

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

IMPLEMENTATION OF A QUADRATURE MIRROR
FILTER BANK ON AN SRC RECONFIGURABLE

COMPUTER FOR REAL-TIME SIGNAL PROCESSING

by

Kevin M. Stoffell

September 2006

 Thesis Advisor: Douglas J. Fouts
 Second Reader: Jon T. Butler

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the
time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters
Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Implementation of a Quadrature Mirror Filter Bank on
an SRC Reconfigurable Computer for Real-Time Signal Processing
6. AUTHOR(S) Kevin M. Stoffell

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Security Agency
Fort Meade, MD

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis describes the design and implementation of a Quadrature Mirror Filter Bank on a

general purpose Field Programmable Gate Array. The physical connections and signaling specifications for
connecting an Analog to Digital converter to a Reconfigurable Computer system manufactured by SRC
Computers Incorporated are discussed. Design and implementation of a fully functional prototype
Quadrature Mirror Filter Bank is detailed, with a discussion for extending the functionality to larger more
practical designs. Performance and device utilization results between the Quadrature Mirror Filter Bank
implemented in VHDL, design elements implemented in the C programming language, and calculations
made using high precision mathematical tools are compared, along with relative effort levels required to
achieve results using the different hardware instantiation methods.

15. NUMBER OF
PAGES 134

14. SUBJECT TERMS Quadrature Mirror Filter (QMF), Reconfigurable Computer, Field
Programmable Gate Array (FPGA), Signal Processing, VHDL, Analog to Digital Converter (ADC)

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

IMPLEMENTATION OF A QUADRATURE MIRROR FILTER BANK ON AN
SRC RECONFIGURABLE COMPUTER FOR REAL-TIME SIGNAL

PROCESSING

Kevin M. Stoffell
Captain, United States Marine Corps

B.S., University of South Carolina, 1999

Submitted in partial fulfillment of the
requirements for the degree of

MASTER SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2006

Author: Kevin M. Stoffell

Approved by: Douglas J. Fouts
Thesis Advisor

Jon T. Butler
Second Reader

Jeffrey B. Knorr
Chairman, Department of Electrical and Computer Engineering

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis describes the design and implementation of a Quadrature Mirror Filter

Bank on a high-performance Reconfigurable Computer implemented with Field

Programmable Gate Arrays. The physical connections and signaling specifications for

connecting an Analog to Digital Converter to the Reconfigurable Computer system

manufactured by SRC Computers Incorporated are discussed. Design and implementation

of a fully functional prototype Quadrature Mirror Filter Bank is detailed, with a

discussion for extending the functionality to larger more practical designs. Performance

and device utilization results between the Quadrature Mirror Filter Bank implemented in

VHDL, design elements implemented in the C programming language, and calculations

made using high precision mathematical tools are compared, along with relative effort

levels required to achieve results using the different hardware instantiation methods.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PURPOSE...1
B. DESIGN OVERVIEW...2

1. Hardware Elements ...3
2. Software Elements ...3
3. Mathematical Elements ...4

C. THESIS ORGANIZATION..4

II. BACKGROUND ..7
A. QUADRATURE MIRROR FILTER BANK AS PART OF AN LPI

ELINT DETECTION SYSTEM...7
B. RELATED WORK ..8

1. Filter Design Principals ...8
2. General FPGA Design Practices...8
3. Previous SRC-6 Hardware Interface Designs9

III. HARDWARE ELEMENTS ..11
A. OVERVIEW...11
B. SRC RECONFIGURABLE COMPUTER..11

1. Microprocessor...12
2. MAP ..13
3. Software Environment...14

C. XILINX FPGA ...15
1. FPGA Structure ...16
2. Key Elements..17
3. Xilinx Tools...19

D. ANALOG TO DIGITAL CONVERTER ..19
1. ADC Specifications ..20
2. Board Specifications ..21

IV. HARDWARE INTERFACE...25
A. INTRODUCTION..25
B. PHYSICAL INTERFACE ..26

1. Electrical Specifications...27
2. Pin to Pin Connection Requirements ...28

C. LOGICAL INTERFACE ..29
1. LVDS Input Buffer ..30
2. Input Registers ...31
3. Clock Generation ...34
4. Clock Synchronization...37

a. Addressing Circuit...39

V. QUADRATURE MIRROR FILTER BANK IMPLEMENTATION41
A. OVERVIEW...41

 viii

1. Design Requirements ...41
2. Design Element Options ..42

a. Multiplier Instantiation...42
b. Bit Truncation...43
c. Filter Coefficient Selection...44

B. DATA INTERLEAVING TO REDUCE HARDWARE
REQUIREMENTS...46
1. Single Input Data Interleaving ...47
2. Parallel Input Data Interleaving...48

C. IMPLEMENTATION IN VHDL ...49
1. Number System ..49
2. Filter Stage Structure ..51

a. Multipliers ...52
b. Adders ..53
c. Delay elements...54
d. Truncation...54
e. Output Multiplexer..55

