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ABSTRACT 

This thesis describes the design and implementation of a Quadrature Mirror Filter 

Bank on a high-performance Reconfigurable Computer implemented with Field 

Programmable Gate Arrays. The physical connections and signaling specifications for 

connecting an Analog to Digital Converter to the Reconfigurable Computer system 

manufactured by SRC Computers Incorporated are discussed. Design and implementation 

of a fully functional prototype Quadrature Mirror Filter Bank is detailed, with a 

discussion for extending the functionality to larger more practical designs. Performance 

and device utilization results between the Quadrature Mirror Filter Bank implemented in 

VHDL, design elements implemented in the C programming language, and calculations 

made using high precision mathematical tools are compared, along with relative effort 

levels required to achieve results using the different hardware instantiation methods.  
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EXECUTIVE SUMMARY 

The purpose of this thesis is the design, construction, and testing of a hardware 

implementation for a real-time Quadrature Mirror Filter Bank on an SRC-6 

reconfigurable computer system.   A Quadrature Mirror Filter (QMF) Bank is a type of 

wavelet decomposition filter system used for Digital Signal Processing (DSP).  The use 

of a Quadrature Mirror Filter Bank as part of a larger system for the detection and 

classification of Low Probability of Intercept (LPI) radar signals is proposed in [1].  This 

thesis is part of a larger project working to develop the design methodologies for a 

practical implementation of LPI detection system on Field Programmable Gate Arrays 

(FPGA).  As a secondary goal, this thesis evaluates the suitability of the SRC-6 system 

for use as a developmental platform. 

This work uses the SRC-6 reconfigurable computer manufactured by SRC 

Computer Corporation as the developmental test platform for the development of the 

QMF.  The model of SRC-6 at the Naval Postgraduate School contains four user-

programmable Xilinx XC2V6000 FPGAs, which were the specific design targets for the 

work.  The majority of the QMF design work was done in the VHDL Hardware 

Definition Language.  However, a portion of the design was duplicated in the C language 

based programming environment developed by SRC for their reconfigurable systems.  As 

a development platform, the SRC-6 interface and programming environment simplified 

portions of the work, and the portion of the work duplicated in C based language proved 

to require significantly lower development times at the expense of slightly increased 

hardware utilization at the FPGA level.   

The work for this thesis consists of two main parts.  The first portion is the 

construction and testing of a hardware interface between the SRC-6 system and a 

separate Analog to Digital Converter (ADC) board.  The interface consists of the physical 

cabling and connection devices, the electrical specifications of the interface, and the 

logical interface designed for implementation on the SRC-6 to accept the incoming data 

and format it for further processing.  The specific design of the interface and components 



 xviii

is discussed in depth and complete information for duplication or extension of the 

interface is provided. 

The second portion of the design consists of the design, implementation, and 

testing of a demonstration QMF in VHDL.  Several design choices required for designing 

a QMF implementation and these choices are discussed in depth.  Future extensibility of 

the QMF is discussed, along with several methodologies to increase the capabilities of the 

demonstration design.  Special attention is given to a method of interleaving separate data 

streams along a single data path in order to reduce hardware utilization in the design.  A 

method for interleaving data streams along a fully pipelined real-time data path is shown 

and proven in a working demonstration model.   

The demonstration model QMF developed for this work consists of a filter bank 

that accepts six simultaneous input values from the hardware interface on each clock 

cycle.  It then passes the incoming input values into a three stage QMF built using six tap 

Finite Impulse Response (FIR) filters as the primary elements of the design.  By using 

delay elements and multiplexers, the design interleaves the filter outputs along a single 

data path allowing for minimal hardware to be used for the design.   

Test results from the demonstration QMF is compared with results from a similar 

filter designed in MATLAB.  The demonstration QMF shows comparable performance to 

the MATLAB based filter within the limits of accuracy imposed by the real-time 

processing limitations of the VHDL QMF and design choices made for its 

implementation.  The output of the data path from the VHDL QMF is successfully de-

interleaved, returning eight separate data streams from the continuous output. 

A discussion of the limitations of the current design is given with 

recommendations for future work and the extension of the current design into a larger 

practical design.    
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I. INTRODUCTION  

A. PURPOSE  
Reconfigurable computer systems offer a number of performance advantages over 

general purpose computer systems and significant economy advantages over custom 

computing devices. A general purpose system is capable of a wide variety of tasks but 

must necessarily include all the hardware elements required to complete any task. As a 

result, although modern general purpose systems have become extremely fast, the 

optimization choices made in their construction require many simple operations, such as 

arithmetic functions, to require multiple clock cycles to complete. Competing space 

requirements on the chip restrict the quantity of hardware that can be dedicated to a 

particular task and subsequently limits the number of parallel operations that can occur in 

a general purpose processor.  

At the other end of the spectrum are Application Specific Integrated Circuit 

(ASIC) chips, which contain only the hardware elements required for their designed task, 

and can contain sufficient quantities of hardware elements to complete large numbers of 

parallel tasks. While very efficient, they must be custom designed for a specific task and 

are incapable of any other task. As a result, ASIC designs are generally inflexible and 

have high development costs that tend to restrict their employment to high volume 

applications where the devices are disposable once the particular application for which 

they have been designed is obsolete.  

In between these extremes lie reconfigurable computing devices. The most 

common reconfigurable device today is the Field Programmable Gate Array (FPGA). By 

itself, the FPGA is similar in some ways to an ASIC, although normally of lower 

performance. Developing FPGA applications is similar in cost to developing ASIC based 

designs but the FPGA device can be reconfigured to run a different application at a later 

time. The power of the FPGA is magnified when it is combined with a general purpose 

computer to provide a reconfigurable hardware asset to a computer system. In systems 

such as the SRC Computers Corporation SRC-6 reconfigurable computer, the advantages 

of a high speed general purpose system are joined with the dedicated hardware speed 
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advantages of the FPGA. In addition, the cost of application development can be 

considerably lower on these systems as they can be programmed in the C programming 

language without specialized knowledge of hardware engineering. 

This thesis explores the practicality of utilizing a reconfigurable computer system 

for capturing a digital signal in real-time and performing multiple parallel signal 

processing tasks. The specific application explored involves work done on using a 

Quadrature Mirror Filter Bank (QMF) in the detection and classification of Low 

Probability of Intercept (LPI) radar signals.[1]  This thesis will detail the issues involved 

in physically connecting an external Analog to Digital Converter (ADC) to the SRC-6 

reconfigurable computer system, the digital logic involved in reading the ADC data and 

converting it to the internal clock domain, and the digital logic involved in a practical 

QMF design. In Addition, working prototype designs for a real-time data capture and a 

QMF bank will be characterized and compared with respect to hardware utilization and 

accuracy.  

  

B. DESIGN OVERVIEW 
Figure 1 shows the basic data flow required to implement a QMF design on the 

SRC-6. Most of the effort in this thesis was devoted to the physical interface between the 

ADC and the SRC, the logical interface that reads the ADC data into the SRC, and the 

implementation of a QMF design. The signal source can be any source readable by the 

ADC within the Nyquist sampling rate of the ADC clock speed and will not be addressed 

in depth. The user interface between the MAP and the user will also not be significantly 

addressed in this work. 
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Figure 1.   QMF Data Flow Diagram  

 
 

1. Hardware Elements 
This research addresses a specific hardware configuration. However, it will also 

attempt to draw conclusions about general hardware configurations. The specific 

hardware utilized for this work is a National Semiconductor ADC081500D Analog to 

Digital Converter (ADC) mounted on a custom evaluation board produced by Ballenger 

Creek Consulting. The cable configuration required to transfer the signal from the ADC 

board to the SRC-6 is examined and the hardware capabilities and configuration of the 

SRC-6 reconfigurable computer system will be addressed. In particular, elements of the 

Xilinx FPGA incorporated into the SRC-6 is discussed in detail with respect to their 

capabilities and limitations, as well as the effects of the hardware elements on the 

software and mathematical elements of the design. 

2. Software Elements 
This research covers the logical interface required to read external data into the 

SRC-6, a three stage QMF written in VHDL, a small Finite Impulse Response (FIR) filter 

written in VHDL, and a comparable FIR written in C but implemented on the SRC. The 

support software required to operate the SRC-6, as well as the software tools used to 

write and test the FPGA related code, is examined. Output comparisons of the 

performance of the QMF running on the SRC are made against a high precision QMF 

running in MATLAB. The MATLAB code used to make the comparisons and perform 

post processing on the data is examined.  
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3. Mathematical Elements 
Due to the limited time available to complete each stage of the QMF processing 

and the constant flow of incoming data, normal floating point mathematical operations, 

such as done by a general purpose processor, are not practical for a real-time data capture 

and processing system. As a result, methods to reduce the processing requirements for the 

required arithmetic operations are examined along with binary fixed point arithmetic in 

order to reduce the hardware requirements but still maintain an acceptable degree of 

precision.  In this type of number system, maintaining knowledge of the decimal point 

location is the responsibility of the designer. In addition, great care must be taken when 

designing the binary number formats to ensure that overflow conditions are either not 

possible, within a set of filter coefficients, or can be dealt with effectively by the system.  

For this project, binary bit widths for each stage of calculations were chosen to exclude 

the possibility of overflows resulting from the calculations but maintained only the 

minimum total binary word size necessary to maintain a reasonable precision in the final 

result. 

C. THESIS ORGANIZATION 
The remainder of this thesis is organized as follows: 

• Chapter II discusses previous and related work in similar areas. It also details 

some of the potential applications of the QMF bank with respect to detection and 

classification of ELINT signals.  

• Chapter III gives a basic overview of the major hardware elements used in this 

work, as well as their capabilities and limitations, and will provide a functional 

reference to the various hardware elements with respect to the requirements of 

this project. 

• Chapter IV provides an in-depth review of the hardware interface between the 

ADC and the SRC-6. It covers the areas listed in Figure 1 as the ADC, the 

physical interface, and the logical interface. 

• Chapter V provides an in depth discussion of the design concepts developed and 

employed to provide a real-time QMF implementation. It covers the actual 

implementation of a prototype QMF design in VHDL, a FIR filter design in C for 
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implementation on the SRC-6, and the support software written to implement the 

design. 

• Chapter VI discusses the results of the implementations with respect to hardware 

utilization and relative error rates compared to high precision calculations made 

using MATLAB on the same raw ADC outputs as the VHDL filters. 

• Chapter VII provides a summarization of results, draws some conclusions based 

on the work, and suggests some areas for future work. 
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II. BACKGROUND 

A. QUADRATURE MIRROR FILTER BANK AS PART OF AN LPI ELINT 
DETECTION SYSTEM 

A detailed description of a possible Electronic Intelligence (ELINT) 

detection and classification system is given by [1].  Figure 2 shows a block 

diagram of the proposed system. This work is concerned with the portion of the 

design connecting the Digital Receiver to the system and the Quadrature mirror 

filtering.  Work on implementing other portions of the design is ongoing but is not 

the focus of this thesis.  Results from porting the Image Analysis section shown in 

Figure 2 to the SRC-6 are given by [2]. 

 
Figure 2.   LPI Detection and Classification system (From [1]) 

 

A Quadrature Mirror Filter bank is a type of wavelet decomposition filter that 

reduces the time domain resolution of a signal to produce a higher resolution in the 

frequency domain. A more detailed explanation of the elements of a QMF is given in 

Chapter V but the basic design is shown in Figure 3.  The blocks labeled G and H in 

Figure 3 represent high and low pass digital filters.  The focus on this work is to 

determine practical methods for the implementation of a QMF on a particular hardware 
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suite and to provide generalized guidelines for QMF implementation in similar types of 

reconfigurable logic. 

 
Figure 3.   Quadrature Mirror Filter Bank (From [1]) 

 

B. RELATED WORK 
Most of the individual elements required for a real-time implementation of a QMF 

on the SRC hardware have been explored in previous research and designs, though a 

complete implementation has not been realized. 

1. Filter Design Principals 
In general, filter design principals for FPGA implementation have been well 

discussed in the literature [3,4,5].  The designs in this work are a compilation of several 

standard filter design practices.  Various options for filter element design will be 

discussed where appropriate.  In particular, [3] provides some useful discussion on 

wavelet decomposition filter trees similar in nature to the target QMF with regards to 

hardware reutilization.   

2. General FPGA Design Practices 
The FPGA in the model of SRC-6 available for testing is an older Xilinx Virtex-II 

FPGA, which is a very well known chip. A large volume of application notes and general 

design guidelines such as [6,7,8,9,10] have provided useful design elements.  Almost all 
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the code used in this work is original and based on standard design practices. The 

exception is the multiplier element outlined in [6].  Specific code for this multiplier 

element was downloaded from the Xilinx website along with the associated application 

note, [6], and modified for this particular application by replacing the multiplier output 

registers with configurable pipeline delay elements.   

3. Previous SRC-6 Hardware Interface Designs 
Previous work has been done at the Naval Postgraduate school on a hardware 

interface system between and ADC and the SRC-6 computer system, as detailed in 

[11,12].  The previous design proved effective and was completely compliant with the 

listed specifications of the SRC-6 model available to NPS.  The previous design was, 

however, limited in effective sampling rate and fairly complex due to the necessity of 

meeting the listed interface specifications of the SRC-6.  The signal input specifications 

listed for the SRC-6 at NPS indicated it was only compatible the Low Voltage TTL 

(LVTTL) specification and the previous design work was based on that requirement. 

Since LVTTL outputs are not standard on most commercially available high speed 

ADC’s, a fairly complex design was required to process the ADC output for input into 

the SRC-6.  Also, the previous design was based on clocking the ADC using the SRC-6 

clock, which also limited the possible ADC sampling rate to the maximum clock output 

rate of the FPGAs in the SRC-6 (approximately 400 MHz).  This work will attempt to 

extend the previous work to overcome the speed limitations imposed by the LVTTL 

standard and sampling rate limitations from the limits of the SRC-6 clock.   

Since the initial hardware interface work at NPS, SRC computers has developed 

an ADC board specifically designed for connection to the newer SRC systems. It uses the 

Low-Voltage Differential Signaling (LVDS) specification and is not meant to be 

compatible with Revision C and older SRC systems.  As of September 2006 it is not yet 

available for purchase but is expected to be available in the near future.  Future work with 

the SRC involving external connections may be able to benefit from a commercially 

designed and tested interface.  Limited information on the specifics of the SRC ADC 

board is available at this time, other than it is capable of a 2GSps sampling rate.   
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III. HARDWARE ELEMENTS 

A. OVERVIEW 
For this work, there are two main hardware elements, the ADC board and the 

SRC-6 reconfigurable computer system.  The physical connection used on the SRC-6 was 

a direct cable connection to the MAP General Purpose Input Output (I/O) port, which is 

directly connected to pins on the internal Xilinx Virtex-II FPGA. Much of the effort of 

this project involves low-level optimizations within the FPGA itself.  Certain hardware 

resources within the FPGA require a detailed description for the design choices made in 

this work to be fully explained.  The Xilinx FPGA contained within the MAP board will 

be described as a separate component.   

B. SRC RECONFIGURABLE COMPUTER 
The reconfigurable computer system used for this work is the SRC-6 computer 

manufactured by SRC Incorporated of Colorado Springs, Colorado.  The main elements 

of the SRC-6 consist of the microprocessor, the MAP board, and the custom software 

environment developed by SRC for programming the system. The SRC-6 contains all of 

the support hardware and software necessary to develop FPGA projects.  The SRC-6 

software environment allowed the development of a QMF prototype with reasonable 

effort.  However, significant development effort was devoted to VHDL code.  As a result, 

this work does not fully take advantage of the capabilities of the SRC-6 software 

environment.  Of additional interest is the General Purpose Input Output port (GPIO), 

also referred to as the chain port, on the MAP board within the SRC-6, which allows 

multiple MAP units to be interconnected or interfaces connecting other equipment to be 

constructed. Figure 4 shows a simplified block diagram of the SRC-6 internal structure.  

This diagram represents the older model MAP board used for this work and omits 

components not directly related to this work. 
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Figure 4.   Simplified SRC-6 Architecture 

 
1. Microprocessor 
The microprocessor in the SRC-6 used for this work is a standard rack mounted 

2U server form factor with dual 2.8 GHz Intel Xeon processors. It runs the Linux Fedora 

Core 3 operating system.  The microprocessor has a SNAP interface board that has been 

installed in one of the standard memory slots on the microprocessor mother board.  It is 

physically connected to the MAP board using micro-coaxial cables, allowing high rate 

data transfers between the Microprocessor and the MAP board.  The SNAP interface 

creates a communication path between the Microprocessor and the MAP board by 

allowing the software on the microprocessor to treat the MAP as if it were a memory 

location.  This avoids the necessity of extensive modifications to the computer 

architecture of the microprocessor.  Currently, the SNAP interface only allows half-

duplex communication between the MAP and microprocessor. This is not pertinent to the 

current work but may be an issue in development of a real-time signal processing system 

using the SRC-6.  Since data can only flow in one direction at a time, and in a real-time 

signal processing system it can be assumed that the data flowing from the MAP would be 

continuous, control signaling from the Microprocessor to the MAP is potentially 

problematic.  Future versions of the SRC may remedy this situation, but for the purposes 

of this work, data was sampled in fixed size blocks of 60,000 samples and transferred to 

the microprocessor for storage, with the program terminating after the conclusion of the 

transfer. Larger block transfers are well within the capability of the SRC, however, file 

sizes for the stored data quickly become unmanageable. The SRC-6 is also capable of 
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continuously streaming data across the interface to the microprocessor, however, that 

level of functionality is beyond the scope of this work. 

2. MAP 
Figure 4 details the layout of the pertinent components of the SRC-6 MAP board.  

This work is based primarily in the User Logic FPGA of the MAP board. The onboard 

RAM is only used as an intermediary storage location for data samples and is not used for 

any other purpose in this work.  Other SRC-6 applications may use the onboard RAM, 

and an SRC-6 programmer must normally be cognizant of a number of memory access 

issues but those are beyond the scope of this work.   

Of particular interest at the MAP level is the interconnection between the two 

User Logic FPGAs, which is a very wide, high-speed data bus. Also of interest are the 

GPIO port inputs that allow connections with external devices or additional MAP units.  

One GPIO port is labeled as the GPIO-in port while the other is labeled as the GPIO-out 

port.  While both GPIO ports have connections to both User Logic chips, the actual pin 

assignments on each FPGA are different.  This work is concerned only with the GPIO-in 

port connected to User Logic 1.   

There is one noted operational detail of the MAP board that is not documented by 

SRC that could prove to be of interest to future expansion of the current work. Once a 

process has been run on the microprocessor that programs the User Logic chips on the 

MAP, the logic is not reconfigured until the next time the User Logic is accessed.  In a 

configuration with multiple MAP boards chained together using the GPIO ports, the 

MAP boards can be configured by activating processes on the microprocessors that 

instantiate logic on the MAP boards, and then terminate and leave the MAP boards 

functioning autonomously.  In this situation, only one microprocessor connection needs 

to maintain a running process to interface with multiple MAPs running portions of a 

program that spans multiple MAP boards. It is unlikely that a practical system would 

make use of this special case.  However, it opens up a number of possibilities for 

prototype testing of large, FPGA based systems using the SRC interface and support 

software.  Operations that involve interaction between the User Logic portion of the MAP 

and other MAP elements have not been observed in this special case scenario and further 

study would be necessary to verify functionality.   
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3. Software Environment 
The software development environment of the SRC-6 is known as CARTE and 

was developed by SRC for their systems.  CARTE includes a C superset programming 

language, which allows any C programmer to write software that is capable of 

instantiating dedicated logic in hardware to allow significant improvements in 

performance for some types of applications.  This functionality is the major advantage of 

the SRC system, which allows for a significant reduction in development time over the 

use of Hardware Definition Language (HDL) based designs with comparable 

performance.  SRC currently provides a significant number of dedicated functions, called 

macros, which allow a programmer familiar with the SRC system to produce highly 

optimized code, which are detailed in [13]. While it is possible to run most C code on the 

SRC, for code to written for the SRC to be fully optimized and gain maximum 

performance, an in-depth study of the system or attending a training course [14] is highly 

recommended.   

The CARTE libraries contain many useful functions (referred to as macros) that 

have been optimized for the SRC.  All of the macros designed for off chip 

communication assume the communication will be between User Logic chips.  For access 

to custom off-chip hardware, such as used in this thesis, user-designed macros written in 

Verilog HDL or VHDL can be integrated into the C code and are accessed as if they were 

a C type function from within the code.  Since the hardware interface portion of this work 

was written as a VHDL macro, limited attention was given to the C Code portions of the 

project.  A comparison is made for the hardware utilization of a FIR filter written in C 

versus one written in VHDL.  In addition, benchmarking of the SRC-6 performance has 

been done in [11,12,15] and is not the focus of this work.   

Detailed listings for the file formats and CARTE specific software requirements 

are contained in [13].  For purposes of this work, the important files consist of the main C 

file (.c extension), the MAP code file (.mc) extension, and the user macro file (.v 

extension if written in Verilog or .vhd extension if written in VHDL).  Code meant to 

execute on the Microprocessor is placed by the programmer into the main.c file, which in 

turn calls the .mc file containing the code meant to execute in dedicated logic on the 



15 

MAP.  Code in the .mc file can call user defined macros written in HDL, and contained in 

the user macro file, as if they were a C style functions.  There are additional support files 

necessary to implement user macros which are detailed in [13], but a full description is 

not necessary for this work.   

A programmer attempting to compile software for the SRC has a number of 

compilation options that can significantly affect compile times.  If a program is written 

only in C, the user can compile the program in the debug mode, which effectively creates 

an executable that runs the MAP code in an emulation mode. This significantly reduces 

the compile time since the compiler does not have to synthesize and perform a Place And 

Route (PAR) operation for all the circuitry destined for MAP execution.  For programs 

utilizing user macros, the macro writer has the option of including a piece of C code that 

emulates the functionality of the HDL macro when the program is compiled in debug 

mode.  Unfortunately, debugging large user macros becomes very tedious as the macros 

themselves do not compile in debug mode. Only the C code meant to emulate the 

functionality of the macro compiles. While there is a simulation mode available as a 

compile operation, NPS does not have the software licenses for the simulation mode 

compilation. Hardware mode compilation is always available, but for larger programs, 

this may require several hours to complete. This is because all the code must be 

synthesized by the HDL compiler and the resulting hardware design must undergo a 

multiple pass PAR operation, where each component and net is mapped to a physical 

location on the FPGA.  Full hardware compiles with large designs normally require 

several hours to complete.   

