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ABSTRACT 

Currently, two methods exist to determine trajectory of a ballistic penetrator: 

Poncelet Analysis and Differential Area Force Law (DAFL) methods.  An exact solution 

for the Poncelet Equation exists; making for easy computation.  However, the one 

dimensional nature of the equation fails to capture the intricate three-dimensional nature 

of real world ballistic penetrator trajectories.  The DAFL methods employ empirically 

derived stress algorithms to calculate the forces acting on a differential area of a 

projectile.  These stresses are then used to determine the forces and moments acting on 

the differential areas. These forces and moments are then used to solve the equations of 

motion to determine the trajectory of the ballistic penetrator. The DAFL methods 

accurately capture the three dimensional nature of the penetrator's trajectory, but are 

computationally intensive which make them slow. 

The Integrated Force Law (IFL) method combines the computational ease of the 

Poncelet Analysis with the accuracy of the DAFL methods. In IFL, the projectile shape is 

modeled as a polynomial.  The stress algorithms used in the DAFL methods are then 

numerically integrated over the top and bottom surfaces of the projectile to determine the 

force and moment acting on the top and bottom half of the weapon. These two forces and 

moments are then used to solve the equations of motion.  J-hook trajectories are solved in 

less than 40 seconds and stable trajectories are solved in less than three seconds.  
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I. BACKGROUND 

Accurate prediction of an earth penetrating projectile’s trajectory while traveling 

through a media is vital to effective ordinance employment.  If the trajectory of these 

projectiles can be accurately predicted, the number of projectiles employed against a 

target can be reduced since it is precisely known where each projectile will finish its 

trajectory.  However, there are many factors that complicate predicting these trajectories.   

Projectiles traveling through the ground do not always travel in a straight path. 

Under certain conditions, the trajectory will take on a curvilinear shape, much like “J”. 

This J-Hook phenomenon makes it difficult to determine the trajectory of the weapon.  

Additionally, the entire weapon does not stay in contact with the surrounding soil. This 

condition is known as Wake Separation. A stress is exerted on the projectile only where 

the soil is in contact with the surface of the projectile.  Wake separation is a complicated; 

little understood phenomena that greatly impacts the trajectory a projectile will take.  

Finally, there is Trajectory Direction Reversal. At some critical incidence angle a 

projectile that would normally execute a J-Hook trajectory no longer travels back toward 

the surface, but dives away from the surface, driving the projectile much deeper than is 

expected.  All of these issues make accurate prediction of a penetrator's trajectory very 

difficult. 

The most limiting factor toward accurate prediction of a projectile’s trajectory is 

computing time.  Methods currently in use that predict reasonably accurate projectile 

trajectories employ large models of the projectile.  These large models require a great 

deal of computing time to solve for the trajectory.  This thesis investigates if it is possible 

to replace the large projectile models currently in use with a smaller, less complicated 

model in the hopes that this smaller model will reduce computing time without 

sacrificing trajectory accuracy. 
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II. PREVIOUS RESEARCH 

A. PONCELET ANALYSIS 
Investigation into projectile impact began with Poncelet in the latter half of the 

19th century. Poncelet was able to empirically determine that the equation that describes 

the acceleration a projectile experiences while traveling through a media is given by Eqn. 

(1).1 

 2dV A BV
dt

− = +  (1) 

where the penetration constants, A and B, are functions of both the projectile mass and 

the media through which the projectile is traveling.  Eqn. (1) can be integrated to find the 

penetration depth as a function of time Eqn. (2).2 

 
{ }ln cos( ( )) sin( ( ))

( )
o o o

o

BAB t t V AB t tAy t y
B

− + −
= +  (2) 

In order to solve for the depth of the projectile, constants A and B must be 

determined. In the 1970’s Sierakowski et al.3 at the University of Florida found these 

constants using empirical data.  The constants were solved for near normal impact of 

small projectiles.  Once they had solved for the penetration constants in all three 

dimensions, they developed a 3 dimensional model based on the empirically determined 

constants.  Their 3 dimensional model was then compared to empirical normal impact 

data. 

This research yielded good agreement between the theoretical model and 

experimental data for normal impact. However, there are some significant drawbacks to 

this method. First, the Poncelet constants are different for each projectile shape, projectile 

mass, and soil type.  Therefore, the penetration constants must be empirically determined 

for each different projectile and soil type. Secondly, in order to solve for the position, 12 

coupled differential equations must be solved (3 force equations, 3 moment equations, 

                                                 
1 R.L. Sierakowski, L.E. Malvern, J.A. Collins, J.E. Milton, and C.A. Ross, (1977). “Penetrator Impact 

Studies of Soil/Concrete,” University of Florida, Gainesville, Florida. p. 17. 
2 Ibid. 
3 Ibid. 
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and 6 velocity equations). While good results were obtained, this method is not 

conducive to rapid trajectory calculation of projectiles of various shapes. 

B. DIFFERENTIAL AREA FORCE LAW (DAFL) METHOD 

A few years later, Bernard and Creighton4,5 applied the principles of soil 

mechanics to determine the forces acting on the surface of the projectile as it moves 

through soil. The projectile was discritized into many small differential areas. The forces 

and moments acting on these areas are summed to determine the total force and moment 

acting on the projectile. This method of determining the overall forces and moments 

acting on the projectile by summing the forces and moments acting on discrete areas is 

known as the Differential Area Force Law (DAFL) method. 

In order to apply these formulations, large Differential Area Force Law (DAFL) 

models of the projectile were needed.  The DAFL model is constructed by replacing the 

smooth curve of the projectile with a series of differential areas.  This converts the 

projectile from a smooth surface to a multi-faceted surface. The stress at the center of 

these differential areas was calculated using the available stress formulations then 

multiplied by the differential area. The resulting force vector for each differential area 

was then summed to determine the force acting on the projectile Eqn. (3).   

 
1

m

i i i
i

F n dAσ
=

= ∑  (3) 

The moment acting on the projectile is calculated in a similar fashion is given by 

Eqn. (4). 

 
1

m

i i
i

M r F
=

= ×∑  (4) 

The DAFL method has the advantages of being able to accurately describe the 3 

dimensional motions of the projectile while solving only two vector differential Eqns. (5)

and (6) instead of the twelve differential equations employed by Sierakowski. 

 
                                                 

4 R.S. Bernard, and D.C. Creighton, (1978). “Non-Normal Impact and Penetration: Analysis for Hard 
Targets and Small Angles of Attack,” Technical Report SL-78-14, US Army Engineer Waterways 
Experiment Station, Vicksburg, Mississippi. pp. 9-13. 

5 R.S. Bernard, and D.C. Creighton, (1979). “Projectile Penetration in Soil and Rock: Analysis for 
Non-Normal Impact,” Technical Report SL-79-15, US Army Engineer Waterways Experiment Station, 
Vicksburg, Mississippi. pp. 9-12. 
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Fa
m

=  (5) 

 M
I

θ =  (6) 

In this method, the forces and moments acting on the weapon are not dependent 

on projectile and soil specific constants.  The stress experienced by a differential area on 

the projectile is a function of projectile speed and soil penetrability.  Soil penetrability is 

quantified by the soil number, SNUM, with less penetrable soils having a smaller SNUM.  

A sample of soil types and their corresponding SNUM are given in Table 1.   

 

Soil Type SNUM 

Hard Sand 4 

Sand 8 

Elgin Sand 11 

Soft Clay 35 

 
Table 1.   Soil Type and Corresponding SNUM6 

 

Different constants need not be calculated for each projectile, making it more 

adaptable than the earlier Poncelet attempts.  However, a large finite element model is 

still required leading to long computational times. 

A third model that combines elements of both the Poncelet analysis and the 

DAFL method was developed by Young (1972).  In this model, Young uses his 

empirically derived equation for predicting penetration depth Eqn. (7).7 

 
.4 .70.00178 (0.2 ) ( ) ( 100)WD S W N VA= −

 (7) 

                                                 
6 D.C. Creighton, (1988). “Ricochet and Stability of MK82, MK83 and MK84 General Purpose 

Bombs in Soil,” Miscellaneous Paper SL-88-1, US Army Engineer Waterways Experiment Station, 
Vicksburg, Mississippi. p. 20. 

7 C.W. Young, (1997). “Penetration Equations,” Contractor Report SAND97-2426, Applied Research 
Associates, Inc., Albuquerque, New Mexico. pp. 5-6. 
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where S  is the SNUM, W is the projectile weight, A  is average cross sectional area, 

N is local nose performance coefficient, and V is the initial projectile velocity. 

This depth is then used to calculate the average axial force acting on the projectile 

Eqn. (8).8 

 
2

2a
VF m

D
=  (8) 

Lateral force, 
i

Fα , acting on a differential area is given by Eqn. (9).9 

 20.06
i

i

S a iA F
F

dα

εε α′
=  (9) 

where ε  is the cratering factor at weapon entrance, ε ′  is the cratering factor at weapon 

exit, 
iSA  is the surface area of the differential area, iα  is the local angle of attack, and d  

the projectile diameter. 

Note that the lateral force is still a function of the average acceleration. These 

forces are then used to solve the same equations of motion Eqns. (5) and (6) that are used 

by the DAFL method. 

                                                 
8 C.W. Young, (1998). “Simplified Analytical Model of Penetration with Lateral Loading,” Contractor 

Report SAND98-2426, Applied Research Associates, Inc., Albuquerque, New Mexico. p. 6. 
9 Ibid., p. 8. 
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III. INTEGRATED FORCE LAW METHOD (IFL) 

A. COORDINATE SYSTEM 
Two coordinate systems were used in this investigation. These coordinate systems 

are pictured in Figure 1 and Figure 2.  The inertial coordinate system is depicted in 

Figure 1 and the weapon based coordinate system shown in Figure 2.  

 

y

x

z

V

  

Figure 1.   Inertial Coordinated System 
 

 
Figure 2.   Weapon Coordinate System 

 

The origin of the inertial system is fixed to the point where the tip of the projectile 

impacts the soil.  The x-axis is along the soil interface.  Positive incidence angle, θ , is 

measured counter clockwise from the weapon centerline to a line parallel to the x-axis 

that passes through the projectile CG.  The angle of attack, α , is the angle between the 

CG velocity vector and the projectile centerline. Positive α is measured clockwise from 
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projectile centerline to the CG velocity vector.  If the projectile centerline makes an angle 

θ , with a line parallel to the inertial x-axis, the matrix to transform the CG velocity and 

the forces and moments acting on the projectile from inertial to weapon coordinates is 

given by Eqn. (10). 

 
cos sin
sin cos

T
θ θ
θ θ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (10) 

where θ  is the incidence angle. 

y

x

wy

Vcg

wx

 
Figure 3.   Inertial to Weapon Frame Transformation Geometry 

 
B. PROJECTILE MODEL 

The MK-84 bomb was the projectile modeled.  The MK-84 nosecone is shaped 

like a tangent ogive The MK-84 physical characteristics and model characteristics are 

listed in Table 2. Note that the Moment of Inertia for the ISAAC II model is less than the 

actual moment of inertia of the projectile. This reduction in the moment of inertia is 

necessary for the ISAAC II stress formulation to reproduce the J-Hook Phenomena that 

the DAFL method produces. This reduction in the moment of inertia for the ISAAC II 

formulation is most likely needed to compensate for an inaccurate projectile model and 

an overly simplistic wake separation model. These issues will be addressed in the 

RESULTS and ANALYSIS AND DISCUSSIONS sections.  It is worth noting here, 

however, that if the moment of inertia used for the PENCURV reduced by a factor of 

twenty, there is no corresponding increase in the amount of weapon rotation. 
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Projectile Physical Data 

 Mk-84 
Projectile 

PENCURV 
Model 

ISAAC II 
Model 

Overall Length 
(in) 

101 101 101 

Length Nose to 
CG (in) 

59.5 59.5 59.5 

Length CG to 
Tail (in) 

41.5 41.5 41.5 

Maximum 
Radius (in) 

9 9 9 

Weight (lbf) 1890 1890 1890 
Moment of 
Inertia 

( )4
lbf

in  

1.367x106 1.367x106 6.835x104 

 
 

Table 2.   Physical and Model Characteristics for MK-84 Projectile10 
 

In the IFL method, the shape of the projectile is approximated by a continuous 

polynomial.  Once this polynomial has been determined, the surface area of the projectile 

can be approximated by rotating the polynomial about the y-axis. The polynomial will be 

determined by performing a least squares fit to the coordinates that describe the projectile 

curve. The nosecone of the MK-84 bomb is described as a tangent ogive.  A tangent 

ogive is a portion of a circle of radius ρ  given by Eqn. (11) shown in Figure 4. 

                                                 
10 D.C. Creighton, (1988). “Ricochet and Stability of MK82, MK83 and MK84 General Purpose 

Bombs in Soil,” Miscellaneous Paper SL-88-1, US Army Engineer Waterways Experiment Station, 
Vicksburg, Mississippi. p. 17. 
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Figure 4.    Tangent Ogive Geometry 
 

To facilitate transformation between the inertial frame and the weapon frame, the 

projectile CG is placed at the origin of the weapon frame. The maximum radius of 9 

inches occurs at the CG.  The shape of the projectile forward of the CG is modeled as a 

tangent ogive with a length of 59.5 inches and a maximum radius of 9 inches. Eqn. 11 is 

used to determine the ogive radius as a function of the length and radius of the nosecone.  

Eqn. 12 is used to calculate the y coordinates of the projectile.  The x input to Eqn. (12) 

will be the roots of the Chebyshev polynomial. The roots of the Chebyshev polynomials 

are routinely used as the x coordinates for interpolating polynomials because they can 

reduce the degree of the polynomial without a significant increase in the error associated 

with the approximation.11  Eqns. (11)12 and (12)13 are used to calculate the y coordinates 

of the projectile shape.   

 

 

 

                                                 
11 R.L. Burden, J.D. Faires, (2005). “Numerical Analysis, 8th Edition,” Thomson Brooks/Cole, 

Belmont, California. p. 510. 
12 G.A. Crowell, Sr. (1996). “The Descriptive Geometry of Nose Cones,” Miscellaneous Paper. 
13 Ibid. 
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2 2

2
R L

R
ρ +

=  (11) 

 2 2( ) ( )y x L Rρ ρ= − − + −  (12) 

where ρ  is the ogive radius, R is the projectile radius at the base of the nosecone and L is 

the length of the nosecone. 

The roots of the Chebyshev polynomial are given by Eqn. (13).14  Eqn. (13) can 

be scaled to any interval by Eqn.(14).15   

 
1

( 1 1 2 )cos
1n

N nx
N

π
−

+ + −⎛ ⎞= ⎜ ⎟+⎝ ⎠  (13) 

 ( )1
1 ( 1 1 2 )cos
2 1n

N nx b a a b
N

π
−

+ + −⎛ ⎞= − + +⎜ ⎟+⎝ ⎠
 (14) 

where N is the total number of roots desired, n is the current root desired, a is the lower 

limit of the interval and b is the upper limit of the interval. The range of n is from 1 to 

N+1.    

