 12
distribu- 2 2 0 0 | au@r2) 6
tions 3 1 0 0 | au(ariron 12
4 0 0 0 | auara 4
Total 35

As a check on the method, Table 4-3 shows the detailed state enumeration for 4
balls in 4 bins.

4-7



Table 4-3. State Enumeration for Four Balls in Four Bins

Distribution

counts

12

12

35

Bins

4

0

Total

States

4-8



Mathematical Analysis: Phased Attack and Defense

EIGHT FLIGHTS IN EIGHT TIME SLOTS

Now we consider eight flights distributed among eight time slots. The unique dis-
tributions and distribution counts are shown in Table 4-4.

Table 4-4. Unique Distributions and State Counts
for Eight Flights in Eight Time Slots

Time slot Distribution Distribution
1(2|3|4|5]|6|7]|8 counts counts
1|1 |1 |2 |1 |21 |1 |8ys 1
2 (1|12 |2 |21 |1 ]|0 |8yse1r1y 56
2 (2|11 |1 |1 |0 |0 |8uya22y 420
2 (2|2 |1]1 |0 |0 |0 |8y332y 560
2 2|22 ]0 |0 |0 |0 |8Uaan 70
3 (1|11 |11 0|0 |8Us21l 168
3 (2|1 |1]1|0 |0 |0 |8Y3 311 1,120
3 (2|2 |1]0 |0 |0 |0 |8ya42r1r 840
3 (3|1 |1]0 |0 |0 |0 |8ya422y 420
3 (3 |2|0]o|o |0 |0 |85 21l 168

;Z't?l‘éﬁ 4 |1 |1 |12 |1 |0 |0 |0 |8yar3t1y 280
tions 4 21 |1]0]0 |0 |0 |8yar2r11y 840
4 (2 |2|0]0|o0 |0 [0 |8ysay 168

4 |3 |1|0]|0 |0 |0 |0 |8ysi11y 336

4 |4 |o|o|o|o |0 |0 |8ue 2y 28

5 (1|1 |1]0 |0 |0 |0 |8ya43n1y 280

5 (2 |1]|0]0 |0 |0 |0 |85 111 336

5 3|0 |0 |0 |0 |0 |0 [8ye 11l 56

6 |1 |1 |0 |0 |0 |0 |0 |85 21l 168

6 [2 |0 |0 |0 |0 |0 |0 |8uUsE11l 56

7|1 ]|0o|0o|o|o |0 |0 |8use 11y 56

8 |o|o|ofo]|o |0 |0 |s8y7u1y 8

Total 6,435

From Table 4-4 we see that there are 6,435 ways to distribute eight Blue flights
(and eight Red packages) among eight time slots. Now we want to see the poten-
tial impact of this on Blue payoff.

To find the potential payoff for Blue, we want to find the probabilities of Blue

(and Red) experiencing 0 through eight flights in a given slot. Table 4-5 shows
the flight count occurrences for each unique distribution.
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Table 4-5. Flight Count Occurrences per Unique Distribution

Unique state distributions,
by time slot

Flight count occurrences per

unique distribution, by time slot

4

0

12

3

415

6 (7

8

Distribution
counts

Unique
distribu-
tions

1

56

420

N|&~|O |0

560

AN

70

168

1120

840

N |[w|o

420

N[N[R R

168

N

280

840

168

336

N[Rr[Rr[R]|+

28

280

336

56

168

56

56

(N[OOI ]IR|IOIWIWIW|IWININININ|RF]RF
OIFRPIN|IP[I[WINIFP|R[I[WININIPIW|IWININIFPINININ(FPRIP]IDN

olo|lo|r|o|r|r|lo|lr|N|r|Rr[NR[NRIRIMIMIP|IR|RPlW
olo|lo|o|o|o|r|o|lo|lo|r|r|o|lr|r|r|[r[N[R]|R]|R]|F
o|lo|lo|o|o|o|o|o|o|o|o|r|o|lo|o|r|r|o|r|kRr|Rr|RL]u

O|Oo|Oo|0O|Oo|Oo|Oo|Oo|Oo|Oo|Oo|Oo|Oo|O|O|O (R, |O|O|FRP|FP|FR]O®
O|Oo|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|o|kr|FR,]N
O|Oo|Oo|Oo|o|Oo|o|o|o|o|o|o|o|o|o|o|o|o|o|o|O|r ]

N[([ojfojojojo|~A|jlojl0lO|AlWIO|IBR]IBDR|IWOIN|IDAIWIN]|PEF

8

6,

435

Dividing the flight count occurrences in a given row of Table 4-5 by 8 gives the
conditional probability of the count occurrences given the distribution corre-
sponding to the row. Dividing the distribution counts by the total count gives the
probability of each distribution. Multiplying the distribution probabilities by the
conditional count occurrence probabilities generates the probabilities for count
occurrences shown in Table 4-6.

Table 4-6. Flight Occurrences Probabilities for Eight Flights in Eight Time Slots

Distribution Flight count probabilities

probabilities 0 1 2 3 4 5 6 7 8
0.00016 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.00870 0.0011 | 0.0065 | 0.0011 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.06527 0.0163 | 0.0326 | 0.0163 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.08702 0.0326 | 0.0218 | 0.0326 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.01088 0.0054 | 0.0000 | 0.0054 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.02611 0.0065 | 0.0163 | 0.0000 | 0.0033 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
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Table 4-6. Flight Occurrences Probabilities for Eight Flights in Eight Time Slots

Distribution Flight count probabilities
probabilities 0 1 2 3 4 5 6 7 8
0.17405 0.0653 | 0.0653 | 0.0218 | 0.0218 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.13054 0.0653 | 0.0163 | 0.0326 | 0.0163 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.06527 0.0326 | 0.0163 | 0.0000 | 0.0163 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.02611 0.0163 | 0.0000 | 0.0033 | 0.0065 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.04351 0.0163 | 0.0218 | 0.0000 | 0.0000 | 0.0054 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.13054 0.0653 | 0.0326 | 0.0163 | 0.0000 | 0.0163 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.02611 0.0163 | 0.0000 | 0.0065 | 0.0000 | 0.0033 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.05221 0.0326 | 0.0065 | 0.0000 | 0.0065 | 0.0065 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.00435 0.0033 | 0.0000 | 0.0000 | 0.0000 | 0.0011 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.04351 0.0218 | 0.0163 | 0.0000 | 0.0000 | 0.0000 | 0.0054 | 0.0000 | 0.0000 | 0.0000
0.05221 0.0326 | 0.0065 | 0.0065 | 0.0000 | 0.0000 | 0.0065 | 0.0000 | 0.0000 | 0.0000
0.00870 0.0065 | 0.0000 | 0.0000 | 0.0011 | 0.0000 | 0.0011 | 0.0000 | 0.0000 | 0.0000
0.02611 0.0163 | 0.0065 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0033 | 0.0000 | 0.0000
0.00870 0.0065 | 0.0000 | 0.0011 | 0.0000 | 0.0000 | 0.0000 | 0.0011 | 0.0000 | 0.0000
0.00870 0.0065 | 0.0011 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0011 | 0.0000
0.00124 0.0011 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0002
Totals 0.4667 | 0.2667 | 0.1436 | 0.0718 | 0.0326 | 0.0131 | 0.0044 | 0.0011 | 0.0002

Table 4-7 repeats the occurrence probabilities from Table 4-6 and adds the Blue
payoff probabilities, which are calculated by multiplying the probabilities by their
corresponding flight counts. The expected payoff shown in Table 4-7 is 1 com-
pared to the maximum payoff of 8.

Table 4-7. Probabilities and Payoff for Eight Flights in Eight Time Slots

Probability per state

0 3 4 5 6 7 8 Total
0.4667 | 0.2667 | 0.1436 [ 0.0718 | 0.0326 [ 0.0131 | 0.0044 [ 0.0011 | 0.0002 [ 1.000
Blue payoff/Red loss probability
0 3 4 5 6 7 8 Total
0 0.2667 | 0.2872 | 0.2154 | 0.1305 | 0.0653 | 0.0261 [ 0.0076 | 0.0012 [ 1.000

LOOK-AHEAD TARGET IDENTIFICATION

The case in which Blue can see beyond the current period, and thus avoid wasting
flights on low-value packages, can be modeled simply by reducing the number of
time slots. Using the same approach followed above, we find that the expected
payoff for eight flights in four time slots is 2, and the expected value for eight
flights in two time slots is 4. The simplicity of these numbers suggests that there
may be a more fundamental way to derive them than we have applied. That said,
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the results demonstrate the value of long-range identification to Blue and the
value of preventing such identification to Red.