C. XILINX FPGA 
While the Xilinx XC2V6000 User Logic FPGA is actually part of the MAP board 

in the SRC-6, the focus of this work was at a very low hardware level and certain key 

design elements require a basic understanding of the FPGA functionality. The basic 

internal structure of the target FPGA is shown in Figure 5, which is from [16].  Table 1 

shows the relative component capacities of the XC2V6000 chip used in this thesis and of 

the XC2VP100 chip that is integrated into newer model SRC systems.  The number of 

available multipliers and block RAM devices is of interest later in this work when 

capacity planning for practical QMF implementations is discussed. 
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Figure 5.   Xilinx Virtex-II Architecture Overview (From [16]) 

 
 

 
Table 1.   Selected Xilinx FPGA Component Capacity (After [16,17]) 
 

 
Figure 6.   Xilinx FPGA Slice Configuration (From [16]) 

 
1. FPGA Structure 
The basic structure of the Xilinx Virtex-II FPGA is shown in Figure 5, with 

component capacities listed in Table 1. Figure 6 shows the basic logic of a single slice, of 

which four make up a Configurable Logic Block (CLB).  Not represented in the figures is 

the switch matrix and high speed interconnects between components.  The switch matrix 

consists of numerous data lines that surround all of the components shown in Figure 5. 
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They allow signals to be routed to any location on the chip from any other location on the 

chip.  In addition to the global switch matrix, there are low delay interconnects between 

all adjacent (horizontally, vertically, and diagonally) CLB elements and between adjacent 

CLB elements, Multipliers, Block Select RAM, and IOB pads.  There are also dedicated 

low delay interconnect lines running vertically in the CLB columns to connect 

specialized logic in each slice that is used for arithmetic operations, shift operations, and 

multiplexing operations. Each slice contains two configurable logic elements that can act 

as small 16-bit RAM or ROM modules and Look Up Tables (LUT) which can implement 

any arbitrary 4-input combinational logic function, or function as a 16-bit shift register.   

2. Key Elements 
The general FPGA layout also includes Digital Clock Managers (DCM) and 

Global Clock Buffers (physically located with the Global Clock Multiplexer elements in 

Figure 5).  The DCMs are physically located along the top and bottom of the chip while 

the clock buffers are located at top and bottom center.  The physical placement of the 

DCM modules and the clock buffers is important to this work as several DCM modules 

are required for the designs described in later chapters.  The DCM modules are capable of 

creating modified clock signals by phase shifting the clock, multiplying the clock, or 

dividing the clock, or any combination of these modifications, while maintaining a phase 

lock with a source clock.   

Around the edge of the chip are Input Output Block (IOB) elements that contain 

the IO pads, Electro Static Discharge (ESD) protection, Double Data Rate (DDR) 

registers to clock in data from external lines, and IO buffers capable of transmitting and 

receiving a wide variety of signal standards on and off the chip.  The IOB elements are 

grouped into eight IO banks equally spaced around the edge of the chip.  Each IO bank 

has individual power connections that allow different IO banks to be configured for 

individual IO electrical specifications.  The IOB elements are able, with the correct 

electrical connections, to receive and transmit 33 different specified transmission 

standards [16] and another 16 with Digitally Controlled Impedance (DCI) termination.  In 

addition, each IOB is connected to one adjacent IOB and the two share differential signal 

input and output buffers for use with differential signal specifications.   
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As stated in Chapter II, the model SRC computer at NPS is only designed for the 

LVTTL IO electrical specification. Jon Huppenthal, of SRC, has stated that this was 

because the design of the older model SRC systems did not include some of the necessary 

electrical connections for transmission of differential standards, or the single ended 

standards that require a different reference voltage than the LVTTL standard.  However, 

there was no reason why the FPGA IOB elements could not be configured to receive the 

different standards.  This work makes use of this distinction in the interconnection of the 

ADC board to the SRC-6 using the LVDS 3.3V electrical specification with DCI enabled. 

Two portions of the CLB slice are key elements used by this work.  Figure 6 

shows a small block at the bottom labeled arithmetic logic.  What this actually represents 

is a dedicated hardware block that functions as a high speed Carry Look Ahead (CLAH) 

logic element and is connected by high speed interconnect to other CLAH elements 

vertically in columns of slices in the chip architecture.  These elements allow large, very 

fast adders to be instantiated in hardware for very low device utilization.  The high speed 

adders are a key element of the designs in this work.  The other key element in the slice is 

the SRL16 configuration of the two configurable logic elements located in each slice.  In 

the SRL16 mode, the element acts as a single bit shift register that can be configured to 

delay a bit stream from 0 to 16 clock cycles.  When in 0 delay mode, the element 

effectively functions as a logic flip-flop. When combined with the vertical interconnect 

lines, 18 slices can implement a pipeline delay of up to 16 clock cycles on a 36-bit binary 

value and 36 slices can implement a 32 clock delay on a 36-bit value.  This functionality, 

along with the high speed adders that can be implemented using the dedicated slice logic, 

allow for very inexpensive, pipelined arithmetic modules that make up the main elements 

of the designs in this work. 

The final two key elements of the FPGA are the Block SelectRAM elements and 

the 18x18 Multiplier blocks shown in Figure 6 running vertically between sections of 

CLB elements.  An important issue concerning these elements is that they are grouped 

with a Block RAM next to a Multiplier element and they share physical input lines.  

Basically, this means that, if both devices are in use simultaneously, the width of data 

stored in the Block RAM is limited to 18-bits wide.  This is an important consideration 

that will be discussed in later chapters.  While the multiplier blocks are very fast, by the 
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nature of the binary multiply operation, they are not able to complete a full 18x18-bit 

multiply producing a reliable 36-bit output in a single clock cycle with the addition of 

normal routing delays.  This produced some specific design concerns that are detailed in 

later chapters. 

3. Xilinx Tools 
While not directly related to the SRC-6, Xilinx produces some software tools for 

the creation of FPGA designs that warrant some attention in this section.  Xilinx produces 

a suite of FPGA design tools known as the ISE Foundation suite of tools.  The tools 

include software for editing schematics, Verilog, or VHDL based designs.  The software 

suite includes integrated design verification and simulation tools.  Xilinx schematic 

capture for conversion to VHDL was used for a portion of the macro code design, and the 

remainder of the code was written directly in VHDL in the Xilinx editor.  The Xilinx 

editor is compatible with LINUX file conventions (non printing character issues) and 

files modified in the Xilinx editor were immediately transferable from the Windows 

based workstation on which most development took place to the SRC-6, whereas some 

other editors (including Windows notepad) produced incompatibilities within the design 

files.   

The Xilinx tools are integrated with a ModelSim simulation tool for design 

verification and also include all Xilinx FPGA layouts and capacities.  The Xilinx tools 

were invaluable for small scale simulations and component testing but the older versions 

of the tools licensed by NPS did encounter some difficulties simulating larger portions of 

the design and proved incapable of fully simulating the design performance.  There is 

some hardware instantiated in the SRC-6 FPGA by the SRC compiler for control and 

connection to the other devices in the MAP for which the design files are unavailable.  

Thus, the Xilinx tools could not accurately produce the full chip design for testing.  SRC 

does make simulation files available, but they require the user to simulate the design on 

the SRC, and as stated in the preceding section, NPS does not currently have a software 

license available for the third-party simulation software on the SRC.  

D. ANALOG TO DIGITAL CONVERTER 
The Analog to Digital Converter used for this work is the National Semiconductor 

ADC08D1500 chip mounted on a custom evaluation board produced by Ballenger Creek 
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Consulting.  The complete data sheet for the ADC chip is available in [18].  Full 

specifications for the evaluation board are not available.   

 
Figure 7.   ADC Block Diagram (From [18]) 

 
1. ADC Specifications 
The ADC08D1500 chip is a single or dual channel ADC capable of sampling two 

channels at 1.5GSps or a single channel at 3GSps in Dual Edge Sampling (DES) mode.  

All signal inputs and the clock inputs are differential.  All output samples are 8-bit binary 

values ranging from 0 to 255, with 128 equating to a zero voltage differential on the 

signal input pins.  Complete electrical specifications for the chip are in [18].  The sample 

outputs on the chip are in the LVDS specification.  As shown in Figure 7, the input clock 

enters the chip on the left and is sent to the two ADC units and a clock divider that 

divides the clock period by two before sending the clock signal off chip in the LVDS IO 

specification.  Figure 8 shows the timing diagram for the output samples from the ADC 

when it is operating in Single Data Rate (SDR) mode.   Two 8-bit samples are available 

for the full clock cycle of the ADC output clock signal from each of the two channels 

when the chip is operating in SDR mode.  Depending on a control setting, the output 

clock from the ADC can transition on either the beginning or middle of the data valid 

window for the output samples. In DES mode, the input clock is phase shifted 180 
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degrees for channel 2 and four output samples are available for each cycle with the data 

samples interleaved between the four 8-bit outputs.   

 
Figure 8.   ADC Output Timing in SDR Mode (From [18]) 

 

2. Board Specifications 
The ADC used for this work is mounted on a custom evaluation board shown in 

Figure 9.  The ADC chip can be seen just to the left of the cables connected on the right 

of the board and just to the right of the two coaxial cables connected in the center of the 

board.   

 
Figure 9.   ADC Board 

The two cable connections to the right of the board are both 80-pin MICTOR 

connectors that provide connections for the 32 LVDS pair output lines for the ADC 
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samples and one LVDS pair for the clock output from the ADC.  The two coaxial cables 

connected to the board in Figure 9 are the clock input cable (upper cable) and the input 

signal cable connected to the ADC channel-2 input connector.  Transformers and 

circuitry mounted on the board conditions single ended input signals into a differential 

standard suitable for input into the ADC chip.  The board was acquired by NPS for work 

on another project but was of interest to this work due to the LVDS output.  

Subsequently, complete specifications for the board are not available.   

Input clock waveforms of sinusoidal or square forms with a 50% duty cycle and 

between 1 and 2 Vpp amplitudes were found to be satisfactory for clocking the ADC.  

However, the ADC board did prove to be very sensitive to variations in the clock input 

waveform at higher frequencies.  The channel input is capable of accepting any 

waveform ranging from 0 to approximately 800 mVpp.   The board is configurable for 

two different input waveform voltage ranges by means of the row of switches mounted in 

the upper right corner of the board that drive several control pins on the ADC chip.  The 

specific switch setting used for this work will be detailed in the hardware interface 

section.  The board requires a +5.2VDC, -5.2VDC, and ground input for power.  Onboard 

voltage regulators provide appropriate power to all board components from the three 

input wires connected to the power block on the lower left of the board.  Finally, there is 

a small push button switch located adjacent to the channel-2 input connector for 

activating the self calibration mode on the ADC chip.  It is intended that this button be 

pressed and released after the ADC board has been powered up to initiate self calibration 

of the ADC.   

The configuration of the board does not allow the ADC to enter certain modes of 

operation. Specifically, the row of switches in the upper right of the board is connected to 

control lines running to control pins on the ADC chip.  The control lines are driven high 

by pull-up resistors connected to a positive voltage when the switches are open but pulled 

to ground when the switches are closed.  Unfortunately, as specified in [18], for the ADC 

to enter DES mode, pin 127 on the ADC chip must either be floating or connected to one- 

half the chip operating voltage.  The board design does not allow for this, only ground or 

high voltage settings are possible, and the specific control lines are not accessible for 

external modification.  In addition, pin 4 on the ADC must be floating or at one-half chip 
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voltage for the ADC to enter the Dual Data Rate (DDR) mode of operation.  These 

limitations prevented some explorations of the maximum attainable data sampling rate of 

the SRC-6 when connected to this ADC.  However, both output channels were tested 

separately.  It is reasonable to assume that by using an identical ADC chip on a different 

board, effective sampling rates used for this work can be doubled by placing the ADC in 

DES mode and doubling the number of inputs into the SRC-6.  
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IV. HARDWARE INTERFACE 

A. INTRODUCTION 
The hardware interface between the ADC board and the SRC-6 system consists of 

two main parts.  First, the physical interface consists of the actual cable connections and 

the electrical specifications of the interface.  The physical portion spans from the two 80-

pin MICTOR connectors on the ADC board to the actual input pins of the FPGA within 

the SRC-6.  Second, the logical interface includes all of the hardware that needs to be 

instantiated in the FPGA to capture the signals from the FPGA pins and condition the 

signals for further processing within the FPGA.  Figure 10 shows the signal path from the 

ADC through the major components of the hardware interface.  Once the signal leaves 

the First-In First-Out (FIFO) buffer, the signal has been converted to the clock domain 

used by the SRC-6 and is ready for further processing with logic instantiated with an 

HDL as a user macro, or passed back to the C code instantiated logic.  The following 

sections will detail the individual portions of the design. 
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Figure 10.   Hardware Interface Block Diagram 
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B. PHYSICAL INTERFACE 

The physical interface portion begins with a custom manufactured cable from 

Tyco Electronics that combines specified pins on two 80-pin MICTOR connectors into a 

single 114-pin MICTOR connector, of the type used by the SRC-6.  This cable is 

connected to a board that breaks the 114-pin MICTOR connector out into 114 2-pin pads.  

Each 2-pin pad consists of a signal pin and a ground pin.  High quality 50 ohm coaxial 

jumpers are used to connect the 2-pin pads carrying signals (66 total, however only 34 are 

used) to an identical board which is directly connected to the SRC-6 MAP board GPIO-in 

port via a 114-pin MICTOR cable. Figure 11 shows the setup used for testing.  The actual 

connection to the ADC board is visible in Figure 9.  All of the switches on the ADC 

board (upper right corner of Figure 9) are set to OPEN, except for switches one and two, 

which are set to CLOSED.  These settings configure the input voltage range of the ADC, 

the output voltage of the ADC, the calibration delay, and set the output clock to transition 

in the middle of the data valid window for the output data (equivalent to OUTEDGE = 0 

in Figure 8).   The clock output transition is an arbitrary choice, but the code must be 

optimized for a particular choice to account for internal delays in the FPGA.   

 
Figure 11.   Physical Interface 
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1. Electrical Specifications 
Detailed electrical specifications for the ADC chip are given in [18].  The ADC 

chip outputs are directly connected to the output pins in the two MICTOR connector 

blocks located on the ADC board.  The ADC output is Low-Voltage Differential 

Signaling (LVDS), with approximately 700 mVpp difference between the positive and 

negative signal lines for each data bit.  The MICTOR connector is a high quality, low loss 

connector type.  All of the cables are of high quality 50 ohm micro-coaxial cable suitable 

for transmission of high frequency signals over distances ranging from a few inches to 

several feet, depending on the signal frequency.  The short jumpers connecting the two 

breakout boards are of high quality 50 ohm coaxial cable.  However, the actual two-pin 

connector is effectively a balanced transmission line at higher frequencies while the 

jumper coaxial cable is unbalanced.  The multiple balanced to unbalanced transitions is 

non-optimal and proved unsatisfactory for achieving the target sampling rates.  However, 

it proved to be a workable solution for lower frequency transmissions.   

It proved impractical to conduct direct electrical testing on the physical 

connection between the ADC and the SRC.  The extremely small size of the individual 

signal lines and the proprietary nature of the MICTOR connectors limited the options for 

connecting test equipment without signal distortion caused by the test equipment 

connections themselves.  Subsequently, it was determined by experimentation that the 

cable setup would reliably transfer data at low error rates up to approximately 340 MHz 

(seen at ADC sampling rates of 680 MSps).  At this frequency, the signal quality seen on 

the input pins of the SRC-6 begins to degrade significantly and becomes unusable by 345 

MHz.   

The custom cables fabricated for this project by Tyco Electronics would, ideally, 

be used to directly connect the ADC board to the SRC-6, reducing the total cable length 

and removing the two breakout board connections.  This would significantly reduce the 

noise on the signal lines caused by the slight impedance mismatch inherent in any 

physical connector of this type and the multiple balanced to unbalanced transitions.  The 

connections at each end of the short jumpers used to connect the two breakout boards 

would be especially desirable to remove, as they provide a much lower quality 
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connection than the MICTOR cable connections.  The next section details the reasons for 

the non-optimal physical connection.   

2. Pin to Pin Connection Requirements 
Inquiries were made to custom cable vendors concerning the fabrication of the 

custom cable used to combine the two 80-pin MICTOR cables into a single 114-pin 

connector.  It was determined that a custom cable could be made but the expense for 

certain configurations might be prohibitive.  Fabrication costs could be minimized by 

connecting contiguous blocks of pins on one connector to contiguous blocks of pins on 

the other connector.  Since the MICTOR connectors have rows of pins down both sides 

of a center channel (even numbered pins on one side, odd numbered pins on the other 

side), this would require that pins starting on the even side of one connector all terminate 

on either the even or the odd side of the opposite connector.  Figure 12 shows a diagram 

of the custom cable fabricated.  Even numbered pins are shown on the top half and odd 

numbered pins are shown on the bottom half.  The actual connector places pin 1 directly 

across a center channel from pin 2 with all subsequent even and odd pins directly across 

from each other.  Appendix A contains a complete listing of all pin assignments with 

their related signal for the ADC board, both breakout boards, and the User Logic 1 FPGA 

on the MAP board of the SRC-6.  Pin assignments on the user logic chips inside the SRC-

6 were taken from [18,19]. 

 
Figure 12.   Custom Cable Assembly 
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Each MICTOR connector is physically attached to a ribbon cable containing 

micro-coaxial cables by means of a small Printed Circuit Board (PCB).  The extremely 

small size of each individual micro-coaxial cable and the requirement to collectively 

ground the shield on all of the coaxial cables prohibits direct connections between the 

connector and the cables. To allow individual pins to be swapped from the even to the 

odd side, would require a custom PCB to be built that made the necessary pin swaps 

between the even and odd sides of the connectors.  Directly swapping individual micro-

coaxial cables would be very difficult. Due to time and expense constraints, the custom 

PCB option was impractical and not believed to be necessary due to an error interpreting 

the output of a Xilinx software tool.   

Unfortunately, pin swapping was necessary between the even and odd sides of the 

MICTOR cable connectors.  The LVDS pairs are placed on physically adjacent pins on 

the same side of the ADC MICTOR connectors (see Appendix A for complete pin 

charts), whereas the LVDS pairs line up on pins directly across from each other on the 

MICTOR connector for the GPIO port.  The solution that met the time and expense 

restrictions for this project was to use existing breakout boards and coaxial jumpers to 

make the pin swaps required, aligning each LVDS pair from the ADC to an LVDS pair 

on the User Logic FPGA within the SRC-6.  While this solution proved to be workable at 

some frequencies, the additional cable length added by a second MICTOR cable and the 

additional connections added by the breakout boards have restricted the maximum 

attainable performance and sampling rate for the ADC.   

C. LOGICAL INTERFACE 
Appendix B contains the full set of schematics for the logical interface portion of 

the design.  The logical interface was coded entirely in the Xilinx schematic capture 

utility and automatically converted to VHDL by the Xilinx software. Schematic capture 

was chosen for this portion of the design due to the large number of Xilinx pre-defined 

components available.  The logical interface portion generated just over 1000 lines of 

VHDL code.  The complete VHDL code for this portion of the design is not included but 

is completely reproducible from the schematics, except for some specific component 

settings that are noted in the text description of this section. 
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The physical interface is configured to connect both the channel 1 and channel 2 

outputs from the ADC to the SRC-6.  However, as stated in Section D of Chapter III, the 

ADC board is not capable of entering DES mode, which limits the ADC output to two 8-

bit samples per clock cycle.  This results in a requirement for the logical interface to 

accept a total of 16 LVDS signal pairs and one LVDS clock input.  Logical connections 

were tested for both channel 1 and channel 2 output from the ADC but channel 2 was 

chosen for the final design.  The lower portion of figure 10 shows the major components 

of the logical interface.   

1. LVDS Input Buffer 
The first logical components encountered by the input signals are the differential 

input buffers.  The buffers are instantiated using the Xilinx IBUFDS component.  

Complete descriptions for the IOB components of the FPGA are contained in [16], along 

with differential pair assignment specifications between adjacent IOB elements.  The 

IBUFDS components are shared between two adjacent IOB elements.  Each is capable of 

accepting 8 [16] different differential signal specifications, assuming the correct electrical 

connections are made on the IO bank to which it belongs.  DCI is also enabled or 

disabled for a differential input pair based upon the IBUFDS attributes.  Most of the 

differential signal specifications require some type of termination on the receiver side of 

a signal path to prevent reflections back along the signal path from an impedance 

mismatch.  Built-in circuitry in the IOB provides this termination when the DCI attribute 

is active on an input buffer.  For each IBUFDS component in the design, the 

IOSTANDARD attribute was set to LVDS_33_DCI.  This attribute sets the input buffer 

to receive 3.3V LVDS with DCI enabled.   

Using the LVDS 2.5V standard would have been preferential based on the output 

of the ADC. However, each of the IO banks physically occupied by the pins associated 

with the GPIO ports also contained pins assigned by SRC for onboard communications 

with other MAP components.  These pins were configured for LVTTL, which cannot 

share an IO bank with 2.5V LVDS.  3.3V LVDS was found to work effectively with low 

bit error rates up to 340 MHz (which equates to an ADC input clock of 680 MHz).  A 

combination of the input standard mismatch and the problems noted in the physical 

interface section are most likely to be the factors limiting higher performance. 
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Each of the input wires connected to the input pins on the IBUFDS components 

have the LOC attribute set to the identifier of their assigned package pin.  Both the LOC 

and IOSTANDARD attributes can be set in VHDL or in schematic capture mode.  In 

VHDL, the attributes are set using the ‘attribute’ command and in schematic capture they 

are set by double-clicking the device and adding or modifying the attribute in the attribute 

list.  These two attributes are the only non-visible settings contained within the 

schematics listed in Appendix B. 

After passing through the differential input buffers, the number of signal lines is 

decreased by one half.  The input buffers for the GPIO-in port are physically located in 

the upper right corner of the User Logic 1 FPGA, with the exception of the clock input 

pins.  Special input pads designed specifically for clock signals are located in the upper 

and lower center regions of the Xilinx FPGA (Figure 5).  The clock input pins contain the 

global clock buffers and are placed adjacent to blocks containing the DCM elements.  

Since multiple DCM elements were required for this design, the clock input was placed 

on a clock input pin instead of in a block with the other input signals.  There is only one 

choice available for a differential clock input from the GPIO-in port, so the actual 

location was nondiscretionary.   

2. Input Registers 
After passing through the input buffers, the next logical interface components are 

the input registers.  Figure 13 is the schematic for the input registers for a single bit input.   

 
Figure 13.   Input Registers 
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Ideally, the initial input registers for a high speed input signal would be placed in 

the IOB.  Two Double Data Rate (DDR) registers are available in each IOB specifically 

to clock in high speed signals.  These DDR registers are physically located adjacent to the 

input buffer.  There is a very small line delay between the input buffer and the DDR 

registers, resulting in very good performance at higher clock rates.  This presented a 

design choice for the first stage registers.  Either the two DDR input registers contained 

in the IOB could be used to reduce the 300 MHz input clock to two inputs clocked at 150 

MHz each, or the input registers could be moved to the first row of CLB slices adjacent 

to the IOB and three input registers could be used to down-clock the input directly to 

three 100 MHz inputs.   

The first option of clocking the 300 MHz input down to two 150 MHz signals is 

incompatible with the rest of the design.  This would produce two 150 MHz signals that 

would have to be down-clocked to 100 MHz.  This proves to be inconvenient and 

produces an uneven number of outputs on every clock (i.e. 2 outputs first clock, 4 outputs 

next clock).  Placing two of the three input registers of the second option in the IOB, 

while leaving the third in the first row of CLB slices, is inadvisable due to the different 

line delays between the input buffer and the registers.  The different line delays make 

clock phase alignment with the data valid windows of the input signals much more 

problematic and the margins are fairly low with a 300 MHz input signal.  Figure 14 

shows a timing chart for the design optimized for 300 MHz (600 MSps on the ADC).  