The afterbody coordinates are determined in a similar fashion, but are scaled from 

zero to 106.5 inches. Once the coordinates of the entire projectile have been found, a least 

squares fit of the points is used to find the degree 3 polynomial, f(x) that describes the 

shape of the top half of the projectile. The bottom half of the projectile, g(x), is given by 

g(x)=-f(x). Since the shape of the weapon is described by a polynomial, the functions f(x) 

and g(x) are continuous and continuously differentiable of the range of interest. 

C. PHYSICS OF THE J-HOOK 

Consider the two projectiles, one with a straight afterbody and one with a flared 

afterbody, shown in Figure 5 below.  

                                                 
14 R.L. Burden, J.D. Faires, (2005). “Numerical Analysis, 8th Edition,” Thomson Brooks/Cole, 

Belmont, California. p. 505. 
15 Ibid., p. 508. 
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n
Vcg

r

Vcg

Vcg

r

n

 

Figure 5.   Tapered and Straight Afterbody Projectiles 
 

Both are about to impact the soil with zero angle of attack. For this discussion, the 

effect of the interface will be ignored. This effect will be discussed later. At impact, both 

projectiles will be imparted with a counter clockwise rotation and the angle of attack will 

become slightly positive. 

Recall that a force on the surface is only imparted when the dot product of the 

velocity and the outward surface normal is greater than zero. Consider only the straight 

afterbody case. As the angle of attack becomes slightly positive, only a small portion of 

the upper surface has a dot product of less than zero with respect to the CG velocity. As a 

result, there is only a slight imbalance in the resultant moment on the projectile. As a 

result, the projectile rotates only slightly as it moves through the soil. 

Now consider the tapered after body.  As the projectile moves through the soil, 

the angle of attack becomes slightly negative (above the centerline of the weapon) as 

shown in Figure 6.  
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Figure 6.   Angle of Attack versus Time for MK-84 

 

As the angle of attack becomes more negative, less surface area on the bottom of 

the projectile is in contact with soil. On the top surface of the projectile, more surface 

area becomes in contact with the soil. As a result, the force distribution shown in Figures 

7 and 8 results. Figures 7 and 8 are for an angle of attack of -2 degrees.  The force acting 

on the top half of the combines with the force on the lower half of the weapon to produce 

a force with a negative axial component and a negative transverse component. As a 

result, the force is acting in the opposite direction of velocity and the weapon continues to 

slow. 

-60 -40 -20 0 20 40 60
0

1

2

3

4

5

6
x 105 Moment per Unit Length versus Axial Position

Axial Position [in]

M
om

en
t p

er
 U

ni
t L

en
gt

h 
[in

- 1]

 

Figure 7.   Forces on Top Half of Weapon from 2 Degree Angle of Attack 
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Figure 8.   Forces on Bottom Half of Weapon from 2 Degree Angle of Attack 
 

The force distribution seen in Figures 7 and 8 produce the moment distributions 

seen in Figures 9 and 10.  
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Figure 9.   Moment on Top Half of Weapon from a 2 Degree Angle of Attack 
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Figure 10.   Forces on Bottom Half of Weapon from 2 Degree Angle of Attack 
 

The forces acting on the bottom half of the weapon produce only a positive 

moment.  The forces on the top half of the weapon, however, produce a negative moment 

forward of the CG and a positive moment aft of the CG.  The magnitude of the negative 

moment from the top half of the weapon is only slightly larger than the magnitude of the 

positive moment from the bottom half of the weapon.  The resultant negative moment, 

however, is smaller than the positive moment produced by the forces acting aft of the CG 

on the top half of the weapon. The overall resultant moment acting on the weapon is 

positive causing the weapon to rotate in a counter clockwise direction. This small positive 

moment is what accounts for the J-Hook phenomena seen in projectiles with tapered after 

bodies. 

D. FORCE AND MOMENT CALCULATIONS USING THE IFL METHOD 
This thesis investigates whether or not it is possible to solve the trajectory of a 

projectile quickly and accurately without resorting to a DAFL model. Two different 

stress formulations were explored. First was the PENCURVE stress formulation Eqn. 

(15)16 that is used when a stable, non J-Hook trajectory is expected.  The PENCURVE 

stress formulation should be employed in all cases except where a J-Hook is expected and 
                                                 

16 M.D. Adley, B.P. Berger, and D.C. Creighton, (1994). “Two-Dimensional Projectile Penetration 
Into Curvilinear Geologic/Structured Targets: User’s Guide for PENCURV-PC,” V1.5, Instruction Report 
SL-94-1 US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. p. 10. 
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then only if the entire trajectory is contained in a homogenous soil half space.  A J-Hook 

trajectory is only expected when the projectile has a tapered afterbody and the soil half 

space is not stable. Topsoil, sand and clay are considered unstable half spaces where 

subsoil, rock, and concrete are considered stable half spaces. The ISAAC II stress 

formulation Eqns. (16)-(19)17 was also explored.  ISAAC II is used only when the J-hook 

trajectory path is expected.  ISAAC II should only be used in a homogenous soil half 

space.  Eqn. (15) yields the magnitude of the normal force acting at a point on the surface 

of a projectile when using the PENCURV stress formulation 

 2

0.625 5.19 5.9n n n
p

p

v v v Z vr
Sr v S v S v

μ γσ β= + +  (15) 

where μ , β ,γ  are experimentally determined curve fit parameters, S  is SNUM, nv  is 

the component normal to the projectile surface of v , v  is the local velocity at a point on 

the projectile, Z  is the depth of the point on the projectile and pr  is the local projectile 

radius. 

 
32 2 7

2 2

V mZ localx
a S N D S DS N

βμ βσ
π

⎛ ⎞
⎜ ⎟= + +⎜ ⎟⋅ ⋅ ⋅⋅⎜ ⎟
⎝ ⎠

 (16) 

where Vlocalx  is the velocity of a point in the wx direction in the projectile frame, m is 

the projectile mass and D  is the local projectile diameter. 

 
3

74 2
2

V mZ localy
t SNUM D SNUM DSNUM

βμ βσ
π

⎛ ⎞
⎜ ⎟

= + +⎜ ⎟⋅ ⋅⎜ ⎟
⎝ ⎠

 (17) 

 0.508
sin

N
θ

=  (18) 

where N  is the local nose performance coefficient and θ  is the angle formed by a line 

tangent to the nosecone at a point and the projectile centerline. 

 2 2
a tσ σ σ⊥ = +  (19) 

                                                 
17 I M.D. Adley, B.P. Berger, and D.C. Creighton, (1994). “Two-Dimensional Projectile Penetration 

Into Curvilinear Geologic/Structured Targets: User’s Guide for PENCURV-PC,” V1.5, Instruction Report 
SL-94-1 US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. p. 10. and Stress 
Equation, p. 12. 
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Eqn. (19) yields the magnitude of the normal force acting at a point on the surface 

of a projectile when using the ISAAC II stress formulation. 

Both formulations assume that the stress that a projectile experiences from 

traveling through a media is always normal to the surface of the projectile.  Since the 

resulting force acts normal to the surface, and the stress formulations employed yield the 

magnitude the product of stress and area is multiplied by the inward normal vector. 

Another assumption is that the stress generated is a function of the velocity of the 

point on the projectile where the stress is experienced.  Since stress is a function of 

velocity and it occurs normal to the surface of the projectile, stress only occurs if the 

angle between the surface normal and the velocity vector is less than 90 degrees.  If the 

angle between the surface normal and the velocity vector are greater than 90 degrees, the 

applied stress at that point is zero.  ISAAC II further assumes that there is an additional 

normal stress generated due to the rotation of the projectile. This additional force Eqn. 

(17) is only experienced on the surface of projectile that is rotating into the media. The 

projectile pictured is moving from left to right.  If it is rotating clockwise an additional 

stress is applied to the bottom half of the projectile as shown in Figure 11. 

 
Figure 11.   Additional Areas of Stress Due to Projectile Rotation18 

                                                 
18 I M.D. Adley, B.P. Berger, and D.C. Creighton, (1994). “Two-Dimensional Projectile Penetration 

Into Curvilinear Geologic/Structured Targets: User’s Guide for PENCURV-PC,” V1.5, Instruction Report 
SL-94-1 US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. p. 13. 
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Conversely, if the projectile is rotating counter-clockwise, the additional stress is applied 

to the top half of the weapon.  The total normal stress generated by the ISAAC II 

formulation is given in Eqn. (19). From these stress formulations, the stress at any point 

on the surface of the projectile can be determined.  

If the stress that an object experiences and the area over which it is applied are 

known, the force resulting force is given by Eqn. (20). 

 F dAσ= ∫  (20) 

Previously, this equation was not numerically integrated to solve for the forces 

acting on the projectile. Instead, it was approximated by the summation of forces acting 

on a series of differential areas on the surface of the projectile Eqn. (3).  The resulting 

force vector is then used to calculate moments.  These forces and moments are then used 

to solve the equations of motion. 

By careful manipulation the PENCURVE stress formulation Eqn. (15) it can be 

shown that the stress acting on any point on the surface of the projectile is really a 

function of the axial coordinate of the projectile so long as the curve that defines the 

shape of the projectile is continuous and continuously differentiable. Since f(x) and g(x) 

are polynomials, they meet this requirement.  The necessary manipulation of Eqn. (15)

will be carried out below. 

Each variable in Eqn. (15) is either a constant or a function of the axial coordinate 

of the projectile.  The following discussion is for f(x) only, but a similar argument can be 

for g(x). Starting with projectile radius, pr , pr  is simply the value of f(x) evaluated at x. 

Velocity at a point on the surface of the weapon, v, is given by Eqn. (21) 

 CGv V r θ= + ×  (21) 

where r is the vector going from the CG to that point on the surface of the weapon. If the 

CG is located at the origin of the body centered coordinate system, the vector r is given 

by Eqn. (22). 

 ( )
0

x
r f x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (22) 

Note that r  is solely a function of the axial coordinate of the weapon. 
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The projection of v  onto the outward normal, N , at a point on the weapon is nv . 

The magnitude of nv  is nv .  If line AB  has a slope equal to m, a line perpendicular to 

AB  has a slope given by Eqn. (23). 

 1m
m⊥ = −  (23) 

The slope of the curve f(x) at any point x is simply the derivative of f(x) evaluated 

at x.  Using the definition of the slope of a line, the outward normal at any point is given 

by Eqn. (24)  

 1
0

m
N

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (24) 

where m  is the slope of the curve at point x. 

Finally, Z, the depth of any individual point on the surface of the weapon, can be 

approximated by Eqn. (25) for points forward of the CG and Eqn. (26) for points aft of 

the CG.  

 sincgZ Y θ= +  (25) 
 sincgZ Y θ= −  (26) 

where θ  is the incidence angle. 

At this point, all quantities in the stress formulation are either constants or 

functions of the axial coordinate of the weapon. 

The area over which the stress is applied to is the surface of the weapon. Since the 

polynomials that define the surfaces of the weapon, f(x) for the top half of the weapon 

and g(x) for the lower half of the weapon, the surface area of the top and bottom halves  

of the weapon are given by Eqns. (27) and (28) 

 
2

( ) 1
b

top
a

dfA f x dx
dx

π ⎛ ⎞= + ⎜ ⎟
⎝ ⎠∫  (27) 

 
2

( ) 1
b

bottom
a

dgA g x dx
dx

π ⎛ ⎞= + ⎜ ⎟
⎝ ⎠∫  (28) 
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The inward normal vector, in whose direction the resultant force acts, can be 

defined as Eqns. (29)and (30) for the top and bottom half of the projectile, respectively. 

 
2

1ˆ
11

top

df
n dx

df
dx

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥= ⎝ ⎠⎢ ⎥

⎛ ⎞ −⎢ ⎥⎣ ⎦+ ⎜ ⎟
⎝ ⎠

 (29) 

 
2

1ˆ
11

bottom

dg
n dx

dg
dx

⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥= ⎝ ⎠⎢ ⎥
⎛ ⎞ ⎢ ⎥⎣ ⎦+ ⎜ ⎟
⎝ ⎠

 (30) 

The end result is that the force on the weapon can be defined by the integral given 

in Eqn. (31). 

2
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1 0.625 5.19 5.9 ( ) 1
11

b
n n n

top pa
p

df
v v v Z v dfF r f x dxdx

Sr v S v S v dxdf
dx

μ γπ β
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎢ ⎥= + + +⎜ ⎟⎝ ⎠ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠⎝ ⎠⎛ ⎞ −⎢ ⎥⎣ ⎦+⎜ ⎟

⎝ ⎠

∫ (31) 

Eqn. (31) reduces to Eqn. (32). 

 2

0.625 5.19 5.9 ( )
1

b
n n n

top pa
p

df
v v v Z vF r f x dxdx

Sr v S v S v
μ γπ β

⎡ ⎤⎛ ⎞ ⎛ ⎞⎜ ⎟⎢ ⎥= + +⎜ ⎟⎝ ⎠⎢ ⎥⎜ ⎟
⎝ ⎠−⎢ ⎥⎣ ⎦

∫  (32) 

A similar expression exists for the bottom half of the weapon.  Any expression for 

force that produces a normal force and can be expressed as a function of the axial 

coordinate of the weapon can be substituted in to Eqn. (32). Now that the force that acts 

on the weapon is known, the moment can be determined by Eqn. (33). 

 2

0.625 5.19 5.9( ) ( ) 1
0 0

n n n
top p

p

df
x dxv v v Z vM f x r f x

Sr v S v S v
μ γπ β

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎛ ⎞ ⎢ ⎥⎢ ⎥= × + + −⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎜ ⎟

⎝ ⎠ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎣ ⎦

 (33) 

Both Eqns. (32)and (33) can be numerically integrated and the results used to solve the 

equations of motion. 
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The force and moment equations are integrated at each time step by using 

adaptive Simpson’s Quadrature.  Using Simpson’s rule, the integral of any function, f(x), 

from a to b is approximated Eqn. (34). 

 ( ) ( ( ) 4 ( ) ( )23

b

a

h a bf x f a f f b A+≈ + + =∫  (34) 

The result of Eqn. (34) is then compared to the sum of the Simpson’s rule approximation 

for the left half , Eqn. (35), and right half, Eqn. (36), of the interval a to b. 

 ( ) ( ( ) 4 ( ) ( )23

m

a

h a mf x f a f f m L+≈ + + =∫  (35) 

 ( ) ( ( ) 4 ( ) ( )23

b

m

h m bf x f m f f b R+≈ + + =∫  (36) 

The error is given by Eqn. (37). 

 1 ( )
15

e L R A= + −  (37) 

This error is then compared to the tolerance set by the user, T, times L+R. The error is 

calculated at each time step in conjunction with the ODE solver. 

Once the force and moment for each time step has been determined, they are 

supplied to an ordinary differential equation solver to solve the equations of motion. 

E. EQUATIONS OF MOTION 
Having found the forces and moments acting on the surface of the projectile the 

equations of motion used to solve for the trajectory of the weapon are given by Eqns. (38)

and (39). 