Approach 2 Summary

We note that these results represent the case in which Blue and Red each ran-
domly select one of an exhaustive set of strategies. It does not represent the case
in which Blues and Reds arrive randomly. The case of random phasing of Blue
arrivals, and random arrival of the Red attack, is considered in Approach 1.

At this time, we do not know of any gaming strategy that can reliably improve the
results for either Blue or Red.
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Chapter 5

Planned SLAACM Development

This chapter addresses future development for SLAACM. Specifically, we rec-
ommend the following:

*

Implement a unique CAP factor for every Blue aircraft type. Currently, we
use a single combat air patrol (CAP) factor for all the Blue aircraft se-
lected as CAP aircraft. Because basing, aircraft range, and other physical
and military considerations vary among aircraft types, we recommend
adding to SLAACM individual type-based CAP factors.

Automate the addition of Red and Blue aircraft types. The current
SLAACM spreadsheets are configured for fixed maximum numbers of air-
craft types. Changing the maximum number of types currently requires re-
programming of the model. We recommend implementing programming
to automate the additional of Blue or Red aircraft types easily.

Provide additional output charts and data displays. Although almost all
the output statistics a user of SLAACM would want to see are calculated
within the model, the tabular and graphical outputs are currently limited to
the order of battle of Blue, Red, and Green aircraft types on each day; the
number of bombs dropped; and losses on both sides by aircraft type.
Based on experience gained through conducting analyses and on feedback
from reviewers of model results, it has become clear that additional output
would be beneficial. Specifically, we recommend adding the Red engage-
ment packages sent each “day” and the corresponding Blue packages that
intercept them, as well as improving displays of delivered munitions to in-
clude the explosive power of the munitions, identification of “smart” and
“dumb”” bombs dropped, and counts of cruise missiles and other identifi-
able payloads.

Further analyze dispersion in campaigns. At the end of this year’s task,
we began analyzing the dispersion of Blue and Red losses day-by-day and
showing a campaign total loss and total standard deviation for each Blue
type. In general, Blue losses are relatively dispersive, with coefficients of
determination 25 percent or more in many cases. Red losses typically are
not at all dispersive due the Blue Kill rate dominance in cases studied, but
they will become more dispersive as the forces approach more equal
strength. Propagating engagement dispersions through a campaign typi-
cally results in computational difficulties due to the explosive growth of
analytical states (i.e., follow-on engagement scenarios). We believe meth-
ods may be found to bound the results and recommend conducting re-
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search to investigate tractable methods to use the dispersion data to gener-
ate confidence intervals on campaign results.

Explore the acquisition of more detailed information from other sources in
order to generate richer engagement models. We recommend continuing
efforts to engage combat modelers and analysts within organizations such
as Air Force Studies and Analysis to obtain results that can better calibrate
our model inputs. Those data can be helpful in obtaining better insight into
things such as two-phase kill models.
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	Chapter 1    Introduction 
	This report documents air combat analyses performed from 06 June 2005 to 28 July 2006 for the Tactical Air Division of the Program Analysis and Evaluation Office of the Office of the Secretary of Defense (OSD PA&E TACAIR). The focus of our analyses was air campaign modeling to support the Quadrennial Program Review (QDR). Specific technical efforts included improving and employing the Stochastic Lanchester Air-to-Air Combat Model (SLAACM). 
	To support analysis of QDR issues, we added the following features to SLAACM: 
	 Increased types of Red and Blue aircraft 
	 Selectable “smart” battle management capability for Blue 
	 Capability to identify each Red aircraft as fighter only, fighter or bomber, or bomber only 
	 Capability to identify Blue aircraft types as operating in the continuous combat air patrol (CAP) mode, in which the defensive force is managed so that Blue can maintain aircraft on station continuously 
	 A battle management factor for engagements between Red packages and “non-smart” Blue aircraft, reflecting the possibility that not all randomly dispatched aircraft actually find targets 
	 Integer programming optimization for both Red attack and “smart” Blue defense 
	 Automated conversion of loss (exchange) ratio data to kill-rate ratios 
	 Display of dispersion measures (standard deviations) of Blue losses. 
	To improve the general usefulness of SLAACM, we developed functionally identical classified and unclassified versions. The classified model includes weapon and scenario data, provided by PA&E TACAIR, that are necessary for QDR analyses. 
	During the year, under the technical direction of PA&E TACAIR, we conducted several classified analyses of QDR scenarios. We briefed the results of these analyses to TACAIR and to senior PA&E personnel. In addition, we provided examples of both classified and unclassified results in a presentation at the Military Operations Research Society (MORS) Symposium held at the U.S. Air Force Academy in June 2006. 
	Mathematical analyses during the current task included development of the campaign optimization tools and analysis of phased attack and defense strategies. 
	This report is organized as follows: 
	 Chapter 2 describes the current SLAACM and presents example analyses. 
	 Chapter 3 contains a mathematical analysis of optimization and battle management in SLAACM. 
	 Chapter 4 contains a mathematical analysis of phased attack and defense. 
	 Chapter 5 recommends future improvements for SLAACM. 
	 

	PA504T1_2 SLACCM overview.pdf
	Chapter 2    SLAACM Overview and Example Analyses 
	This chapter updates and supplements the August 2004 SLAACM User Guide with descriptions of new SLAACM features and formats. We introduce the current model structure by demonstrating the battle management features of SLAACM.  
	The chapter begins with a discussion of loss ratio input and kill-rate ratio calculations. It then presents example analyses that include 
	 Red and Blue force inputs, 
	 Blue battle management options, and  
	 Campaign result plots and data displays. 
	Loss Ratio Input and Kill-Rate Ratio Calculations 
	Loss ratios for small-scale engagements are fundamental inputs for SLAACM. Assuming that air-to-air combat can be modeled as a series of Poisson events, and given the basic assumption of Lanchester modern firing logic, we derive kill-rate ratios (KRRs) from the loss ratio data and use these KRRs to model engagements of arbitrary numbers of aircraft. The loss ratios have historically been provided by PA&E TACAIR and are based on simulation results and military judgment. 
	KRRs corresponding to the loss ratios are obtained by iterative calculation of loss ratios given trial KRR inputs. We seed our engagement model with high- and low-bounding trial KRRs and iterate using a bisection technique until we match the target loss ratio. For KRR derivation, the engagement model must be configured to match the engagement from which the loss ratios were derived. Engagement configurations include both the basic “n Blue vs. m Red” information, and any “side conditions,” such as both sides fighting to the death or Blue leaving after two losses. Kill-rate ratio calculations were previously done offline, but as we expanded the number of Red and Blue aircraft options, it became necessary to automate the calculation of the KRRs and include them in SLAACM. 
	Figure 2-1 shows the nominal loss ratios for a dominant Blue force. These ratios are contained in the current unclassified version of SLAACM and in the controls for the KRR calculation.  
	Figure 2 1. Loss Ratio Table and KRR Calculation Controls 
	  
	The loss ratios in Figure 2-1 are based on engagements of four Blue aircraft vs. eight Red aircraft, with both sides fighting to the death. The controls for the engagement configuration and side conditions are shown at the bottom left of the figure. 
	The first column in Figure 2-1 contains flags that indicate whether the Red aircraft can be configured as a fighter only (1), bomber only (-1), or both (0). The “F vs. Blu” columns contain loss ratios for Red fighter configurations, and the “B vs. Blu” columns contain loss ratios for Red bomber configurations. The numbers in the columns are the Red losses compared to one Blue loss, so that the most effective Reds have the lowest ratios and the most effective Blues have the highest ratios. We see in Figure 2-1 that Red F5 is the most effective Red fighter and Blu2 is the most effective Blue fighter. The extremely high loss ratios for Red bombers indicate that they have essentially no air-to-air capability against the Blue aircraft. 
	Column 3 in Figure 2-1 contains the bomb payload in tons for bombers and fighter-bombers. Column 4 contains the circular error probable (CEP) ratio of the bomb payload compared to the CEP of a 500-pound gravity bomb. Small ratios indicate precision-guided munitions. The optimizer uses both the payload tonnage and CEP ratio of the munitions to determine the destructive effectiveness of the payload. Red B2, with an 18,000-pound payload of 0.10 CEP ratio munitions, is the most effective Red bomber. 
	Figure 2-2 shows the KRRs that result from the Figure 2-1 loss ratios. The calculation time for the complete table of KRRs is approximately 20 seconds on a 1 GHz PC. 
	Figure 2 2. Kill-Rate Ratios 
	  