 
Figure 14.   Timing Diagram for 300 MHz Input 

 

The clock inputs to the three initial input registers are listed on the left column of 

Figure 14.  The input clock period is approximately 3.3ns at 300 MHz and the resulting 
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data valid window slightly is shorter.  The input data is valid for approximately 1.5ns 

before and after the input clock pulse transitions from low to high.  From [16], the setup 

time for the registers in a slice is approximately 370ps and the hold time is approximately 

90ps.  The worst case clock skew between the input registers assigned to channel 2 (16 

input bits, for 48 total registers) is approximately 500ps.  Clock jitter produced by the 

DCM elements described in the next section is approximately 450ps.  Taken together, 

this produces a required time block of 1.41ns that must be centered in a data valid 

window slightly less than 3.3ns wide.  There is an effective margin of error of 

approximately 800ps for line delays caused by routing on the FPGA.  Clock delay from 

the DCM and an average value for line delay from the IOB elements to the input registers 

located in the first CLB row is removed in the clock generator and will be explained in 

detail in the following section.   

The second column of registers in Figure 13 is not strictly necessary, but they 

serve to immediately align all three input bits to the clock domain used by the FIFO 

input.  This ensures that any routing delays introduced during the PAR of the FPGA 

compilation process do not cause timing errors between the input registers and the clock 

synchronization stage.   

The output of the individual bit input registers are combined into a single bus 

containing three 8-bit words of data from each of the two 8-bit inputs from the ADC 

channel.  The two resulting 24-bit wide data buses are combined into a single 48-bit wide 

bus for transfer to the clock synchronization stage. 

The current design is non-optimal and can be improved by individually setting the 

LOC attribute for each of the initial input registers to manually assign them a specific 

physical location on the FPGA.  This was not done during initial testing since no timing 

errors attributable to line delay between the IBUFDS and the input registers were 

observed.  However, in later designs with much higher chip utilizations, timing errors 

attributable to the input registers not being placed by the PAR process consistent 

distances (in terms of line delay) from the input buffers have been observed.  This has not 

occurred on every design and can largely be compensated for by modification of the 

clock phase shift in the DCM elements.  The Bit Error Rate (BER) for low utilization 
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designs has been observed to be on the order of 10-4 (approximately one error every 

10,000 samples), while the BER for higher utilization designs is on the order of 10-3.  

Due to time constraints, adding individual LOC attributes to 96 separate registers was not 

considered critical while the BER was still reasonable.   

Appendix B also contains the schematic and timing diagram for an input register 

design optimized for 400 MHz (800 MSps on the ADC).  As previously stated, input 

frequencies over 340 MHz proved unreliable, so the 400 MHz design was not used for 

the final design. The logic was tested and performed better than the 300 MHz design at 

lower clock frequencies. Since a 400 MHz design is able to use the two DDR input 

registers located in the IOB (defined by setting the IOB=TRUE attribute on any register 

type), the timing margins for the individual components are actually better than the 300 

MHz design.  A design using the IOB DDR registers should be capable of much higher 

input speeds than can be tested with the physical interface used for this work.  A design 

for an LVDS receiver operating at 644 MHz is detailed in [6] and speeds up to 720 MHz 

are theoretically possible (720 MHz is the input limit for the DCM modules in the model 

of FPGA used in the older SRC-6 systems), assuming a highly optimized design.  The 

XC2VP100 FPGA installed in newer SRC systems is capable of much higher input 

speeds [17] and contains some additional input circuitry that allows Gigabit range IO 

transfers.   

3. Clock Generation 
For this design it was necessary to generate three, 100 MHz clock signals, each 

phase shifted 120 degrees apart.  This allows each of the three input registers running on 

the phase shifted 100 MHz clocks to sample the 300 MHz input signal and fully recover 

the data, as shown in Figure 14.  This portion of the design used the dedicated logic 

designed into the Virtex-II series of FPGA specifically for clock modifications.  The 

Virtex-II FPGA in the NPS SRC-6 has a total of 12 Digital Clock Manager (DCM) units 

located along the top and bottom edges of the chip.  These specialized logic devices 

contain the circuitry to phase shift a clock signal from zero to 360 degrees.  They are also 

capable of multiplying a clock signal, or dividing a clock signal, within the restrictions 

listed in [16].   
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For this design, the incoming clock signal from the ADC was routed into a DCM 

module with the CLKIN_DIVIDE_BY_2 attribute set to true.  When set to true, this 

attribute causes incoming clock signal to be divided to half rate before input to the DCM.  

With this attribute set, the FPGA model in the NPS SRC-6 is capable of receiving up to 

720 MHz incoming clock signals.  However, due to the non-optimal signal path from the 

ADC, incoming clock signals over 340 MHz were unsatisfactory for DCM input.  Table 2 

lists the complete timing specifications for the DCM modules.  The FPGA speed grade in 

the NPS SRC-6 is the -4 model.  The initial DCM was set to the high frequency mode of 

operation and subsequent DCM modules were set to low frequency modes of operation.  

The Virtex-II datasheet specifies that when the CLKIN_DIVIDE_BY_2 attribute is set, 

the frequencies listed in Table 2 for CLKIN can be doubled.   

 
Table 2.   DCM Timing Parameters (From [16]) 
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It is within specifications for the initial DCM to operate in the high frequency 

mode of operation without the CLKIN_DIVIDE_BY_2 attribute set and still receive the 

300 MHz signal used for this work.  However, this would require the clock signal to be 

processed through an additional clock buffer element and incur more delay in the signal 

that would require compensation.  The design trade-off chosen is that the clock divide on 

the initial DCM is set to 1.5 to process the incoming 300 MHz (150 MHz seen by the 

DCM) down to the required 100 MHz (nominal clock speed of the FPGA).  The choice 

incurs an additional 150ps of jitter on the clock out of the first DCM for a total of 300ps 

of jitter on the first DCM.  Applying the full 300 MHz clock and dividing by 3 would 

reduce the total jitter out of the first DCM to 150ps.  It was determined experimentally 

that the actual clock signal received from the ADC was more stable when the 

CLKIN_DIVIDE_BY_2 was set, so the choice was made to accept the extra 150ps of 

clock jitter.  Future designs with access to a lower noise input clock could benefit from 

configuring the DCM modules to divide by an integer value, thus reducing clock jitter by 

150ps.   

The clock output of the initial DCM is set to 100 MHz and phase locked to the 

input clock.  The initial output clock is used to drive one of the 3 input registers on each 

input bit and to drive the FIFO circuitry for synchronization to the normal clock domain 

of the FPGA.  It is also used as the input clock to the two second stage DCM modules.  

Both second stage modules are configured for low frequency operation and each 

produces an output clock phase shifted either plus or minus 120 degrees from the input 

clock.  These clock outputs are only used to drive the other two input registers on each 

input bit.  The second stage DCM modules also introduce an additional 150ps of clock 

jitter.  This means that one of the three registers suffers from a maximum of 300ps of 

clock jitter while the other two suffer from up to 450ps of clock jitter.  Complete 

schematics are available in Appendix B. 

To compensate for line delay incurred by the clock signals as they travel from the 

top center region of the FPGA to the top right corner of the FPGA, an additional phase 

shift is entered into the initial DCM.  The average delay between the DCM modules and 

the input registers is approximately 2.5ns.  Since the clock period of the 300 MHz input 

signal is 3.3ns, some compensation must occur.  This line delay has the effect of shifting 
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the clock pulse approximately 800ps within the data valid window.  As stated in the 

previous section, the error margin for line delay from the input buffer to the initial input 

registers is also approximately 800ps.   

The phase shift attribute value for the DCM is a number between zero and 255, 

which corresponds to phase shift values between zero and 360 degrees.  A phase shift on 

the initial DCM of between 15 and 60 was found to be satisfactory to compensate for the 

line delay.  Values of 35 or 40 were used for most testing in this work.  A calculated 

value of 64 should be optimal but the lower values produced slightly better performance.   

The clock generation design has one major non-optimal element. The coding in 

VHDL of the phase shift for the initial DCM is unnecessary and fails to provide an 

optimal solution under all operating conditions.  To correct this, future designs could 

make use of the additional circuitry in the DCM modules specifically designed for 

dynamically phase shifting the clock.  Complete instructions and sample code are 

available from Xilinx in [10] for actively aligning clock signals using the DCM modules.  

Time constraints prevented the realization of a complete active clock phase alignment 

circuit in this work, so the expedient of coding a constant phase shift into the VHDL was 

substituted.  This is acceptable for a laboratory environment where component 

temperatures are stable and predictable but might be unsatisfactory for any application 

where the components would undergo temperature variations, as this would cause the line 

delay values to fluctuate.  In addition, an active phase alignment system would be more 

accurate than coding a phase shift manually. 

4. Clock Synchronization 
To process data coming into the SRC from an external source, it is necessary at 

some point to synchronize the externally generated data stream with the internal clock of 

the FPGA.  As noted in Chapter II, some of the previous work at NPS involved collecting 

data from an external ADC.  The previous work partially avoided the issue of clock 

synchronization by sending the SRC-6 internal clock to the external ADC.  This proved a 

workable solution but limited the maximum achievable sampling rate of the ADC to one 

reachable by the SRC-6.  Table 2 gives the maximum clock output value of the DCM as 

270 MHz on the CLKFX (clock multiplier) output pin.  Also, in the previous work 

[11,12], the data valid signal from the ADC was used as an input to a DCM to ensure that 
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data would be properly clocked into the SRC-6.  While the SRC-6 provides a mechanism 

to send the FPGA clock signal to any user macro, any modification of the clock signal (as 

in [11,12]), or any external clock signal used by a user macro, is only used by the logic to 

which it is assigned in the user macro and cannot be used by the C code portion of the 

program.  It is the responsibility of the user macro programmer to resynchronize the logic 

with the clock used by the SRC code before returning the data to the C code portion of 

the program.  Since the C code portion of the program is mandatory for communication 

with the microprocessor, this must be done for any program that will return data to the 

microprocessor.  The previous work maintained fairly low data rates without returning 

the data to the SRC-6 clock domain only because it used the SRC clock to drive the 

hardware external to the SRC-6.  This solution is impractical for achieving the higher 

sampling rates possible by using an externally generated clock. 

The simplest solution to the synchronization issue is to instantiate a First-In First-

Out (FIFO) buffer in the user logic macro that writes data into the buffer using the macro 

or external clock and reads data out of the buffer using the system clock passed to the 

user macro by the C code portion of the program.  There are other methods that can be 

used to achieve the necessary clock synchronization, such as the asynchronous method 

described in [9], but the FIFO method is both simple and reliable, using the Block 

SelectRam (BRAM) logic elements built into the Virtex-II FPGA. 

The BRAM units can be instantiated in a variety of ways with many different 

options but, for this work, they were instantiated using the Xilinx component for a dual-

ported, 16-bit wide word, 256 location RAM block, with each memory location 

addressed by an 8-bit address line.  Three of these units are combined to input and output 

the 48-bit wide data bus from the input registers.  The 16-bit wide word was chosen to 

prevent the data lines used by the BRAM blocks from interfering with the multipliers 

with which they share data lines.  Also, increasing the width of the word stored in a 

BRAM unit decreases the number of memory locations available.  A FIFO depth of 256 

has proved to be reliable with this design and only consumes three BRAM blocks.   

The dual ported design of the BRAM units allows data to be written into port A, 

running off the external clock, while other data is simultaneously being read from port B, 
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which is running off the clock signal passed from the C code portion of the program.  The 

data read from port B is now synchronized with the internal clock of the SRC and is 

ready for further processing within the user macro, or can be passed directly back to the 

C code that called the user macro.  In this work, FIFO placement in the design could be 

anywhere before the data stream is returned to the C code portion. However, since the 

QMF design relies on very tight timing windows for correct operation, it makes sense to 

place the FIFO directly after the input is received and before further processing occurs.  

Should the FIFO be placed after the QMF, the QMF would be required to function using 

a modified version of the externally generated clock, which is undesirable. 

a. Addressing Circuit 
The addressing sub-circuit in the FIFO is used to create the memory 

addresses used in both the port A writes and the port B reads.  It accomplishes this using 

the very simple expedient of two 8 bit counters that continuously cycle sequentially 

through all 256 possible address locations with each counter clock being driven by the 

clock appropriate to the operation.  If both clocks are running at exactly 100 MHz, the 

read operation of port B would always occur on the memory location that was just written 

by port A.  In fact, it is very improbable that both clocks would ever be running at exactly 

the same speed.  One clock will always be slightly faster than the other which will cause 

it to cycle faster than the other clock, eventually causing either a buffer underflow or an 

overflow, depending on which clock is faster.   

It is possible to build FIFO systems that are immune to buffer underflow 

or overflow but these systems require a mechanism to halt the operation of the writing 

system when the buffer is full, or to halt the operation of the reading system when the 

buffer is empty.  Since this is a real-time data capture and processing system, halting the 

data capture or the processing is undesirable.  For this purpose the addressing circuit is 

designed in such a way that upon system initialization, the write buffer starts at address 

zero and writes continuously.  The read addressing circuit remains at zero until the most 

significant bit of the write address first changes from zero to one. At this point, the read 

address counter begins counting.  This introduces a gap of 128 memory locations 

between the read and write address counters.   
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Since one clock will, inevitably, be slightly faster than the other, an 

underflow or overflow situation will eventually occur.  A 1% variation in clock speeds is 

calculated to produce an underflow or overflow approximately every 12,800 cycles, or 

every 128ms.  While this seems excessive, actual clock variations have been observed to 

be much lower, with an observed underflow or overflow occurring approximately every 

100,000-200,000 clock cycles, or every one to two seconds.  This error rate would most 

likely still be too large for an operational system, but can be further reduced simply by 

enlarging the FIFO size, at the expense of additional BRAM units.  When an underflow 

or overflow does occur, data stream read out of the FIFO either jumps forward in time 

256 samples, or falls back in time 256 samples.  While this would be problematic for 

larger filter designs, the small demonstration filters in this design are not significantly 

affected by the discontinuity. 

The output of the read address counter is also passed out of the FIFO for 

reuse in timing some of the pipeline elements of the QMF design.  There is a requirement 

within the QMF design for multiplexer elements to switch between two input busses 

every 1, 2, and 4 clock cycles.  The three least significant bits of the read address counter 

are used to switch the multiplexer elements. 
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V. QUADRATURE MIRROR FILTER BANK 
IMPLEMENTATION 

A. OVERVIEW 
Chapter II introduced a Quadrature Mirror Filter (QMF) as a form of wavelet 

decomposition filter made up primarily of a tree structure containing high pass filters, 

low pass filters, and down samplers.  This chapter will introduce some options for 

construction of a QMF on the SRC-6 written in both C code and implemented entirely in 

VHDL. A fully working demonstration model was completed in VHDL, with a working 

FIR filter (the main element of a QMF) completed in C, for comparison to the VHDL 

FIR filter elements contained in the full VHDL based QMF.  The following two sections 

detail the design requirements and some of the discretionary options that were chosen to 

fulfill the design requirements. 

1. Design Requirements 
The first main requirement of the design is that it be real-time.  For purposes of 

this work, real-time is defined as a code block being able to accept input values on each 

clock cycle equal in size to those values delivered from the hardware interface on each 

clock.  The design must be able to complete processing of the inputs in a fashion that 

returns output values at a rate determined by the size of the QMF.  Specifically, for a 

three stage QMF, six simultaneous 8-bit input values from the hardware interface must 

produce 48 8-bit output values, once every eight clock cycles.  This may be accomplished 

by a pipeline architecture, with pipeline depth not limited by the requirement. 

The next main requirement is that the QMF is as large as practical.  Since the 

input size is fixed by the data flow from the hardware interface, the size of the filter is 

determined by the number of taps in each FIR filter and the total number of filter stages.  

Taken further, this requirement means that each filter design uses the absolute minimal 

hardware so that more total filters can be instantiated. 

  The demonstration filter design must also be extensible into a practical design.  

This means that individual elements should be constructed in such a fashion that the 

majority of the components could be re-used in a practical filter design.  A practical filter 

design is defined to mean a filter with 30 or more filter taps in each high pass and low 
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pass filter element and contain at least four total QMF stages.  For this to be feasible, the 

filter design must take into account that one user logic FPGA will not be large enough for 

a practical design.  Thus, the design should be easily extensible across multiple user logic 

chips and across multiple SRC-6 MAP boards. 

The design must maintain as much numerical precision as possible.  As stated in 

Chapter II, it is intended for the data output of the QMF to be passed on to another stage 

in a larger design for processing.  Thus, it is desirable that any precision loss through the 

arithmetic operations and number format changes in the QMF be less than or equal to the 

quantization error that will result when the calculated output values are returned to an 8-

bit format.   

While not a requirement, it is assumed for the purpose of this work, that all high 

pass and low pass FIR filters used in the design will be identical to each other with 

identical constant coefficients used in all filters of the same type.   

2. Design Element Options 
Assuming that the construction of the high pass and low pass filters are identical, 

with only the coefficients being different, there are only two main components of the 

QMF.  They are the filter element, configured as high pass or low pass by the 

coefficients, and the down sampler.  The only purpose of the down sampler is to discard 

every second sample.  Through careful design, the down sampler can be removed entirely 

by the simple expedient of not calculating the values that would be discarded by the 

down sampler.  This leaves the filter element as the only required element and reduces by 

one half the total number of multiplications that must occur in each filter.   

The filter element is made up of some form and number of multipliers, and some 

form and number of adders that sum the results of the multipliers.  In addition, since the 

full operation cannot be completed in one clock cycle, some type of register or delay 

element must be used in a practical design, resulting in a pipelined data flow through the 

filter. 

a. Multiplier Instantiation 

There are four main methods of instantiating a multiplier in the Xilinx 

FPGA used by the SRC-6.  The first method is to simply multiply a binary number by 
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any power of two by right or left shifting the bits in the number.  Actually, building a 

multiplier of this type is trivial and requires effectively no actual hardware be 

instantiated.  This type of multiplier will be discussed in Chapter VI but will not be used 

in the demonstration design.  The next type of multiplier can be instantiated in the CLB 

matrix.  An array type binary multiplier can be constructed that only utilizes CLB 

resources. However it is not possible to build a multiplier of this type that can execute 

large multiplies in a single clock cycle.  The array-type multiplier will be discussed in 

Chapter VI but was not considered for the demonstration design.   

Another interesting method for multiplier instantiation is to simply use a 

look up table based in either BRAM modules configured as ROM units, or to directly 

instantiate ROM units in the CLB matrix.  There are some definite limitations to this 

method of multiplication, but it is potentially a useful method in cases such as a QMF 

design where all multiplications use constant coefficient values.  Due to some scaling 

issues, ROM based look up tables are not appropriate as the primary multiplier type for 

the demonstration QMF design, but their utility is discussed in Chapter VI.  A future 

design using ROM based look up tables could easily be used for the first stage of the 

QMF, where the 8-bit values from the ADC are used to address two BRAM modules 

producing a 32-bit product.  Since the BRAM modules are dual ported, two BRAM 

modules could be used to provide two parallel results from two 8-bit inputs using 

separate ports. 

The fourth type of multiplier exists as a dedicated hardware device within 

the Virtex-II.  The specialized multiplier circuit in the Virtex-II is capable of one clock 

multiplies of two 18-bit binary values, returning a 36-bit binary value, in a single clock 

cycle.  This hardware multiplier was chosen as the multiplier element for the 

demonstration design.  The use of mixed multiplier types will be discussed in Chapter VI 

but was not used for the demonstration QMF design. 

b. Bit Truncation 
Another choice made in the design was to utilize bit truncation instead of 

rounding whenever the bit length of a number had to be reduced.  Truncation is generally 

undesirable since truncation of signed binary numbers effectively causes signal 

attenuation much greater than a rounding operation.  When a positive signed binary 
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number has a portion of its least significant bits removed during truncation, it can only 

become less positive.  Inversely, negative signed binary numbers can only become more 

positive during truncation.  Truncation was chosen for the demonstration design because 

implementation is simpler than a binary rounding system and can be accomplished with 

wired connections that do not include combinational logic.  A rounding system would 

most likely (depending on complexity and accuracy) require an extra pipeline stage to be 

added to the system.  Also, the VHDL compiler will remove any logic whose output 

values are not referenced by other logic.  This allows standard components to be used in 

all locations by the designer but still allows a savings in hardware utilization when the 

excess hardware elements are removed when the design is compiled. 

c. Filter Coefficient Selection 
A Six tap FIR filter design was chosen.  The filter coefficients were 

chosen using the FIR function in MATLAB.  An odd number of filter coefficients are 

required to produce an even order high pass filter, which is required for a symmetric FIR 

design of this type.  As a result, the filter coefficients were chosen in such a manner that 

the least significant filter coefficient was of the same order as the precision limit of the 

system.  By omitting the final filter coefficient, filter performance is degraded but the 

effect is limited because of the small magnitude value of the omitted coefficient.  Table 3 

shows the listing of the chosen coefficients.   

Coefficient # 1 2 3 4 5 6 7 
High Pass -0.0013 -0.0052 -0.0128 0.982 -0.0128 -0.0052 -0.0013 
Low Pass 0.0287 0.143 0.3282 0.3282 0.143 0.0287   

Table 3.   Filter Coefficients 
 

Figure 15 shows the normalized frequency response of the high pass filter 

with the chosen coefficients and Figure 16 shows the normalized frequency response of 

the low pass filter.  At 600MSps, both filters were designed to have a cutoff frequency of 

approximately 5 GHz.  The figures demonstrate the poor performance of these filters with 

only six taps available.  Performance is particularly bad for the high pass filter.  A 

practical filter design would require a significant increase in the total number of filter taps 

to achieve acceptable performance. 
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Figure 15.   High Pass Filter Frequency Response 
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Figure 16.   Low Pass Filter Frequency Response 
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B. DATA INTERLEAVING TO REDUCE HARDWARE REQUIREMENTS 
A QMF tree is shown in Figure 17 with the outputs of each stage numbered. 

 
Figure 17.   Annotated QMF Tree  

 

As shown in Figure 17, each filter stage produces 2S outputs every 2S clock 

cycles, where S is the stage number.  Designing a QMF identical to Figure 17 for 

hardware implementation is possible but very impractical.  Every stage after stage 1 

would have to be halted for every clock cycle where the down sampled output from the 

previous stage left a gap.  Also, enough hardware elements would need to be committed 

to the design for each stage to allow simultaneous processing on 2S inputs.  This would 

be a very inefficient design in terms of hardware, both because of the amount of hardware 

necessary for simultaneous processing, and for the complicated control circuitry required 

to halt and restart a pipelined architecture.  These issues can be mitigated by hardware 

reuse through data interleaving.  Through data interleaving the 2S filters (both high pass 
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and low pass) in each stage can be reduced to a single filter of each type that operates 

continuously.  This also removes the requirement for control circuitry to halt and restart 

the data path due to the gaps caused by down sampling. 