 

 top bottomF F
a

m
+

=  (38) 

 top bottomM M
I

θ
+

=  (39) 

This acceleration and angular acceleration are used by a MATLAB ordinary 

differential equation solver to solve for the position and orientation of the weapon.  

Default tolerances for the ODE solver are not used as they are too rigorous to be met and 

the solver fails to find a solution when using them.  The forces and moments acting on 
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the projectile are initially on the order of 106.  As the equation is solved through time, 

significant numerical error begins to accrue.  This numerical error makes it impossible for 

the ODE solver to solve for the trajectory with the default error tolerances.  By 

decreasing the relative error tolerance by one order of magnitude, from 1x10-3 to 1x10-2, 

and the absolute error tolerance by two orders of magnitude, from 1x10-6 to 1x10-4, the 

solver is able to find a solution.  

F. SOLVER TERMINATION 
As the projectile velocity nears zero, the ODE solver must continue to reduce the 

size or its time step to meet the tolerance levels specified by the user. As a result, to solve 

the differential equations until the magnitude of the CG velocity equals zero takes a 

significant amount of time. To reduce the amount of time required to solve the 

differential equations, it is necessary to select a velocity greater than, but close to, zero 

that terminates the solver.  Rather than choose a set velocity, a kinetic energy criterion is 

used instead.  The solver terminates at a velocity equal to the velocity that corresponds to 

0.01% of the initial kinetic energy.  99.99% of the kinetic energy expended was chosen as 

a trade off between accuracy and integration time. 

If the projectile has a positive vertical velocity, it is possible that the projectile 

will broach the surface. If the projectile broaches, it is also necessary that the solver 

terminates. In this case, the solver will also terminate if Vcg>0.01%Vcg initial if the 

vertical position of the CG becomes greater than zero. 

G. INTERFACE LIMITS OF INTEGRATION 
As the projectile moves through the boundary between two layers, it is important 

to be able to determine precisely where the boundary interface lies on the surface of the 

projectile.  Consider the projectile in Figure 12 below whose centerline makes an angle,  
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Figure 12.   Geometry of the Interface Limits of Integrations 
 

φ , with the surface.  The vertical position of the CG is known, either from initial 

conditions or from the previous time step.  With the vertical position of the CG known, 

the point on the weapon axis that intersects the interface is given by Eqn. (40). 

 sin
cgYp φ=  (40) 

Point T is defined as the point on the axis of the weapon corresponding to a point on the 

weapon surface which intersects the interface. This is the lower limit of integration for 

the top half of the weapon as it moves through the interface. By the angle side angle 

theorem from geometry, triangles PRS  and PQR  P are similar with PRS∠  and 

RPQ∠  equal to the incidence angle, φ .  The length of PS  to f(x) evaluated at P. The 

length of line segment PR  is equal to Eqn. (41). 

 
sin
PS

PR
θ

=  (41) 

The length of line segment PQ  is equal to Eqn. (42). 
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cos
PR

PQ
θ

=  (42) 

Substituting Eqn. (41) into Eqn. (42) yields an expression for PQ  in terms of the axial 

coordinate of the weapon (Eqn. (43)). 

 
tan
PS

PQ
θ

=  (43) 

If PQ is used to approximate PT , the upper limit of integration for the force 

acting on the top half of the weapon can be approximated by Eqn. (44). 

 ( )
sin tan

cgY f Pb
θ θ

= +  (44) 

By a similar argument, the upper limit of integration for the force acting on the bottom 

half of the weapon can be approximated by Eqn. (45). 

 ( )
sin tan

cgY f Pb
θ θ

= −  (45) 

H. WAKE SEPARATION 
Experimental observation and three dimensional finite difference modeling have 

shown that as the projectile travels through the soil, the entire surface of the projectile 

does not stay in contact with the surrounding soil.19 This phenomenon has been termed 

wake separation.  The mechanism of wake separation is not fully understood, but does 

have a significant effect on the total force that is experienced by the projectile. At any 

point where the soil is not in contact with the surface of the projectile, the stress applied 

to the projectile at that point is zero. As a result, some method for dealing with wake 

separation must be devised in order to more closely approximate the forces experienced 

by the weapon. 

The angle formed by the tangent of the projectile surface and the projectile 

centerline is called the angle of approach, φ . It is assumed that wake separation occurs 

when the angle of approach is less than some minimum angle.  This minimum angle is 

called the minimum angle of approach, minφ .  If the angle of approach is less than the 

                                                 
19 R.S. Bernard and D.C. Creighton, (1979). “Projectile Penetration in Soil and Rock: Analysis for 

Non-Normal Impact,” Technical Report SL-79-15, US Army Engineer Waterways Experiment Station, 
Vicksburg, Mississippi. pp. 13-22. 
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minimum angle of approach for the wake to maintain contact the wake separates.  The 

minimum angle of approach is generally assumed to be less than 10 degrees.20  The local 

angle of approach for any point on the surface of the projectile is defined by Eqn. (46).21 

 1sin nV
Vφ − ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (46) 

where V  is the CG velocity and nV  is the outward component of V normal to the 

projectile surface. 

The minimum angle of approach is given Eqn. (47).22 

 1
min tan

o z

C
r Vφ − ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (47) 

where or  is the projectile radius where the wake separates and zV  is the vertical velocity 

of the CG, and C  is a constant. 

When the wake separates from the projectile, it forms a roughly cone shaped 

cavity around the weapon.  The axis of this cavity, however, does not stay aligned with 

the axis of the weapon.  The axis of the cavity bends away from the centerline of the 

weapon. The radius of the wake cavity is given by Eqn. (48).23 

 2
min2 ( ) tanc o o or r r ξ ξ φ= + −  (48) 

where oξ  is the distance aft of the projectile tip where the wake separates and ξ  the point 

on the projectile’s centerline where cr  is being found.   

The distance that the centerline of the wake cavity is from the projectile centerline 

is given by Eqn. (49).24 

 

                                                 
20 R.S. Bernard and D.C. Creighton, (1979). “Projectile Penetration in Soil and Rock: Analysis for 

Non-Normal Impact,” Technical Report SL-79-15, US Army Engineer Waterways Experiment Station, 
Vicksburg, Mississippi. p. 14. 

21 Ibid. 
22 Ibid., p. 15. 
23 Ibid. 
24 R.S. Bernard and D.C. Creighton, (1979). “Projectile Penetration in Soil and Rock: Analysis for 

Non-Normal Impact,” Technical Report SL-79-15, US Army Engineer Waterways Experiment Station, 
Vicksburg, Mississippi. p. 16. 



26 

 2 11 ( ) sin tan
2

x
o

zz

V
VV

θδ ξ ξ ξ −⎛ ⎞⎛ ⎞= − + − ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (49) 

where θ  is the angular velocity of the projectile about the CG and zV  is the horizontal 

velocity of the CG.   

Empirically derived expressions exist for determining where, if at all, the wake 

will reattach to the projectile. 

The following simplifying assumptions were made about wake separation in this 

investigation. 

• The wake will always be in contact with some portion of both the upper 
and lower surfaces of the projectile 

• The wake does not re-attach aft of the point where the wake detaches. 

• The point where the wake detaches is not constrained. 

minφ  is generally assumed to be less than 10 degrees.25 The wake detaches when minφ φ< . 

φ  equals zero when nV  equals zero.  If minφ  is assumed to be greater than zero, it is 

guaranteed that the wake will separate when φ =0.  In this investigation, it is assumed that 

the wake is no longer in contact at all points where 0nV ≤ . 

  

                                                 
25 R.S. Bernard and D.C. Creighton, (1979). “Projectile Penetration in Soil and Rock: Analysis for 

Non-Normal Impact,” Technical Report SL-79-15, US Army Engineer Waterways Experiment Station, 
Vicksburg, Mississippi, p. 14. 
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IV. CODE CONSTRUCTION 

The overall code process is outlined in Appendix C. 

The first task undertaken by the code is to parameterize the shape of the projectile 

by using a polynomial to define its shape. For all cases, the MK-84 projectile was used. 

The physical characteristics of the MK-84 bomb are in Table 1. The projectile silhouette 

is modeled as two tangent ogive curves that meet smoothly at the CG. The equations used 

to determine the coordinates of the curve are Eqns. (11) and (12) described in 

PROJECTILE MODEL.  Once the coordinates are determined a least squares regression 

using to determine the degree 3 polynomial that best fits the coordinates. The derivative 

of this polynomial is also determined. The process is carried out for the top and bottom 

halves of the weapon. 

The user then inputs the speed, initial orientation angle, and SNUM. Next, the 

user chooses which stress formulation, PENCURV or ISAAC II, to use. Speed and 

orientation angle are used to determine the initial x and y components of velocity. The 

initial orientation angle is also used to locate the initial y coordinate of the CG given by 

Eqns. (50) and (51) .  

 sinCG fY L θ=  (50) 
 cosCG fX L θ=  (51) 

where CGY  is the y coordinate of the CG, CGX  is the x coordinate of the CG, fL  is the 

distance from the projectile tip to the CG, and θ  is the incidence angle. 

The initial x coordinate of the CG is defined as zero as is the initial angular 

velocity of the CG.  At this point, all initial conditions are defined and all the necessary 

information exists to solve for the trajectory of the weapon. 

The code now chooses between the two stress formulations based on the user 

inputs. Besides the actual stress formulation used, the code performs all of the same 

functions. Therefore, only the PENCURV stress formulation case will be discussed.   
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Additionally, the solving for the forces and moments on the top and bottom halves of the 

projectile are carried out in the same manner except that different weapon shapes are 

used, f(x) for the top half and g(x) for the bottom half. 

The ODE solver tolerances and exit termination function are defined. The 

termination function, EVENTS, calculates the difference between 1% of the initial 

projectile speed and the current projectile speed. When the projectile has 1% of its initial 

speed remaining, it has expended 99.9% of its kinetic energy.  If the current speed is less 

than 1% of the initial speed, the ODE solver terminates. The ODE solver calls the either 

JFINTEGRATE if the ISAAC II stress formulation is used or FINTEGRATE if the 

PENCURV stress formulation is used. 

FINTEGRATE takes time and the state variables of the CG as its inputs. The state 

variable inputs are assigned variable names for use through out FINTEGRATE and the 

rest of the code.  The transformation matrix UNROT, is defined by Eqn. (52), 

 TUNROT ROT=  (52) 

which is used to transform the results of the force integrations from weapon coordinates 

to inertial coordinates.  

The limits of integration for the stress functions are now determined. If the CG is 

in the soil half space, the lower limits of integration for both halves of the weapon are 

defined such that the force is integrated over the entire length of the projectile.  If the CG 

is not in the soil half space, the lower limits of integration are found using the procedure 

outlined in INTERFACE LIMITS OF INTEGRATION.  The upper limit of integration, 

in all cases is the tip of the projectile. 

Using the determined limits of integration, the code now uses adaptive Simpson 

Quadrature to determine the forces and moments acting on the top and bottom half of the 

weapon. The stress functions, TALLSTRESS and BALLSTRESS, take as an input a 

location x along the axis of the weapon.  X is in weapon based coordinates. Through the 

use of global variables, the stress functions have access to the state variables, SNUM, the 

weapon shape and its derivatives.  The stress function begins by determining the outward 

normal. If m is the slope of a line AB, the slope of a line normal to AB is given by Eqn. 

(23). 
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The slope of a line is given by Eqn. (53). 

 
ym
x

Δ
=

Δ  (53) 

where 0fy y yΔ = −  and 0fx x xΔ = − .  

If it is assumed that the initial position of the vector that defines the outward 

normal, N , is the origin, then the outward normal vector is given by Eqn. (54) . 
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 (54) 

N is the normalized by dividing by the magnitude of N. (Eqn. (55)) 
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The code now performs the transformation of CG velocity in inertial coordinates 

to the velocity of a point on the surface of the weapon in weapon based coordinates. The 

process begins by forming the transformation matrix T (Eqn. (10)). The CG velocity is 

then transformed to weapon based coordinates by Eqn. (56).  

 CGw CGIV TV=  (56) 

If r  is defined as the vector from the weapon CG to the point on the weapon P define by 

Eqn. (57) it follows that the vector from the origin to that point is defined by Eqn. (22). 

 ( ( ))P x f x=  (57) 

The velocity of any point on the weapon in weapon coordinates is given by Eqn. (58). 

 x CGwV V r θ= + ×  (58) 

Before the forces and moments can be calculated, it must be determined whether 

or not the wake has separated at the x.  If the wake has separated at x, then no force exists 

on the surface of the weapon at that point. Previously, it was stated that the wake is no 

longer in contact at all points where 0nV ≤ .  If  0nV ≤ then the dot product of the outward 

surface normal n̂ and CGwV  is less than or equal to zero.  The stress functions calculate  
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this dot product. If the dot product is greater than zero, it calculates the forces and 

moments acting at that point. Otherwise, forces and moments are zero.  The force acting 

at the point x is found by integrating Eqn. (59). 

 ˆ ( )
b

a

F n x dAσ= ∫  (59) 

where  

 ( ) 1 dfdA f x dx
dx

π
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

 (60) 

The moment acting on the surface of the weapon are found by integrating Eqn. (61). 

 ˆ ( ) ( ) 1
b

a

dfM r n x f x dx
dx

π σ
⎛ ⎞⎛ ⎞

= × +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫  (61) 

The stress functions return a column vector to FINTEGRATE whose first two 

elements are the forces acting in the weapon coordinate x and y direction respectively. 

The last three elements are the moments acting in the x, y and z direction. FINTEGRATE 

then uses the UNROT matrix to transform the forces and moments back to inertial 

coordinates. The forces and moments in inertial coordinates are what are used by ODE45 

to solve the equations of motion. 
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V. RESULTS 

The IFL method studied in this investigation is able to produce many of the same 

results produced by the  DAFL method. The IFL method is able calculate the trajectory 

for different stress equations. It is able to replicate the J-hook phenomena while using the 

ISAAC II stress formulation.  Additionally, the IFL method also produces trajectory 

reversal as predicted by the ISAAC II stress formulation. Most notably, the IFL method 

was able to accurately predict the path length traveled by the projectile as predicted by 

Eqn. (7).  This is indicative that the total force acting on the weapon calculated by the 

IFL method is very close to the force calculated by Young.  Actual location of the CG 

and final orientation angle, however, is a function of how well the moments are applied 

to the projectile. At this time, moments are not well modeled in the IFL method.  This is 

most like due to simplistic wake separation modeling and an inaccurate projectile model. 

These causes will be discussed in the ANALYSIS AND DISCUSSION section. 

To determine how well the IFL method is able to perform these tasks, the IFL 

output using the ISAAC II stress formulation will be compared to the following data in 

reference x: 

• Trajectory shape 

• Maximum CG depth 

• Maximum distance downrange 

• Cross over angle prediction 

• Time from impact to projectile at rest. 

• Penetration depth given by Eqn. (7) versus path length traveled. 