	With the KRRs established, the next task is to define the Red and Blue orders of battle using one input table for the Red force and one for the Blue force. When an aircraft can be a fighter or a bomber, the SLAACM optimizer (heuristic or integer program solver) chooses the mix of configurations that provide the highest payoff; thus, we need only specify the quantity of the basic Red type and the model determines its optimum use. 
	Example Analyses 
	Background 


	To set the stage for the scenarios below, we note that the current SLAACM scenario matches a package of four Blues against Red packages containing four advanced escort fighters, four close escort fighters, and four bombers. The defenders must defeat, in turn, the advanced escorts and the close escorts to reach the bombers. 
	In developing the order of battle for each day, Red optimizes his attack based on the payoffs for the potential attack packages. Package payoffs are based on the destructive power of the bombers, the value of enemy aircraft killed, and the potential for success based on the kill-rate ratios of the combatants. 
	Blue has input options of designating individual aircraft “Smart” or “Smart Local Area Defender (LAD).” Both Smart and Smart LAD Blue aircraft are assumed to have sufficient battle management to identify and choose their target Red packages, and the Blue side performs the optimizations for those aircraft so designated. Smart Blues calculate payoff based on the destructive power of the bombers, the value of enemy aircraft killed, the value of own-side aircraft killed, and the potential for success based on the kill-rate ratios of the combatants. Smart Blue aircraft are relatively loss averse, while Smart LAD Blue aircraft, as local area defenders, are indifferent to Blue-side loss. 
	Blues not selected as Smart or Smart LAD engage randomly with no consideration of target value or own-side risk. The randomly assigned Blue aircraft are subject to a battle management factor, with values between 0.0 and 1.0, that defines the probability that they will be able to locate and engage any Red packages. 
	Note that one Blue aircraft type is labeled “LAD” and belongs to the indigenous, “Green,” force. We assume Green is defending home ground and is indifferent to losses. We typically either have the Green LAD aircraft attack randomly or select for it both Smart and LAD options. 
	SLAACM includes both a “greedy algorithm” heuristic optimizer that identifies, sorts, and selects the highest-payoff packages to engage, and a link to a commercial program, LINGO™, that performs a complete integer program optimization. 
	Scenarios 

	In the examples that follow, we consider a simple case with one type of Blue defender of moderate strength opposed by two types of Red fighters escorting two types of Red bombers. Table 2-1 shows quantities and performance parameters for the combatants. Blue Blu6 in the KRR table corresponds to Blue NF1 in the Blue supply figure. For clarity, we use the label “Blu6 (NF1)” in the discussions below. 
	Table 2 1. Scenario Input Data
	Aircraft  designation
	Aircraft  initial  quantity
	 Blu6 (NF1)  to red aircraft  kill-rate ratio
	Red bomber  payload weight  (ton)
	Red bomber  payload quality (CEP ratio)
	Blue Blu6 (NF1)
	100
	Red F1
	600
	13
	Red F5
	100
	3
	Red B1
	300
	>1,000
	6,000
	0.4
	Red B2
	200
	>1,000
	18,000
	0.1
	Figures 2-3 and 2-4 show the SLAACM input worksheets for Blue and Red supply. The input tables allow day-by-day replacements or phased deployments (which are not used for the current example). 
	Figure 2 3. Blue Supply 
	  
	Figure 2 4. Red Supply 
	  
	Figure 2-5 shows the Blue order of battle (OOB) worksheet that includes input, output, and run controls. Control inputs at the top of the worksheet set the number of days in the campaign, the battle management factor for random defense, and the CAP factor. (“Days” refers to individual engagement periods, between which each side has time to reorganize his forces. There could easily be more or less than one such engagement in a single day; the number of days selected should be based on the expected individual engagements.) 
	Figure 2 5. Blue Order of Battle Worksheet 
	  
	CAP (combat air patrol) refers to cases in which Blue is compelled to stage his aircraft to maintain a continuous airborne defensive force over the battle space. If a Blue aircraft is identified as a CAP aircraft, then the Blue aircraft available for a day’s engagement is equal to the Blue quantity of that aircraft divided by the CAP factor. The CAP factor is based on such information as distances of bases from the battle space, aircraft range, crew rest, and related military considerations. Currently, the same CAP factor is used for all Blue CAP aircraft; the next version of SLAACM will allow individual CAP factors. Because Blue always fights in four-ship packages, if 
	 , 
	then Blue cannot maintain a full CAP and no Blues are sent. This is clearly too conservative because Blue will likely maintain a partial CAP with his remaining aircraft. Inclusion of a partial CAP in the closed-form analytic SLAACM algorithms presents a mathematical challenge that we intend to address in the future. 
	The remaining two controls at the top of the worksheet toggle use of the integer optimization (LINGO™) or the heuristic optimization, and toggle diagnostic program halts at intermediate stages of the calculations. 
	The first three columns in the table allow selection of specific aircraft as Smart, LAD, and/or CAP, as discussed above. The fourth column selects which Blue aircraft Red will use as the basis for optimizing his attack packages. With the current aircraft values and KRRs, the results are relatively indifferent to the selection in column four. 
	The order of battle information in the table is output information. The Day 0 column data are from the Blue supply worksheet, and the Day 2 through N column data are from campaign results. 
	Results and Discussion 

	Figures 2-6 through 2-8 show the SLAACM output charts for this campaign, and Figures 2-9 through 2-11 show the worksheet tables corresponding to the charts. Figures 2-12 through 2-14 show the SLAACM Blue loss, Red loss, and Blue loss standard deviation tables. 
	Figure 2 6. Blue Order of Battle 
	  
	Figure 2 7. Red Order of Battle 
	  
	Figure 2 8. Bomb Tonnage Dropped 
	  
	Figure 2 9. Blue Tabular Order of Battle 
	  
	Figure 2 10. Red Tabular Order of Battle 
	  
	Figure 2 11. Tabular Bomb Tonnage 
	  
	Figure 2 12. Blue Loss Table 
	  
	Figure 2 13. Red Loss Table 
	  
	Figure 2 14. Blue Loss Standard Deviation Table 
	  
	In the figures above, the losses occur monotonically for all aircraft types, which is typical of random engagement logic. The last day of the campaign was Day 6. At the end of Day 6, Red still has 160 RB1 bombers and 5 RB2 bombers, but because Red has only 4 RF1 and 2 RF5 fighters, he cannot provide the 8 fighter escorts required to generate an attack package. 
	The dispersion information contained in Table 2-14 is not currently used in our campaign analyses. We hope, in future work, to use this information to develop confidence intervals for campaign outcomes. 
	To demonstrate the impact of Blue battle management, we run the same case as above, first with the Smart option selected and second with both the Smart and LAD options selected. Figures 2-15 and 2-16 show the Blue order of battle and bomb tonnage results for these cases, along with the results for the case above. In the case of the Smart Blue, just one fewer Blue aircraft is lost (64 vs. 65), but the delivered bomb tonnage is dramatically reduced (2,931 tons vs. 4,044 tons) compared to the random case. In the case of Smart LAD Blue, one additional Blue aircraft is lost (66 vs. 65) and delivered bomb tonnage is further reduced (2,709 tons vs. 4,404 tons) compared to the random case. 
	Figure 2 15. Blue Order of Battle by Day 
	  
	Figure 2 16. Bomb Tonnage Dropped by Day 
	  
	In both the Smart and Smart LAD cases, the defenders focus on the Red packages containing Red RB2 bombers. On Day 1, both Smart and Smart LAD Blues attack RB2 packages escorted by Red RF1 fighters because they offer the highest probability of success. On Days 2 and 3, the Smart Blues and Smart LAD Blues continue to intercept RB2 packages, but the loss-averse Smart Blues switch much of their defense to Red RB1 packages to avoid the RB2 packages escorted by Red RF5 fighters. On Day 4, the Smart Blues finally must engage Red RF5 escorted RB2 packages. 
	Figure 2-17 shows the order of battle for Red’s most valuable bomber, the RB2. We see that RB2 is preferentially intercepted in both the Smart Blue and Smart LAD Blue scenarios. The Red RF5 order of battle shows that the Smart Blues avoid combat with Red RF5s until all lower risk, high-payoff options are exhausted. The Blue Blu6 (NF1) and Red RF5 losses shown Figures 2-18 and 2-19 provide another display of the Blue strategies. 
	Figure 2 17. Red RB2 Bomber Order of Battle 
	  