1. Single Input Data Interleaving 

 
Figure 18.   Single Input Data Interleaving QMF Design 

 

To fully illustrate the data interleaving concept of design for a QMF filter, Figure 

18 shows a single input QMF block diagram.  The stage outputs, as numbered in Figure 

16, are listed in Figure 18 in the order that they appear on the output multiplexer from the 

previous stage.  In this representation, there is a single input value entering the QMF on 

every clock.  The first stage operates by passing the data stream through a high pass and 

low pass FIR filter, then down sampling the resulting data streams by removing every 

other value, producing outputs 1-1 and 1-2 on every second clock cycle.  The delay 

element and multiplexer return the data stream to one value on every clock cycle. With 

the outputs of filter 1-1 and 1-2 alternating, as shown in the figure, by switching the 

selected input for the multiplexer on every clock cycle, a single data path is produced in 

which two separate data streams are interleaved. 

The second stage of the QMF then receives the interleaved data stream and passes 

it to two identical filter elements, one a high pass filter, and the other a low pass filter.  

We will ignore the inner workings of the filter blocks labeled F2, F4, and F8. They are 

pipelined filter elements, designed to handle the interleaved data stream, and produce a 

continuous flow of filtered outputs with the same interleaved data stream as their input. 

Down sampling is not required in these filter elements, as every other value from each 
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previous stage filter output will not be selected by the multiplexer to move to the next 

stage.  The multiplexers in Figure 18 switch inputs every N clock cycles, where N is the 

number labeled on the multiplexer.   

The resulting outputs for each stage are labeled with the final number of outputs 

being equal to 2S samples every 2S clock cycles.  This format produces an equivalent 

design to Figure 17 but with a substantial reduction in hardware requirements since only 

two filter elements are required for each stage.   

2. Parallel Input Data Interleaving 
Figure 18 shows a practical design strategy, although for simplicity it omits some 

details of filter construction.  However, it is only designed to handle a single input on 

each clock, and it still produces and discards the values that are down sampled. Since 

most ADC units are designed to operate at higher sampling rates than can be handled by 

FPGAs.  ADC units are usually designed to allow for parallel data outputs at lower clock 

rates.  Any practical QMF design capable of handing high ADC sampling rates must be 

able to handle multiple parallel inputs on every clock cycle.  Also, since every second 

value in a particular data stream (there may be multiple streams occupying a single data 

path) leaving a filter is discarded, additional hardware savings can be generated by not 

calculating those values.  For a FIR filter, this can be accomplished by only multiplying 

odd numbered inputs with the odd numbered filter coefficients and even number inputs 

with even numbered filter coefficients.   

QMF INPUT FROM 
FIFO

(6 8-BIT INPUTS 
EVERY CLOCK 

CYCLE)

6x8
48

Bit extender
(pads 0's onto 

end of each 8-bit 
bus to make 18-

bit busses)

6x18
108 Filter

Bank

6x18
108 Filter

Bank

6x18
108 Filter

Bank

6x18
108 Bit truncation

(truncates 18-bit 
busses to 8-bit 

busses)

6x8
48

6x18
108

3x36
108

3x36
108

Truncater

Truncater

3x18
54

3x18
54

Delay

>>

Delay

6x18
108

6x18
108

>>

s == stage number of filter bank
Delay = 2(s-1) clocks

6x18
108

High Pass Filter

Low Pass Filter

 
Figure 19.   6 Parallel Input QMF 
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Figure 19 shows the block diagram of the actual demonstration QMF as it was 

implemented.  The design accepts a 48-bit bus containing 6 8-bit values on every clock 

cycle directly from the FIFO stage of the hardware interface.  Each input is padded with 

trailing zeros to generate 6 18-bit values, which is the common input for all the filter 

bank stages.  All filter bank stages are identical hardware instantiations which take as 

inputs, values representing the appropriate element delays for their stage in the QMF.  

After passing through the three stages of the demonstration QMF, the data outputs are 

truncated back to 6 8-bit values.  Details of the filter bank implementation and pipeline 

timing are explained in the next section. 

C. IMPLEMENTATION IN VHDL 
All VHDL code for the complete implementation described in this section is 

contained in Appendix C. 

The first consideration for an implementation of a QMF in hardware is the 

number system and number format that will be used.  Next, an actual filter design must 

be created that produces the required number of outputs for the required number of 

inputs.  Components for the filter must then be designed and constructed.  Finally, for a 

fully pipelined design capable of correctly processing interleaved data streams, a timing 

structure and control must be implemented to ensure that individual values in each 

interleaved data stream are correctly calculated in the correct order and calculations are 

made with values that are members of the same data stream.   

1. Number System 
The number system chosen for this design is a variable length fixed point 

numbering scheme using signed binary arithmetic operations on signed binary values.  

Figure 20 shows the bit position values and decimal point placement for the different 

number formats used in this design.  The current design accounts for overflow conditions 

in the multiplication operations but not in the addition operations.  All addition operations 

occur using the format given in Figure 20 for the multiplier output, two sign bits, 

followed by seven integer bits, followed by 27 fractional bits. 
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Figure 20.   Binary Number System 

The initial sign bit in the stage one input is generated by inverting the most 

significant bit of the ADC input value.  This creates a signed binary value between -128 

and 127.  Trailing zeros are then added before the value is passed to the stage 1 filter 

bank so that all filter banks have the same input format.  The use of look-up table based 

multiplication for the first stage of a large design would not require the zero padding and 

would exist as a unique stage design.  The hardware multipliers in the FPGA produce the 

format given by the multiplier output format in Figure 20, which is also used by the adder 

elements. 

The number system and the adder hardware can ignore the possibility of overflow 

during addition operations because of coefficient scaling in the multiplication operations.  

This assumption is true for most cases in FIR filter design where the sum of the 

coefficients in the filter is less than one.  As long as the filter coefficients are chosen so 

that when all the filter inputs are -128 or 127 simultaneously (minimum and maximum 

ADC output values), the sum of all the multiplications must add to less than or equal to    

-128 or 127.  The stage output format is generated by truncation of the redundant sign bit 

and the 10 least significant fractional bits.   

This number scheme allows the maximum precision to be retained during the 

arithmetic operations but reduces the length of values to more manageable lengths 

between stages.  The inter-stage format retains 10 fractional bits which equates to 

approximately three decimal places of precision in base 10 numbers.  As shown in Figure 

19, the inter-stage data bus is 108 bits wide.  While large, this size is still small enough to 

allow a single clock transfer between user logic chips on the SRC-6 MAP board utilizing 

the 192 line bridge port between them.  It is also the exact size of the GPIO port, which 
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could be used to transfer data to a separate MAP board for the next stage of processing.  

Using the GPIO port would require clock synchronization between the chips, so one of 

the 108 bits in the inter-stage bus would most likely need to be dropped in favor of a 

clock output.  These factors meet the design requirements of precision and extensibility 

across multiple user logic chips.   

2. Filter Stage Structure 
The structure for an individual FIR filter is shown in Figure 21. The N values 

indicate 18-bit inputs. The circles indicate multipliers with the constant 18-bit coefficient 

index indicated by the number. The rhomboids indicate 36-bit by 36-bit adder units.  All 

multiplier and adder components are constructed with a variable length delay element on 

the component output. The equations for the delay values that must be applied to each 

component for each QMF stage are listed in Figure 21.  In addition, each component is 

designed to complete its operation in one clock cycle.   

Since the intent is to only calculate every other filter output value, it is not 

necessary to multiply every input by every coefficient as it would be in a traditional 

transposed FIR filter like those presented in [5].  The limitation this imposes is that an 

even number of filter coefficients is required.  This creates a problem for using the design 

as a high pass FIR filter, since high pass filters must normally be of an even order, which 

means an odd number of filter coefficients.  To avoid this issue, the implemented high 

pass filter was chosen with seven coefficients.  The least significant coefficient was 

omitted (numerical value of -.0013).  This introduces inaccuracies into the design.  

However, since the omitted value is approximately equal to the degree of precision 

carried over from stage to stage, and significantly smaller than the quantization error at 

the end of the QMF, the loss of the coefficient has a minimal impact on total system 

accuracies. 
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Figure 21.   6 Tap, 6 Input, Pipelined FIR filter 

 

The output register delay equations are listed in Figure 21.  The wiring pattern 

between adders is designed to allow values calculated during the previous and subsequent 

six-value input from a particular data stream to arrive simultaneously with the sums from 

the current six-value input at the k-level adders.  The specifics of the timing used to 

accomplish this are covered in a later section.  The components shown as part of the filter 

bank in Figure 19 are described in detail in the next sections.  It should be noted that the 

actual ordering of the outputs from the k level adders in time is k1, k2, then k0.  The 

VHDL code correctly orders the outputs for delivery to the next stage. 

a. Multipliers 
As previously stated, the multipliers in this design are modified from [6].  

The timing requirements for a single clock multiply are very strict and great care must be 

taken in the design of a single clock multiplier unit of this type.  The multiplier elements 

consist of input registers individually assigned a physical location relative to the 



53 

multiplier block by the use of the RLOC attribute in VHDL.   Since the assigned 

locations are relative to the multiplier block, multiple instantiations of the multiplier code 

are handled properly by the VHDL compiler.  Each input bit is physically aligned 

adjacent to the input line that will be used to input the bit into the multiplier.  The 

multiplier itself is a dedicated logic device physically located between CLB columns in 

the FPGA as shown in Figure 5.  The output lines on the multiplier were originally 

connected to D-registers located directly adjacent to the output lines for each respective 

bit.  Modifications to the code from [6] connected the multiplier output lines to SRL16 

logic blocks (Figure 6) contained in the same slice as the original D-registers.  This 

change allows the multiplier component to be configured with a variable length output 

pipeline delay from zero to 16 with zero delay being the equivalent of a D-register.   

The current design does not take advantage of the output delay on the 

multipliers.  A design using a mixed configuration of dedicated multiplier elements and 

array multipliers instantiated in the CLB logic of the FPGA would require the dedicated 

multipliers to generate a pipeline delay on their output equivalent to the pipeline delay of 

the array multiplier.  The ramifications of this are discussed more fully in Chapter VI. 

b. Adders 
Each of the adder elements are 36-bit by 36-bit adders with a variable 

length delay element of the same type as used by the multiplier on their output.  The 

adders are inferred in VHDL by a single line of code: S = A + B.    While this method of 

instantiation seems simplistic, the VHDL compiler on the SRC-6 will infer an optimized 

adder vertically in a column of slices and utilize the CLAH dedicated logic of the slices 

to generate a very efficient single clock adder.  This functionality was verified with both 

the Xilinx software tools as well as actual implementation on the SRC-6.   

This simple solution works very well for the implemented design but has 

some potential, though correctable, flaws if used with a larger design.  First, the input of 

the adder does not have a direct, mandatory connection to a register immediately adjacent 

to the adder, nor does the adder have a guarantee that the delay element will be 

immediately adjacent to it.  This means that any routing delays from the previous 

component are added to the combinational logic delays of the adder and to the line delay 

between the adder and the subsequent delay element.  If the combined delay exceeds the 
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length of a clock cycle a timing failure will occur.  Normally this would not be an issue 

since the PAR routine automatically attempts to remove any routing delays that would 

cause this to occur.  The second major flaw is that one clock additions are not guaranteed 

in the current design.  If the PAR routine is not able to place the adder contiguously in a 

vertical column of slices, the low delay interconnect lines and dedicated CLAH logic may 

not be fully utilized.  Both of these flaws will not normally occur unless chip utilization is 

very close to 100%.  Both flaws can also be corrected by the addition of user constraints 

to the VHDL code.  The first flaw can be corrected by placing maximum delay 

constraints on all of the incoming lines from the previous element.  The second flaw can 

be corrected simply by adding a user constraint that defines the adder and delay element 

as an object that must occupy a block of 36 vertically contiguous slices tall and two 

horizontally contiguous slices wide.   

c. Delay elements 
The stand-alone delay elements are identical to the delay elements that are 

part of the adder and multiplier elements.  They consist entirely of SRL16 configured 

logic units within a CLB slice.  One slice can contain the delay elements for two bits of 

data to be delayed from 0 to 16 clock cycles, or a single bit to be delayed up to 32 clock 

cycles.  No constraints are placed on the compiler or PAR routing for placement of the 

delay elements, allowing the automated systems flexibility in their placement.  Since the 

stand-alone delay elements are isolated from combinational logic by dedicated delay 

elements, the current delay element design should be extensible into any size design. 

d. Truncation 
The truncation elements are small VHDL modules that accept a 36-bit 

input and wire connect bits 17 to 35 to an 18-bit output. As previously mentioned, this 

truncation will cause the VHDL compiler to remove any logic whose only output is one 

of the truncated bits from the design before it is instantiated and the PAR routine places 

the components. This produces a savings in hardware utilization without the designer 

being required to audit every possible path to verify which can be deleted safely.  Since 

the truncation elements are simple wired connections, they are fully extensible into any 

size design, though it may be preferable to replace them with a rounding system. 
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e. Output Multiplexer 
The output multiplexer from each stage is implemented by a VHDL 

process statement that switches between the two 108-bit inputs from the two filters within 

the stage based on a single control line passed to each stage.  The output multiplexers 

must change inputs every 2S-1 clock cycles with S being the stage number.  The three 

least significant bits of the output address counter of the FIFO element are used to drive 

the three output multiplexers at this rate for this design.  Since each slice in the CLB 

matrix contains two dedicated 2-to-1 single bit multiplexers (Figure 6), the hardware 

implementation will result in the partial utilization of 54 slice elements.  Since the inputs 

to the multiplexers are the outputs of SRL16 based delay registers, the VHDL compiler 

and PAR routine will attempt to place the actual multiplexers into slices already occupied 

by the preceding logic.  This design is both simple and robust and should be easily 

extensible into a larger design.  However, the system designer needs to be aware of the 

alignment of the multiplexer transition with respect to transitions in the preceding stages.  

Since the multiplexers control the interleave order of the data streams, the output order of 

the individual streams within the data path are determined by multiplexer alignment 

between the various stages.   

3. Pipeline Timing 
Derivation of the pipeline timing for the filter element is the most complex 

portion of the design.  The pipeline delays and component connections must be organized 

in such a way that the only data values that exist in the same data stream be used in 

calculations, and that the data values in each data stream are correctly ordered.  In 

addition, the filter elements for each stage must be able to handle 2S-1 data streams 

interleaved together in one continuous data path.   
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Figure 22.   First Stage QMF Pipeline Timing Diagram 

 

Figure 22 shows the timing diagram for the first stage pipeline of the 

demonstration QMF design.  The input sets are numbered to illustrate a continuous input 

stream of sequential values in six value sets.  In the first stage, the input sets enter the 

successive elements shown in Figure 21 in the relative time slots shown in Figure 22.  It 

should be noted that the diagram assumes that the pipeline is full and that a value from 

the equivalent of input set 0 would be available at the output of adder i6 for the 

calculation of the first output set.  Since each six input data set outputs three values, the 

values of two successive sets are combined using the delay element shown just before the 

multiplexer in Figure 19.  The low pass filters in the design were arbitrarily chosen to 

have additional delay on the output of the k-level adders so that they are aligned properly 

when the output multiplexer switches to the low pass filter output.  The notation for the 

first value in the multiplexer out line of Figure 22 indicates that the value is the result of 

the high pass filter calculations on input sets one and two combined into a single output 

set of six values.  The next element is the low pass filter calculation on input sets one and 

two.  Because the stage 1 output multiplexer switches every clock cycle, every other 

output set from each filter and delay element is discarded, although the individual three 

value components of each discarded  set exist as part of the previous or following six 

value set.   
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Figure 23.   Second Stage QMF Pipeline Timing Diagram 

 

Figure 23 shows the pipeline timing diagram for the second stage filter of the 

QMF design.  The second stage filter bank is instantiated with the same VHDL module as 

stage 1 and stage 3, but different delay values for the various components are specified.  

Again, the diagram assumes the pipeline is full and a preceding value is available at the 

i6 output for the calculation of the first output set shown.  Delay values on the various 

elements must be increased to ensure the proper data streams are aligned at each stage of 

the calculation.  The labeling of the first output on the multiplexer out line indicates it has 

passed through two successive high pass filters and is the composite six-value data set 

derived from data sets 1-4 by combinations and down sampling.  The second output is the 

low pass output from the first stage that has subsequently passed through the high pass 

filter in the second stage and is also the composite of sets 1-4.  Successive data sets are 

labeled accordingly. 
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Figure 24.   Third Stage QMF Pipeline Timing 

 

Component delays are increased for the third QMF stage as given by the 

equations in Figure 21 and shown in Figure 24. The labeling on the first output data set 

indicates that it has passed through three successive high pass filters and is the composite 

data set derived from input data sets 1-8.  The second output set first passed through the 

low pass filter in stage 1, then the high pass filters in stage 2 and stage 3.  Subsequent 

data sets are labeled accordingly. 

The data sets belonging to specific data streams representing a particular path 

through the filter bank are output in a consistent order which allows the data sets to be 

de-interleaved before being passed to another stage for further processing. Currently, the 

design outputs the data to the C code portion of the program while it is still interleaved.  

For purposes of this work, the de-interleaving is done by using MATLAB to separate the 

data streams.   

D. IMPLEMENTATION IN SRC C CODE 
An implementation of a single low pass filter element in C code is included in 

Appendix D.  In Chapter VI, the hardware utilization and accuracy of this 

implementation is compared against a single low pass filter element from the QMF 

design in terms of hardware utilization and precision.  A speed comparison between a C 

code based FIR and a VHDL based FIR is irrelevant since they both accept inputs on 

each clock cycle and produce outputs on each clock cycle.  The pipeline depth is different 
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but not relevant since the output is continuous once the pipeline is full of data and any 

pipeline depth meets the real-time requirement.  The C code version of the FIR filter was 

written in a form optimized for the execution on the SRC-6 MAP.  A fixed point number 

scheme similar to the VHDL code is used for data storage between calculations.  

However, number widths are slightly smaller than the VHDL code, with 18-bit VHDL 

values residing in 16-bit variables in C and 36-bit VHDL values residing in 32-bit values 

in the C code version.  Calculations are ordered in a non-intuitive manner in the C code.  

The ordering is designed to avoid any intermediate storage of values in either the MAP 

onboard memory or BRAM modules instantiated by the C code, both of which could 

cause significant increases in pipeline depth or potentially cause the code not to execute 

in real-time, as required.   

E. IMPLEMENTATION IN MATLAB 
A MATLAB version of single filter elements, as well as a complete QMF design, 

is included in Appendix E along with the MATLAB code used to de-interleave and 

process the output data from the SRC into a format for comparison to the MATLAB 

QMF results.   
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VI. PERFORMANCE RESULTS AND COMPARISONS 

A. HARDWARE INTERFACE RESULTS 

 
Figure 25.   Selected Input Waveforms Sampled at 600 MSps 

 

Figure 25 shows some selected waveforms sampled at 600 MSps on the ADC and 

read into the SRC-6.  These waveforms were collected utilizing a user macro containing 

only the hardware interface portion of the design code.  The performance of the hardware 

interface portion of the design was determined to be sufficient to collect ADC data for 

use in testing the QMF designs.  Numerical error rates were not determined for the 

hardware interface since the purpose of the interface was to enable the testing of the 

QMF design, not as a stand-alone design element.  However, error rates for the hardware 

interface are seen to be fairly low when large samples groups are viewed.  Figure 26 

shows a group of 6000 samples with no visible errors.  When the hardware interface code 

block is instantiated by itself, results as shown in Figure 26 are typical.  However, when 

combined with larger logic blocks such as the VHDL filters or the full QMF, higher error 

rates are visible in the unfiltered data output from the SRC-6.  As previously mentioned, 
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the most likely cause for the rise in error rates is lack of location constraints placed on the 

input registers within the hardware interface section of code.  With the current code, the 

PAR routine does not recognize the tight timing tolerances for the input registers since it 

has no knowledge of the input signal clock rates.  Without additional constraints, the 

PAR routine will route signals from the input buffers so that they will arrive at the input 

registers within tolerance for 100MHz signals.  Since the incoming signal is at a higher 

frequency, this can be a problem if the delays are not consistent.  Consistent delays can 

be removed by a phase shift on the incoming clock signal. 

 
Figure 26.   1 MHz Sine Wave Sampled at 600 MSps 

 

One additional improvement that can be made to the hardware interface, besides 

the location constraints on the components, involves the cable interface.  By improving 

the cable interface, much faster transfer rates should be possible using the same design 

techniques described in this work.  Data input at up to 644 MHz is documented in [7] and 

would translate to an ADC sampling rate over 1.2GSps.  In addition, by connecting to the 
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same ADC chip model that is mounted on a board that would allow the chip to enter DES 

mode, the effective sampling rate could be doubled to over 2GSps.   

 
B. HARDWARE UTILIZATION 

  Flip-Flop FF % LLUT 
LLUT 

% SRL SRL %
Total 
LUT TLUT % SLICES

SLICE 
% 

18x18 
Multipliers MULT %

Full QMF 2827 4.2% 3281 4.9% 6829 10.1% 10110 15.0% 8526 25.2% 108 75.0%

VHDL Filter 471 0.7% 547 0.8% 1099 1.6% 1646 2.4% 1423 4.2% 18 12.5%

C Code Filter 5406 8.0% 3550 5.3% 137 0.2% 3687 5.5% 3157 9.3% 0 0.0%

C Code Filter 2 4526 6.7% 2726 4.0% 50 0.1% 2776 4.1% 4740 14.0% 36 25.0%

Overhead 3661 5.4% 1307 1.9% 0 0.0% 1307 1.9% 2610 7.7% 0 0.0%

Table 4.   Hardware Utilization Comparison 

 

Table 4 is a detailed listing of the hardware utilization of the FPGA for the full 

VHDL QMF design, a VHDL high pass filter, and two versions of the C code high pass 

filter.  Also listed is the overhead that is common to all four designs.  The overhead 

consists of the hardware interface portion of the design and the logic instantiated by the 

SRC compiler for MAP communications and control.  The table shows the total number 

of flip-flops used, the number of LUTs configured as 4-input logic, the number of LUTs 

configured as SRL16s, the  total number of LUTs used, the number of slices containing 

logic, and the number of 18x18 multipliers used.  Each quantity also has the percentage 

of the total chip resources of that type that are used. The numbers are derived from the 

compilation reports produced by the SRC compiler.  The utilization for the overhead 

logic has been subtracted from the actual generated report values to produce the values 

shown in the table.   

1. Full design 
Note that the full QMF uses the largest fraction of the 18x18 multipliers, 75%.  

An upper bound on the size of the QMF is given by Equation 6.1,      

 I F S M≤  (6.1) 

where I is the number inputs, F is the number of filter taps, S is the number of QMF 

stages, and M is the number of available multipliers.  The demonstration QMF design has 

nearly reached the maximum size using the 18x18 multipliers with 108 multipliers in use 

out of 144 available.  With the current design, one more stage containing two filter 
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elements with 36 multipliers could be added or the tap size of each filter could be 

enlarged to eight taps.  Either option would increase the multiplier module utilization to 

100 percent.  It can also be observed that the utilization of the other FPGA components 

scale linearly from the VHDL filter design.  The VHDL filter is copied six times in the 

full design, and component usage for the full design, is approximately six times that of 

the filter only design.  This indicates that without considering multiplier usage, the QMF 

design could grow to approximately four times its current size and still fit on a single 

chip.  The addition of the overhead would appear to push this percentage over 100 

percent.  However, most of the instantiated logic is not fully packed into the available 

space on the chip.   