For the PENCURV stress formulation, the IFL data will be compared to penetration 

depth as given by EQN 7.  A complete tabulation of data is given in Appendix A. Graphs 

showing the trajectory of each SNUM, Initial Velocity, and Initial Incidence angle are 

given in Appendix B. 

A. ISAAC II IFL 

1. Trajectory Shape 
In assessing trajectory shape, several questions must be answered.  
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• Do the IFL trajectories perform a J-hook as predicted by the ISAAC II 
DAFL data?   

• Does the IFL method predict the curve reversal seen in the DAFL data?  

• Is the IFL method able to predict projectile broach and ricochet? 

The IFL code does show the J-Hook as predicted by ISAAC II. Almost all the 

ISAAC II generated trajectories show a significant change in projectile incidence angle. 

However, the true J-Hook has the projectile actually move back toward the surface. This 

phenomena is seen in the trajectory produced with initial conditions of 900fps initial 

velocity, 25 initial incidence angle, and SNUM= 11 when using the ISAAC II stress 

formulation.  The trajectory is shown in Figure 13. 

 

0 500 1000

-1000

-500

0

500

Trajectory

inches

in
ch

es

0 0.1 0.2 0.3 0.4
-40

-30

-20

-10

0

10

20

30
Incidence Angle vs Time

time [sec]

D
eg

re
es

 

Figure 13.   Trajectory for Initial Conditions of 900fps, 25 Degree Incidence Angle, 
SNUM=11 Using ISAAC II Stress Formulation 

 

A slight upturn is visible on the trajectory plot.  The upward motion of the projectile is 

clearly seen when the y position of the CG is plotted versus time shown in Figure 14. 
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Figure 14.   Depth of CG versus Time for Initial Conditions of 900fps, 25 Degree 
Incidence Angle, SNUM=11 Using ISAAC II Stress Formulation 

 

The difference between the maximum depth and the final depth is small, but it does show 

that the IFL method is capable of producing a J-Hook trajectory. 

2. Trajectory Direction Reversal and Cross Over Angle 
Trajectory Direction Reversal, where the projectile no longer curves towards the 

surface but curves away from the surface, is apparent on several IFL Trajectories at all 

SNUM’s and at all initial velocities.  These trajectories are shown in Figures 15 and 16.  

While the curve reversal phenomena can be produced by the IFL method, the angles at 

which it occurs does not correspond well with the DAFL data.  DAFL crossover angles 

are summarized in Table 3. 
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Critical Impact Angle at Which Trajectory Direction-Reversal Occurs 
Impact Speed (ft/sec) SNUM Critical Angle (Degrees) 

35 50 1±  
11 47.5 2.5±  300 
4 40 5±  

35 65 ± 5 
11 66 ± 1 700 
4 65 ± 5 

35 >70 
11 72.5 ± 2.5 900 
4 65 ± 5 

 
  

Table 3.   Critical Impact Angle at Which Trajectory Direction Reversal Occurs26 
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Figure 15.   Trajectory Showing Curve Reversal for Initial Conditions of 300fps, 67 
Degree Incidence Angle, SNUM=4 Using ISAAC II Stress Formulation 

 
                                                 

26 D.C. Creighton, (1988). “Ricochet and Stability of MK82, MK83 and MK84 General Purpose 
Bombs in Soil,” Miscellaneous Paper SL-88-1, US Army Engineer Waterways Experiment Station, 
Vicksburg, Mississippi. p. 16. 



35 

0 100 200 300 400
-800

-700

-600

-500

-400

-300

-200

-100

0

100

200
Trajectory

inches

in
ch

es

0 0.1 0.2 0.3 0.4
50

55

60

65

70

75

80

85

90

95
Incidence Angle vs Time

time [sec]

D
eg

re
es

 

Figure 16.   Trajectory Showing Curve Reversal for Initial Conditions of 300fps, 67 
Degree Incidence Angle, SNUM=4 Using ISAAC II Stress Formulation 

 
3. Cross Over Angle 

Cross over angle, the angle greater than the projectile curves away from the 

surface rather than towards is predicted in the IFL method.  Cross over occurs at a 

discrete angle for all SNUM and initial velocity combinations except for initial velocity 

of 900fps, incidence angles of 70-80 degrees, and SNUM=11.  These trajectories are 

shown in Figures 17-19. 

 

 

 

 

 

 



36 

 

 

 

 

0 200 400

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

Trajectory

inches

in
ch

es

0 0.05 0.1 0.15 0.2
65

70

75

80

85

90

95
Incidence Angle vs Time

time [sec]

D
eg

re
es

 
Figure 17.   Trajectory Showing for Initial Conditions of 900fps, 70 Degree Incidence 

Angle, SNUM=11 Using ISAAC II Stress Formulation 
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Figure 18.   Trajectory Showing for Initial Conditions of 900fps, 75 Degree Incidence 
Angle, SNUM=11 Using ISAAC II Stress Formulation 
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Figure 19.   Trajectory Showing for Initial Conditions of 900fps, 80 Degree Incidence 
Angle, SNUM=11 Using ISAAC II Stress Formulation 

 

The IFL code is not able to predict a ricochet of the projectile or the projectile broaching 

the surface.  The inability to predict ricochet is likely due to not modeling the energy 

expended in the cratering phase of the weapon impact. The inability to predict broaching 

likely has many causes including poor wake separation modeling and inaccurate weapon 

modeling. 

4. Maximum CG Depth 
When considering maximum CG depth, only DAFL trajectories that did not 

broach or ricochet were considered.  In general, the IFL method was very poor in 

projecting the maximum CG depth. Percent errors range from as low as 2% to in excess 

of 200%. A table of all error measurements is given in appendix CC.  Error was lowest 

for low speed, low SNUM high angle of incidence trajectory predictions. 
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5. Maximum Distance Downrange 

The IFL method predicted the Maximum Downrange Distance better and more 

consistently than Maximum CG Depth.  For SNUM=4 at both 300fps and 700fps initial 

velocities and SNUM=11 at 300fps, the error was between 30%-40% for the IFL 

trajectories that corresponded to penetrating DAFL trajectories.  At all other SNUM and 

initial velocity combinations, error was in excess of 50%. 

6. Time to Rest 
For SNUM=4, the percent error associated with time is less than 20% for all 

initial velocities and incidence angles. For SNUM=11 and initial velocity of 300fps, two 

of the three penetrating trajectories have error less than 15%. The other trajectory for 

700fps and SNUM=11 penetrating trajectory has an error of 62%. This trajectory also has 

a very high maximum cg depth error and maximum distance downrange error.  Very 

large error, greater than 100%, exist for all velocities and incidence angles when 

SNUM=35. 

7. Path Length 
The path length of the IFL trajectory was calculated by approximating the 

derivative of the trajectory and integrating to find the path length, L (Eqns. 63 and 64). 

 1

1

i i

i i i

dy y y
dx x x

+

+

−
≈

−
 (62) 
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dyL dx
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⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∫  (63) 

The path length was then compared to the result of Young’s Penetration depth equation 

(Eqn. 7). 

For SNUM=4, there very good agreement between path length and Young’s 

Penetration depth for the 300fps and 700fps initial velocity. The average error for 300fps 

is just over 9% and just less than 15% for 700fps. For SNUM=11, the 300fps and 700fps 

initial velocities both have error around 15%. For all velocities at SNUM=35 and for an 

initial velocity of 900fps at both SNUM=4 and SNUM=11 error is greater than 50%. 
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B. PENCURVE IFL 

1. Path Length 

The path length for the PENCURV IFL to DAFL comparisons is performed in the 

same manner as the ISAAC II IFL to DAFL comparison.  For SNUM=4 and SNUM=11 

for initial velocities of 300fps and 700fps path length errors are less than 30% for all 

cases.  As the angle of incidence increases, the error decreases to a minimum. For 

SNUM=35 and error is less than 20%.  For all other SNUM, incidence angle and initial 

velocities, error is greater than 60%. 

C. COMPUTING TIME 
There is no data available on how much computer time was required to calculate 

each trajectory using the DAFL method.  The longest computing time for any trajectory 

in this investigation was just over 70 seconds. The shortest computation time was less 

than two seconds. The average computing time using the ISAAC II stress formulation 

was 9.7 seconds. The average computing time using the PENCURV stress formulation 

was 2.0 seconds. 
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VI. DISCUSSION AND ANALYSIS 

The IFL code presented in this investigation is a successful first step in replacing 

the DAFL codes currently in use with a more efficient code.  The IFL code presented is 

able to replicate all trajectory phenomena except broach and ricochet. The IFL method 

also reasonably predicts the path length of the projectile.  These two facts indicate that 

the IFL method is accurately calculating the total force applied to the weapon and to a 

lesser degree that those forces are being applied in the appropriate locations resulting in 

the moments that cause rotation.  However, based on the inability to accurately predict 

maximum target depth and maximum downrange distance, there is significant room for 

improvement in the IFL code.  The inability to accurately predict maximum target depth, 

maximum downrange distance and cross over angle most likely has two fundamental 

causes. First is the simplistic wake separation model. The other cause is an inaccurate 

projectile model.  

A. PATH LENGTH AND AVERAGE ACCELERATION 
In the development of his SAMPL code, Young makes use of the fact that the 

penetration distance D, can be related to average force experienced by the weapon. For 

trajectories employing the ISAAC II stress formulations with initial velocities of 300 and 

700 fps at SNUM=4 and SNUM=11 the path length error is less than 15%. For these 

trajectories the path length is less than the path length predicted by Eqn. (7).  For 

trajectories employing the PENCURV stress formulation all path lengths are less than 

those predicted by Eqn. (7).  Through Eqn. (8), Young relates the penetration distance to 

the average force. Since the IFL method predicts penetration distances that are less than 

those predicted by Eqn. (7), the average force that the IFL method calculates must be 

greater than that experienced by the projectile.  Since the errors associated with path 

length are small, less than 15% for most cases, From this it can be reasoned that the 

average force the projectile experiences in the IFL method is close to, but greater than, 

the actual force.  Even for the 900fps initial velocity at SNUM=4 and SNUM=11 the IFL 

path length is much less than the penetration depth predicted by Young.  In general, the 

IFL method applies an average force greater than that predicted by Young. At SNUM 

less than or equal to 11 for all initial velocities , the average force calculated by the IFL 
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method is slightly larger than the average force predicted by Young.  This is indicative 

that the stress calculations are correct and that the surface area in contact with the soil is 

very close to, but larger than that predicted by the DAFL method.  This discrepancy in 

area is either due to poor wake separation modeling or an inaccurate weapon model. 

AT SNUM=35, the IFL path length is two to three times greater than the Young 

predicted penetration depth for the 300fps and 700fps initial velocities. However, for the 

900fps initial velocity, the path length error starts at 45% for a twenty degree incidence 

angle and decreases to an error of just less than 10% for a seventy degree incidence 

angle.  Additionally, at SNUM-11 and SNUM=4 for the 900fps initial velocities the path 

length is roughly 50% less than the predicted path length for all incidence angles.  This 

data is indicative that the amount of area that is actually in contact with the soil is a not 

purely a function of weapon geometry as is modeled in this IFL code, but is also most 

likely a function of  initial velocity, and SNUM and possibly incidence angle as well. 

Recalling the pertinent wake separation equations (Eqns.(46)-(49)) it is clear that 

these equations bear out what the IFL code has shown. Wake separation is also a function 

of projectile speed. The IFL code models wake separation very simplistically. The wake 

separates when φ =0 as indicated by the  dot product of the outward surface normal and 

the velocity at a point on the surface of the weapon is zero and stays separated from the 

weapon at all points aft of the separation point. However, the separation angle, minφ , is a 

function of the vertical velocity of the CG. minφ  begins at a minimum at low speed and 

asymptotically approaches zero with increasing speed. As velocity increases, the wake 

separates father aft on the weapon, yielding more surface area in contact. The 

implications on force and moment of the wake separation point moving farther aft are 

shown in Figures 20-23.  This would account for the reasonably close agreement for 

900fps at SNUM=35. However, if the wake separates at some minφ  greater than zero, then 

less surface area is in contact leading to lower forces applied to the weapon. The overall 

effect is that the average force would go down and the weapon would have a longer path 

length. Based on this data, it is likely that a minφ  greater than zero should be used to 

model wake separation. 

 



43 

-60 -40 -20 0 20 40 60
-2.5

-2

-1.5

-1

-0.5

0
x 105 Moment per Unit Length versus Axila Position

Axial Position [in]

M
om

en
t p

er
 U

ni
t L

en
gt

h 
[in

- 1]

 
Figure 20.   Forces on Top Half of Weapon for 10 Degree Angle of Attack 
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Figure 21.   Moment on Top Half of Weapon from 10 Degree Angle of Attack 
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Figure 22.   Forces on Bottom Half of Weapon for 10 Degree Angle of Attack 
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Figure 23.   Forces on Bottom Half of Weapon for 10 Degree Angle of Attack 
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Additional evidence of poor wake separation modeling can be seen by examining 

the trajectory shapes.  While the IFL code is able to predict the J-Hook trajectory it is 

unable to predict the broach trajectory or accurately predict the cross over angle.  In 

general, the projectile does not rotate fast enough relative to how fast it is slowing down. 

This is indicative that the moment imbalance between the top and bottom half of the 

weapon is not large enough. 

By examining Figures 20-23, the basis for this can be discerned. Figures 20-23 

are plots of forces and moments on the top and bottom half of the projectile for an angle 

of attack of ten degrees.  These figures were generated using the wake separation criteria 

of ˆ 0xn V• ≤ used in the IFL code. It is apparent that a moment imbalance exists, and that 

the overall moment will rotate the projectile counter clockwise. However, on the bottom 

half of the weapon the moment aft of the CG resists the counter clockwise rotation. If the 

wake separated farther forward on the bottom half of the projectile, a larger counter 

clockwise moment would exist. This larger moment may be large enough to create the 

broach trajectory and more accurately model the cross over angle. 

The discrepancies in path length can also be accounted for by an inaccurate 

projectile model. The shape of the projectile is modeled by a degree three polynomial. To 

calculate the forces acting on the stress is multiplied by the differential area and 

integrated over the length of the projectile. The differential areas used are represented by 

Eqns. 28 and 29. These equations are the surface area of a curve rotated about the x axis. 

The top curve, f(x), is rotated through π, radians as is the bottom curve to find the surface 

area of the entire projectile.  There is a linear relationship between radius error and 

surface area error as shown in Figure 24.  It is not clear how this error will promulgate as 

the force acting on the projectile is calculated.  However, it is clear that an inaccurate 

projectile model will lead to errors in surface area which in turn will lead to errors in the 

total force acting on the projectile. 
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Figure 24.   Percent Surface Area Error as a Function of Percent Radius Error 
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VII. FURTHER RESEARCH 

There are four areas that are in need of additional research in support of refining 

the IFL method.  

• more experimental data,  

• better theoretical understanding of wake separation phenomena,  

• projectile modeling and  

• better modeling of wake separation in the IFL code.  