	Figure 2 18. Blue Losses by Day 
	  
	Figure 2 19. Red RF5 Losses by Day 
	  
	In the results above, we see that both Smart Blue and Smart LAD Blue battle management resulted in a 30 percent reduction in bomb tonnage compared to the random case.  By being loss-averse, the Smart Blues lost one fewer aircraft than the random case and two fewer aircraft than the Smart LAD case at the cost of 200 additional tons of bombs delivered. 
	Summary 

	The discussion and simple examples in this chapter demonstrate the basic operation and the capabilities of the current version of SLAACM. Consideration of the input sheets shows that SLAACM is capable of analyzing real-world scenarios of high complexity with provision for true integer programming optimization by both attackers and defenders. Even complex cases run in seconds, so analysts can efficiently examine wide ranges of alternatives. These features make SLAACM a valuable tool for the Department of Defense. 
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	Chapter 3    Mathematical Analysis: Battle Management, Optimization, and Dispersion in SLAACM 
	This chapter explains the mathematical methods used in three features of the current version of SLAACM: accounting for imperfect battle management, treating Red and Blue forces’ optimization problems, and dealing with dispersion in the two sides’ daily losses. 
	Battle Management 
	Battle management determines the ability of defensive counter air forces to engage targets. SLAACM provides two kinds of battle management for defensive aircraft, determined by whether or not the user identifies an aircraft type as “smart.” 
	Smart aircraft are able to locate advancing Red attack packages and identify the types of aircraft in them and, by sharing targeting information, to conduct optimized interceptions. Smart defenders always intercept their targets. 
	Blue aircraft not identified as smart encounter Red packages randomly. They do not conduct optimized defensive encounters. There is still an element of battle management for these aircraft, however, and that is the efficiency with which they encounter Red attack packages. 
	With perfect battle management, if the number of defending flights is at least as large as the number of attack packages, every attack package would be intercepted. However, the intercepting aircraft types would be random, rather than optimal. If the number of attack packages is larger than the number of defending flights, every defending flight would engage an attack package. 
	With less-than-perfect battle management, not every attack package would be intercepted in the former case, and not every defending flight would be engaged in the latter case. SLAACM’s battle management feature allows the user to enter a “goodness” parameter that characterizes the effectiveness of battle management for Blue aircraft that are not smart. The following paragraphs explain how that parameter affects SLAACM’s calculations. 
	Let K distinct types of defender flights deal with an attack by J distinct types of attack packages. The defenders are assumed not to know the makeup of individual attack packages before interception, so that the type of attack package engaged by a given defending flight is the result of random selection from the set of attack packages. 
	Let mi be the number of defender flights of type i, and let nj be the number of attack packages of type j. Then the total number of attack packages, N, and the total number of defending flights, M, are given respectively by  
	   [Eq. 3 1] 
	First we consider the case of perfect battle management. If M ≥ N, then every attack package will be intercepted. Not all defending flights engage; in this simple analysis, we assume that the fraction N/M of each defending flight type engages.  Then, a measure of  , the central tendency of the number Eij of mi vs. nj engagements, is 
	   [Eq. 3 2] 
	For this simple analysis, we take to be the number of mi vs. nj engagements. Summing  over j shows that the fraction of each defending flight type engaged is N/M, as it should be; summing over i shows that all attacking flights of each type are engaged. 
	When M < N, every defending flight engages, but not all attack packages can be engaged. The estimate for  analogous to the one given in (2) is 
	   [Eq. 3 3] 
	Summing this estimate for over i shows that the fraction M/N of each attack package type is engaged; summing over j shows that every defending flight of each type is engaged. 
	In some cases of interest, M and N are both O(102). For such large M and N, providing this “perfect” defender’s battle management could exceed the capabilities of available systems. We account for the limitations of the defender’s battle management with a simple adaptation of the “perfect” case. We make the adaptation by introducing “ghost” attack packages or defender flights. A defender flight that engages a ghost attack package does not actually engage; an attack package engaged by a ghost defender flight is not actually intercepted. 
	When M ≥ N, we introduce mg defending flights of type “ghost,” and proceed as in the above analysis (where the defender has perfect battle management). This gives us a new estimate for ,  
	   [Eq. 3 4] 
	where 
	   [Eq. 3 5] 
	When M < N, we introduce ng attack packages of type “ghost,” and find 
	   [Eq. 3 6] 
	where 
	   [Eq. 3 7] 
	Noting the similarity of (3-4) and (3-6), we introduced into SLAACM the simple model 
	   [Eq. 3 8] 
	and allow the user to choose the “battle management efficiency factor” b, 0 < b ≤ 1. 
	Once seen, equation (3-8) is so simple, and seemingly obvious, that it is fair to ask why we did not simply introduce it into SLAACM without analysis. The reason is that we wanted to understand what that simple choice implied about how the battle proceeded. The analysis given here supplies that understanding. 
	Optimization 

	This section discusses a formal integer programming optimization process that replaces (or supplements) our original optimization heuristic. (The results of both these analyses have been incorporated into the latest versions of SLAACM.) Here we formalize the integer programming problems performed in the LINGO model within LMI’s SLAACM. LINGO is a general linear, nonlinear, and integer programming solver tool.  The version embedded in SLAACM is Extended LINGO 9.0. 
	The main idea behind using an integer programming tool is to solve the following optimization problem. Red wishes to come with optimal attack packages based on a determined payoff function (this is the first optimization). Then, the Blue aircraft that are sophisticated enough to have a priori knowledge of what Red attack packages are coming may optimize their defending packages accordingly (the second optimization). The remaining Blue aircraft that do not have advanced knowledge of Red’s attack compositions will encounter the attackers randomly, often with less than perfect battle management. The random encounters were described mathematically in the previous section. 
	A Red attack package consists of four advanced escorts, four close-in escorts, and four bombers. Since some fighters may be bombers, we could have a set of possible attack packages  , where, given   types of fighters and bombers, we could have that  . In reality, however, most mathematically feasible combinations of packages are unrealistic for warfare (one would not, for example, dispatch a package of heavy bombers escorting fighters). Since the number of reasonable attack packages is much smaller than the complete enumeration, we assume those undesirable packages are removed in advance of the optimization; then, we limit ourselves to those remaining, reasonable possibilities in the integer program. The degree to which one wishes to limit the number of potential packages depends primarily on the size of the integer program, which is a function of the size of  . 
	We define a set of a attack packages for Red as  . We define variable   as the number of Red aircraft of type   used in attack package  . To calculate its payoff, Red plans its attack assuming each package will be confronted by one specific Blue defender type, usually the most numerous Blues. Based on the payoff functions described previously, each attack package for Red has a certain payoff, denoted as  . We denote the number of Red aircraft of type   as  . At this point, Red solves for its optimal attack strategy. We have the following integer optimization problem: 
	 m ax   
	s.t.    
	   [Eq. 3 9] 
	This problem is a variant of the classic knapsack problem. The solution to this integer programming problem provides the optimal set of attack packages dispatched by Red. 
	As stated previously, Blue responds with optimal defenses of Red’s attack if a given aircraft is “smart” enough to have a priori knowledge of Red’s attack package composition. We assume Red has obtained its solution for (3-9) before Blue does its optimal response. We denote the optimal solution for Red—that is,  —as constraints for Blue’s optimization. In other words,   is the number of Red attack packages of type  . 
	Blue has its own payoff function for each type of potential Red attack package. We denote   as the payoff to Blue for intercepting a Red package   with the Blue four-ship package of aircraft type  . Again, the components of the payoff function have been described previously; they include a loss-aversion factor for Blue, along with positive payout for expected Red kills and bombs stopped. We denote the set of Blue aircraft types with a priori knowledge of Red’s attack packages as  . We denote the number of Blue aircraft of type   as  . We then formulate and solve the following integer programming problem for Blue. In short, we want to solve for the optimal number of Blue four-ship package of type   that intercepts Red attack package  , denoted by  . 
	max   
	s.t.    
	            