The percentage of slice utilization is approximately five percent higher than the 

sum of the total LUT utilization and total flip-flop utilization.  This indicates that logic 

which could be packed into a single slice is instead residing in separate slices.  As chip 

utilization increases, more time will be spent by the PAR routine to more efficiently pack 

logic into slices.  When chip utilization is low, as in all these designs, less effort is spent 

on combining logic elements into tighter physical locations.   

2. VHDL Filter Element 
The chip utilization shown for the VHDL high pass filter is within the expected 

bounds for the design.  There is a slight reduction in component utilization from what is 

explicitly defined within the VHDL.  This is due to portions of logic being removed by 

the compiler because the output dependencies of the logic are located only within the bits 

that are truncated at the end of the calculations.  Replacing the bit truncation with a 

rounder would reduce the savings in hardware utilization. 

3. C Code Filter Element 
The two different versions of the C code high pass filter shown indicate two 

different methods for instantiating the same function from within the C code.  The 

process, operations conducted, and operation ordering are identical between the two 

versions.  The only difference in the code that produced these two utilization reports is 

the size of some of the variables.  One of the intermediate variable types involved in the 

multiplication operations was changed from an 8-bit variable to a 16-bit variable data 

type.  The first version, using the 8-bit data type, created multipliers in the CLB matrix 
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instead of utilizing the dedicated multiplier units.  The second version does use the 

dedicated multiplier blocks.  It used twice as many as the VHDL version, for slightly 

lower precision variables.  Both versions of the C code filter used between two and three 

times the total utilization seen in the VHDL module. 

Neither version of the C code utilizes LUT elements configured as SRL16 shift 

registers.  This seems to indicate that all pipeline delays within the C code filters utilize 

flip-flops as delay registers.  This is supported by the total flip-flop utilization seen for 

the C code variants.  It would be interesting to observe the behavior of the C code version 

with the much longer delays in the data path that occur in later stages of the full QMF 

design.  Due to time constraints, completion and testing of a full QMF design in C code 

was impractical.   

C. EXPANSION OPTIONS 
As previously noted in Chapter V, there are several methods of creating multiplier 

elements within the FPGA.  The main limiting factor of the current design is the number 

of multipliers available.  By augmenting the dedicated multipliers with alternate 

multiplier instantiations methods, significant increases in total filter size are possible.  By 

utilizing wired multiplies (bit shifts) where filter coefficients can be approximated by 

negative powers of two, effectively no additional hardware is instantiated for the 

multiply.   

Utilization of BRAM modules as look-up tables will increase the number of 

multipliers available.  This method would be most effective for the first stage of the 

QMF.  Since the first stage can accept the 8-bit value output of the hardware interface, 

two BRAM modules can be used as look up tables to produce two 32 bit wide values 

from two inputs.  If it is assumed a FIR filter with satisfactory performance can be made 

with 40 filter taps, and each of the six inputs is multiplied by one half of the filter taps, 

each stage of the QMF would require 240 total multiplies to implement both a high pass 

and low pass filter.  In terms of multipliers, this is well within the 288 bound of 144 

dedicated multipliers plus 144 BRAM modules (minus BRAMs used in the FIFO).  The 

adder trees associated with each of the two filter elements in the stage will each require 

117 adders to complete their operations for a total of 234 adders.  A very rough 

calculation of chip utilization based on the utilization for the VHDL high pass filter, 



66 

would place the utilization percentage for the chip at around 50 percent. This is 

satisfactory for the first QMF stage where the inputs are 8-bit inputs. 

Subsequent stages, which are assumed to exist on a separate FPGA, can also 

make use of the dedicated multipliers and the BRAM look up tables. However, 

subsequent stages incur an additional penalty for BRAM usage.  Without decreasing the 

precision of the 18-bit inputs for each stage after the first, two BRAM modules will no 

longer be sufficient to produce two 16-bit values.  However, by reducing the inputs to 16-

bit values, four BRAM modules can produce two 32-bit partial products that will result in 

the correct product when added together.  This results in four BRAM look up tables 

supporting two inputs, decreasing the available multipliers to 221 as well as requiring a 

two clock multiply.  The two clock multiply can be handled by the multiplier units 

designed for the demonstration filter simply by modification of the delay value passed to 

their integral output delay modules.  An additional 13 multipliers are still necessary to 

fulfill the requirements for later stages. These can be created as array type multipliers 

within the CLB matrix.  The array type multipliers will require additional pipeline delay 

and are also much more resource intensive, as demonstrated by the C code variant which 

instantiated multipliers within the CLB matrix.  A design of this size is practical and 

could be realized by placing one QMF stage on each available FPGA.  

Newer model SRC-6 systems contain an upgraded Xilinx FPGA. The component 

specifications for this chip are listed in Table 1 under the XC2VP100 model.   It contains 

a total of 444 dedicated multipliers and 444 BRAM modules.  However, it only has an 

increase of about 30 percent in total CLB capacity.  With this chip, large QMF designs 

would be possible. By using the techniques described in the preceding paragraphs, 

multipliers are no longer the only limiting factor with this chip.  CLB logic would likely 

be exhausted before full utilization of the dedicated multipliers and BRAM look up tables 

is reached. 

D. QMF PERFORMANCE 
The exact performance of the SRC based QMF filter is difficult to quantize 

numerically.  Uncertainties in the system startup timing make it difficult to determine the 

exact starting point of the filter.  While it is possible to de-interleave the output path 

correctly by means of an additional output bit that identifies the state of the final output 
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multiplexer, the current design does not allow the determination of the first discarded 

sample.  This means that calculations on the exact same sample set are not possible from 

MATLAB, using the current design.  Visual comparisons of the QMF calculations in the 

SRC-6 agree with the calculations in MATLAB.  In many cases, individual data points 

are within the quantization error between the high precision MATLAB calculations and 

the integer values returned by the SRC-6 QMF.  By averaging the difference between the 

VHDL QMF data point and MATLAB data point occupying each time slice, an average 

difference value can be generated for the sample set.  This value is not an exact 

representation of the error between the sample sets, since the VHDL data points will be 

shifted by some unknown amount.  The average difference does provide an upper bound 

on the actual error.  The MATLAB correlation function was also used to produce a linear 

correlation coefficient for the two waveforms.  This value is useful for comparison but 

does not properly represent magnitude errors between the waveforms.  Correlation 

function calculations are generally consistent across the eight waveforms produced by the 

three stage QMF design.  

 
Figure 27.   Comparison of 1Mhz Sine Wave Through the QMF Path 
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Figure 28.   Comparison of 1Mhz Sine Wave Through the QMF Path 

 
Figure 29.   Comparison of 1Mhz Cardiac Wave Through the QMF Path 
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Figure 30.   Comparison of 1Mhz Cardiac Wave Through the QMF Path 

 

 
Figure 31.   Comparison of 1Mhz Sine Wave Through the QMF Path 
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Figure 32.   Comparison of 1Mhz Cardiac Wave Through the QMF Path 

 
 

Figures 27-32 show the output of both the VHDL based QMF and the MATLAB 

based QMF through all of the possible QMF paths.  To produce these figures, the offset 

caused by the pipeline delay in the VHDL version has been removed.  Additional Figures 

are included in Appendix F.     

The signal path that passes through all low-pass filters consistently produces the 

largest average difference.  There is a small but visible attenuation of the signal on this 

path.  This is most likely due to truncation errors adding up through the QMF path.  The 

particular coefficients of this path seem to be especially sensitive to the bit truncation 

errors.    This can be partially corrected by replacing the truncation system with a 

rounding system.  As previously stated, this will affect the hardware utilization since the 

VHDL compiler will no longer delete logic when outputs are not used, as well as 

requiring additional logic and pipeline delays. 
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There is a very high degree of congruence between the MATLAB calculated 

waveforms and the waveforms produced by the real-time VHDL filter.  The average 

difference value is fairly low in most cases.  The cardiac waveforms provide an 

especially clear display of the time shifting between the VHDL and MATLAB QMF 

implementations.  From observation of the these waveforms, it can be observed that the 

individual data points appear to fall along the same waveform path but with a small time 

shift introduced by the uncertainty of which samples were discarded by the SRC-6 based 

code.  This uncertainty could be removed by adding additional circuitry to report the 

interleave status of the data streams through the entire QMF path in the same fashion that 

the final multiplexer control bit is passed out to allow the de-interleaving of the data 

streams.  This would not be required for normal operation of the program as the intent is 

to pass on only processed data.   

The QMF output interleave pattern for this particular design is different from the 

generic timing charts shown in Figures 22-24.  The interleave multiplexers for the 

demonstration design were controlled by the least significant bits of the hardware 

interface FIFO address counter.  The pipeline depth for the implementation would require 

the multiplexer control signals to be on a slightly different timing than the FIFO address 

circuit to produce the exact output order shown in the timing diagrams.  The actual output 

order of the data streams for demonstration QMF with respect to the output multiplexer 

control line transitioning from high to low is:  high-low-low, low-high-low, low-low-low, 

high-high-low, high-low-high, low-high-high, low-low-high, and high-high-high.  With 

this design, the sequential order of the data streams will remain the same.  The starting 

point for the pattern occurs when bit 48 of the output bus transitions from high to low. 
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VII. CONCLUSION 

A. SUMMARY 
This work has provided an overview of the hardware and software concerns 

relevant to the construction of a Quadrature Mirror Filter bank on the SRC-6 

reconfigurable computer system.  A discussion is given for a possible practical use of a 

QMF for the detection and classification of Low Probability of Intercept signals, as part 

of a larger system.  Specific elements of the SRC-6 reconfigurable computer are 

discussed with respect to their relevance to the designs contained in this work, and a 

background of related and similar work is given. 

The main design project of this work was focused on two main goals.   The first 

main section consists of the hardware interface between a National Semiconductor 

ADC08D1500 Analog to Digital Converter and the SRC-6 reconfigurable computer.  The 

hardware interface was detailed in terms of the physical interface and the logical 

interface.  The physical interface was defined as the specifications of the ADC board, the 

cabling and physical connections, and the electrical specifications of the signal path.  The 

logical interface was defined to include hardware instantiated in the reconfigurable logic 

on the SRC-6 in order to receive the incoming data stream from the ADC and prepare it 

for further processing or storage within the SRC-6 MAP board.  Several of the important 

design choices associated with the design were discussed and compared to alternative 

approaches.  Deficiencies in the design were identified and proposals were made for 

correcting the design deficiencies. 

The second main section of the work involved the actual construction and testing 

of a QMF design in VHDL for implementation on the SRC-6.  After a detailed listing of 

the design requirements for a demonstration size QMF design, a discussion was given for 

some of the critical design choices made in the design along with the advantages and 

limitations of the design choices.  An explanation for reducing hardware utilization, 

through the re-use of hardware elements by interleaving different streams of data along 

the same data path, was provided.  Details of the actual implementation were given with 

respect to the binary number formats and the actual hardware component design in 
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VHDL.  Several timing diagrams were provided to illustrate the process used by the 

design for implementation of a data stream interleaving scheme to allow maximum 

utilization for the minimum amount of hardware.  Brief descriptions were given for 

versions of a single high pass filter created using the SRC CARTE programming 

language for comparison against the VHDL version of a high pass filter element. 

Finally, performance results for the hardware interface and QMF design were 

given.  The goal of a working hardware interface with acceptable error rates was 

achieved for that portion of the design.  Hardware utilization comparisons were made 

between the full QMF design in VHDL, the high pass filter design in VHDL, and two 

versions of the C Code high pass filter.  Options available for expanding the size of the 

demonstration design into a larger practical design were given along with a discussion of 

relevant issues in expanding the design.  A display of the actual performance of the real-

time, VHDL QMF design were made against the unfiltered data and QMF calculations 

made in MATLAB using a similar filter design. 

1. Practical Limitations 
This work has discussed a number of practical limitations in designing a full scale 

QMF for implementation on a particular FPGA architecture.  The main limitation of the 

design is set by the number of simultaneous multiplications that can be accomplished 

within the target FPGA.  The number of simultaneous multiplies is determined by 

multiplying the number of filter taps with the number of simultaneous inputs to the 

system and the total number of QMF stages.   

As the number of filter taps increase, the complexity of the filter design increases 

significantly.  The design methodology described in this work will always result in filter 

output sets one half the size of the input sets (6 inputs equal 3 outputs), however the 

number of components and simultaneous operations are approximately equal to the 

number of filter taps multiplied by the number of simultaneous inputs.  Developing the 

pipeline timing and wiring structure for larger designs is extremely complex and will 

require significant development time. 

2. Data Interleaving 
The methods described in this work for interleaving multiple data streams along a 

single data path have proven to be effective with the demonstration QMF design.  While 
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the complexity of the filter design will increase with larger designs, the complexity of the 

data interleaving system does not increase.  The width of the data path may vary 

depending on the number of simultaneous system inputs but the interleave system will 

not.  Larger designs will have to account for changes in pipeline depth to properly de-

interleave the data. However, once the interleave pattern for a particular pipeline depth is 

known, it remains constant. 

3. C Code versus VHDL on the SRC-6 
Some useful conclusions can be drawn involving the benchmarking the SRC-6 

system.  The VHDL code filter design was two to three times smaller than the C Code 

versions, while maintaining slightly better precision.  Development time for the C code 

filter was less than one hour, while the development time for the VHDL version was well 

over five hours for the comparable code block.  Including the research required for the 

background to complete the VHDL version, the VHDL version required approximately 

ten times the total time to produce.   

The conclusion that can be drawn from the disparity in development times is that 

the C code environment provides an outstanding development platform for FPGA based 

code design.  Even for designs that will eventually be ported to VHDL for improved 

performance, the rapid development times possible using the C code environment may 

significantly enhance a design project.  

One area where the SRC-6 software environment currently lacks features is when 

dealing with connections to external hardware.  VHDL user macros are currently required 

for the interface, as well as for synchronizing external data to the internal clock domain.  

A process for synchronizing external data collected from a custom interface would reduce 

the requirements for the interface designer developing a clock synchronization system.  

Such a system must already exist within the standard SRC macro libraries for use by the 

SRC macros for GPIO port access but are not available as separately callable functions. 

B. SUGGESTED FUTURE WORK 
There are a number of areas related to this work that can be extended with future 

work.  With respect to the SRC code libraries, the addition of standard DSP filter 

elements to the macro libraries would be beneficial for any signal processing application.  

Construction of optimized FIR type filters, which could be passed a data stream and a set 
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of coefficients, would greatly enhance the utility of the SRC-6 for prototype and 

developmental testing of signal processing systems.  Also, with respect to the SRC macro 

library, some type of synchronization routine, such as the FIFO used in this work, could 

be written to simplify data synchronization for a user macro when there is a requirement 

to deal with data in a different clock domain. 

With respect to the QMF filter design, future work could involve extending the 

size of the filter elements to a practical size.  As previously stated, the size and 

complexity of the filter elements will increase significantly as the number of 

simultaneous inputs and filter taps are increased.  Also, with respect to the QMF design, 

support code and structures could be developed to extend the QMF across multiple user 

logic chips or MAP boards. Spanning of multiple FPGA devices would be a requirement 

for a practical QMF design, and while the data path size in the current design will support 

spanning multiple devices, there must also be control and synchronization systems that 

have not been developed. 

With respect to the SRC general environment, future real-time signal processing 

systems require an interface capable of continuously transferring data from the MAP 

board to the microprocessor.  While limitations in the current architecture of the interface 

prevent simultaneous bi-directional communications, a software system could be 

developed that samples data in a near-continuous stream from the MAP, yet is still 

capable of passing control signals back to the MAP on some interval.  Such a system 

would allow for active control of a real-time system and continuous display of data on the 

microprocessor. 
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APPENDIX A. PHYSICAL INTERFACE MAPPINGS 

ADC CONN 
1 80-PIN 

CABLE PIN 

ADC CONN 
2 80-PIN 

CABLE PIN 

ADC 
114-pin 
cable # 

Breakout Board 
Pad # ADC side

Breakout Board 
Pad # SRC side

SRC 
114-pin 
cable # Signal Name 

User 
Logic 1 
Pad #

77   1 D00 D03 4 c1_e_7n N2 
78   2 D01 D01 2 c1_e_6n T12 
79   3 D02 D02 3 c1_e_7p M2 
80   4 D03 D00 1 c1_e_6p U12 
  3 5 D04 D38 39 clk_p F19 
  1 7 D06 NC1 79 clk_n F20 
  7 11 D10 D13 14 c1_e_5n P10 
  8 12 D11 D11 12 c1_e_4n N5 
  9 13 D12 D12 13 c1_e_5p R10 
  10 14 D13 D10 11 c1_e_4p M5 
  13 17 D16 D19 20 c1_e_3n N9 
  14 18 D17 D17 18 c1_e_2n M4 
  15 19 D18 D18 19 c1_e_3p P9 
  16 20 D19 D16 17 c1_e_2p L4 
  19 23 D22 D22 23 c1_e_1n M6 
  20 24 D23 D26 27 c1_e_0n K2 
  21 25 D24 D21 22 c1_e_1p L6 
  22 26 D25 D25 26 c1_e_0p J2 
  37 41 D40 D42 43 c2_o_7n K6 
  38 42 D41 D44 45 c2_o_6n M10 
  39 43 D42 D41 42 c2_o_7p J6 
  40 44 D43 D43 44 c2_o_6p N10 
  41 45 D44 D46 47 c2_o_5n J3 
  42 46 D45 D48 49 c2_o_4n H4 
  43 47 D46 D45 46 c2_o_5p H3 
  44 48 D47 D47 48 c2_o_4p G4 
  47 51 D50 D50 51 c2_o_3n L9 
  48 52 D51 D54 55 c2_o_2n K7 
  49 53 D52 D49 50 c2_o_3p M9 
  50 54 D53 D53 54 c2_o_2p J7 
  53 57 D56 D56 57 c2_o_1n K9 
  54 58 D57 D60 61 c2_o_0n H5 
  55 59 D58 D55 56 c2_o_1p L10 
  56 60 D59 D59 60 c2_o_0p G5 
  59 63 D62 D62 63 c2_e_7n J8 
  60 64 D63 D66 67 c2_e_6n H6 
  61 65 D64 D61 62 c2_e_7p K8 
  62 66 D65 D65 66 c2_e_6p H7 
  65 69 D68 D68 69 c2_e_5n M12 
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  66 70 D69 VALID0 73 c2_e_4n G6 
  67 71 D70 D67 68 c2_e_5p N12 
  68 72 D71 D71 72 c2_e_4p F5 
  71 75 VALID1 VALID1 75 c2_e_3n L12 
  72 76 VALID2 VALID3 77 c2_e_2n F4 
  73 77 VALID3 FULL 74 c2_e_3p M11 
  74 78 VALID4 VALID2 76 c2_e_2p E4 
  77 81 SPARE1 SPARE4 84 c2_e_1n C4 
  78 82 SPARE2 SPARE2 82 c2_e_0n E3 
  79 83 SPARE3 SPARE3 83 c2_e_1p B4 
  80 84 SPARE4 SPARE1 81 c2_e_0p D2 

53   85 SPARE5 SPARE8 88 c1_o_7n F8 
54   86 SPARE6 SPARE6 86 c1_o_6n C5 
55   87 SPARE7 SPARE7 87 c1_o_7p E8 
56   88 SPARE8 SPARE5 85 c1_o_6p C6 
59   91 INT DCLK PROC RST 94 c1_o_5n H12 
60   92 INT D0 INT D0 92 c1_o_4n B5 
61   93 INT D1 INT D1 93 c1_o_5p H11 
62   94 PROC RST INT DCLK 91 c1_o_4p B6 
65   97 UID P1 RESERVED 100 c1_o_3n E9 
66   98 UID P2 UID P2 98 c1_o_2n D8 
67   99 UID P3 UID P3 99 c1_o_3p E10 
68   100 RESERVED UID P1 97 c1_o_2p E7 
71   103 BK2 SEG2 107 c1_o_1n G9 
72   104 BK3 BK3 104 c1_o_0n H10 
73   105 SEG0 SEG1 106 c1_o_1p G10 
74   106 SEG1 BK2 103 c1_o_0p J10 

CHANNEL NAME FORMAT:  c1_e_0p =  ADC channel 1, even sample, bit 0, positive LVDS 
Table 5.   Physical Interface Pin Map 
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APPENDIX B. LOGICAL INTERFACE SCHEMATICS 

 
Logical Interface Top Level Schematic 
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Figure 33.   Logical Interface Input Register Block Schematic 
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Figure 34.   Logical Interface Input Register Schematic 
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Figure 35.   Logical Interface Clock Generator Schematic 
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Figure 36.   Logical Interface FIFO Schematic 
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Figure 37.   400 MHz Input Register Schematic 
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Figure 38.   400 MHz Input Register Timing diagram 
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APPENDIX C. QMF VHDL CODE 

The following VHDL code has been reformatted to remove extra spaces and 

header files to reduce the size of the code.  The filter element entity for a high pass filter 

is not included, but is identical to the low pass element with different filter coefficients. 
 