Additional research in any or all of these areas would greatly benefit further development 

of the IFL code. 

Currently, very little experimental data exists for projectile penetration in soil.  

Additional research would provide many benefits to the IFL development. First, actual 

trajectory data would be very valuable for code refinement and improvement. If the test 

projectile could be instrumented this additional data would be of great value.  Stress data 

from the weapon could be compared to IFL stress prediction to not only validate the 

stress formulation currently in use, but could also be use to locate where the wake 

separates and be used to refine the wake separation model. 

An accurate projectile model is essential to the success of the IFL method since 

the forces and moments acting on the projectile are a function the projectile shape. If 

there are errors in the projectile shape, there will be errors in the calculated forces and 

moments. These force and moment errors will lead to poor trajectory predictions. 

Current wake separation theory is refined enough to allow it to be implemented, 

but the phenomena is not well understood. Research into the fundamental principles of 

wake separation and improvement in the theoretical model would greatly enhance IFL 

development as it appears that wake separation plays a large role in determining the 

trajectory of the weapon. More importantly, however, is making better use of the 

available wake separation model in the IFL code. The simplistic approach currently 

employed in the IFL code limits the effectiveness of the code. Improving the wake 

separation model using existing data in the IFL code should be the first priority of further 

research.  The starting point for improved wake separation modeling would be to increase 
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the value of minφ  from zero to small finite value less than 10 degrees. Once this is 

complete, the next logical step would be to model wake reattachment as outlined by 

Bernard and Creighton (1978). 
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VIII. CONCLUSION 

The IFL method replaces the large DAFL models utilized by the DAFL method 

with numerical integration of a stress formulation over a surface of rotation to produce 

the forces and moments acting on a projectile traveling through the soil.  Testing of the 

effectiveness of this method revealed several things. First, the IFL method is capable of 

producing a J-hook trajectory using the ISAAC II stress formulation. The IFL method 

does an adequate job of predicting the total path length of a projectile but fails to 

accurately predict the shape of the trajectory. This inability to predict the shape of the 

trajectory is not due to a flaw in the fundamental IFL method, but rather due to a 

simplistic model of the complicated wake separation phenomena.  Overall, the IFL 

method shows great promise as it is able to re-create the fundamental physical 

phenomena that occur in a penetration trajectory. 

In addition to its ability to reproduce the physical phenomena captured in the 

DAFL formulations, the IFL method is extremely fast.  Single trajectory calculations in a 

single layer on average take less than 40 seconds to complete. Even if the time per 

calculation reached one minute, hundreds of runs could be performed in a single day. 

This represents an immense decrease in computing time currently used to calculate 

trajectories. 

Overall, the IFL method shows great potential to replace the DAFL method of 

calculating projectile trajectories. The IFL method is able to compute trajectories with 

reasonable accuracy and with some minor improvements should be able to produce 

trajectories rivaling DAFL methods in a fraction of the time. 
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APPENDIX A.  IFL TRAJECTORY DATA TABLES 

Impact 
Velocity 
(feet/sec)

Incidence 
Angle 
(Degrees)

Max CG 
Depth 
(feet) Time (sec)

Max Down 
Range 
Distance 
(feet)

Final 
Down 
Range 
Distance 
(feet)

Final 
Orientatio
n Angle 
(Degrees)

CPU Time 
(sec)

Path 
Length 
(feet)

25 -2.7914 0.0772 5.9574 5.9574 19.3124 5.656 6.5098
30 -3.2861 0.0766 5.7147 5.7147 20.7222 4.672 6.4722
35 -3.6736 0.0752 5.3135 5.3135 26.9819 4.344 6.2561
45 -4.4051 0.073994 4.625 4.625 37.681 3.9219 6.1092
50 -4.762 0.072484 4.2172 4.2172 43.51 4.75 6.1505
67 -5.67 0.070151 3.028 3.028 74.29 8.2031 6.2942
20 -8.5024 0.094998 24.664 24.664 0.18242 9.4688 26.165
30 -12.164 0.08516 20.793 20.793 42.493 8.6719 24.052
35 -13.646 0.082356 19.062 19.062 50.282 4.6094 23.53
40 -14.878 0.080468 17.517 17.517 55.209 5.3906 22.807
50 -16.892 0.076127 13.874 13.874 67.293 5.2344 21.82
60 -18.404 0.072668 10.496 10.496 77.032 6.5 21.007
70 -19.449 0.070773 7.1986 7.1986 86.564 8.9219 20.553
20 -11.493 0.098427 34.146 34.146 -4.0031 12.484 36.313
30 -16.173 0.087784 28.948 28.948 12.177 7.5313 32.906
35 -18.835 0.084165 26.024 26.024 54.524 5.1875 32.003
40 -19.855 0.080948 24.175 24.175 25.462 8.7344 30.835
50 -23.057 0.075846 18.572 18.572 72.523 6.1406 29.311
60 -25.199 0.073217 14.077 14.077 80.355 7.0625 28.361
70 -26.41 0.06344 8.7305 8.7305 90.947 2.9688 27.921
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Impact 
Velocity 
(feet/sec)

Incidence 
Angle 
(Degrees)

Max CG 
Depth (feet) Time (sec)

Max Down 
Range 
Distance 
(feet)

Final Down 
Range 
Distance 
(feet)

Final 
Orientation 
Angle 
(Degrees)

CPU Time 
(sec)

Path Length 
(feet)

30 -12.225 0.20623 21.843 21.843 13.192 7.5313 25.045
35 -13.68 0.20101 20.395 20.395 13.279 6.6875 24.413
40 -15 0.19534 18.579 18.579 19.302 5.5156 23.819
45 -16.323 0.1902 16.818 16.818 29.632 5.7656 23.323
50 -17.333 0.18672 15.193 15.193 29.982 6.3125 23.164
30 -33.611 0.23777 65.839 65.839 -12.949 98.141 74.273
35 -38.382 0.22625 60.44 60.44 -2.3188 10.953 71.623
40 -41.592 0.22032 55.858 55.858 -2.6645 11.281 69.443
50 -52.227 0.20032 39.363 39.363 90.253 9.6875 65.51
55 -54.51 0.19709 34.797 34.797 92.23 11.063 64.403
60 -56.349 0.19301 29.4 29.4 96.976 17.641 64.253
65 -57.236 0.16839 23.317 23.317 92.192 4.0469 62.477
67 -58.061 0.16827 21.257 21.257 95.059 4.4219 62.527
70 -58.798 0.16712 17.72 17.687 100.39 15.797 60.228
25 -37.854 0.25916 95.463 95.463 -31.711 15.078 103.21
30 -45.262 0.24221 87.548 87.548 -16.512 70.453 98.652
40 -55.648 0.22293 73.782 73.782 -2.9476 10.672 92.972
50 -63.638 0.20912 60.68 60.68 4.8861 7.2969 87.625
60 -74.071 0.17344 37.623 37.623 90.891 4.2031 83.689
65 -76.145 0.17124 31.309 31.309 92.039 4.3906 82.961
70 -76.295 0.16956 28.987 28.987 44.37 4.7188 81.596
75 -79.459 0.16783 15.272 14.555 112.56 4.1094 65.923
80 -80 0.16701 7.9924 5.8115 122.84 7.5625 34.071
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Impact 
Velocity 
(feet/sec)

Incidence 
Angle 
(Degrees)

Max CG 
Depth (feet) Time (sec)

Max Down 
Range 
Distance 
(feet)

Final Down 
Range 
Distance 
(feet)

Final 
Orientation 
Angle 
(Degrees)

CPU Time 
(sec)

Path Length 
(feet)

25 -33.243 0.59591 83.239 83.239 -2.9449 5.6563 89.641
30 -39.127 0.57089 77.482 77.482 -2.5247 6.5781 86.919
40 -49.459 0.53391 65.605 65.605 10.739 7.8281 82.149
45 -53.046 0.52501 61.01 61.01 6.2577 4.5313 81.177
50 -58.398 0.51128 54.013 54.013 18.722 9.2031 79.199
55 -62.267 0.49876 46.973 46.973 27.279 9.6563 78.605
20 -70.12 0.7572 255.77 255.77 -36.16 7.5156 266.79
25 -109.17 0.68532 224.84 224.84 55.936 7.1563 251.26
30 -103.02 0.66866 219.61 219.61 -11.847 6.4844 244.18
50 -154.38 0.57388 150.55 150.55 8.5046 5.75 216.73
60 -168.69 0.54803 119.25 119.25 23.39 4.3594 207.7
70 -185.29 0.52966 81.373 81.373 31.758 4.5938 203.72
20 -91.965 0.78423 340.93 340.93 -29.396 8.3594 355.02
25 -157.34 0.68459 285.33 285.33 60.633 8.0625 328.04
30 -132.75 0.68706 291.01 291.01 -24.839 8.25 323.08
45 -186.71 0.60293 222.43 222.43 2.5961 5.3594 293.1
60 -219.56 0.55932 161.12 161.12 16.625 4.5 274.89
70 -240.65 0.53765 111.69 111.69 27.885 4.6406 267.64
80 -257.77 0.52361 25.562 12.116 150.43 10.328 72.777
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Table 6.   IFL ISAAC II Trajectory Data for SNUM=4 
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Impact 
Velocity 
(feet/sec)

Incidence 
Angle 
(Degrees)

Max CG 
Depth (feet) Time (sec)

Max Down 
Range 
Distance 
(feet)

Final Down 
Range 
Distance 
(feet)

Final 
Orientation 
Angle 
(Degrees)

CPU Time 
(sec)

Path Length 
(feet)

20 -1.67 0.065274 4.9241 4.9241 19.838 1.8281 4.8713
45 -3.4134 0.062262 3.7885 3.7885 44.842 1.5313 4.8331
70 -5.2799 0.062164 2.5428 2.5428 69.974 1.4063 5.6116
80 -7.3563 0.073827 2.4026 2.4026 79.928 2.3125 7.6142
20 -5.9142 0.084206 16.568 16.568 19.455 2.0938 17.406
45 -11.398 0.072735 11.698 11.698 44.605 2.2031 16.085
70 -15.233 0.06815 6.0535 6.0535 69.803 2.1563 16.36
80 -17.345 0.06795 4.0071 4.0071 79.822 2.1875 17.814
20 -7.9933 0.085396 22.308 22.308 19.296 2.0156 23.493
45 -15.301 0.072699 15.589 15.589 44.498 2.3281 21.75
70 -20.127 0.067682 7.8037 7.8037 69.718 2.3281 21.479
80 -22.377 0.067226 4.873 4.873 79.779 2.375 22.844
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Table 7.   IFL PENCRV Trajectory Data for SNUM=4 

Impact 
Velocity 
(feet/sec)

Incidence 
Angle 
(Degrees)

Max CG 
Depth (feet) Time (sec)

Max Down 
Range 
Distance 
(feet)

Final Down 
Range 
Distance 
(feet)

Final 
Orientation 
Angle 
(Degrees)

CPU Time 
(sec)

Path Length 
(feet)

20 -6.2227 0.19433 17.396 17.396 19.507 1.9375 18.269
45 -12.21 0.1748 12.497 12.497 44.618 1.9688 17.352
70 -16.403 0.16663 6.4565 6.4565 69.802 2.2031 17.467
80 -18.644 0.16745 4.2433 4.2433 79.819 2.3594 19.006
20 -17.446 0.22051 48.642 48.642 18.628 1.9063 51.541
45 -33.479 0.18778 33.815 33.815 44.016 2.2188 47.341
70 -43.216 0.1745 16.178 16.178 69.265 2.1094 45.885
80 -46.18 0.17273 8.8966 8.8966 79.617 2.25 46.951
20 -23.048 0.22626 64.447 64.447 18.161 2 68.4
45 -44.125 0.1904 44.573 44.573 43.675 2.1406 62.469
70 -56.688 0.17614 21.128 21.128 68.995 2.1094 60.54
80 -60.124 0.17405 11.32 11.32 79.385 2.0781 61.408
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900
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Table 8.   IFL PENCRV Trajectory Data for SNUM=11 
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Impact 
Velocity 
(feet/sec)

Incidence 
Angle 
(Degrees)

Max CG 
Depth (feet) Time (sec)

Max Down 
Range 
Distance 
(feet)

Final Down 
Range 
Distance 
(feet)

Final 
Orientation 
Angle 
(Degrees)

CPU Time 
(sec)

Path Length 
(feet)

20 -21.347 0.59046 59.524 59.524 18.533 1.8594 63.193
45 -41.729 0.52404 42.11 42.11 43.874 2.0625 59.059
70 -54.109 0.49441 20.188 20.188 69.076 2.0625 57.594
80 -57.585 0.49091 10.835 10.835 79.529 2.0781 58.694
20 -55.831 0.69055 159.26 159.26 15.711 1.9219 168.81
45 -108.54 0.5836 110.61 110.61 41.671 2 155.09
70 -139.32 0.54005 52.187 52.187 67.122 1.9844 148.48
80 -146.15 0.53304 26.886 26.886 77.798 1.9531 148.71
20 -72.684 0.7128 209.99 209.99 14.271 1.9063 222.6
45 -141.85 0.59544 145.44 145.44 40.564 1.9844 203.18
70 -182.03 0.54881 68.703 68.703 66.102 1.9531 194.73
80 -190.64 0.54116 35.359 35.359 76.901 1.9844 193.79

300

700

900

 IFL PENCRV Trajectories for SNUM=35

 

Table 9.   IFL PENCRV Trajectory Data for SNUM=35 
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APPENDIX B.  DAFL TRAJECTORY DATA TABLES 

Impact 
Velocity 
(feet/sec)

Incidence 
Angle 
(Degrees)

Max CG 
Depth (feet) Time (sec)

Max Down 
Range 
Distance 
(feet)

Final Down 
Range 
Distance 
(feet)

Final 
Orientation 
Angle 
(Degrees)

Trajectory 
Type 
(Broach or 
Penetrate)

25 0.03 0.028 3.2 3.2 288 Broach
30 0.94 0.115 10.3 10.3 250 Penetrate
35 2.32 0.094 8.1 8.1 257 Penetrate
45 4.53 0.074 4.5 4.5 221 Penetrate
50 5.13 0.071 3.4 3.4 207 Penetrate
30 2.71 0.027 22.1 22.1 303 Broach
35 4.01 0.035 30.6 30.6 305 Broach
40 5.72 0.049 27.1 27.1 277 Penetrate
50 10.96 0.093 21.3 21.3 256 Penetrate
60 15.55 0.08 15.2 15.2 235 Penetrate
70 19.88 0.072 2.6 2.2 176 Penetrate
30 3.97 0.026 27.2 27.2 308 Broach
35 5.38 0.029 32.5 32.5 310 Broach
40 6.96 0.034 41.3 41.3 294 Broach
50 11.12 0.062 31.2 31.2 272 Penetrate
60 17.17 0.089 24.8 24.8 254 Penetrate
70 26.93 0.073 4.2 3.4 174 Penetrate