	   [Eq. 3 10] 
	The integer programming model written in LINGO is embedded into SLAACM. LINGO solves the integer programming problem and returns the solution to SLAACM. At this point, the remaining “dumb” Blue aircraft, denoted by  , where   and  , engage the Red packages that were not selected by the “smart” Blues. That is, the Blue aircraft without a priori knowledge engage randomly the Red packages that remain after (3-10) is solved, i.e., those Blue aircraft engage a set of attack packages  , where  . Those encounters were described in the previous section on battle management. Since the previous section described a slightly different problem, the notation from this section and the previous is not to be considered interchangeable. 
	Dispersion 

	SLAACM engagements between a four-ship defender flight and a 12-ship attacking package have 16 possible outcomes.  They may be described as absorbing boundary states (a, c, b, d), where a is the number of advanced escorts, c the number of close escorts, b the number of bombers, and d the number of defenders. In four outcomes, the advanced escorts defeat the defenders, and the system state is (i, 4, 4, 0), 1 ≤ i ≤ 4. In four other outcomes, the defenders defeat the advanced escorts, but are themselves defeated by the close escorts; the corresponding system states are (0, i, 4, 0), 1 ≤ i ≤ 4. The defenders may defeat both advanced and close escorts but lose to the bombers (some bombers have substantial defensive capability). Then the system states are (0, 0, i, 0), 1 ≤ i ≤ 4. Finally, the defenders may prevail, with system states (0, 0, 0, i), 1 ≤ i ≤ 4. 
	SLAACM presently calculates the probabilities of all 16 outcome states, for every Blue vs. Red engagement that takes place. Part of this year’s work was to review these statistics, and upgrade SLAACM to display appropriate measures of dispersion. Table 3-1 shows an example of the probabilities of the 16 outcome states.
	Table 3 1. Outcome State Probabilities
	a
	c
	b
	d
	Probability
	1
	4
	4
	0
	7.52E-08
	2
	4
	4
	0
	1.23E-07
	3
	4
	4
	0
	1.14E-07
	4
	4
	4
	0
	5.59E-08
	0
	1
	4
	0
	0.000121
	0
	2
	4
	0
	0.000203
	0
	3
	4
	0
	0.0002
	0
	4
	4
	0
	0.000112
	0
	0
	1
	0
	1.91E-06
	0
	0
	2
	0
	3.82E-06
	0
	0
	3
	0
	5.69E-06
	0
	0
	4
	0
	7.54E-06
	0
	0
	0
	1
	0.002155
	0
	0
	0
	2
	0.01635
	0
	0
	0
	3
	0.132935
	0
	0
	0
	4
	0.847904
	In this example, which is representative of many cases considered in this year‘s studies for OSD/PA&E/TACAIR, the defenders are significantly stronger than the Red aircraft in the attack package. Consequently, probabilities of cases in which Red aircraft prevail over the Blue defenders are all much less than one. The central tendencies of the losses for all Red aircraft—advanced escorts, close escorts, and bombers—are quite close to four, and the standard deviations for losses of all the Red aircraft are small compared to one (the probability that fewer than four advanced escorts are lost is less than 10-6; the probability that fewer than four close escorts or fewer than four bombers are lost is less than 10-3). 
	The situation is somewhat different for the Blue defenders. While the probability that the defenders prevail is very nearly one (it is larger than 0.999), there is considerable dispersion in the number of Blue losses. The probability of no Blue losses is 0.85; the probability of one Blue loss is 0.13; the probability of two Blue losses is roughly 0.02; and the probability of three Blue losses is less than 0.01. Table 3-2 shows the marginal distribution functions of losses for all four combatants: advanced escorts, close escorts, bombers, and defenders.
	Table 3 2. Marginal Loss Distributions
	Losses
	Probability (advanced escorts)
	Probability  (close escorts)
	Probability (bombers)
	Probability (defenders)
	0
	5.5879E-08
	0.000112
	0.000645
	0.847904
	1
	1.1365E-07
	0.0002
	5.69E-06
	0.132935
	2
	1.22778E-07
	0.000203
	3.82E-06
	0.01635
	3
	7.52281E-08
	0.000121
	1.91E-06
	0.002155
	4
	0.999999632
	0.999363
	0.999344
	0.000656
	In view of these types of results, which were common in the cases studied this year, we decided to track the dispersion of Blue losses in SLAACM outputs, but not to track dispersion in Red losses. 
	Also, these typical results show that it is reasonable to propagate only central tendencies (expected values) of Red losses to obtain day-to-day Red orders of battle. In addition, while it is not unreasonable to propagate only central tendencies of Blue losses to obtain day-to-day Blue orders of battle, SLAACM will give better understanding of overall dispersion if a few representative values of Blue losses are propagated day to day. 
	We report dispersion (standard deviation) of Blue losses in the present version of SLAACM. We intend to propagate three representative values of Blue losses day -to-day. 
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	Chapter 4    Mathematical Analysis: Phased Attack  and Defense 
	In air defense, it is sometimes necessary to provide continuous combat air patrol coverage of the battle space. The current SLAACM includes the option for Blue defense aircraft to be time phased over the battle space in order to provide continuous defense CAP. The inclusion of a phased Blue defense led to discussions with TACAIR about whether Red could phase its attack to take advantage of Blue’s phasing. In response to these discussions, we addressed the problem in two substantially different ways, and include both in the sections that follow. Approach 1 demonstrates a method for generating probabilistic results for a well-defined, specific scenario. Note that in this analysis the postulated parameters are selected solely to demonstrate the approach. While these parameters are generally reasonable, they do not represent any known operational scenario. Approach 2 is a generalized combinatorial analysis that explores the probability space for random selections of phasing strategies for both Blue and Red. 
	Approach 1 
	We are interested in the way CAP attrition is treated in SLAACM. Presently, SLAACM assumes that all the packages Red sends in a “day” are simultaneously observable by Blue’s battle management, which may include target identification onboard certain aircraft. This allows certain Blue aircraft to selectively engage high-threat packages. This assumption of high-threat Red attacks seems plausible when saturating Blue’s defenses is an attractive option for Red. 
	But for a scenario in which Blue’s target identification/battle management, and the two sides’ available forces, would allow Red to saturate Blue’s defense with relatively low-value attack packages while Blue remained unaware of upcoming attacks by high-value packages, the SLAACM assumptions are optimistic for Blue. This is particularly true when target identification is onboard aircraft that fly combat air patrols from bases far from the theater. 
	Full exploration of the options available to each side by time phasing of attacks and defenses will involve considerations of target and basing geographies and may well require case-by-case analysis. Here we consider some specific, simple examples to illustrate the potential significance of these effects. 
	Suppose that Blue has a fleet of 192 aircraft, which must accomplish a 2-hour flight to the theater. Suppose also that their aircraft can remain on station for 1 hour, that they carry six missiles, that they will keep one missile for self-protection while returning to base, and that their turnaround time is 1 hour. This gives the Blue aircraft 1 hour out of six on station, so that six flights must be available to keep one flight continuously on station. Suppose that Blue aircraft always fight in four-ship packages. 
	Suppose that Red attacks always come in 12-ship packages, made up of advanced escorts, close escorts, and bombers, and that the Blue aircraft must defeat the escorts in order to engage the bombers. Then each 4-ship flight, having 20 usable missiles, can defeat only one attacking package before rearming. 
	Now, Blue’s 192 aircraft provide eight, six-flight groups, so that Blue can keep eight flights on station continuously. In this simple example, Blue controls only the time phasing of the eight groups’ CAPs. 
	Figure 4-1 shows an example of the build-up of Blue forces when the CAPs relief times are evenly spaced. 
	Figure 4 1. Arrival Process for Evenly Spaced CAPs 
	  