entity qmf3 is 
    Port ( D : in std_logic_vector(47 downto 0); 
           Sin : in std_logic_vector(7 downto 0); 
           O : out std_logic_vector(48 downto 0); 
           CLK : in std_logic); 
end qmf3; 
architecture Behavioral of qmf3 is 
component filter6x6 is 
   Port (  D :  in std_logic_vector(107 downto 0); 
           i6dly :  in std_logic_vector(3 downto 0); 
           i8dly :  in std_logic_vector(3 downto 0); 
    jdly :  in std_logic_vector(3 downto 0); 
   S :  in std_logic; 
           O :  out std_logic_vector(107 downto 0); 
           CLK :  in std_logic); 
end component; 
component bit_drop_18x8 is 
    Port ( D : in  STD_LOGIC_VECTOR (17 downto 0); 
           Q : out  STD_LOGIC_VECTOR (7 downto 0)); 
end component; 
component bit_ext_8x18 is 
    Port ( D : in  STD_LOGIC_VECTOR (7 downto 0); 
           Q : out  STD_LOGIC_VECTOR (17 downto 0)); 
end component; 
 signal d0: STD_LOGIC_VECTOR (7 downto 0); 
 signal d1: STD_LOGIC_VECTOR (7 downto 0); 
 signal d2: STD_LOGIC_VECTOR (7 downto 0); 
 signal d3: STD_LOGIC_VECTOR (7 downto 0); 
 signal d4: STD_LOGIC_VECTOR (7 downto 0); 
 signal d5: STD_LOGIC_VECTOR (7 downto 0); 
 signal o0: STD_LOGIC_VECTOR (7 downto 0); 
 signal o1: STD_LOGIC_VECTOR (7 downto 0); 
 signal o2: STD_LOGIC_VECTOR (7 downto 0); 
 signal o3: STD_LOGIC_VECTOR (7 downto 0); 
 signal o4: STD_LOGIC_VECTOR (7 downto 0); 
 signal o5: STD_LOGIC_VECTOR (7 downto 0); 
 signal s1in: STD_LOGIC_VECTOR (107 downto 0); 
 signal s1out: STD_LOGIC_VECTOR (107 downto 0); 
 signal s2out: STD_LOGIC_VECTOR (107 downto 0); 
 signal s3out: STD_LOGIC_VECTOR (107 downto 0); 
 signal s1mux: STD_LOGIC; 
 signal s2mux: STD_LOGIC; 
 signal s3mux: STD_LOGIC; 
begin 
 s1mux <= Sin(0); 
 s2mux <= Sin(1); 
 s3mux <= Sin(2); 
 d0 <= D(47 downto 40); 
 d1 <= D(39 downto 32); 
 d2 <= D(31 downto 24); 
 d3 <= D(23 downto 16); 
 d4 <= D(15 downto 8); 
 d5 <= D(7 downto 0); 
 samp0ext : bit_ext_8x18 port map( D => d0, Q => s1in(107 downto 90)); 
 samp1ext : bit_ext_8x18 port map( D => d1, Q => s1in(89 downto 72)); 
 samp2ext : bit_ext_8x18 port map( D => d2, Q => s1in(71 downto 54)); 
 samp3ext : bit_ext_8x18 port map( D => d3, Q => s1in(53 downto 36)); 
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 samp4ext : bit_ext_8x18 port map( D => d4, Q => s1in(35 downto 18)); 
 samp5ext : bit_ext_8x18 port map( D => d5, Q => s1in(17 downto 0)); 

stage1 : filter6x6 port map(D => s1in, i6dly => "0010", i8dly => "0001",jdly => "0000",S => s1mux , O => s1out, CLK => 
CLK); 
stage2 : filter6x6 port map(D => s1out, i6dly => "0100", i8dly => "0010",jdly => "0001",S => s2mux , O => s2out, CLK 
=> CLK); 
stage3 : filter6x6 port map(D => s2out, i6dly => "1000", i8dly => "0100",jdly => "0011",S => s3mux , O => s3out, CLK 
=> CLK); 

 samp0drop : bit_drop_18x8 port map( Q => o0, D => s3out(107 downto 90)); 
 samp1drop : bit_drop_18x8 port map( Q => o1, D => s3out(89 downto 72)); 
 samp2drop : bit_drop_18x8 port map( Q => o2, D => s3out(71 downto 54)); 
 samp3drop : bit_drop_18x8 port map( Q => o3, D => s3out(53 downto 36)); 
 samp4drop : bit_drop_18x8 port map( Q => o4, D => s3out(35 downto 18)); 
 samp5drop : bit_drop_18x8 port map( Q => o5, D => s3out(17 downto 0)); 
        O(48) <= s3mux; 
 O(47 downto 40) <= o0; 
 O(39 downto 32) <= o1; 
 O(31 downto 24) <= o2; 
 O(23 downto 16) <= o3; 
 O(15 downto 8) <= o4; 
 O(7 downto 0) <= o5; 
end Behavioral; 
 
entity filter6x6 is 
   Port (  D :  in std_logic_vector(107 downto 0); 
           i6dly :  in std_logic_vector(3 downto 0); 
           i8dly :  in std_logic_vector(3 downto 0); 
    jdly :  in std_logic_vector(3 downto 0); 
   S :  in std_logic; 
           O :  out std_logic_vector(107 downto 0); 
           CLK :  in std_logic); 
end filter6x6; 
architecture Behavioral of filter6x6 is 
 component filter6x3_h is 
    Port ( n0 :  in std_logic_vector(17 downto 0); 
           n1 :  in std_logic_vector(17 downto 0); 
           n2 :  in std_logic_vector(17 downto 0); 
           n3 :  in std_logic_vector(17 downto 0); 
           n4 :  in std_logic_vector(17 downto 0); 
           n5 :  in std_logic_vector(17 downto 0); 
           i6dly :  in std_logic_vector(3 downto 0); 
           i8dly :  in std_logic_vector(3 downto 0); 
           jdly :  in std_logic_vector(3 downto 0); 
           o0 :  out std_logic_vector(17 downto 0); 
           o1 :  out std_logic_vector(17 downto 0); 
           o2 :  out std_logic_vector(17 downto 0); 
   o3 :  out std_logic_vector(17 downto 0); 
   o4 :  out std_logic_vector(17 downto 0); 
   o5 :  out std_logic_vector(17 downto 0); 
   CLK :  in std_logic); 
end component; 
component filter6x3_l is 
    Port ( n0 :  in std_logic_vector(17 downto 0); 
           n1 :  in std_logic_vector(17 downto 0); 
           n2 :  in std_logic_vector(17 downto 0); 
           n3 :  in std_logic_vector(17 downto 0); 
           n4 :  in std_logic_vector(17 downto 0); 
           n5 :  in std_logic_vector(17 downto 0); 
           i6dly :  in std_logic_vector(3 downto 0); 
           i8dly :  in std_logic_vector(3 downto 0); 
           jdly :  in std_logic_vector(3 downto 0); 
           o0 :  out std_logic_vector(17 downto 0); 
           o1 :  out std_logic_vector(17 downto 0); 
           o2 :  out std_logic_vector(17 downto 0); 
   o3 :  out std_logic_vector(17 downto 0); 
   o4 :  out std_logic_vector(17 downto 0); 
   o5 :  out std_logic_vector(17 downto 0); 
   CLK :  in std_logic); 
end component; 
component mux108x2 is 
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    Port ( D0 :  in std_logic_vector(107 downto 0); 
           D1 :  in std_logic_vector(107 downto 0); 
           O :  out std_logic_vector(107 downto 0); 
           S : in std_logic); 
end component; 
 signal hout0: STD_LOGIC_VECTOR (17 downto 0); 
 signal hout1: STD_LOGIC_VECTOR (17 downto 0); 
 signal hout2: STD_LOGIC_VECTOR (17 downto 0); 
 signal hout3: STD_LOGIC_VECTOR (17 downto 0); 
 signal hout4: STD_LOGIC_VECTOR (17 downto 0); 
 signal hout5: STD_LOGIC_VECTOR (17 downto 0); 
 signal lout0: STD_LOGIC_VECTOR (17 downto 0); 
 signal lout1: STD_LOGIC_VECTOR (17 downto 0); 
 signal lout2: STD_LOGIC_VECTOR (17 downto 0); 
 signal lout3: STD_LOGIC_VECTOR (17 downto 0); 
 signal lout4: STD_LOGIC_VECTOR (17 downto 0); 
 signal lout5: STD_LOGIC_VECTOR (17 downto 0); 
 signal input0: STD_LOGIC_VECTOR (17 downto 0); 
 signal input1: STD_LOGIC_VECTOR (17 downto 0); 
 signal input2: STD_LOGIC_VECTOR (17 downto 0); 
 signal input3: STD_LOGIC_VECTOR (17 downto 0); 
 signal input4: STD_LOGIC_VECTOR (17 downto 0); 
 signal input5: STD_LOGIC_VECTOR (17 downto 0); 
 signal muxin0: STD_LOGIC_VECTOR (107 downto 0); 
 signal muxin1: STD_LOGIC_VECTOR (107 downto 0); 
begin 
 input0 <= D(107 downto 90); 
 input1 <= D(89 downto 72); 
 input2 <= D(71 downto 54); 
 input3 <= D(53 downto 36); 
 input4 <= D(35 downto 18); 
 input5 <= D(17 downto 0); 
      highpass : filter6x3_h port map(  
       n0 => input0,n1 => input1,n2 => input2,n3 => input3,n4 =>  input4,n5 => input5, 
   i6dly => i6dly,i8dly => i8dly,jdly =>jdly, 
   o0 => hout0,o1 => hout1,o2 => hout2,o3 => hout3,o4 => hout4,o5 => hout5, 
   CLK => CLK); 
 lowpass : filter6x3_l port map(  
       n0 => input0,n1 => input1,n2 => input2,n3 => input3,n4 =>  input4,n5 => input5, 
   i6dly => i6dly,i8dly => i8dly,jdly => jdly, 
   o0 => lout0,o1 => lout1,o2 => lout2,o3 => lout3,o4 => lout4,o5 => lout5, 
   CLK => CLK); 
 muxin0(107 downto 90) <= hout0; 
 muxin0(89 downto 72) <= hout1; 
 muxin0(71 downto 54) <= hout2; 
 muxin0(53 downto 36) <= hout3; 
 muxin0(35 downto 18) <= hout4; 
 muxin0(17 downto 0) <= hout5; 
 muxin1(107 downto 90) <= lout0; 
 muxin1(89 downto 72) <= lout1; 
 muxin1(71 downto 54) <= lout2; 
 muxin1(53 downto 36) <= lout3; 
 muxin1(35 downto 18) <= lout4; 
 muxin1(17 downto 0) <= lout5; 
 outmux  : mux108x2 port map ( D0 => muxin0, D1 =>muxin1,O => O,S => S); 
end Behavioral; 
 
entity filter6x3_l is 
    Port ( n0 :  in std_logic_vector(17 downto 0); 
           n1 :  in std_logic_vector(17 downto 0); 
           n2 :  in std_logic_vector(17 downto 0); 
           n3 :  in std_logic_vector(17 downto 0); 
           n4 :  in std_logic_vector(17 downto 0); 
           n5 :  in std_logic_vector(17 downto 0); 
           i6dly :  in std_logic_vector(3 downto 0); 
           i8dly :  in std_logic_vector(3 downto 0); 
           jdly :  in std_logic_vector(3 downto 0); 
           o0 :  out std_logic_vector(17 downto 0); 
           o1 :  out std_logic_vector(17 downto 0); 
           o2 :  out std_logic_vector(17 downto 0); 
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   o3 :  out std_logic_vector(17 downto 0); 
   o4 :  out std_logic_vector(17 downto 0); 
   o5 :  out std_logic_vector(17 downto 0); 
   CLK :  in std_logic); 
end filter6x3_l; 
architecture Behavioral of filter6x3_l is 
component Mult18x18_var_hld is 
  port( A, B:  in std_logic_vector(17 downto 0); 
    Dly:   in std_logic_vector(3 downto 0); 
    CLK, RST, CE:  in std_logic; 
    P:    out std_logic_vector(35 downto 0)); 
end component; 
component add_36x36_var_hld is 
    Port (  A :   in  STD_LOGIC_VECTOR (35 downto 0); 
           B :   in  STD_LOGIC_VECTOR (35 downto 0); 
            S :   out  STD_LOGIC_VECTOR (35 downto 0); 
            Dly :  in  STD_LOGIC_VECTOR (3 downto 0); 
            CLK :  in  STD_LOGIC); 
end component; 
component var_dly18 is 
    Port (   Din : in  STD_LOGIC_VECTOR (17 downto 0); 
   Dly : in  STD_LOGIC_VECTOR (3 downto 0); 
   Clk : in  STD_LOGIC; 
             Qout : out  STD_LOGIC_VECTOR (17 downto 0)); 
end component; 
 signal xn0c1: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn0c3: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn0c5: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn1c2: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn1c4: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn1c6: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn2c1: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn2c3: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn2c5: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn3c2: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn3c4: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn3c6: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn4c1: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn4c3: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn4c5: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn5c2: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn5c4: STD_LOGIC_VECTOR (35 downto 0); 
 signal xn5c6: STD_LOGIC_VECTOR (35 downto 0); 
 signal i0: STD_LOGIC_VECTOR (35 downto 0); 
 signal i1: STD_LOGIC_VECTOR (35 downto 0); 
 signal i2: STD_LOGIC_VECTOR (35 downto 0); 
 signal i3: STD_LOGIC_VECTOR (35 downto 0); 
 signal i4: STD_LOGIC_VECTOR (35 downto 0); 
 signal i5: STD_LOGIC_VECTOR (35 downto 0); 
 signal i6: STD_LOGIC_VECTOR (35 downto 0); 
 signal i7: STD_LOGIC_VECTOR (35 downto 0); 
 signal i8: STD_LOGIC_VECTOR (35 downto 0); 
 signal j0: STD_LOGIC_VECTOR (35 downto 0); 
 signal j1: STD_LOGIC_VECTOR (35 downto 0); 
 signal j2: STD_LOGIC_VECTOR (35 downto 0); 
 signal k0: STD_LOGIC_VECTOR (35 downto 0); 
 signal k1: STD_LOGIC_VECTOR (35 downto 0); 
 signal k2: STD_LOGIC_VECTOR (35 downto 0); 
begin 

mult_n0_c1 : Mult18x18_var_hld port map( P => xn0c1, A => n0, B => "111111111101010110", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n0_c3 : Mult18x18_var_hld port map( P => xn0c3, A => n0, B => "111111100101110010", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n0_c5 : Mult18x18_var_hld port map( P => xn0c5, A => n0, B => "111111100101110010", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n1_c2 : Mult18x18_var_hld port map( P => xn1c2, A => n1, B => "111111110101010110", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n1_c4 : Mult18x18_var_hld port map( P => xn1c4, A => n1, B => "011111011010001110", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
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mult_n1_c6 : Mult18x18_var_hld port map( P => xn1c6, A => n1, B => "111111110101010110", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n2_c1 : Mult18x18_var_hld port map( P => xn2c1, A => n2, B => "111111111101010110", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n2_c3 : Mult18x18_var_hld port map( P => xn2c3, A => n2, B => "111111100101110010", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n2_c5 : Mult18x18_var_hld port map( P => xn2c5, A => n2, B => "111111100101110010", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n3_c2 : Mult18x18_var_hld port map( P => xn3c2, A => n3, B => "111111110101010110", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n3_c4 : Mult18x18_var_hld port map( P => xn3c4, A => n3, B => "011111011010001110", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n3_c6 : Mult18x18_var_hld port map( P => xn3c6, A => n3, B => "111111110101010110", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n4_c1 : Mult18x18_var_hld port map( P => xn4c1, A => n4, B => "111111111101010110", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n4_c3 : Mult18x18_var_hld port map( P => xn4c3, A => n4, B => "111111100101110010", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n4_c5 : Mult18x18_var_hld port map( P => xn4c5, A => n4, B => "111111100101110010", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n5_c2 : Mult18x18_var_hld port map( P => xn5c2, A => n5, B => "111111110101010110", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n5_c4 : Mult18x18_var_hld port map( P => xn5c4, A => n5, B => "011111011010001110", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 
mult_n5_c6 : Mult18x18_var_hld port map( P => xn5c6, A => n5, B => "111111110101010110", Dly => "0000", CLK => 
CLK, CE => '1', RST => '0'); 

 add_i0  : add_36x36_var_hld port map( S => i0, A => xn0c1, B => xn1c2, Dly => "0000", CLK => CLK); 
 add_i1  : add_36x36_var_hld port map( S => i1, A => xn0c3, B => xn1c4, Dly => "0000", CLK => CLK); 
 add_i2  : add_36x36_var_hld port map( S => i2, A => xn0c5, B => xn1c6, Dly => "0000", CLK => CLK); 
 add_i3  : add_36x36_var_hld port map( S => i3, A => xn2c1, B => xn3c2, Dly => "0000", CLK => CLK); 
 add_i4  : add_36x36_var_hld port map( S => i4, A => xn2c3, B => xn3c4, Dly => "0000", CLK => CLK); 
 add_i5  : add_36x36_var_hld port map( S => i5, A => xn2c5, B => xn3c6, Dly => "0000", CLK => CLK); 
 add_i6  : add_36x36_var_hld port map( S => i6, A => xn4c1, B => xn5c2, Dly => i6dly, CLK => CLK); 
 add_i7  : add_36x36_var_hld port map( S => i7, A => xn4c3, B => xn5c4, Dly => "0000", CLK => CLK); 
 add_i8  : add_36x36_var_hld port map( S => i8, A => xn4c5, B => xn5c6, Dly => i8dly, CLK => CLK); 
 add_j0  : add_36x36_var_hld port map( S => j0, A => i1, B => i5, Dly => jdly, CLK => CLK); 
 add_j1  : add_36x36_var_hld port map( S => j1, A => i0, B => i4, Dly => jdly, CLK => CLK); 
 add_j2  : add_36x36_var_hld port map( S => j2, A => i3, B => i7, Dly => jdly, CLK => CLK); 
 add_k0  : add_36x36_var_hld port map( S => k0, A => i2, B => j2, Dly => i8dly, CLK => CLK); 
 add_k1  : add_36x36_var_hld port map( S => k1, A => j0, B => i6, Dly => i8dly, CLK => CLK); 
 add_k2  : add_36x36_var_hld port map( S => k2, A => j1, B => i8, Dly => i8dly, CLK => CLK); 
 o_hold0  : var_dly18 port map( Qout => o0, Din => k1(34 downto 17), Dly => jdly, CLK => CLK); 
 o_hold1  : var_dly18 port map( Qout => o1, Din => k2(34 downto 17), Dly => jdly, CLK => CLK); 
 o_hold2  : var_dly18 port map( Qout => o2, Din => k0(34 downto 17), Dly => jdly, CLK => CLK); 
 o3 <= k1(34 downto 17); 
 o4 <= k2(34 downto 17); 
 o5 <= k0(34 downto 17); 
end Behavioral; 
 
entity bit_drop_18x8 is 
    Port ( D : in  STD_LOGIC_VECTOR (17 downto 0); 
           Q : out  STD_LOGIC_VECTOR (7 downto 0)); 
end bit_drop_18x8; 
architecture Behavioral of bit_drop_18x8 is 
begin 
 Q(7 downto 0) <= D(17 downto 10); 
end Behavioral; 
 
entity bit_ext_8x18 is 
    Port ( D : in  STD_LOGIC_VECTOR (7 downto 0); 
           Q : out  STD_LOGIC_VECTOR (17 downto 0)); 
end bit_ext_8x18; 
architecture Behavioral of bit_ext_8x18 is 
begin 
   Q(17) <= not D(7); 
   Q(16 downto 10) <= D(6 downto 0); 
   Q(9) <= '0'; 
   Q(8) <= '0'; 
   Q(7) <= '0'; 
   Q(6) <= '0'; 
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   Q(5) <= '0'; 
   Q(4) <= '0'; 
   Q(3) <= '0'; 
   Q(2) <= '0'; 
   Q(1) <= '0'; 
   Q(0) <= '0'; 
end Behavioral; 
entity mux108x2 is 
    Port ( D0 :  in std_logic_vector(107 downto 0); 
           D1 :  in std_logic_vector(107 downto 0); 
           O :  out std_logic_vector(107 downto 0); 
           S : in std_logic); 
end mux108x2; 
architecture Behavioral of mux108x2 is 
begin 
  process (D0, D1, S) 
  begin 
    case S is 
    when '0' => O <= D0;  
    when '1' => O <= D1;  
    when others => NULL;  
   end case; 
  end process; 
end Behavioral; 
 
entity add_36x36_var_hld is 
    Port ( A : in  STD_LOGIC_VECTOR (35 downto 0); 
           B : in  STD_LOGIC_VECTOR (35 downto 0); 
           S : out  STD_LOGIC_VECTOR (35 downto 0); 
           Dly : in  STD_LOGIC_VECTOR (3 downto 0); 
           CLK : in  STD_LOGIC); 
end add_36x36_var_hld; 
architecture Behavioral of add_36x36_var_hld is 
component add_36x36 
   port( 
    Ain : in  STD_LOGIC_VECTOR (35 downto 0); 
    Bin : in  STD_LOGIC_VECTOR (35 downto 0); 
    Sout : out  STD_LOGIC_VECTOR (35 downto 0)); 
end component; 
component var_dly36 is 
    Port (  Din : in  STD_LOGIC_VECTOR (35 downto 0); 
    Dly : in  STD_LOGIC_VECTOR (3 downto 0); 
    Clk : in  STD_LOGIC; 
            Qout : out  STD_LOGIC_VECTOR (35 downto 0)); 
            
end component; 
signal s_wire: std_logic_vector (35 downto 0); 
begin 
inst_add_36x36 : add_36x36 port map( Ain => A, Bin => B, Sout => s_wire); 
inst_var_dly36 : var_dly36 port map( Din => s_wire, Dly => Dly, Clk => Clk, Qout => S); 
end Behavioral; 
 
entity add_36x36 is 
    Port ( Ain : in  STD_LOGIC_VECTOR (35 downto 0); 
           Bin : in  STD_LOGIC_VECTOR (35 downto 0); 
           Sout : out  STD_LOGIC_VECTOR (35 downto 0)); 
end add_36x36; 
architecture Behavioral of add_36x36 is 
begin 
 Sout <= Ain + Bin; 
end Behavioral; 
entity var_dly36 is 
    Port (  Din : in  STD_LOGIC_VECTOR (35 downto 0); 
    Dly : in  STD_LOGIC_VECTOR (3 downto 0); 
    Clk : in  STD_LOGIC; 
            Qout : out  STD_LOGIC_VECTOR (35 downto 0)); 
end var_dly36; 
architecture Behavioral of var_dly36 is 
component SRL16 
   port( 
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      Q                              : out   STD_ULOGIC; 
      D                              : in    STD_ULOGIC; 
      CLK                            : in    STD_ULOGIC; 
  A0                             : in    STD_ULOGIC; 
  A1                             : in    STD_ULOGIC; 
  A2                             : in    STD_ULOGIC; 
      A3                             : in    STD_ULOGIC); 
end component; 
begin 
REG_S0  : SRL16 port map(Q => Qout(0)  , CLK => CLK, D => Din(0)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S1  : SRL16 port map(Q => Qout(1)  , CLK => CLK, D => Din(1)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S2  : SRL16 port map(Q => Qout(2)  , CLK => CLK, D => Din(2)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S3  : SRL16 port map(Q => Qout(3)  , CLK => CLK, D => Din(3)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S4  : SRL16 port map(Q => Qout(4)  , CLK => CLK, D => Din(4)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S5  : SRL16 port map(Q => Qout(5)  , CLK => CLK, D => Din(5)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S6  : SRL16 port map(Q => Qout(6)  , CLK => CLK, D => Din(6)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S7  : SRL16 port map(Q => Qout(7)  , CLK => CLK, D => Din(7)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S8  : SRL16 port map(Q => Qout(8)  , CLK => CLK, D => Din(8)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S9  : SRL16 port map(Q => Qout(9)  , CLK => CLK, D => Din(9)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S10 : SRL16 port map(Q => Qout(10) , CLK => CLK, D => Din(10)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S11 : SRL16 port map(Q => Qout(11) , CLK => CLK, D => Din(11)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S12 : SRL16 port map(Q => Qout(12) , CLK => CLK, D => Din(12)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S13 : SRL16 port map(Q => Qout(13) , CLK => CLK, D => Din(13)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S14 : SRL16 port map(Q => Qout(14) , CLK => CLK, D => Din(14)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S15 : SRL16 port map(Q => Qout(15) , CLK => CLK, D => Din(15)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S16 : SRL16 port map(Q => Qout(16) , CLK => CLK, D => Din(16)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S17 : SRL16 port map(Q => Qout(17) , CLK => CLK, D => Din(17)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S18 : SRL16 port map(Q => Qout(18) , CLK => CLK, D => Din(18)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S19 : SRL16 port map(Q => Qout(19) , CLK => CLK, D => Din(19)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S20 : SRL16 port map(Q => Qout(20) , CLK => CLK, D => Din(20)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S21 : SRL16 port map(Q => Qout(21) , CLK => CLK, D => Din(21)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S22 : SRL16 port map(Q => Qout(22) , CLK => CLK, D => Din(22)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S23 : SRL16 port map(Q => Qout(23) , CLK => CLK, D => Din(23)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S24 : SRL16 port map(Q => Qout(24) , CLK => CLK, D => Din(24)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S25 : SRL16 port map(Q => Qout(25) , CLK => CLK, D => Din(25)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S26 : SRL16 port map(Q => Qout(26) , CLK => CLK, D => Din(26)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S27 : SRL16 port map(Q => Qout(27) , CLK => CLK, D => Din(27)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S28 : SRL16 port map(Q => Qout(28) , CLK => CLK, D => Din(28)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S29 : SRL16 port map(Q => Qout(29) , CLK => CLK, D => Din(29)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
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REG_S30 : SRL16 port map(Q => Qout(30) , CLK => CLK, D => Din(30)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S31 : SRL16 port map(Q => Qout(31) , CLK => CLK, D => Din(31)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S32 : SRL16 port map(Q => Qout(32) , CLK => CLK, D => Din(32)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S33 : SRL16 port map(Q => Qout(33) , CLK => CLK, D => Din(33)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S34 : SRL16 port map(Q => Qout(34) , CLK => CLK, D => Din(34)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S35 : SRL16 port map(Q => Qout(35) , CLK => CLK, D => Din(35)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
end Behavioral; 
 