DAFL ISAAC II Trajectories for SNUM=4
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Table 10.   DAFL ISAAC II Trajectory Data for SNUM=4 
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Impact 
Velocity 
(feet/sec)

Incidence 
Angle 
(Degrees)

Max CG 
Depth (feet) Time (sec)

Max Down 
Range 
Distance 
(feet)

Final Down 
Range 
Distance 
(feet)

Final 
Orientation 
Angle 
(Degrees)

Trajectory 
Type 
(Broach or 
Penetrate)

30 2.5 0.058 19.9 19.9 -33 Broach
35 4 0.077 31.5 31.5 -17 Broach
40 6.29 0.12 27.5 27.5 -2 Penetrate
45 11.34 0.223 23.1 23.1 13 Penetrate
50 20.2 0.185 10.5 10.5 73 Penetrate
30 7.94 0.049 38.2 38.2 246 Broach
35 10.24 0.054 38.2 38.2 235 Broach
40 12.55 0.057 37.9 36.9 270 Broach
50 17.21 0.065 36.9 35.9 270 Broach
55 19.53 0.066 37 36.9 264 Broach
60 21.86 0.07 39.2 39.2 -88 Broach
65 24.97 0.074 46.1 46.1 -76 Broach
67 41.99 0.21 7.1 -19.4 171 Penetrate
70 35.86 0.116 5.1 -23.2 184 Penetrate
25 7.67 0.042 46.8 46.8 133 Broach
30 10.42 0.047 45.3 45.3 172 Penetrate
40 16.02 0.054 42.5 42.5 201 Penetrate
50 21.54 0.058 39.4 38.7 221 Penetrate
60 26.86 0.063 35.7 33.7 239 Penetrate
65 29.49 0.066 33.7 31.5 248 Penetrate
70 36.92 0.076 39.3 39.3 -86 Penetrate
75 41.17 0.078 4.4 -14.4 237 Penetrate
80 39.95 0.075 2.3 -16.3 245 Penetrate

DAFL ISAAC II Trajectories for SNUM=11
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Table 11.   DAFL ISAAC II Trajectory Data for SNUM=11 
 

 

 

 

 



59 

 
 
 
 
 
 
 
 

Impact 
Velocity 
(feet/sec)

Incidence 
Angle 
(Degrees)

Max CG 
Depth (feet) Time (sec)

Max Down 
Range 
Distance 
(feet)

Final Down 
Range 
Distance 
(feet)

Final 
Orientation 
Angle 
(Degrees)

Trajectory 
Type 
(Broach or 
Penetrate)

25 5.58 0.99 36.7 36.7 221 Broach
30 7.88 0.113 37.9 37.9 173 Penetrate
40 12.96 0.135 36.4 36.4 202 Penetrate
45 15.86 0.147 35.8 35.8 212 Penetrate
50 63.77 0.601 53.8 53.8 50 Penetrate
55 34.79 0.226 11.1 5.6 253 Penetrate
20 10.65 0.084 90.4 90.4 114 Broach
25 16.91 0.153 90.8 90.8 117 Penetrate
30 23.15 0.163 86.5 86.5 119 Penetrate
50 46.5 0.183 69.5 69.5 137 Penetrate
60 56.36 0.19 59.5 59.5 149 Penetrate
70 79.26 0.248 12.7 5.5 -29 Penetrate
20 15.62 0.132 118.3 118.3 135 Broach
25 23.38 0.144 111.4 111.4 133 Penetrate
30 31.15 0.157 105.1 105.1 132 Penetrate
45 53.42 0.186 88 88 134 Penetrate
60 72.03 0.191 68.8 68.8 141 Penetrate
70 82.95 0.191 54.9 54.9 149 Penetrate

DAFL ISAAC II Trajectories for SNUM=35
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Table 12.   DAFL ISAAC II Trajectory Data for SNUM=4 
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APPENDIX C.  CODE FLOW CHARTS 
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Figure 25.   Main Code Flow Chart 
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Figure 26.   Integrate Code Flow Chart 
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Figure 27.   Stress code Flow Chart 
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APPENDIX D.  THESIS CODE FOR MAIN THESIS 

%Main Thesis Code 
  
clc 
  
clear all 
  
close all 
%Global Statements 
  
global  VELOCITY  UNROT v SNUM X Y plen 
  
global wpnshape dwpnshape bwpnshape dbwpnshape 
  
global Xcg Ycg THETAcg XDOTcg YDOTcg THETADOTcg 
  
%Define Weapon Shape 
%Front 
  
a=0; 
  
b=59.5; 
  
Lf = 59.5; 
  
N=30; 
  
n=[1:1:31]; 
  
R = 9; 
  
xf=.5.*((b-a).*cos((N+1+.5-n).*pi./(N+1))+a+b); 
  
rho = (R^2 +Lf^2)/(2*R); 
  
uroot =rho^2 -(xf-Lf).^2; 
  
y = sqrt(uroot) +R-rho; 
  
%Back 
  
a=0; 
  
b=106.5; 
  
Lr = 106.5; 
  
xr=.5.*((b-a).*cos((N+1+.5-n).*pi./(N+1))+a+b); 
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rho = (R^2 +Lr^2)/(2*R); 
  
uroot =rho^2 -(xr-Lr).^2; 
  
y2 = sqrt(uroot) +R-rho; 
  
X=[xr-Lr xf]; 
  
Y=[y2 y(31:-1:1)]; 
  
wpnshape=polyfit(X,Y,3); 
  
bwpnshape = -wpnshape; 
  
dwpnshape = polyder(wpnshape); 
  
dbwpnshape = polyder(bwpnshape); 
  
%Input initial Conditions 
  
initalc = input('input initial speed (fps), orientation (angle), and 
SNUM'); 
  
%Define initial Conditions 
  
theta =initalc(2)*pi/180; 
  
v = initalc(1)*12; 
  
x = 0; 
  
y = 60.*sin(theta); 
  
Vx = v*cos(theta); 
  
Vy = -v*sin(theta); 
  
Thetadot=0; 
  
THETAcg = theta; 
  
SNUM = initalc(3); 
  
INITC = [ x y theta Vx Vy Thetadot]; 
  
 
dot = input('enter "1" for J-Hook modeling '); 
  
if dot == 1 
     
    ATOL = [1e-4 1e-4 1e-4 1e-4 1e-4 1e-4]; 
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    OPTIONS = odeset('RelTol',1e-2,'AbsTol',ATOL,'Events',@events); 
    a=cputime; 
    tic 
     
    [t P] = ode45(@jfintegrate,[0,1], INITC,OPTIONS); 
    b=cputime; 
    toc 
    ab=b-a; 
else 
  
    OPTIONS = odeset('RelTol',1e-3,'Events',@events); 
    a=cputime; 
    tic 
     
    [t P] = ode45(@fintegrate,[0,1], INITC,OPTIONS); 
    b=cputime; 
    toc 
    ab=b-a; 
end 
  
%Results 
  
speed = ((P(:,4).^2+P(:,5).^2).^.5)./12; 
  
offset = 60.*cos(theta); 
  
q = size(t); 
  
[w,e] = min(abs(P(:,2))); 
  
yyy=diff(P(e(1):q(1),2)); 
  
xxx=diff(P(e(1):q(1),1)); 
  
der=sqrt((yyy./xxx).^2 + 1); 
  
plen=spline(P(e(1):q(1)-1,1),der); 
  
pathlength = quad(@pl,P(e(1),1),P(q(1),1))/12; 
  
maxx=(max(abs(P(:,1)))-offset)/12; 
  
maxy=min(P(:,2))/12; 
  
qqq=length(t); 
t(qqq); 
finalangle=P(qqq,3)*180/pi; 
  
DATA = [(P(:,1)-offset)./12 abs(P(:,2)./12) P(:,3)*180/pi t]; 
  
shape1 = missileplot(-P(1,3)); 
  
shape2 = missileplot(-P(q(1),3)); 
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shape3 = missileplot(-P(e(1),3)); 
  
shape11=shape1(1,:)+P(1,1)-offset; 
  
shape12=shape1(2,:)+P(1,2); 
  
shape13=shape1(3,:)+P(1,1)-offset; 
  
shape14=shape1(4,:)+P(1,2); 
  
shape21=shape2(1,:)+P(q(1),1)-offset; 
  
shape22=shape2(2,:)+P(q(1),2); 
  
shape23=shape2(3,:)+P(q(1),1)-offset; 
  
shape24=shape2(4,:)+P(q(1),2); 
  
shape31=shape3(1,:)+P(e(1),1)-offset; 
  
shape32=shape3(2,:)+P(e(1),2); 
  
shape33=shape3(3,:)+P(e(1),1)-offset; 
  
shape34=shape3(4,:)+P(e(1),2); 
  
%Plot the results 
subplot (1,2,1) 
%figure(1) 
  
plot(P(:,1)-offset,P(:,2)); 
  
hold on 
  
plot(shape11,shape12,'k',shape13,shape14,'k',P(1,1)-offset,P(1,2),'k*') 
  
plot(shape21,shape22,'k',shape23,shape24,'k',P(q(1),1)-
offset,P(q(1),2),'k*') 
  
plot(shape31,shape32,'r',shape33,shape34,'r',P(e(1),1)-
offset,P(e(1),2),'r*') 
  
grid on 
k = [initalc pathlength]; 
axis equal 
title('Trajectory') 
xlabel('inches') 
ylabel('inches') 
subplot (1,2,2) 
 %figure (2) 
%  
 plot(t,P(:,3)*180/pi); 
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 title('Incidence Angle vs Time') 
 xlabel('time [sec]') 
ylabel('Degrees') 
%  
% figure(3) 
%  
% plot(t,speed) 
  
xcell=[maxy t(qqq) maxx (P(qqq,1)-offset)/12 0 finalangle ab 
pathlength] 
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APPENDIX E.  FINTEGRATE 

function [out] = fintegrate (t,INITC) 
  
% Velocity used for finding integration limits 
global  VELOCITY  UNROT LIMITS  
  
% Weapon shape global variables 
global wpnshape dwpnshape bwpnshape dbwpnshape 
  
%State Variables 
global Xcg Ycg THETAcg XDOTcg YDOTcg THETADOTcg 
  
%assignments 
  
Ycg = INITC(2); 
  
THETAcg = INITC(3); 
  
xdot = INITC(4); 
  
ydot = INITC(5); 
  
thetadot = INITC(6); 
  
THETADOTcg = INITC(6); 
  
VELOCITY = [INITC(4), INITC(5)];  
  
UNROT =[cos(-THETAcg) -sin(-THETAcg); 
       sin(-THETAcg)  cos(-THETAcg) ]; 
  
if Ycg<-41*sin(THETAcg) 
  
    lowt = -41.5; 
     
    lowb = -41.5; 
  
else 
    
    p =  Ycg/sin(THETAcg); 
    
    t =p + polyval(wpnshape,p)*tan(THETAcg); 
     
        if t<-41.5 
     
            lowt = -41.5; 
       
        else 
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            lowt = t; 
         
        end 
         
     b =p - polyval(wpnshape,p)*tan(THETAcg); 
         
        if b<-41.5 
         
            lowb = -41.5; 
             
        else 
             
            lowb=b; 
             
        end 
     
end 
  
%Find Forces 
  
[TOP] =  adaptsimp(@tallstress,lowt, 59.5,1e-10); 
  
[BOTTOM] = adaptsimp(@ballstress,lowb, 59.5,1e-10); 
  
m=1890/386.4; 
  
j = 1.367e6; 
  
xtot = UNROT*[TOP(1)+BOTTOM(1);TOP(2)+BOTTOM(2)]; 
  
%differential equation 
dx = xdot; 
  
dy = ydot; 
     
dtheta = thetadot; 
  
dxdot = xtot(1)/m; 
      
dydot = xtot(2)/m; 
     
dthetadot = (TOP(5) +BOTTOM(5))/j; 
     
out = [dx; dy; dtheta; dxdot; dydot; dthetadot]; 
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APPENDIX F.  JFINTEGRATE 

function [out] = jfintegrate (t,INITC) 
  
% Velocity used for finding integration limits 
global  VELOCITY  UNROT  
  
% Weapon shape global variables 
global wpnshape dwpnshape bwpnshape dbwpnshape 
  
%State Variables 
global Xcg Ycg THETAcg XDOTcg YDOTcg THETADOTcg 
  
%assignments 
  
Ycg = INITC(2); 
  
THETAcg = INITC(3); 
  
xdot = INITC(4); 
  
ydot = INITC(5); 
  
thetadot = INITC(6); 
  
THETADOTcg = INITC(6); 
  
VELOCITY = [INITC(4), INITC(5)];  
  
UNROT =[cos(-THETAcg) -sin(-THETAcg); 
       sin(-THETAcg)  cos(-THETAcg) ]; 
  
if Ycg<-41*sin(THETAcg) 
  
    lowt = -41.5; 
     
    lowb = -41.5; 
  
else 
    
    p =  Ycg/sin(THETAcg); 
    
    t =p + polyval(wpnshape,p)*tan(THETAcg); 
     
        if t<-41.5 
     
            lowt = -41.5; 
       
        else 
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            lowt = t; 
         
        end 
         
     b =p - polyval(wpnshape,p)*tan(THETAcg); 
         
        if b<-41.5 
         
            lowb = -41.5; 
             
        else 
             
            lowb=b; 
             
        end 
     
end 
  
%Find Forces 
  
[TOP] =  adaptsimp(@jtallstress,lowt, 59.5,1e-10); 
  
[BOTTOM] = adaptsimp(@jballstress,lowb, 59.5,1e-10); 
  
m=1890/386.4; 
  
 
j = 1.367e6/20; 
  
xtot = UNROT*[TOP(1)+BOTTOM(1);TOP(2)+BOTTOM(2)]; 
  
%differential equation 
dx = xdot; 
  
dy = ydot; 
     
dtheta = thetadot; 
  
dxdot = xtot(1)/m; 
      
dydot = xtot(2)/m; 
     
dthetadot = (TOP(5) +BOTTOM(5))/j; 
     
out = [dx; dy; dtheta; dxdot; dydot; dthetadot]; 
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APPENDIX G.  TALLSTRESS 

function [forces] = tallstress(x) 
  
%Global Statements 
  
% Velocity used for finding integration limits 
global  VELOCITY  SNUM 
  
% Weapon shape global variables 
global wpnshape dwpnshape bwpnshape dbwpnshape 
  
%State Variables 
global Xcg Ycg THETAcg XDOTcg YDOTcg THETADOTcg 
  
m= polyval(dwpnshape,x); 
  
if m~= 0 
     
    normalx =-m; 
  
    normaly = 1; 
  
else 
     
    normaly = 1; 
  
    normalx = 0; 
  
end 
  
scale = 1/(1 +(normalx)^2).^.5; 
  
rot = [cos(THETAcg) -sin(THETAcg) 0 
       sin(THETAcg)  cos(THETAcg) 0 
       0            0         0]; 
  