	By sending eight attacking packages, Red can at any time “reset” Blue’s strength to the start of the buildup, because defeating eight packages exhausts the missiles available to the eight Blue flights on station.TPF FPT In this way the Reds can give themselves intervals of time in which there are fewer than eight Blue flights. 
	Let us look first at a bad Blue option for the CAPs’ relief times. Suppose that, rather than the uniform spacing of Figure 4-1, the eight groups’ CAPs are exactly in phase. That is, the flights of all eight groups relieve their predecessors at the same time. Then, by sending eight low-value packages, Red can exhaust the missiles available to the Blue force, and there will be no more Blue aircraft for roughly 1 hour. This gives Red considerable scope to dispatch higher-value packages unopposed. 
	Presumably, Blue will not arrange the groups’ CAPs in this way. To consider other Blue options and Red tactics in more detail, we must be more specific about the time required for Red to carry out missions and about the area in which Red packages are vulnerable to Blue’s flights. 
	Let us say, then, that Red’s packages are vulnerable for 10 minutes ingress, 5 minutes delivering bombs, and 10 minutes egress. To focus strictly on time phasing, suppose that the Blue defenders are invincible, so that any Blue flight in Red’s vulnerable zone, with at least as many Red packages as Blue flights are also in the zone, destroys a Red package. 
	For further simplification, let us suppose that Red has eight low-value packages and eight high-value packages to dispatch. For specificity, suppose that bombers in the high-value packages carry three times the weight of bombs as those in the low-value packages. 
	Let us also assume that all eight Blue CAPs are in place, and that the Blue aircraft unfailingly attack high-value packages in preference to low-value packages. 
	Now, if Red dispatches all 16 packages at once, the eight defending flights will eliminate all eight high-value packages, and Red will deliver eight low-value bomber loads (we’ll call this eight “units”) of bombs. No aircraft in the low-value packages will be lost. 
	For completeness, let us treat the above “bad” Blue option in detail. If all eight CAPs were in phase, it seems incredible that Red would not know the times at which the CAPs were relieved. Then Red can send eight low-value packages to arrive just after a relief time. All eight will be destroyed. But the missiles of all eight CAPs will be exhausted too. If the eight high-value packages were undetectable while, say, 20 minutes behind the low-value packages, they could ingress, bomb, and be out of the vulnerable area 15 minutes before the relieving CAPs arrived. 
	Blue would, however, want to arrange the CAPs’ phases to avoid such an outcome. One option would be to space the CAPs’ relief points evenly as shown in Figure 4-1. 
	If Red sends the eight low-value packages to arrive just at one CAP’s relief time, and delays the eight high-value packages for, say, 20 minutes to make sure that Blue does not know they are coming, the high-value packages will face only two defending flights, with a third defending flight joining after 2.5 minutes. One more Blue flight will arrive just as the five Red packages start bombing; it will destroy a Red package, and four high-value Red packages will drop their bombs. 
	Two defending flights will arrive before the four packages that survive ingress and bombing leave the vulnerable area (the second arrives just as they leave, but it seems reasonable to give Blue the benefit of a tie), so that the outcome of the attack is six high-value and eight low-value packages destroyed, with four high-value bomber loads of bombs delivered. 
	Thus, spacing the CAPs’ relief times evenly allows Blue to destroy six more high-value packages, and allows four fewer bomber flights to "leak" through Blue's defenses, than would have been the case if the relief times coincided. Red, on the other hand, gets four high-value bomber flights through, delivering 50 percent greater weight of bombs, and loses two fewer high-value packages, than he would have done by sending all the packages simultaneously (as SLAACM now assumes he would do) against the evenly spaced CAPs. 
	As a final example, we suppose that the eight CAPs’ relief times are randomly shifted in time and that Red sends eight low-value packages at a random time. Let us generalize the discussion, assuming that the defending flights’ time-on-station is S minutes and that Red follows up eight high-value packages D minutes later. Further suppose that ingress and egress require I and E minutes, respectively, and that bombing takes B minutes. 
	Then, the number j of Blue defending flights arriving while the high-value packages ingress and drop bombs has the binomial distribution B(j, 8, [D + I + B]/S). The number p of flights that do not arrive during that period is, of course, distributed as B(p, 8, [S − D − I − B]/S). 
	When k defending flights arrive during ingress and bombing, then 8 − k flights arrive in the interval S − I − B, and their arrival times are uniformly distributed over that interval. Thus, the number m of defending flights arriving during egress has the binomial distribution B(m, 8 − k, E/[S − I − B]), for 0 ≤ m ≤. 8 − k. 
	These results give the distribution of the number p of bomber-loads of bombs dropped as B(p, 8, [S − D − I − B]/S), and the distribution P(n) of the total number n of attack packages destroyed as 
	  
	where pB1B = (D + I + B)/S, and pB2B = E/(S − D − I − B). With this information, one can plot the statistics of bomb units dropped and Red packages destroyed (each high-value package delivers three bomb units). Figures 4-2 and 4-3 show the results for S = 60, D = 20, I = E = 10, and B = 5. 
	Figure 4 2. Probability Distribution of Bomb Units Dropped 
	  
	Figure 4 3. Probability Distribution of Red Packages Lost 
	  
	By sacrificing eight low-value packages, Red has 72 percent confidence of delivering more bomb units than with the simultaneous assault now assumed in SLAACM, and a 90 percent confidence of losing fewer high-value packages (these marginal statistics may not, of course, occur together). 
	Approach 2 

	As discussed above, we are interested in determining if Red can systematically phase his attack to maximize the success of his high-value attack packages. We assume here, as above, that both the Red attack and the Blue defense can be time phased within the engagement period, and each four-ship Blue flight can engage and defeat only one 12-ship Red package. We further assume that the Red attack is numerous, and Red is actually time phasing his high-value packages within a large number of low-value packages, such that Blue defense flights will engage the high-value Red packages available immediately on arrival and will engage the lower value packages if no high-value packages are available. All Blue defense flights will be absorbed by low-value Red packages whenever high-value packages are not available. 
	Consider the example in which eight Blue flights can arrive during a single engagement. We assume the engagement is divided into equal periods corresponding to the number of Blue flights, eight in this example. Blue can distribute his flights, and Red can distribute his high-value packages arbitrarily among the eight periods. Because each Blue flight engages only one Red package, Blue can kill (and Red can lose) a maximum of eight high-value Red packages. 
	We wish to determine if there is a way to phase the Blue arrivals to ensure maximum kills of high-value Red packages. Our assumptions are as follows: 
	 Blue is invincible and kills Red packages with 100 percent probability. 
	 Blue flights can preferentially detect and attack high-value Red packages. 
	 All Blue flights will be committed (or consumed) in each period either by high- or low-value Red packages. 
	 Red must commit all of his high-value packages during the engagement. 
	Analysis 

	By inspection we can deduce that Blue can guarantee at least one high-value package kill by distributing his arrivals equally. Beyond that, the results are not obvious. 
	To address the Blue and Red options, we need to determine the number of ways Blue and Red can distribute eight flights over eight time slots. This is a multinomial, combination-permutation in which order is important among different quantities, e.g., (1, 2) ≠ (2,1), but not important among multiple occurrences of the same quantities, e.g., (2B1B, 2B2B) = (2B2B, 2B1B). We first demonstrate a calculation method using four balls in four bins, and later apply the method to eight flights in eight time slots. 
	Four Balls Distributed Among Four Bins 

	First, we note that there are 4! ways to distribute four distinguishable items, such as 4 colored balls among 4 bins, 1 to a bin. In our problem, however, the 0, 1, 2, 3, and 4 counts of balls in a bin are distinguishable, but the balls themselves and multiple occurrences of the counts are indistinguishable. The choice of placing 0, 1, 2, 3, or 4 balls in a given bin restricts the options for the remaining bins. For example, if 4 balls are placed in any 1 bin, the rest of the bins must hold 0. (This is same as having 1 red ball and 3 blue balls.) The order of the bin containing the 4 balls is significant, so there are 4 ways to distribute the 4-ball set among the 4 bins. There is only 1! way to arrange the single bin containing 4 indistinguishable balls. If the 0s were distinguishable, there would be 3! ways to distribute them among 3 bins, but we do not distinguish differences in order among the bins containing 0s. When we reduce the 4! maximum options to account for the indistinguishable bins containing the same counts of balls, i.e., the three 0s, we get 4!/(3! * 1!) = 4 unique distributions. Table 4-1 confirms this by showing the complete set of 4 unique states.
	Table 4 1. State Count for Four Balls in a Given Bin
	Distribution  count
	Bins
	1
	2
	3
	4
	1
	4
	0
	0
	0
	2
	0
	4
	0
	0
	3
	0
	0
	4
	0
	4
	0
	0
	0
	4
	To determine the total number of unique distributions for 4 balls in 4 bins, we need to identify all the positional distributions of unique ball counts. This we do by hand. Table 4-2 shows the unique distributions for 4 balls in 4 bins and the corresponding calculations of state counts. 
	Table 4 2. Unique Distributions and State Counts for Four Balls in Four Bins
	Bins
	Distribution counts
	Distribution counts
	1
	2
	3
	4
	Unique distributions
	1
	1
	1
	1
	4!/4!
	1
	2
	1
	1
	0
	4!/(1!*2!*1!)
	12
	2
	2
	0
	0
	4!/(2!*2!)
	6
	3
	1
	0
	0
	4!/(1!*1!*2!)
	12
	4
	0
	0
	0
	4!/(1!*3!)
	4
	Total
	35
	 
	As a check on the method, Table 4-3 shows the detailed state enumeration for 4 balls in 4 bins. 
	 