entity var_dly18 is 
    Port (  Din : in  STD_LOGIC_VECTOR (17 downto 0); 
    Dly : in  STD_LOGIC_VECTOR (3 downto 0); 
    Clk : in  STD_LOGIC; 
            Qout : out  STD_LOGIC_VECTOR (17 downto 0)); 
end var_dly18; 
architecture Behavioral of var_dly18 is 
component SRL16 
   port( 
       Q                              : out   STD_ULOGIC; 
       D                              : in    STD_ULOGIC; 
      CLK                            : in    STD_ULOGIC; 
  A0                             : in    STD_ULOGIC; 
  A1                             : in    STD_ULOGIC; 
  A2                             : in    STD_ULOGIC; 
       A3                             : in    STD_ULOGIC); 
end component; 
begin 
REG_S0  : SRL16 port map(Q => Qout(0)  , CLK => CLK, D => Din(0)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S1  : SRL16 port map(Q => Qout(1)  , CLK => CLK, D => Din(1)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S2  : SRL16 port map(Q => Qout(2)  , CLK => CLK, D => Din(2)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S3  : SRL16 port map(Q => Qout(3)  , CLK => CLK, D => Din(3)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S4  : SRL16 port map(Q => Qout(4)  , CLK => CLK, D => Din(4)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S5  : SRL16 port map(Q => Qout(5)  , CLK => CLK, D => Din(5)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S6  : SRL16 port map(Q => Qout(6)  , CLK => CLK, D => Din(6)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S7  : SRL16 port map(Q => Qout(7)  , CLK => CLK, D => Din(7)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S8  : SRL16 port map(Q => Qout(8)  , CLK => CLK, D => Din(8)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S9  : SRL16 port map(Q => Qout(9)  , CLK => CLK, D => Din(9)   , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S10 : SRL16 port map(Q => Qout(10) , CLK => CLK, D => Din(10)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S11 : SRL16 port map(Q => Qout(11) , CLK => CLK, D => Din(11)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S12 : SRL16 port map(Q => Qout(12) , CLK => CLK, D => Din(12)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S13 : SRL16 port map(Q => Qout(13) , CLK => CLK, D => Din(13)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S14 : SRL16 port map(Q => Qout(14) , CLK => CLK, D => Din(14)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S15 : SRL16 port map(Q => Qout(15) , CLK => CLK, D => Din(15)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S16 : SRL16 port map(Q => Qout(16) , CLK => CLK, D => Din(16)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
REG_S17 : SRL16 port map(Q => Qout(17) , CLK => CLK, D => Din(17)  , A0 => Dly(0) , A1 => Dly(1) , A2 => 
Dly(2) , A3 => Dly(3)); 
end Behavioral; 
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entity Mult18x18_var_hld is 
 port( A, B:     in std_logic_vector(17 downto 0); 
   Dly:     in std_logic_vector(3 downto 0); 
   CLK, RST, CE:   in std_logic; 
   P:      out std_logic_vector(35 downto 0)); 
end Mult18x18_var_hld; 
architecture Behavioral of Mult18x18_var_hld is 
component FDR 
   port( 
      Q                              : out   STD_ULOGIC; 
      D                              : in    STD_ULOGIC; 
      C                              : in    STD_ULOGIC; 
      R                              : in    STD_ULOGIC); 
end component;    
component SRL16 
   port( 
      Q                              : out   STD_ULOGIC; 
      D                              : in    STD_ULOGIC; 
      CLK                            : in    STD_ULOGIC; 
  A0                             : in    STD_ULOGIC; 
  A1                             : in    STD_ULOGIC; 
  A2                             : in    STD_ULOGIC; 
      A3                             : in    STD_ULOGIC); 
end component;        
component MULT18X18S 
    port (A  : in  STD_LOGIC_VECTOR (17 downto 0); 
          B  : in  STD_LOGIC_VECTOR (17 downto 0); 
          C  : in  STD_ULOGIC ; 
          CE : in  STD_ULOGIC ; 
    P  : out STD_LOGIC_VECTOR (35 downto 0); 
          R  : in  STD_ULOGIC ); 
end component; 
signal a_wire0: STD_ULOGIC ; 
signal a_wire1: STD_ULOGIC ; 
signal a_wire2: STD_ULOGIC ; 
signal a_wire3: STD_ULOGIC ; 
signal a_wire4: STD_ULOGIC ; 
signal a_wire5: STD_ULOGIC ; 
signal a_wire6: STD_ULOGIC ; 
signal a_wire7: STD_ULOGIC ; 
signal a_wire8: STD_ULOGIC ; 
signal a_wire9: STD_ULOGIC ; 
signal a_wire10: STD_ULOGIC ; 
signal a_wire11: STD_ULOGIC ; 
signal a_wire12: STD_ULOGIC ; 
signal a_wire13: STD_ULOGIC ; 
signal a_wire14: STD_ULOGIC ; 
signal a_wire15: STD_ULOGIC ; 
signal a_wire16: STD_ULOGIC ; 
signal a_wire17: STD_ULOGIC ; 
signal b_wire0: STD_ULOGIC ; 
signal b_wire1: STD_ULOGIC ; 
signal b_wire2: STD_ULOGIC ; 
signal b_wire3: STD_ULOGIC ; 
signal b_wire4: STD_ULOGIC ; 
signal b_wire5: STD_ULOGIC ; 
signal b_wire6: STD_ULOGIC ; 
signal b_wire7: STD_ULOGIC ; 
signal b_wire8: STD_ULOGIC ; 
signal b_wire9: STD_ULOGIC ; 
signal b_wire10: STD_ULOGIC ; 
signal b_wire11: STD_ULOGIC ; 
signal b_wire12: STD_ULOGIC ; 
signal b_wire13: STD_ULOGIC ; 
signal b_wire14: STD_ULOGIC ; 
signal b_wire15: STD_ULOGIC ; 
signal b_wire16: STD_ULOGIC ; 
signal b_wire17: STD_ULOGIC ; 
signal p_wire0: STD_ULOGIC ; 
signal p_wire1: STD_ULOGIC ; 
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signal p_wire2: STD_ULOGIC ; 
signal p_wire3: STD_ULOGIC ; 
signal p_wire4: STD_ULOGIC ; 
signal p_wire5: STD_ULOGIC ; 
signal p_wire6: STD_ULOGIC ; 
signal p_wire7: STD_ULOGIC ; 
signal p_wire8: STD_ULOGIC ; 
signal p_wire9: STD_ULOGIC ; 
signal p_wire10: STD_ULOGIC ; 
signal p_wire11: STD_ULOGIC ; 
signal p_wire12: STD_ULOGIC ; 
signal p_wire13: STD_ULOGIC ; 
signal p_wire14: STD_ULOGIC ; 
signal p_wire15: STD_ULOGIC ; 
signal p_wire16: STD_ULOGIC ; 
signal p_wire17: STD_ULOGIC ; 
signal p_wire18: STD_ULOGIC ; 
signal p_wire19: STD_ULOGIC ; 
signal p_wire20: STD_ULOGIC ; 
signal p_wire21: STD_ULOGIC ; 
signal p_wire22: STD_ULOGIC ; 
signal p_wire23: STD_ULOGIC ; 
signal p_wire24: STD_ULOGIC ; 
signal p_wire25: STD_ULOGIC ; 
signal p_wire26: STD_ULOGIC ; 
signal p_wire27: STD_ULOGIC ; 
signal p_wire28: STD_ULOGIC ; 
signal p_wire29: STD_ULOGIC ; 
signal p_wire30: STD_ULOGIC ; 
signal p_wire31: STD_ULOGIC ; 
signal p_wire32: STD_ULOGIC ; 
signal p_wire33: STD_ULOGIC ; 
signal p_wire34: STD_ULOGIC ; 
signal p_wire35: STD_ULOGIC ; 
attribute RLOC : string; 
attribute RLOC of REG_A0 : label is "X0Y0" ; 
attribute RLOC of REG_A1 : label is "X0Y0" ; 
attribute RLOC of REG_A2 : label is "X0Y1" ; 
attribute RLOC of REG_A3 : label is "X0Y1" ; 
attribute RLOC of REG_A4 : label is "X0Y2" ; 
attribute RLOC of REG_A5 : label is "X0Y2" ; 
attribute RLOC of REG_A6 : label is "X0Y3" ; 
attribute RLOC of REG_A7 : label is "X0Y3" ; 
attribute RLOC of REG_A8 : label is "X0Y4" ; 
attribute RLOC of REG_A9 : label is "X0Y4" ; 
attribute RLOC of REG_A10: label is "X0Y5" ; 
attribute RLOC of REG_A11: label is "X0Y5" ; 
attribute RLOC of REG_A12: label is "X0Y6" ; 
attribute RLOC of REG_A13: label is "X0Y6" ; 
attribute RLOC of REG_A14: label is "X0Y7" ; 
attribute RLOC of REG_A15: label is "X0Y7" ; 
attribute RLOC of REG_A16: label is "X-1Y7"; 
attribute RLOC of REG_A17: label is "X-1Y7"; 
attribute RLOC of REG_B0 : label is "X2Y0" ; 
attribute RLOC of REG_B1 : label is "X2Y0" ; 
attribute RLOC of REG_B2 : label is "X2Y1" ; 
attribute RLOC of REG_B3 : label is "X2Y1" ; 
attribute RLOC of REG_B4 : label is "X2Y2" ; 
attribute RLOC of REG_B5 : label is "X2Y2" ; 
attribute RLOC of REG_B6 : label is "X2Y3" ; 
attribute RLOC of REG_B7 : label is "X2Y3" ; 
attribute RLOC of REG_B8 : label is "X2Y4" ; 
attribute RLOC of REG_B9 : label is "X2Y4" ; 
attribute RLOC of REG_B10: label is "X2Y5" ; 
attribute RLOC of REG_B11: label is "X2Y5" ; 
attribute RLOC of REG_B12: label is "X2Y6" ; 
attribute RLOC of REG_B13: label is "X2Y6" ; 
attribute RLOC of REG_B14: label is "X2Y7" ; 
attribute RLOC of REG_B15: label is "X2Y7" ; 
attribute RLOC of REG_B16: label is "X-1Y6"; 
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attribute RLOC of REG_B17: label is "X-1Y6"; 
attribute RLOC of REG_P0 : label is "X-2Y0"; 
attribute RLOC of REG_P1 : label is "X1Y0" ; 
attribute RLOC of REG_P2 : label is "X1Y0" ; 
attribute RLOC of REG_P3 : label is "X1Y1" ; 
attribute RLOC of REG_P4 : label is "X1Y1" ; 
attribute RLOC of REG_P5 : label is "X3Y0" ; 
attribute RLOC of REG_P6 : label is "X3Y0" ; 
attribute RLOC of REG_P7 : label is "X3Y1" ; 
attribute RLOC of REG_P8 : label is "X-2Y2"; 
attribute RLOC of REG_P9 : label is "X1Y2" ; 
attribute RLOC of REG_P10: label is "X1Y2" ; 
attribute RLOC of REG_P11: label is "X1Y3" ; 
attribute RLOC of REG_P12: label is "X1Y3" ; 
attribute RLOC of REG_P13: label is "X3Y2" ; 
attribute RLOC of REG_P14: label is "X3Y2" ; 
attribute RLOC of REG_P15: label is "X3Y3" ; 
attribute RLOC of REG_P16: label is "X-2Y4"; 
attribute RLOC of REG_P17: label is "X1Y4" ; 
attribute RLOC of REG_P18: label is "X1Y4" ; 
attribute RLOC of REG_P19: label is "X1Y5" ; 
attribute RLOC of REG_P20: label is "X1Y5" ; 
attribute RLOC of REG_P21: label is "X3Y4" ; 
attribute RLOC of REG_P22: label is "X3Y4" ; 
attribute RLOC of REG_P23: label is "X3Y5" ; 
attribute RLOC of REG_P24: label is "X-2Y6"; 
attribute RLOC of REG_P25: label is "X1Y6" ; 
attribute RLOC of REG_P26: label is "X1Y6" ; 
attribute RLOC of REG_P27: label is "X1Y7" ; 
attribute RLOC of REG_P28: label is "X1Y7" ; 
attribute RLOC of REG_P29: label is "X3Y6" ; 
attribute RLOC of REG_P30: label is "X3Y6" ; 
attribute RLOC of REG_P31: label is "X3Y7" ; 
attribute RLOC of REG_P32: label is "X3Y1" ; 
attribute RLOC of REG_P33: label is "X3Y3" ; 
attribute RLOC of REG_P34: label is "X3Y5" ; 
attribute RLOC of REG_P35: label is "X3Y7" ; 
attribute BEL : string; 
attribute BEL of REG_A0 : label is "FFX" ; 
attribute BEL of REG_A1 : label is "FFY" ; 
attribute BEL of REG_A2 : label is "FFX" ; 
attribute BEL of REG_A3 : label is "FFY" ; 
attribute BEL of REG_A4 : label is "FFX" ; 
attribute BEL of REG_A5 : label is "FFY" ; 
attribute BEL of REG_A6 : label is "FFX" ; 
attribute BEL of REG_A7 : label is "FFY" ; 
attribute BEL of REG_A8 : label is "FFX" ; 
attribute BEL of REG_A9 : label is "FFY" ; 
attribute BEL of REG_A10: label is "FFX" ; 
attribute BEL of REG_A11: label is "FFY" ; 
attribute BEL of REG_A12: label is "FFX" ; 
attribute BEL of REG_A13: label is "FFY" ; 
attribute BEL of REG_A14: label is "FFX" ; 
attribute BEL of REG_A15: label is "FFY" ; 
attribute BEL of REG_A16: label is "FFX" ; 
attribute BEL of REG_A17: label is "FFY" ; 
attribute BEL of REG_B0 : label is "FFX" ; 
attribute BEL of REG_B1 : label is "FFY" ; 
attribute BEL of REG_B2 : label is "FFX" ; 
attribute BEL of REG_B3 : label is "FFY" ; 
attribute BEL of REG_B4 : label is "FFX" ; 
attribute BEL of REG_B5 : label is "FFY" ; 
attribute BEL of REG_B6 : label is "FFX" ; 
attribute BEL of REG_B7 : label is "FFY" ; 
attribute BEL of REG_B8 : label is "FFX" ; 
attribute BEL of REG_B9 : label is "FFY" ; 
attribute BEL of REG_B10: label is "FFX" ; 
attribute BEL of REG_B11: label is "FFY" ; 
attribute BEL of REG_B12: label is "FFX" ; 
attribute BEL of REG_B13: label is "FFY" ; 
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attribute BEL of REG_B14: label is "FFX" ; 
attribute BEL of REG_B15: label is "FFY" ; 
attribute BEL of REG_B16: label is "FFX" ; 
attribute BEL of REG_B17: label is "FFY" ; 
attribute BEL of REG_P0 : label is "G" ; 
attribute BEL of REG_P1 : label is "F" ; 
attribute BEL of REG_P2 : label is "G" ; 
attribute BEL of REG_P3 : label is "F" ; 
attribute BEL of REG_P4 : label is "G" ; 
attribute BEL of REG_P5 : label is "F" ; 
attribute BEL of REG_P6 : label is "G" ; 
attribute BEL of REG_P7 : label is "F" ; 
attribute BEL of REG_P8 : label is "G" ; 
attribute BEL of REG_P9 : label is "F" ; 
attribute BEL of REG_P10: label is "G" ; 
attribute BEL of REG_P11: label is "F" ; 
attribute BEL of REG_P12: label is "G" ; 
attribute BEL of REG_P13: label is "F" ; 
attribute BEL of REG_P14: label is "G" ; 
attribute BEL of REG_P15: label is "F" ; 
attribute BEL of REG_P16: label is "G" ; 
attribute BEL of REG_P17: label is "F" ; 
attribute BEL of REG_P18: label is "G" ; 
attribute BEL of REG_P19: label is "F" ; 
attribute BEL of REG_P20: label is "G" ; 
attribute BEL of REG_P21: label is "F" ; 
attribute BEL of REG_P22: label is "G" ; 
attribute BEL of REG_P23: label is "F" ; 
attribute BEL of REG_P24: label is "G" ; 
attribute BEL of REG_P25: label is "F" ; 
attribute BEL of REG_P26: label is "G" ; 
attribute BEL of REG_P27: label is "F" ; 
attribute BEL of REG_P28: label is "G" ; 
attribute BEL of REG_P29: label is "F" ; 
attribute BEL of REG_P30: label is "G" ; 
attribute BEL of REG_P31: label is "G" ; 
attribute BEL of REG_P32: label is "G" ; 
attribute BEL of REG_P33: label is "G" ; 
attribute BEL of REG_P34: label is "G" ; 
attribute BEL of REG_P35: label is "F" ; 
attribute MAXDELAY : string; 
attribute MAXDELAY of a_wire0: signal is "500 ps"; 
attribute MAXDELAY of a_wire1: signal is "500 ps"; 
attribute MAXDELAY of a_wire2: signal is "500 ps"; 
attribute MAXDELAY of a_wire3: signal is "500 ps"; 
attribute MAXDELAY of a_wire4: signal is "500 ps"; 
attribute MAXDELAY of a_wire5: signal is "500 ps"; 
attribute MAXDELAY of a_wire6: signal is "500 ps"; 
attribute MAXDELAY of a_wire7: signal is "500 ps"; 
attribute MAXDELAY of a_wire8: signal is "500 ps"; 
attribute MAXDELAY of a_wire9: signal is "500 ps"; 
attribute MAXDELAY of a_wire10: signal is "500 ps"; 
attribute MAXDELAY of a_wire11: signal is "500 ps"; 
attribute MAXDELAY of a_wire12: signal is "500 ps"; 
attribute MAXDELAY of a_wire13: signal is "500 ps"; 
attribute MAXDELAY of a_wire14: signal is "500 ps"; 
attribute MAXDELAY of a_wire15: signal is "500 ps"; 
attribute MAXDELAY of a_wire16: signal is "500 ps"; 
attribute MAXDELAY of a_wire17: signal is "500 ps"; 
attribute MAXDELAY of b_wire0: signal is "500 ps"; 
attribute MAXDELAY of b_wire1: signal is "500 ps"; 
attribute MAXDELAY of b_wire2: signal is "500 ps"; 
attribute MAXDELAY of b_wire3: signal is "500 ps"; 
attribute MAXDELAY of b_wire4: signal is "500 ps"; 
attribute MAXDELAY of b_wire5: signal is "500 ps"; 
attribute MAXDELAY of b_wire6: signal is "500 ps"; 
attribute MAXDELAY of b_wire7: signal is "500 ps"; 
attribute MAXDELAY of b_wire8: signal is "500 ps"; 
attribute MAXDELAY of b_wire9: signal is "500 ps"; 
attribute MAXDELAY of b_wire10: signal is "500 ps"; 
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attribute MAXDELAY of b_wire11: signal is "500 ps"; 
attribute MAXDELAY of b_wire12: signal is "500 ps"; 
attribute MAXDELAY of b_wire13: signal is "500 ps"; 
attribute MAXDELAY of b_wire14: signal is "500 ps"; 
attribute MAXDELAY of b_wire15: signal is "500 ps"; 
attribute MAXDELAY of b_wire16: signal is "500 ps"; 
attribute MAXDELAY of b_wire17: signal is "500 ps"; 
attribute MAXDELAY of p_wire0: signal is "500 ps"; 
attribute MAXDELAY of p_wire1: signal is "500 ps"; 
attribute MAXDELAY of p_wire2: signal is "500 ps"; 
attribute MAXDELAY of p_wire3: signal is "500 ps"; 
attribute MAXDELAY of p_wire4: signal is "500 ps"; 
attribute MAXDELAY of p_wire5: signal is "500 ps"; 
attribute MAXDELAY of p_wire6: signal is "500 ps"; 
attribute MAXDELAY of p_wire7: signal is "500 ps"; 
attribute MAXDELAY of p_wire8: signal is "500 ps"; 
attribute MAXDELAY of p_wire9: signal is "500 ps"; 
attribute MAXDELAY of p_wire10: signal is "500 ps"; 
attribute MAXDELAY of p_wire11: signal is "500 ps"; 
attribute MAXDELAY of p_wire12: signal is "500 ps"; 
attribute MAXDELAY of p_wire13: signal is "500 ps"; 
attribute MAXDELAY of p_wire14: signal is "500 ps"; 
attribute MAXDELAY of p_wire15: signal is "500 ps"; 
attribute MAXDELAY of p_wire16: signal is "500 ps"; 
attribute MAXDELAY of p_wire17: signal is "500 ps"; 
attribute MAXDELAY of p_wire18: signal is "500 ps"; 
attribute MAXDELAY of p_wire19: signal is "500 ps"; 
attribute MAXDELAY of p_wire20: signal is "500 ps"; 
attribute MAXDELAY of p_wire21: signal is "500 ps"; 
attribute MAXDELAY of p_wire22: signal is "500 ps"; 
attribute MAXDELAY of p_wire23: signal is "500 ps"; 
attribute MAXDELAY of p_wire24: signal is "500 ps"; 
attribute MAXDELAY of p_wire25: signal is "500 ps"; 
attribute MAXDELAY of p_wire26: signal is "500 ps"; 
attribute MAXDELAY of p_wire27: signal is "500 ps"; 
attribute MAXDELAY of p_wire28: signal is "500 ps"; 
attribute MAXDELAY of p_wire29: signal is "500 ps"; 
attribute MAXDELAY of p_wire30: signal is "500 ps"; 
attribute MAXDELAY of p_wire31: signal is "500 ps"; 
attribute MAXDELAY of p_wire32: signal is "500 ps"; 
attribute MAXDELAY of p_wire33: signal is "500 ps"; 
attribute MAXDELAY of p_wire34: signal is "500 ps"; 
attribute MAXDELAY of p_wire35: signal is "500 ps"; 
begin 
REG_A0  : FDR port map(Q => a_wire0   , C => CLK, D => A(0)  , R => RST); 
REG_A1  : FDR port map(Q => a_wire1   , C => CLK, D => A(1)  , R => RST); 
REG_A2  : FDR port map(Q => a_wire2   , C => CLK, D => A(2)  , R => RST); 
REG_A3  : FDR port map(Q => a_wire3   , C => CLK, D => A(3)  , R => RST); 
REG_A4  : FDR port map(Q => a_wire4   , C => CLK, D => A(4)  , R => RST); 
REG_A5  : FDR port map(Q => a_wire5   , C => CLK, D => A(5)  , R => RST); 
REG_A6  : FDR port map(Q => a_wire6   , C => CLK, D => A(6)  , R => RST); 
REG_A7  : FDR port map(Q => a_wire7   , C => CLK, D => A(7)  , R => RST); 
REG_A8  : FDR port map(Q => a_wire8   , C => CLK, D => A(8)  , R => RST); 
REG_A9  : FDR port map(Q => a_wire9   , C => CLK, D => A(9)  , R => RST); 
REG_A10 : FDR port map(Q => a_wire10  , C => CLK, D => A(10) , R => RST); 
REG_A11 : FDR port map(Q => a_wire11  , C => CLK, D => A(11) , R => RST); 
REG_A12 : FDR port map(Q => a_wire12  , C => CLK, D => A(12) , R => RST); 
REG_A13 : FDR port map(Q => a_wire13  , C => CLK, D => A(13) , R => RST); 
REG_A14 : FDR port map(Q => a_wire14  , C => CLK, D => A(14) , R => RST); 
REG_A15 : FDR port map(Q => a_wire15  , C => CLK, D => A(15) , R => RST); 
REG_A16 : FDR port map(Q => a_wire16  , C => CLK, D => A(16) , R => RST); 
REG_A17 : FDR port map(Q => a_wire17  , C => CLK, D => A(17) , R => RST); 
REG_B0  : FDR port map(Q => b_wire0   , C => CLK, D => B(0)  , R => RST); 
REG_B1  : FDR port map(Q => b_wire1   , C => CLK, D => B(1)  , R => RST); 
REG_B2  : FDR port map(Q => b_wire2   , C => CLK, D => B(2)  , R => RST); 
REG_B3  : FDR port map(Q => b_wire3   , C => CLK, D => B(3)  , R => RST); 
REG_B4  : FDR port map(Q => b_wire4   , C => CLK, D => B(4)  , R => RST); 
REG_B5  : FDR port map(Q => b_wire5   , C => CLK, D => B(5)  , R => RST); 
REG_B6  : FDR port map(Q => b_wire6   , C => CLK, D => B(6)  , R => RST); 
REG_B7  : FDR port map(Q => b_wire7   , C => CLK, D => B(7)  , R => RST); 
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REG_B8  : FDR port map(Q => b_wire8   , C => CLK, D => B(8)  , R => RST); 
REG_B9  : FDR port map(Q => b_wire9   , C => CLK, D => B(9)  , R => RST); 
REG_B10 : FDR port map(Q => b_wire10  , C => CLK, D => B(10) , R => RST); 
REG_B11 : FDR port map(Q => b_wire11  , C => CLK, D => B(11) , R => RST); 
REG_B12 : FDR port map(Q => b_wire12  , C => CLK, D => B(12) , R => RST); 
REG_B13 : FDR port map(Q => b_wire13  , C => CLK, D => B(13) , R => RST); 
REG_B14 : FDR port map(Q => b_wire14  , C => CLK, D => B(14) , R => RST); 
REG_B15 : FDR port map(Q => b_wire15  , C => CLK, D => B(15) , R => RST); 
REG_B16 : FDR port map(Q => b_wire16  , C => CLK, D => B(16) , R => RST); 
REG_B17 : FDR port map(Q => b_wire17  , C => CLK, D => B(17) , R => RST); 
inst_mult18x18s : MULT18X18S port map( 