V = rot*[VELOCITY 0]'; 
  
unrot =[cos(-THETAcg) -sin(-THETAcg); 
       sin(-THETAcg)  cos(-THETAcg)]; 
        
r = [x polyval(wpnshape,x) 0]; 
  
tdot = [0 0 THETADOTcg]; 
  
Vx = V' + cross(r,tdot); 
  
Vmag = (Vx(1)^2 +Vx(2)^2)^.5; 
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Vnmag = scale*(normalx*V(1) +normaly*V(2));%Like the dot product 
  
if Vnmag > 0 
     
    Ratio = (Vnmag/Vmag)^.5; 
  
    R = abs(polyval(wpnshape,x)); 
  
    Zi = abs(Ycg); 
  
    ds = pi*polyval(wpnshape,x)*(1 + m^2)^.5; 
  
    n =(1/(m^2 +1)^.5*[m;-1]); 
  
    force = n .*(ds .* Ratio.*(1.023e4 ./ (R.*SNUM) +... 
        2.167.*Vmag.*(R.^.5)./SNUM + Ratio.*532.7.*Zi./SNUM.^2)); 
  
    moment = (cross([x,polyval(wpnshape,x),0],[force;0]))'; 
  
    forces =[force;moment]; 
  
else 
  
    forces = [0;0;0;0;0]; 
  
end 
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APPENDIX H.  BALLSTRESS 

 function [forces] = ballstress(x) 
  
%Global Statements 
  
% Velocity used for finding integration limits 
global  VELOCITY  SNUM 
  
% Weapon shape global variables 
global wpnshape dwpnshape bwpnshape dbwpnshape 
  
%State Variables 
global Xcg Ycg THETAcg XDOTcg YDOTcg THETADOTcg 
  
m= polyval(dbwpnshape,x); 
  
if m~= 0 
     
    normalx = m; 
  
    normaly =-1; 
  
else 
  
    normaly = -1; 
  
    normalx = 0; 
  
end 
  
scale = 1/(1 +(normalx)^2).^.5; 
  
rot = [cos(THETAcg) -sin(THETAcg) 0 
       sin(THETAcg)  cos(THETAcg) 0 
       0            0         0]; 
    
V = rot*[VELOCITY 0]'; 
  
unrot =[cos(-THETAcg) -sin(-THETAcg); 
       sin(-THETAcg)  cos(-THETAcg) ]; 
      
r = [x polyval(bwpnshape,x) 0]; 
  
tdot = [0 0 THETADOTcg]; 
  
Vx = V' + cross(r,tdot); 
  
Vmag = (Vx(1)^2 +Vx(2)^2)^.5; 
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Vnmag = scale*(normalx*V(1) +normaly*V(2)); 
  
if Vnmag > 0 
  
    Ratio = (abs(Vnmag)/Vmag)^.5; 
  
    R = abs(polyval(bwpnshape,x)); 
  
    Zi =abs(Ycg); 
  
    ds = pi*abs(polyval(bwpnshape,x))*(1 + m^2)^.5;  
  
    n = 1/(m^2 +1)^.5*[-m;1]; 
  
    force = n .*(ds .* Ratio.*(1.023e4 ./ (R.*SNUM) +... 
        2.167.*Vmag.*(R.^.5)./SNUM + Ratio.*532.7.*Zi./SNUM.^2)); 
  
    %moment = (cross([x-105.92,polyval(bwpnshape,x),0],[force;0]))'; 
    moment = (cross([x,polyval(bwpnshape,x),0],[force;0]))'; 
    forces =[force;moment]; 
  
else 
  
    forces=[0;0;0;0;0]; 
  
end 
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APPENDIX I.  JTALLSTRESS 

function [forces] = jtallstress(x) 
  
%Global Statements 
  
% Velocity used for finding integration limits 
global  VELOCITY  SNUM 
  
% Weapon shape global variables 
global wpnshape dwpnshape bwpnshape dbwpnshape 
  
%State Variables 
global Xcg Ycg THETAcg XDOTcg YDOTcg THETADOTcg 
  
M=1890/386.4; 
  
mu=1.26e4; 
  
beta=103; 
  
m= polyval(dwpnshape,x); 
  
if m~= 0 
  
    normalx =-m; 
  
    normaly = 1; 
  
else 
  
    normaly = 1; 
  
    normalx = 0; 
  
end 
  
scale = 1/(1 +(normalx)^2).^.5; 
  
rot = [cos(THETAcg) -sin(THETAcg) 0 
       sin(THETAcg)  cos(THETAcg) 0 
       0            0         0]; 
  
V = rot*[VELOCITY 0]'; 
  
unrot =[cos(-THETAcg) -sin(-THETAcg); 
       sin(-THETAcg)  cos(-THETAcg)]; 
       
D =2.* abs(polyval(wpnshape,x)); 
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Z = abs(Ycg-x); 
  
angle=(atan(m)); 
  
N = 0.508./sqrt(abs(sin(angle))); 
  
r = [x polyval(wpnshape,x) 0]; 
  
tdot = [0 0 THETADOTcg]; 
  
Vx = V' + cross(r,tdot); 
  
Vnmag = scale*(normalx*V(1) +normaly*V(2)); 
  
if Vnmag > 0 
  
    axial = 2./pi .*(mu./(SNUM.*N.*D) + 2.*beta.*Z./(SNUM.^2.*N.^2) 
+... 
    V(1).*sqrt(beta.*M.*3./7)./(SNUM.*N.*D)); 
  
    if Vx(2)>0 
    
        if x>=0 
             
            trans = 4./pi .*(mu./(SNUM.*D) + beta.*Z./(SNUM.^2) +... 
            abs(Vx(2)).*sqrt(3.*M.*beta/7)./(SNUM.*D)); 
     
        else 
             
            trans = 0; 
         
        end 
  
    else 
  
        trans = 0; 
     
    end 
  
    mag = sqrt(axial.^2+trans.^2); 
  
    n =(1/(m^2 +1)^.5*[m;-1]); 
  
    ds = pi*polyval(wpnshape,x)*(1 + m^2)^.5; 
  
    force=n*mag*ds; 
  
    moment = (cross([x,polyval(wpnshape,x),0],[force;0]))'; 
  
    forces =[force;moment]; 
  
else 



81 

  
    forces = [0;0;0;0;0]; 
  
end 
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APPENDIX J.  EVENTS 

function [value,isterminal,direction] = events(t,y) 
     
global v 
 
value = 0.01.*v-(y(4).^2+y(5).^2)^.5; %expended 99.9% of initial KE 
 
isterminal = 1; 
 
direction = 0; 
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APPENDIX K.  ADAPTSIMP 

From http://www.ima.umn.edu/~arnold/455.f97/programs/adaptsimp.m 
 
function int = adaptsimp(f,a,b,tol,lev,fa,fm,fb) 
%ADAPTSIMP Adaptive Simpson's rule quadrature 
% 
%  Call as ADAPTSIMP('f',a,b,tol) to approximate the integral of f(x) 
%  over the interval a < x < b, attempting to achieve a relative error 
%  of at most tol.  The first argument should be a string containing 
%  the name of a function of one variable.  The return value is the 
%  approximate integral. 
% 
%  ADAPTSIMP calls itself recursively with the argument list 
%  ADAPTSIMP('f',a,b,tol,lev,fa,fm,fb). The variable lev gives the 
%  recursion level (which is used to terminate the program if too many 
%  levels are used), and fa, fb, and fm are the values of the integrand 
%  at a, b, and (a+b)/2, respectively, (which are used to avoid 
%  unnecessary function evaluations). 
  
% initialization, first call only 
if nargin == 4 
  lev = 1; 
  fa = feval(f,a); 
  fm = feval(f,(a+b)/2); 
  fb = feval(f,b); 
end 
  
% recursive calls start here 
  
% start by checking for too many levels of recursion; if so 
% don't do any more function evaluations, just use the already 
% evaluated points and return 
if lev > 10 
    disp('10 levels of recursion reached.  Giving up on this 
interval.') 
    int = (b-a)*(fa+4*fm+fb)/6; 
else 
% Divide the interval in half and apply Simpson's rule on each half. 
% As an error estimate for this double Simpson's rule we use 1/15 times 
% the difference between it and the simple Simpson's rule (which is 
% an asymptotically exact error estimate).     
    h = b - a; 
    flm = feval(f,a+h/4); 
    frm = feval(f,b-h/4); 
    simpl = h*(fa + 4*flm + fm)/12; 
    simpr = h*(fm + 4*frm + fb)/12; 
    int = simpl + simpr; 
    simp = h*(fa+4*fm+fb)/6; 
    err = (int-simp)/15; 
         
    % if tolerance is not satisfied, recursively refine approximation 
    if abs(err) > tol*abs(int) 
       m = (a + b)/2; 
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       int = adaptsimp(f,a,m,tol,lev+1,fa,flm,fm) ... 
           + adaptsimp(f,m,b,tol,lev+1,fm,frm,fb); 
    end 
end 
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APPENDIX L.  CODE DOCUMENTATION 

A. MAINTHESIS 

MAINTHESIS 
Line 

Number 
Operation 

3 Clears Screen 
35 Clears all variables 
7 Closes all open windows 
10 Defines VELOCITY UNROT v SNUM X Y plen as global variables 
12 Defines wpnshape dwpnshape bwpnshape dbwpnshape as global 

variables 
14 Defines Xcg Ycg Thetacg XDOTcg YDOTcg and THETADOTcg as 

global variables 
19 Defines a=0 as lower limit of nosecone  
21 Defines b=59.5 as upper limit of nosecone 
23 Defines Lf=59.5. This is the length of the nosecone 
25 Defines  N=30 
27 Defines n row vector from 1 to 31 
29 Defines R=9. This is the maximum projectile radius. 
31 Sets xf equal to the first 31 roots of the Chebyschev polynomial scaled 

between 0 and 59.5. 
33 Defines rho as the radius of the nosecone ogive 
35 Defines uroot 
37 Caclulates y coordinates of projectile nosecone using xf 
41 Defines a=0 as lower limit of afterbody 
43 Defines b=106.5 as upper limit of afterbody 
45 Defines Lr=106.5. This is the length of the nosecone 
47 Sets xr equal to the first 31 roots of the Chebyschev polynomial scaled 

between 0 and 106.5 
49 Defines rho as the radius of the nosecone ogive 
51 Defines uroot 
53 Caclulates y2 coordinates of projectile afterbody using xr 
55 Assembles X as a vector containing the x coordinates of the afterbody and 

nosecone 
57 Assembles Y as a vector containing the y coordinates of the afterbody and 

nosecone 
59 Defines wpnshape as the degree three polynomial whose coefficients come 

from a least squares fit of X and Y. 
61 Defines bwpnshape=-wpnshape 
63 Defines dwpnshape as the derivative of wpnshape 
65 Defines dbwpnshape as the derivative of bwpnshape 
69 Sets initialc equal to a vector containing the initial projectile velocity, 
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MAINTHESIS 
Line 

Number 
Operation 

incidence angle and SNUM. 
73 Defines theta as initial incidence angle in radians 
75 Defines v as initial speed in inches per second. 
77 Defines x=0 
79 Defines y as initial y coordinate of CG 
81 Defines Vx as initial x velocity of CG 
83 Defines Vy as initial y velocity of CG 
85 Defines Thetadot=0 
87 Defines THETAcg=theta 
89 Defines SNUM equal to user inputted SNUM 
91 Assembles INITC vector containing initial conditions for ODE solver 
95 Defines dot to determine which stress formulation is to be used. 
97 If dot=1 
99 Defines ATOL=1x10-4 

101 Sets OPTIONS equal to a structure defined by odeset. The function “events” 
is used to terminate the integration of ode45 when 99.9% of the projectiles 
initial kinetic energy has been expended. 

103 Starts timer 
105 Solves jfintegrate using ODE45 
107 Stops timer 
109 If dot does not equal 1 
111 Sets OPTIONS equal to a structure defined by odeset. The function “events” 

is used to terminate the integration of ode45 when 99.9% of the projectiles 
initial kinetic energy has been expended. 

113 Starts timer 
115 Solves fintegrate using ODE45 
117 Stops time 
122 Calculates projectile speed at each time step 
124 Calculates x offset to put tip of projectile initially at the origin of the inertial 

frame 
126 Defines q as the size of time vector t 
130 Defines yyy as the difference in y coordinate between adjacent time steps 
132 Defines xxx as the difference in x coordinate between adjacent time steps 
134 Defines der as the path length traveled by projectile between time steps 
136 Defines plen as the cubic spline of der and the x coordinate of the projectile. 
138 Finds d by integrating plen 
140 Defines DATA as [x position of CG in feet, y position of CG in feet, angle in 

degrees, time in seconds] 
142-170 Define weapon shapes to be plotted on output plot. 
176-184 Plots the weapon trajectory 

195 Plots incidence angle versus time. 
Table 13.   MAINTHESIS Code Documentation 
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B. EVENTS 

EVENTS 
Line Number Operation 

1 Defines “events” as a function that takes two inputs, t and y, and 
outputs value, isterminal, and direction 

7 Allows “events” to access global variable v 
8 Sets value to the difference between the velocity that corresponds to 

the projectile velocity when it has 0.25% of its initial kinetic energy 
remaining and the current projectile velocity 

9 Defines isterminal as 1 
10 Defines direction as 0 

 
Table 14.   EVENTS Code Documentation 

 
C. FINTEGRATE 

FINTEGRATE 
1 Defines “fintegrate” as a function that takes two inputs, t and INITC, 

and outputs out 
4 Allows “fintegrate” to access global variables VELOCITY and 

UNROT 
7 Allows “fintegrate” to access global variables wpnshape dwpnshape 

bwpnshape dbwpnshape 
10 Allows “fintegrate” to access global variables Xcg Ycg THETAcg 

XDOTcg YDOTcg THETADOTcg 
14 Sets Ycg equal to the y position of the CG 
16 Sets THETAcg equal to the incidence angle of the CG 
18 Sets xdot equal to the velocity in the x direction of the projectile 
20 Sets ydot equal to the velocity in the y direction of the projectile 
22 Sets thetadot equal to the angular velocity of the projectile 
24 Sets THETADOTcg  equal to the angular acceleration of the 

projectile 
26 Sets VELOCITY to the x and y velocity of the projectile contained 

in INITC(4) and INITC(5) respectively 
28-29 Defines UNROT as the matrix that transforms from the body 

centered coordinate system to the inertial coordinate system 
31-65 Determines interface limits of integrations 