	Table 4 3. State Enumeration for Four Balls in Four Bins 
	Bins
	Distribution counts
	1
	2
	3
	4
	States
	1
	1
	1
	1
	1
	2
	1
	1
	0
	12
	2
	1
	0
	1
	2
	0
	1
	1
	1
	2
	1
	0
	1
	2
	0
	1
	0
	2
	1
	1
	1
	1
	2
	0
	1
	0
	2
	1
	0
	1
	2
	1
	1
	1
	0
	2
	1
	0
	1
	2
	0
	1
	1
	2
	2
	2
	0
	0
	6
	2
	0
	2
	0
	2
	0
	0
	2
	0
	2
	2
	0
	0
	2
	0
	2
	0
	0
	2
	2
	3
	1
	0
	0
	12
	3
	0
	1
	0
	3
	0
	0
	1
	1
	3
	0
	0
	0
	3
	1
	0
	0
	3
	0
	1
	1
	0
	3
	0
	0
	1
	3
	0
	0
	0
	3
	1
	1
	0
	0
	3
	0
	1
	0
	3
	0
	0
	1
	3
	4
	0
	0
	0
	4
	0
	4
	0
	0
	0
	0
	4
	0
	0
	0
	0
	4
	Total
	35
	 
	Eight Flights in Eight Time Slots 

	Now we consider eight flights distributed among eight time slots. The unique distributions and distribution counts are shown in Table 4-4. 
	Table 4 4. Unique Distributions and State Counts  for Eight Flights in Eight Time Slots
	Time slot
	Distribution counts
	Distribution counts
	1
	2
	3
	4
	5
	6
	7
	8
	Unique distributions
	1
	1
	1
	1
	1
	1
	1
	1
	8!/8!
	1
	2
	1
	1
	1
	1
	1
	1
	0
	8!/(6! 1! 1!)
	56
	2
	2
	1
	1
	1
	1
	0
	0
	8!/(4! 2! 2!)
	420
	2
	2
	2
	1
	1
	0
	0
	0
	8!/(3! 3! 2!)
	560
	2
	2
	2
	2
	0
	0
	0
	0
	8!/(4! 4!)
	70
	3
	1
	1
	1
	1
	1
	0
	0
	8!/(5! 2! 1!)
	168
	3
	2
	1
	1
	1
	0
	0
	0
	8!/(3! 3! 1! 1!)
	1,120
	3
	2
	2
	1
	0
	0
	0
	0
	8!/(4! 2! 1! 1!)
	840
	3
	3
	1
	1
	0
	0
	0
	0
	8!/(4! 2! 2!)
	420
	3
	3
	2
	0
	0
	0
	0
	0
	8!/(5! 2! 1!)
	168
	4
	1
	1
	1
	1
	0
	0
	0
	8!/(4! 3! 1!)
	280
	4
	2
	1
	1
	0
	0
	0
	0
	8!/(4! 2! 1! 1!)
	840
	4
	2
	2
	0
	0
	0
	0
	0
	8!/(5! 2! 1!)
	168
	4
	3
	1
	0
	0
	0
	0
	0
	8!/(5! 1! 1! 1!)
	336
	4
	4
	0
	0
	0
	0
	0
	0
	8!/(6! 2!)
	28
	5
	1
	1
	1
	0
	0
	0
	0
	8!/(4! 3! 1!)
	280
	5
	2
	1
	0
	0
	0
	0
	0
	8!/(5! 1! 1! 1!)
	336
	5
	3
	0
	0
	0
	0
	0
	0
	8!/(6! 1! 1!)
	56
	6
	1
	1
	0
	0
	0
	0
	0
	8!/(5! 2! 1!)
	168
	6
	2
	0
	0
	0
	0
	0
	0
	8!/(6! 1! 1!)
	56
	7
	1
	0
	0
	0
	0
	0
	0
	8!/(6! 1! 1!)
	56
	8
	0
	0
	0
	0
	0
	0
	0
	8!/(7! 1!)
	8
	Total
	6,435
	 
	From Table 4-4 we see that there are 6,435 ways to distribute eight Blue flights (and eight Red packages) among eight time slots. Now we want to see the potential impact of this on Blue payoff. 
	To find the potential payoff for Blue, we want to find the probabilities of Blue (and Red) experiencing 0 through eight flights in a given slot. Table 4-5 shows the flight count occurrences for each unique distribution. 
	Table 4 5. Flight Count Occurrences per Unique Distribution
	Unique state distributions,  by time slot
	Flight count occurrences per unique distribution, by time slot
	Distribution counts
	1
	2
	3
	4
	5
	6
	7
	8
	0
	1
	2
	3
	4
	5
	6
	7
	8
	Unique distributions
	1
	1
	1
	1
	1
	1
	1
	1
	8
	1
	2
	1
	1
	1
	1
	1
	1
	0
	1
	6
	1
	56
	2
	2
	1
	1
	1
	1
	0
	0
	2
	4
	2
	420
	2
	2
	2
	1
	1
	0
	0
	0
	3
	2
	3
	560
	2
	2
	2
	2
	0
	0
	0
	0
	4
	4
	70
	3
	1
	1
	1
	1
	1
	0
	0
	2
	5
	1
	168
	3
	2
	1
	1
	1
	0
	0
	0
	3
	3
	1
	1
	1120
	3
	2
	2
	1
	0
	0
	0
	0
	4
	1
	2
	1
	840
	3
	3
	1
	1
	0
	0
	0
	0
	4
	2
	2
	420
	3
	3
	2
	0
	0
	0
	0
	0
	5
	1
	2
	168
	4
	1
	1
	1
	1
	0
	0
	0
	3
	4
	1
	280
	4
	2
	1
	1
	0
	0
	0
	0
	4
	2
	1
	1
	840
	4
	2
	2
	0
	0
	0
	0
	0
	5
	2
	1
	168
	4
	3
	1
	0
	0
	0
	0
	0
	5
	1
	1
	1
	336
	4
	4
	0
	0
	0
	0
	0
	0
	6
	2
	28
	5
	1
	1
	1
	0
	0
	0
	0
	4
	3
	1
	280
	5
	2
	1
	0
	0
	0
	0
	0
	5
	1
	1
	1
	336
	5
	3
	0
	0
	0
	0
	0
	0
	6
	1
	1
	56
	6
	1
	1
	0
	0
	0
	0
	0
	5
	2
	1
	168
	6
	2
	0
	0
	0
	0
	0
	0
	6
	1
	1
	56
	7
	1
	0
	0
	0
	0
	0
	0
	6
	1
	1
	56
	8
	0
	0
	0
	0
	0
	0
	0
	7
	1
	8
	6,435
	Dividing the flight count occurrences in a given row of Table 4-5 by 8 gives the conditional probability of the count occurrences given the distribution corresponding to the row. Dividing the distribution counts by the total count gives the probability of each distribution. Multiplying the distribution probabilities by the conditional count occurrence probabilities generates the probabilities for count occurrences shown in Table 4-6.
	Table 4 6. Flight Occurrences Probabilities for Eight Flights in Eight Time Slots
	Distribution probabilities
	Flight count probabilities
	0
	1
	2
	3
	4
	5
	6
	7
	8
	0.00016
	0.0000
	0.0002
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.00870
	0.0011
	0.0065
	0.0011
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.06527
	0.0163
	0.0326
	0.0163
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.08702
	0.0326
	0.0218
	0.0326
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.01088
	0.0054
	0.0000
	0.0054
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.02611
	0.0065
	0.0163
	0.0000
	0.0033
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.17405
	0.0653
	0.0653
	0.0218
	0.0218
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.13054
	0.0653
	0.0163
	0.0326
	0.0163
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.06527
	0.0326
	0.0163
	0.0000
	0.0163
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.02611
	0.0163
	0.0000
	0.0033
	0.0065
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.04351
	0.0163
	0.0218
	0.0000
	0.0000
	0.0054
	0.0000
	0.0000
	0.0000
	0.0000
	0.13054
	0.0653
	0.0326
	0.0163
	0.0000
	0.0163
	0.0000
	0.0000
	0.0000
	0.0000
	0.02611
	0.0163
	0.0000
	0.0065
	0.0000
	0.0033
	0.0000
	0.0000
	0.0000
	0.0000
	0.05221
	0.0326
	0.0065
	0.0000
	0.0065
	0.0065
	0.0000
	0.0000
	0.0000
	0.0000
	0.00435
	0.0033
	0.0000
	0.0000
	0.0000
	0.0011
	0.0000
	0.0000
	0.0000
	0.0000
	0.04351
	0.0218
	0.0163
	0.0000
	0.0000
	0.0000
	0.0054
	0.0000
	0.0000
	0.0000
	0.05221
	0.0326
	0.0065
	0.0065
	0.0000
	0.0000
	0.0065
	0.0000
	0.0000
	0.0000
	0.00870
	0.0065
	0.0000
	0.0000
	0.0011
	0.0000
	0.0011
	0.0000
	0.0000
	0.0000
	0.02611
	0.0163
	0.0065
	0.0000
	0.0000
	0.0000
	0.0000
	0.0033
	0.0000
	0.0000
	0.00870
	0.0065
	0.0000
	0.0011
	0.0000
	0.0000
	0.0000
	0.0011
	0.0000
	0.0000
	0.00870
	0.0065
	0.0011
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0011
	0.0000
	0.00124
	0.0011
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0000
	0.0002
	Totals
	0.4667
	0.2667
	0.1436
	0.0718
	0.0326
	0.0131
	0.0044
	0.0011
	0.0002
	 