P(0) => p_wire0,   P(1) => p_wire1,   P(2) => p_wire2,   P(3) => p_wire3,   P(4) => p_wire4,   P(5) => p_wire5,  
P(6) => p_wire6,   P(7) => p_wire7,   P(8) => p_wire8,   P(9) => p_wire9,   P(10) => p_wire10, P(11) => p_wire11,  
P(12) => p_wire12, P(13) => p_wire13, P(14) => p_wire14, P(15) => p_wire15, P(16) => p_wire16, P(17) => p_wire17,  
P(18) => p_wire18, P(19) => p_wire19, P(20) => p_wire20, P(21) => p_wire21, P(22) => p_wire22, P(23) => p_wire23,  
P(24) => p_wire24, P(25) => p_wire25, P(26) => p_wire26, P(27) => p_wire27, P(28) => p_wire28, P(29) => p_wire29, 
P(30) => p_wire30, P(31) => p_wire31, P(32) => p_wire32, P(33) => p_wire33, P(34) => p_wire34, P(35) => p_wire35, 

 (0) => a_wire0,   A(1) => a_wire1,   A(2) => a_wire2,   A(3) => a_wire3,   A(4) => a_wire4,   A(5) => a_wire5,  
 A(6) => a_wire6,   A(7) => a_wire7,   A(8) => a_wire8,   A(9) => a_wire9,   A(10) => a_wire10, A(11) => a_wire11,  
 A(12) => a_wire12, A(13) => a_wire13, A(14) => a_wire14, A(15) => a_wire15, A(16) => a_wire16, A(17) => a_wire17, 
 B(0) => b_wire0,   B(1) => b_wire1,   B(2) => b_wire2,   B(3) => b_wire3,   B(4) => b_wire4,   B(5) => b_wire5,  
 B(6) => b_wire6,   B(7) => b_wire7,   B(8) => b_wire8,   B(9) => b_wire9,   B(10) => b_wire10, B(11) => b_wire11,  
 B(12) => b_wire12, B(13) => b_wire13, B(14) => b_wire14, B(15) => b_wire15, B(16) => b_wire16, B(17) => b_wire17, 
 C => CLK, CE => CE, R => RST); 
REG_P0  : SRL16 port map(Q => P(0)  , CLK => CLK, D => p_wire0   , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P1  : SRL16 port map(Q => P(1)  , CLK => CLK, D => p_wire1   , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P2  : SRL16 port map(Q => P(2)  , CLK => CLK, D => p_wire2   , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P3  : SRL16 port map(Q => P(3)  , CLK => CLK, D => p_wire3   , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P4  : SRL16 port map(Q => P(4)  , CLK => CLK, D => p_wire4   , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P5  : SRL16 port map(Q => P(5)  , CLK => CLK, D => p_wire5   , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P6  : SRL16 port map(Q => P(6)  , CLK => CLK, D => p_wire6   , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P7  : SRL16 port map(Q => P(7)  , CLK => CLK, D => p_wire7   , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P8  : SRL16 port map(Q => P(8)  , CLK => CLK, D => p_wire8   , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P9  : SRL16 port map(Q => P(9)  , CLK => CLK, D => p_wire9   , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P10 : SRL16 port map(Q => P(10) , CLK => CLK, D => p_wire10   , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P11 : SRL16 port map(Q => P(11) , CLK => CLK, D => p_wire11   , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P12 : SRL16 port map(Q => P(12) , CLK => CLK, D => p_wire12   , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P13 : SRL16 port map(Q => P(13) , CLK => CLK, D => p_wire13   , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P14 : SRL16 port map(Q => P(14) , CLK => CLK, D => p_wire14   , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P15 : SRL16 port map(Q => P(15) , CLK => CLK, D => p_wire15   , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P16 : SRL16 port map(Q => P(16) , CLK => CLK, D => p_wire16   , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P17 : SRL16 port map(Q => P(17) , CLK => CLK, D => p_wire17   , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P18 : SRL16 port map(Q => P(18) , CLK => CLK, D => p_wire18   , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P19 : SRL16 port map(Q => P(19) , CLK => CLK, D => p_wire19   , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P20 : SRL16 port map(Q => P(20) , CLK => CLK, D => p_wire20   , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P21 : SRL16 port map(Q => P(21) , CLK => CLK, D => p_wire21  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P22 : SRL16 port map(Q => P(22) , CLK => CLK, D => p_wire22  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
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REG_P23 : SRL16 port map(Q => P(23) , CLK => CLK, D => p_wire23  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P24 : SRL16 port map(Q => P(24) , CLK => CLK, D => p_wire24  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P25 : SRL16 port map(Q => P(25) , CLK => CLK, D => p_wire25  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P26 : SRL16 port map(Q => P(26) , CLK => CLK, D => p_wire26  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P27 : SRL16 port map(Q => P(27) , CLK => CLK, D => p_wire27  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P28 : SRL16 port map(Q => P(28) , CLK => CLK, D => p_wire28  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P29 : SRL16 port map(Q => P(29) , CLK => CLK, D => p_wire29  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P30 : SRL16 port map(Q => P(30) , CLK => CLK, D => p_wire30  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P31 : SRL16 port map(Q => P(31) , CLK => CLK, D => p_wire31  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P32 : SRL16 port map(Q => P(32) , CLK => CLK, D => p_wire32  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P33 : SRL16 port map(Q => P(33) , CLK => CLK, D => p_wire33  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P34 : SRL16 port map(Q => P(34) , CLK => CLK, D => p_wire34  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
REG_P35 : SRL16 port map(Q => P(35) , CLK => CLK, D => p_wire35  , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 => 
Dly(3)); 
 
end Behavioral; 
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APPENDIX D. C CODE FILTER 

The code in this section is representative of all the code used for various portions 

of the project.  The main.c code returns output files containing either filtered or unfiltered 

data collected by the SRC-6.  The unfiltered data is the same data that was processed by 

the internal filter to produce the filtered data.  Data is returned to the main function 

packed into 64-bit words, which are then unpacked into individual variable that are 

printed in the output files with six values on each line separated by commas.  This format 

is easily imported into any spreadsheet or math program.  Since the filtered data is a 

signed value, the code determines the sign bit and extends it if required.  The function t6c 

in the first loop of the t6d.mc code block is the call to the VHDL macro that captures the 

data, and in this case, returns both the unfiltered data and data filtered by the VHDL high 

pass filter.  The C code version of the high pass filter is applied to the unfiltered output 

and a total of three outputs are returned to the main function. 
*************************MAIN.C CODE BLOCK************************* 

 
static char const cvsid[] = "$Id: main.c,v 2.1 2005/06/14 22:16:48 jls Exp $"; 
#include <libmap.h> 
#include <stdlib.h> 
void t6d (int64_t A[], int64_t B[], int64_t C[], int64_t *time, int mapnum); 
int main (int argc, char *argv[]) { 
   FILE *raw, *vhd, *ccode; 
    if (argc < 4) { 
   fprintf (stderr, "USAGE: t6dexe <raw data ouput file> <vhdl ouput file> <c code ouput file>\n"); 
   exit (1); 
        } 
 
    if ((raw = fopen (argv[1], "w")) == NULL) { 
        fprintf (stderr, "failed to open raw data ouput file\n"); 
        exit (1); 
        } 
    if ((vhd = fopen (argv[2], "w")) == NULL) { 
        fprintf (stderr, "failed to open vhdl data ouput file\n"); 
        exit (1); 
        } 
    if ((ccode = fopen (argv[3], "w")) == NULL) { 
        fprintf (stderr, "failed to open c code data ouput file\n"); 
        exit (1); 
        } 
    int i; 
    int64_t *A, *B, *C; 
    int64_t tm, tm2; 
    int mapnum = 0; 
    int o1[10000]; 
    int o2[10000]; 
    int o3[10000]; 
    int o4[10000]; 
    int o5[10000]; 
    int o6[10000]; 
    int o7[10000]; 
    int o8[10000]; 
    int r1[10000]; 
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    int r2[10000]; 
    int r3[10000]; 
    int r4[10000]; 
    int r5[10000]; 
    int r6[10000]; 
    int r7[10000]; 
    int r8[10000]; 
    int c1[10000]; 
    int c2[10000]; 
    int c3[10000]; 
    int c4[10000]; 
    int c5[10000]; 
    int c6[10000]; 
    int c7[10000]; 
    int c8[10000]; 
     
    A = (int64_t*) malloc (MAX_OBM_SIZE * sizeof (int64_t)); 
    B = (int64_t*) malloc (MAX_OBM_SIZE * sizeof (int64_t)); 
    C = (int64_t*) malloc (MAX_OBM_SIZE * sizeof (int64_t)); 
    map_allocate (1); 
 
    t6d (A, B, C, &tm, mapnum); 
 
    printf ("%lld clocks\n", tm); 
 
    for (i=0; i<10000; i++) { 
   o3[i]=(A[i] >> 40) & 0x00000000000000ff; 
    if (o3[i]>128) o3[i]=o3[i] | 0xffffffffffffff00; 
   o4[i]=(A[i] >> 32) & 0x00000000000000ff; 
    if (o4[i]>128) o4[i]=o4[i] | 0xffffffffffffff00; 
   o5[i]=(A[i] >> 24) & 0x00000000000000ff; 
    if (o5[i]>128) o5[i]=o5[i] | 0xffffffffffffff00; 
   o6[i]=(A[i] >> 16) & 0x00000000000000ff; 
    if (o6[i]>128) o6[i]=o6[i] | 0xffffffffffffff00; 
   o7[i]=(A[i] >> 8) & 0x00000000000000ff; 
    if (o7[i]>128) o7[i]=o7[i] | 0xffffffffffffff00; 
   o8[i]=A[i] & 0x00000000000000ff; 
    if (o8[i]>128) o8[i]=o8[i] | 0xffffffffffffff00; 
  
 
   r3[i]=(B[i] >> 40) & 0x00000000000000ff; 
   r4[i]=(B[i] >> 32) & 0x00000000000000ff; 
   r5[i]=(B[i] >> 24) & 0x00000000000000ff; 
   r6[i]=(B[i] >> 16) & 0x00000000000000ff; 
   r7[i]=(B[i] >> 8) & 0x00000000000000ff; 
   r8[i]=B[i] & 0x00000000000000ff; 
 
   c3[i]=(C[i] >> 40) & 0x00000000000000ff; 
   c4[i]=(C[i] >> 32) & 0x00000000000000ff; 
   c5[i]=(C[i] >> 24) & 0x00000000000000ff; 
   c6[i]=(C[i] >> 16) & 0x00000000000000ff; 
   c7[i]=(C[i] >> 8) & 0x00000000000000ff; 
   c8[i]=C[i] & 0x00000000000000ff; 
  } 
  for (i=0; i<10000; i++) { 
           fprintf (vhd, "%d,%d,%d,%d,%d,%d,%d,%d\n", i,o3[i],o4[i],o5[i],o6[i],o7[i],o8[i],o2[i]); 
  } 
  for (i=0; i<10000; i++) { 
           fprintf (raw, "%d,%d,%d,%d,%d,%d,%d\n", i,r3[i],r4[i],r5[i],r6[i],r7[i],r8[i]); 
  } 
  for (i=0; i<10000; i++) { 
           fprintf (ccode, "%d,%d,%d,%d,%d,%d,%d\n", i,c3[i],c4[i],c5[i],c6[i],c7[i],c8[i]); 
  } 
    map_free (1); 
    exit(0); 
    } 
 

*************************T6D.MC CODE BLOCK************************* 
#include <libmap.h> 
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void t6d (int64_t A[], int64_t B[], int64_t C[],int64_t *time, int mapnum) { 
    OBM_BANK_A (AL, int64_t, MAX_OBM_SIZE) 
    OBM_BANK_B (BL, int64_t, MAX_OBM_SIZE) 
    OBM_BANK_C (CL, int64_t, MAX_OBM_SIZE) 
    int64_t t0, t1, out, outraw; 
    int i, out2; 
    int8_t s0,s1,s2,s3,s4,s5,s6,s7; 
    int8_t pad=0; 
    int16_t n0=0; 
    int16_t n1=0; 
    int16_t n2=0; 
    int16_t n3=0; 
    int16_t n4=0; 
    int16_t n5=0; 
    int n0c1=0; 
    int n0c3=0; 
    int n0c5=0; 
    int n1c2=0; 
    int n1c4=0; 
    int n1c6=0; 
    int n2c1=0; 
    int n2c3=0; 
    int n2c5=0; 
    int n3c2=0; 
    int n3c4=0; 
    int n3c6=0; 
    int n4c1=0; 
    int n4c3=0; 
    int n4c5=0; 
    int n5c2=0; 
    int n5c4=0; 
    int n5c6=0; 
    int i0=0; 
    int i1=0; 
    int i2=0; 
    int i3=0; 
    int i4=0; 
    int i5=0; 
    int i6=0; 
    int i6t1=0; 
    int i6t2=0; 
    int i7=0; 
    int i8=0; 
    int i8t1=0; 
    int j0=0; 
    int j1=0; 
    int j2=0; 
    int k0=0; 
    int k1=0; 
    int k2=0; 
    int k3=0; 
    int k4=0; 
    int k5=0; 
    int8_t k0t=0; 
    int8_t k1t=0; 
    int8_t k2t=0; 
    int8_t k3t=0; 
    int8_t k4t=0; 
    int8_t k5t=0; 
    int kd01,kd02,kd03,kd11,kd12,kd13,kd21,kd22,kd23,kd31,kd32,kd33,kd41,kd42,kd43,kd51,kd52,kd53; 
  
    read_timer (&t0); 
 
    for (i=0; i<MAX_OBM_SIZE; i++) 
    { 
   t6c(&out, &outraw); 
   AL[i] =  out; 
   BL[i] =  outraw; 
    } 
    for (i=0; i<MAX_OBM_SIZE; i++) 



104 

    { 
    split_64to8(BL[i], &s6, &s7, &s0, &s1, &s2, &s3, &s4, &s5); 
  
        k3 = k0; 
        k4 = k1; 
        k5 = k2; 
         
        k0 = i2 + j2; 
        k1 = i6t2 + j0; 
        k2 = i8t1 + j1; 
         
        split_32to8(k0, &k0t, &kd01, &kd02, &kd03); 
        split_32to8(k1, &k1t, &kd11, &kd12, &kd13); 
        split_32to8(k2, &k2t, &kd21, &kd22, &kd23); 
        split_32to8(k3, &k3t, &kd31, &kd32, &kd33); 
        split_32to8(k4, &k4t, &kd41, &kd42, &kd43); 
        split_32to8(k5, &k5t, &kd51, &kd52, &kd53); 
 
        comb_8to64(pad, pad, k1t,k2t,k0t,k4t,k5t,k3t, &CL[i]); 
         
        j0 = i1 + i5; 
        j1 = i0 + i4; 
        j2 = i3 + i7; 
         
        i8t1=i8; 
        i6t2=i6t1; 
        i6t1=i6; 
     
        i0=n0c1+n1c2; 
        i1=n0c3+n1c4; 
        i2=n0c5+n1c6; 
        i3=n2c1+n3c2; 
        i4=n2c3+n3c4; 
        i5=n2c5+n3c6; 
        i6=n4c1+n5c2; 
        i7=n4c3+n5c4; 
        i8=n4c5+n5c6; 
      
        n0c1=n0*1881; 
        n0c3=n0*21509; 
        n0c5=n0*9372; 
        n1c2=n1*9372; 
        n1c4=n1*21509; 
        n1c6=n1*1881; 
        n2c1=n2*1881; 
        n2c3=n2*21509; 
        n2c5=n2*9372; 
        n3c2=n3*9372; 
        n3c4=n3*21509; 
        n3c6=n3*1881; 
        n4c1=n4*1881; 
        n4c3=n4*21509; 
        n4c5=n4*9372; 
        n5c2=n5*9372; 
        n5c4=n5*21509; 
        n5c6=n5*1881; 
      comb_8to16(s0, pad, &n0); 
      comb_8to16(s1, pad, &n1); 
      comb_8to16(s2, pad, &n2); 
      comb_8to16(s3, pad, &n3); 
      comb_8to16(s4, pad, &n4); 
      comb_8to16(s5, pad, &n5); 
    } 
    read_timer (&t1); 
    *time = t1 - t0; 
    DMA_CPU (OBM2CM, AL, MAP_OBM_stripe(1,"A"), A, 1, MAX_OBM_SIZE*sizeof(int64_t), 0); 
    DMA_CPU (OBM2CM, BL, MAP_OBM_stripe(1,"B"), B, 1, MAX_OBM_SIZE*sizeof(int64_t), 0); 
    DMA_CPU (OBM2CM, CL, MAP_OBM_stripe(1,"C"), C, 1, MAX_OBM_SIZE*sizeof(int64_t), 0); 
    wait_DMA (0); 
} 
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APPENDIX E. MATLAB CODE 

This section contains the MATLAB code used to format that output data from the 

SRC-6 and to generate reference calculations with which to compare the QMF data 

generated on the SRC-6 .  The splitter function is used to de-interleave the processed 

output data from the SRC-6 QMF implementations.  The lfilter and hfilter functions are 

called by the qmf3 function or individually to generate comparison data from the 

unprocessed samples from the ADC. The lfilter function is not included but is identical to 

the hfilter function except for the filter coefficients. 
 
function [out] = seri(in,length) 
for m = 1:length 
    for n = 1:6 
        out(6*(m-1)+n) = in(m,n); 
    end 
end 
********************************************************************************* 
function [out] = splitter(in) 
for i = 1:8 
    for m = (i+8):8:8008 
        for n = 1:6 
            out(i,6*(((m-i)/8)-1)+n) = in(m-8,n); 
        end 
    end 
end 
********************************************************************************* 
function [lout] = hfilter(in,stage) 
hc1 = .0287; 
hc2 = .1430; 
hc3 = .3282; 
hc4 = .3282; 
hc5 = .1430; 
hc6 = .0287; 
in(stage+1)=0; 
in(stage+2)=0; 
in(stage+3)=0; 
in(stage+4)=0; 
in(stage+5)=0; 
in(stage+6)=0; 
for m = 1:2:stage 
    lout(m) = hc1*in(m+5)+hc2*in(m+4)+hc3*in(m+3)+hc4*in(m+2)+hc5*in(m+1)+hc6*in(m); 
end 
lout=lout(1:2:stage); 
********************************************************************************* 
function [lout] = qmf3(in) 
 
lout(9,:) = in; 
 
hhh=hfilter(in,6000);  
hhh=hfilter(hhh,3000);  
hhh=hfilter(hhh,1500);  
 
lhh=lfilter(in,6000);  
lhh=hfilter(lhh,3000);  
lhh=hfilter(lhh,1500);  
 
hlh=hfilter(in,6000);  
hlh=lfilter(hlh,3000);  
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hlh=hfilter(hlh,1500);  
 
llh=lfilter(in,6000);  
llh=lfilter(llh,3000);  
llh=hfilter(llh,1500);  
 
hhl=hfilter(in,6000);  
hhl=hfilter(hhl,3000);  
hhl=lfilter(hhl,1500);  
 
lhl=lfilter(in,6000);  
lhl=hfilter(lhl,3000);  
lhl=lfilter(lhl,1500);  
 
hll=hfilter(in,6000);  
hll=lfilter(hll,3000);  
hll=lfilter(hll,1500);  
 
lll=lfilter(in,6000);  
lll=lfilter(lll,3000);  
lll=lfilter(lll,1500);  
 
lout(1,1:750)=hhh; 
lout(2,1:750)=lhh; 
lout(3,1:750)=hlh; 
lout(4,1:750)=llh; 
lout(5,1:750)=hhl; 
lout(6,1:750)=lhl; 
lout(7,1:750)=hll; 
lout(8,1:750)=lll; 
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APPENDIX F. SAMPLE DATA 
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Figure 39.   High Resolution View of 1MHz Sine Wave 
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Figure 40.   High Resolution View of 1MHz Square Wave 
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Figure 41.   High Resolution View of 1MHz Cardiac Wave 
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