31 If Ycg is in soil half space,  
33 Sets lowt=-41.5 
35 Sets lowb=-41.5 
37 If Ycg is not in soil half space,  
39 Defines p as place on weapon axis that intersects soil interface 
41 Approximates point t where projectile intersects soil interface 
43 If t less than or equal to -41.5 
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FINTEGRATE 
45 Sets lowt=-41.5 
47 Else  
49 lowt=t 
51 end 
53 Approximates point b where projectile intersects soil interface 
55 If b less than or equal to -41.5 
57 Sets lowb=-41.5 
59 Else  
61 lowb=b 
63 end 
65 end 
69 Defines TOP as integral of tallstress from lowt to 59.5 
71 Defines TOP as integral of ballstress from lowb to 59.5 
73 Defines m as projectile mass 
75 Defines j as projectile moment of inertia 
77 Transforms forces from weapon frame to inertial frame 
80-92 Define differential equations 
80 Sets dx=xdot 
82 Sets dy=ydot 
84 Sets dtheta=thetadot 
86 Sets dxdot=xtot(1)/m 
88 Sets dydot=xtot(2)/m 
90 Sets dthetadot=(TOP(5)+BOTTOM(5))/j 
92 Sets out=[dx; dy; dtheta; dxdot;dydot;dthetatdot] 
 

Table 15.   FINTEGRATE Code Documentation 
 
D. JFINTEGRATE 

JFINTEGRATE 
1 Defines “fintegrate” as a function that takes two inputs, t and INITC, 

and outputs out 
4 Allows “fintegrate” to access global variables VELOCITY and 

UNROT 
7 Allows “fintegrate” to access global variables wpnshape dwpnshape 

bwpnshape dbwpnshape 
10 Allows “fintegrate” to access global variables Xcg Ycg THETAcg 

XDOTcg YDOTcg THETADOTcg 
14 Sets Ycg equal to the y position of the CG 
16 Sets THETAcg equal to the incidence angle of the CG 
18 Sets xdot equal to the velocity in the x direction of the projectile 
20 Sets ydot equal to the velocity in the y direction of the projectile 
22 Sets thetadot equal to the angular velocity of the projectile 
24 Sets THETADOTcg  equal to the angular acceleration of the 

projectile 
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JFINTEGRATE 
26 Sets VELOCITY to the x and y velocity of the projectile contained 

in INITC(4) and INITC(5) respectively 
28-29 Defines UNROT as the matrix that transforms from the body centered 

coordinate system to the inertial coordinate system 
31-65 Determines interface limits of integrations 

31 If Ycg is in soil half space,  
33 Sets lowt=-41.5 
35 Sets lowb=-41.5 
37 If Ycg is not in soil half space,  
39 Defines p as place on weapon axis that intersects soil interface 
41 Approximates point t where projectile intersects soil interface 
43 If t less than or equal to -41.5 
45 Sets lowt=-41.5 
47 Else  
49 lowt=t 
51 end 
53 Approximates point b where projectile intersects soil interface 
55 If b less than or equal to -41.5 
57 Sets lowb=-41.5 
59 Else  
61 lowb=b 
63 end 
65 end 
69 Defines TOP as integral of jtallstress from lowt to 59.5 
71 Defines TOP as integral of jballstress from lowb to 59.5 
73 Defines m as projectile mass 
75 Defines j as projectile moment of inertia divided by 20 
77 Transforms forces from weapon frame to inertial frame 
80-92 Define differential equations 
80 Sets dx=xdot 
82 Sets dy=ydot 
84 Sets dtheta=thetadot 
86 Sets dxdot=xtot(1)/m 
88 Sets dydot=xtot(2)/m 
90 Sets dthetadot=(TOP(5)+BOTTOM(5))/j 
92 Sets out=[dx; dy; dtheta; dxdot;dydot;dthetatdot] 
 

Table 16.   JFINTEGRATE Code Documentation 
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E. JTALLSTRESS 

JTALLSTRESS 
Line Number Operation 

1 Defines “tallstress” as a function that takes one input, x and outputs 
forces 

6 Allows “tallstress” to access global variables VELOCITY and SNUM 
9 Allows “tallstress” to access global variables wpnshape dwpnshape 

bwpnshape dbwpnshape 
16 Allows “tallstress” to access global variables Xcg Ycg THETAcg 

XDOTcg YDOTcg THETADOTcg 
18 Defines M  as the mass of the projectile in slugs 
20 Sets m equal to the slope of the projectile shape at x 
23 If m does not equal zero 
26 If m does not equal zero sets normalx to the negative of m 
27 If m does not equal zero sets normaly  equal to 1 
28 else 
31 If m does equals zero sets normaly to equal to 1 
32 If m does equals zero sets normalx  equal to 0 
34 Defines scale as the inverse of the length of the vector defined by 

normalx and normaly 
38-40 Defines rotation matrix, rot, that transforms from inertial coordinates to 

projectile centered coordinates 
42 Transfroms V from inertial coordinates to projectile centered 

coordinates 
43-44 Defines rotation matrix, urot, that transforms from projectile centered 

coordinates to inertial coordinates. 
47 Defines D as the diameter of the projectile at x 
48 Defines Z as the depth of the projectile surface at x 
49 Sets angle to be the angle formed by the slope of the tangent line at x 

and the axial axis 
50 Sets N equal to the local nose performance coefficient 
51 Defines mu as 1.24e4 
52 Defines beta as 103 
53 Defines r as the vector going from CG to the point on the projectile 

surface defined by x and wpnshape(x). 
54 Sets tdot equal to the angular velocity vector 
55 Sets Vx equal to the velocity of the surface of the projectile at  

[ x wpnshape(x)] 
56 Sets Vmag equal to the speed of the projectile surface at  

[ x wpnshape(x)] 
57 Sets Vnmag equal to the dot product of the normal surface vector and 

the velocity on the surface of the projectile 
60 If Vnmag  is greater than zero 

63-63 If Vnmag  is greater than zero sets axial equal to the axial stress at  
[ x wpnshape(x)] 
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JTALLSTRESS 
64 If the y component of CG velocity in the projectile from V(2) is greater 

than zero 
68-69 Sets trans equal to the transverse force at [ x wpnshape(x)] 

71 Else 
72 Sets trans equal to zero 
77 Sets ds equal to the (shell area)curve length at [ x wpnshape(x)] 
79 Sets aforce equal to the axial force at [ x wpnshape(x)]  
88 Sets tforce equal to the transverse force at [ x wpnshape(x)]  
90 Sets force equal to the vector containing the axial and transverse forces 
91 Sets moment equal to the moment generated by force 
92 Sets forces equal to the column vector containing force and moment 
93 Else. This is the alternative if Vnmag is less than or equal to zero 
94 Sets forces  equal to the zero vector. 
95 End 

 
Table 17.   JTALLSTRESS Code Documentation 

 
F. JBALLSTRESS 

JBALLSTRESS 
Line Number Operation 

1 Defines “ballstress” as a function that takes one input, x and outputs 
forces 

6 Allows “ballstress” to access global variables VELOCITY and SNUM 
9 Allows “ballstress” to access global variables wpnshape dwpnshape 

bwpnshape dbwpnshape 
16 Allows “tallstress” to access global variables Xcg Ycg THETAcg 

XDOTcg YDOTcg THETADOTcg 
18 Defines M  as the mass of the projectile in slugs 
20 Sets m equal to the slope of the projectile shape at x 
23 If m does not equal zero 
26 If m does not equal zero sets normalx to m 
27 If m does not equal zero sets normaly  equal to -1 
28 else 
29 If m does equals zero sets normaly to equal to -1 
30 If m does equals zero sets normalx  equal to 0 
31 End 
34 Defines scale as the inverse of the length of the vector defined by 

normalx and normaly 
38-40 Defines rotation matrix, rot, that transforms from inertial coordinates to 

projectile centered coordinates 
42 Transfroms V from inertial coordinates to projectile centered 

coordinates 
43-44 Defines rotation matrix, urot, that transforms from projectile centered 

coordinates to inertial coordinates. 
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JBALLSTRESS 
47 Defines D as the diameter of the projectile at x 
48 Defines Z as the depth of the projectile surface at x 
50 Sets angle to be the angle formed by the slope of the tangent line at x 

and the axial axis 
52 Sets N equal to the local nose performance coefficient 
53 Defines mu as 1.24e4 
54 Defines beta as 103 
55 Defines r as the vector going from CG to the point on the projectile 

surface defined by x and bwpnshape(x). 
56 Sets tdot equal to the angular velocity vector 
57 Sets Vx equal to the velocity of the surface of the projectile at  

[ x bwpnshape(x)] 
58 Sets Vmag equal to the speed of the projectile surface at  

[ x bwpnshape(x)] 
59 Sets Vnmag equal to the dot product of the normal surface vector and 

the velocity on the surface of the projectile 
62 If Vnmag  is greater than zero 

65-66 If Vnmag  is greater than zero sets axial equal to the axial stress at  
[ x bwpnshape(x)] 

67 If the y component of CG velocity in the projectile from V(2) is greater 
than zero 

70-71 Sets trans equal to the transverse force at [ x bwpnshape(x)] 
73 Else 
74 Sets trans equal to zero 
79 Sets ds equal to the (shell area)curve length at [ x wpnshape(x)] 
80 Sets aforce equal to the axial force at [ x wpnshape(x)]  
88 Sets tforce equal to the transverse force at [ x wpnshape(x)]  
91 Sets force equal to the vector containing the axial and transverse forces 
92 Sets moment equal to the moment generated by force 
93 Sets forces equal to the column vector containing force and moment 
94 Else. This is the alternative if Vnmag is less than or equal to zero 
95 Sets forces  equal to the zero vector. 
96 End 

 
Table 18.   BALLSTRESS Code Documentation 

 
G. TALLSTRESS 

 

TALLSTRESS 
Line Number Operation 

1 Defines “tallstress” as a function that takes one input, x and outputs 
forces 

6 Allows “tallstress” to access global variables VELOCITY and SNUM 
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TALLSTRESS 
9 Allows “tallstress” to access global variables wpnshape dwpnshape 

bwpnshape dbwpnshape 
16 Allows “tallstress” to access global variables Xcg Ycg THETAcg 

XDOTcg YDOTcg THETADOTcg 
18 Defines M  as the mass of the projectile in slugs 
20 Sets m equal to the slope of the projectile shape at x 
23 If m does not equal zero 
26 If m does not equal zero sets normalx to the negative of m 
27 If m does not equal zero sets normaly  equal to 1 
28 else 
31 If m does equals zero sets normaly to equal to 1 
32 If m does equals zero sets normalx  equal to 0 
34 Defines scale as the inverse of the length of the vector defined by 

normalx and normaly 
38-40 Defines rotation matrix, rot, that transforms from inertial coordinates to 

projectile centered coordinates 
42 Transfroms V from inertial coordinates to projectile centered 

coordinates 
43-44 Defines rotation matrix, urot, that transforms from projectile centered 

coordinates to inertial coordinates. 
47 Defines D as the diameter of the projectile at x 
48 Defines Z as the depth of the projectile surface at x 
49 Sets angle to be the angle formed by the slope of the tangent line at x 

and the axial axis 
50 Sets N equal to the local nose performance coefficient 
51 Defines mu as 1.24e4 
52 Defines beta as 103 
53 Defines r as the vector going from CG to the point on the projectile 

surface defined by x and wpnshape(x). 
54 Sets tdot equal to the angular velocity vector 
55 Sets Vx equal to the velocity of the surface of the projectile at  

[ x wpnshape(x)] 
56 Sets Vmag equal to the speed of the projectile surface at  

[ x wpnshape(x)] 
57 Sets Vnmag equal to the dot product of the normal surface vector and 

the velocity on the surface of the projectile 
60 If Vnmag  is greater than zero 

63-63 If Vnmag  is greater than zero sets axial equal to the axial stress at  
[ x wpnshape(x)] 

64 If the y component of CG velocity in the projectile from V(2) is greater 
than zero 

68-69 Sets trans equal to the transverse force at [ x wpnshape(x)] 
71 Else 
72 Sets trans equal to zero 
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TALLSTRESS 
77 Sets ds equal to the (shell area)curve length at [ x wpnshape(x)] 
79 Sets aforce equal to the axial force at [ x wpnshape(x)]  
88 Sets tforce equal to the transverse force at [ x wpnshape(x)]  
90 Sets force equal to the vector containing the axial and transverse forces 
91 Sets moment equal to the moment generated by force 
92 Sets forces equal to the column vector containing force and moment 
93 Else. This is the alternative if Vnmag is less than or equal to zero 
94 Sets forces  equal to the zero vector. 
95 End 

Table 19.   TALLSTRESS Code Documentation 
 
H. BALLSTRESS 

BALLSTRESS 
Line Number Operation 

1 Defines “ballstress” as a function that takes one input, x and outputs 
forces 

6 Allows “ballstress” to access global variables VELOCITY and SNUM 
9 Allows “ballstress” to access global variables wpnshape dwpnshape 

bwpnshape dbwpnshape 
16 Allows “tallstress” to access global variables Xcg Ycg THETAcg 

XDOTcg YDOTcg THETADOTcg 
18 Defines M  as the mass of the projectile in slugs 
20 Sets m equal to the slope of the projectile shape at x 
23 If m does not equal zero 
26 If m does not equal zero sets normalx to m 
27 If m does not equal zero sets normaly  equal to -1 
28 else 
29 If m does equals zero sets normaly to equal to -1 
30 If m does equals zero sets normalx  equal to 0 
31 End 
34 Defines scale as the inverse of the length of the vector defined by 

normalx and normaly 
38-40 Defines rotation matrix, rot, that transforms from inertial coordinates to 

projectile centered coordinates 
42 Transfroms V from inertial coordinates to projectile centered 

coordinates 
43-44 Defines rotation matrix, urot, that transforms from projectile centered 

coordinates to inertial coordinates. 
47 Defines D as the diameter of the projectile at x 
48 Defines Z as the depth of the projectile surface at x 
50 Sets angle to be the angle formed by the slope of the tangent line at x 

and the axial axis 
52 Sets N equal to the local nose performance coefficient 
53 Defines mu as 1.24e4 
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BALLSTRESS 
54 Defines beta as 103 
55 Defines r as the vector going from CG to the point on the projectile 

surface defined by x and bwpnshape(x). 
56 Sets tdot equal to the angular velocity vector 
57 Sets Vx equal to the velocity of the surface of the projectile at  

[ x bwpnshape(x)] 
58 Sets Vmag equal to the speed of the projectile surface at  

[ x bwpnshape(x)] 
59 Sets Vnmag equal to the dot product of the normal surface vector and 

the velocity on the surface of the projectile 
62 If Vnmag  is greater than zero 

65-66 If Vnmag  is greater than zero sets axial equal to the axial stress at  
[ x bwpnshape(x)] 

67 If the y component of CG velocity in the projectile from V(2) is greater 
than zero 

70-71 Sets trans equal to the transverse force at [ x bwpnshape(x)] 
73 Else 
74 Sets trans equal to zero 
79 Sets ds equal to the (shell area)curve length at [ x wpnshape(x)] 
80 Sets aforce equal to the axial force at [ x wpnshape(x)]  
88 Sets tforce equal to the transverse force at [ x wpnshape(x)]  
91 Sets force equal to the vector containing the axial and transverse forces 
92 Sets moment equal to the moment generated by force 
93 Sets forces equal to the column vector containing force and moment 
94 Else. This is the alternative if Vnmag is less than or equal to zero 
95 Sets forces  equal to the zero vector. 
96 End 

 
Table 20.   BALLSTRESS Code Documentation 
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