	Table 4-7 repeats the occurrence probabilities from Table 4-6 and adds the Blue payoff probabilities, which are calculated by multiplying the probabilities by their corresponding flight counts. The expected payoff shown in Table 4-7 is 1 compared to the maximum payoff of 8. 
	Table 4 7. Probabilities and Payoff for Eight Flights in Eight Time Slots
	Probability per state
	0
	1
	2
	3
	4
	5
	6
	7
	8
	Total
	0.4667
	0.2667
	0.1436
	0.0718
	0.0326
	0.0131
	0.0044
	0.0011
	0.0002
	1.000
	Blue payoff/Red loss probability
	0
	1
	2
	3
	4
	5
	6
	7
	8
	Total
	0
	0.2667
	0.2872
	0.2154
	0.1305
	0.0653
	0.0261
	0.0076
	0.0012
	1.000
	 
	Look-Ahead Target Identification 

	The case in which Blue can see beyond the current period, and thus avoid wasting flights on low-value packages, can be modeled simply by reducing the number of time slots. Using the same approach followed above, we find that the expected payoff for eight flights in four time slots is 2, and the expected value for eight flights in two time slots is 4. The simplicity of these numbers suggests that there may be a more fundamental way to derive them than we have applied. That said, the results demonstrate the value of long-range identification to Blue and the value of preventing such identification to Red. 
	Approach 2 Summary 

	We note that these results represent the case in which Blue and Red each randomly select one of an exhaustive set of strategies. It does not represent the case in which Blues and Reds arrive randomly. The case of random phasing of Blue arrivals, and random arrival of the Red attack, is considered in Approach 1. 
	At this time, we do not know of any gaming strategy that can reliably improve the results for either Blue or Red. 
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	Chapter 5    Planned SLAACM Development 
	This chapter addresses future development for SLAACM. Specifically, we recommend the following:  
	 Implement a unique CAP factor for every Blue aircraft type. Currently, we use a single combat air patrol (CAP) factor for all the Blue aircraft selected as CAP aircraft. Because basing, aircraft range, and other physical and military considerations vary among aircraft types, we recommend adding to SLAACM individual type-based CAP factors. 
	 Automate the addition of Red and Blue aircraft types. The current SLAACM spreadsheets are configured for fixed maximum numbers of aircraft types. Changing the maximum number of types currently requires reprogramming of the model. We recommend implementing programming to automate the additional of Blue or Red aircraft types easily. 
	 Provide additional output charts and data displays. Although almost all the output statistics a user of SLAACM would want to see are calculated within the model, the tabular and graphical outputs are currently limited to the order of battle of Blue, Red, and Green aircraft types on each day; the number of bombs dropped; and losses on both sides by aircraft type. Based on experience gained through conducting analyses and on feedback from reviewers of model results, it has become clear that additional output would be beneficial. Specifically, we recommend adding the Red engagement packages sent each “day” and the corresponding Blue packages that intercept them, as well as improving displays of delivered munitions to include the explosive power of the munitions, identification of “smart” and “dumb” bombs dropped, and counts of cruise missiles and other identifiable payloads. 
	 Further analyze dispersion in campaigns. At the end of this year’s task, we began analyzing the dispersion of Blue and Red losses day-by-day and showing a campaign total loss and total standard deviation for each Blue type. In general, Blue losses are relatively dispersive, with coefficients of determination 25 percent or more in many cases. Red losses typically are not at all dispersive due the Blue kill rate dominance in cases studied, but they will become more dispersive as the forces approach more equal strength. Propagating engagement dispersions through a campaign typically results in computational difficulties due to the explosive growth of analytical states (i.e., follow-on engagement scenarios). We believe methods may be found to bound the results and recommend conducting research to investigate tractable methods to use the dispersion data to generate confidence intervals on campaign results. 
	 Explore the acquisition of more detailed information from other sources in order to generate richer engagement models. We recommend continuing efforts to engage combat modelers and analysts within organizations such as Air Force Studies and Analysis to obtain results that can better calibrate our model inputs. Those data can be helpful in obtaining better insight into things such as two-phase kill models. 

	PA504T1_298.pdf
	REPORT DOCUMENTATION PAGE  Form Approved OMB No. 0704-0188    Public reporting burden for 
	REPORT DOCUMENTATION PAGE
	Form Approved 
	OMB No. 0704-0188
	Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
	1. REPORT DATE (MM-YYYY) 
	07-2006
	2. REPORT TYPE 
	Final
	3. DATES COVERED (From - To) 
	 
	4. TITLE AND SUBTITLE 
	Analytic Methods for Tactical Air Warfare—2006 
	 
	5a. CONTRACT NUMBER 
	GS-00F-0026M 
	Air Campaign and Mathematical Analysis 
	5b. GRANT NUMBER 
	 
	5c. PROGRAM ELEMENT NUMBER 
	6. AUTHOR(S) 
	Hemm, Robert V.; Author
	 
	5d. PROJECT NUMBER 
	Lee, David A.; Author 
	Eckhause, Jeremy M.; Author 
	 
	 
	5e. TASK NUMBER 
	Dukovich, John A.; Author 
	 
	 
	 
	5f. WORK UNIT NUMBER 
	 
	7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
	 
	AND ADDRESS(ES)
	8. PERFORMING ORGANIZATION REPORT   
	    NUMBER
	LMI 
	2000 Corporate Ridge 
	McLean, VA  22102-7805 
	LMI-PA504T1 
	9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
	10. SPONSOR/MONITOR’S ACRONYM(S)
	OSD/Program Analysis and Evaluation - TACAIR
	Mr. Frank Lewis
	Pentagon, Room 2C281
	11. SPONSOR/MONITOR’S REPORT 
	Washington, DC  20301-1800
	 
	      NUMBER(S)
	12. DISTRIBUTION / AVAILABILITY STATEMENT 
	A     Approved for public release; distribution is unlimited. 
	 
	 
	13. SUPPLEMENTARY NOTES 
	14. ABSTRACT 
	The report describes analytical tasks performed for OSD/PA&E TACAIR during the period from June 2005 through July 2006. The report describes use of and extension to the stochastic Lanchester Air-to-Air Campaign model (SLAACM) probabilistic model of campaigns for air superiority between two opponents, described in previous reports. The current report describes the current model structure and battle management analysis features. In a separate section, the report discusses the mathematics of battle management and SLAACM integer programming capability. The report also contains mathematical analyses of strategies for defensive combat air patrol time phasing.  The final section discusses proposed future model development.
	15. SUBJECT TERMS 
	Multiple air combat, campaign models, Lanchester models
	16. SECURITY CLASSIFICATION OF: 
	17. LIMITATION  
	OF ABSTRACT
	18. NUMBER OF PAGES
	19a. NAME OF RESPONSIBLE PERSON 
	Nancy E. Handy
	a. REPORT 
	UNCLASSIFIED
	b. ABSTRACT 
	UNCLASSIFIED
	c. THIS PAGE 
	UNCLASSIFIED
	Unclassified Unlimited
	44 
	19b. TELEPHONE NUMBER (include area code) 
	703-917-7249
	Standard Form 298 (Rev. 8-98) 
	Prescribed by ANSI Std. Z39.18
	 