3. Pipeline Timing ..55
D. IMPLEMENTATION IN SRC C CODE ..58
E. IMPLEMENTATION IN MATLAB ...59

VI. PERFORMANCE RESULTS AND COMPARISONS ..61
A. HARDWARE INTERFACE RESULTS..61
B. HARDWARE UTILIZATION ...63

1. Full design...63
2. VHDL Filter Element ..64
3. C Code Filter Element ...64

C. EXPANSION OPTIONS...65
D. QMF PERFORMANCE..66

VII. CONCLUSION ..73
A. SUMMARY ..73

1. Practical Limitations ...74
2. Data Interleaving ...74
3. C Code versus VHDL on the SRC-6 ..75

B. SUGGESTED FUTURE WORK ...75

APPENDIX A. PHYSICAL INTERFACE MAPPINGS..77

APPENDIX B. LOGICAL INTERFACE SCHEMATICS79

APPENDIX C. QMF VHDL CODE ...85

APPENDIX D. C CODE FILTER ..101

APPENDIX E. MATLAB CODE ...105

APPENDIX F. SAMPLE DATA...107

LIST OF REFERENCES..111

 ix

INITIAL DISTRIBUTION LIST ...113

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. QMF Data Flow Diagram ..3
Figure 2. LPI Detection and Classification system (From [1]) ...7
Figure 3. Quadrature Mirror Filter Bank (From [1])...8
Figure 4. Simplified SRC-6 Architecture..12
Figure 5. Xilinx Virtex-II Architecture Overview (From [16])16
Figure 6. Xilinx FPGA Slice Configuration (From [16])..16
Figure 7. ADC Block Diagram (From [18])..20
Figure 8. ADC Output Timing in SDR Mode (From [18]) ...21
Figure 9. ADC Board ..21
Figure 10. Hardware Interface Block Diagram...25
Figure 11. Physical Interface...26
Figure 12. Custom Cable Assembly..28
Figure 13. Input Registers ...31
Figure 14. Timing Diagram for 300 MHz Input ...32
Figure 15. High Pass Filter Frequency Response..45
Figure 16. Low Pass Filter Frequency Response ..45
Figure 17. Annotated QMF Tree...46
Figure 18. Single Input Data Interleaving QMF Design ...47
Figure 19. 6 Parallel Input QMF ...48
Figure 20. Binary Number System..50
Figure 21. 6 Tap, 6 Input, Pipelined FIR filter..52
Figure 22. First Stage QMF Pipeline Timing Diagram...56
Figure 23. Second Stage QMF Pipeline Timing Diagram ..57
Figure 24. Third Stage QMF Pipeline Timing ..58
Figure 25. Selected Input Waveforms Sampled at 600 MSps...61
Figure 26. 1 MHz Sine Wave Sampled at 600 MSps..62
Figure 27. Comparison of 1Mhz Sine Wave Through the QMF Path67
Figure 28. Comparison of 1Mhz Sine Wave Through the QMF Path68
Figure 29. Comparison of 1Mhz Cardiac Wave Through the QMF Path68
Figure 30. Comparison of 1Mhz Cardiac Wave Through the QMF Path69
Figure 31. Comparison of 1Mhz Sine Wave Through the QMF Path69
Figure 32. Comparison of 1Mhz Cardiac Wave Through the QMF Path70
Figure 33. Logical Interface Input Register Block Schematic ..80
Figure 34. Logical Interface Input Register Schematic...81
Figure 35. Logical Interface Clock Generator Schematic...82
Figure 36. Logical Interface FIFO Schematic...83
Figure 37. 400 MHz Input Register Schematic...84
Figure 38. 400 MHz Input Register Timing diagram..84
Figure 39. High Resolution View of 1MHz Sine Wave..107
Figure 40. High Resolution View of 1MHz Square Wave..108
Figure 41. High Resolution View of 1MHz Cardiac Wave ..109

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Selected Xilinx FPGA Component Capacity (After [16,17])..........................16
Table 2. DCM Timing Parameters (From [16])...35
Table 3. Filter Coefficients ..44
Table 4. Hardware Utilization Comparison ...63
Table 5. Physical Interface Pin Map ..78

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would like to thank David Caliga and Jon Huppenthal of SRC Computers, Inc.

They both provided valuable information about the operation and programming of the

SRC Reconfigurable computer system used in this research. Mr. Huppenthal was very

gracious in providing his time and expertise in answering my questions concerning the

inner workings of the SRC systems.

Professor Phillip Pace of the Naval Postgraduate School was very helpful in

making the operations of a Quadrature Mirror Filter bank known to me, as well as

providing a clear understanding of some of its uses.

I would also like to thank Professor Herschel Loomis and Professor Jon Butler,

both of the Naval Postgraduate School, for the insights I have gained into advanced

computer architecture and pipeline construction during their classroom instruction.

Contributions and guidance made by Professor Douglas Fouts as my thesis

advisor, as well as classroom instructor, were instrumental in my reaching a level of

understanding necessary to complete this work.

Material support from the National Security Agency was a vital element in the

development of the hardware interface used for this project.

Finally, I would like to thank my wife Laura for the sacrifices she has made to

support me in the completion of this thesis, and for the unwavering love and support she

has provided me.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

The purpose of this thesis is the design, construction, and testing of a hardware

implementation for a real-time Quadrature Mirror Filter Bank on an SRC-6

reconfigurable computer system. A Quadrature Mirror Filter (QMF) Bank is a type of

wavelet decomposition filter system used for Digital Signal Processing (DSP). The use

of a Quadrature Mirror Filter Bank as part of a larger system for the detection and

classification of Low Probability of Intercept (LPI) radar signals is proposed in [1]. This

thesis is part of a larger project working to develop the design methodologies for a

practical implementation of LPI detection system on Field Programmable Gate Arrays

(FPGA). As a secondary goal, this thesis evaluates the suitability of the SRC-6 system

for use as a developmental platform.

This work uses the SRC-6 reconfigurable computer manufactured by SRC

Computer Corporation as the developmental test platform for the development of the

QMF. The model of SRC-6 at the Naval Postgraduate School contains four user-

programmable Xilinx XC2V6000 FPGAs, which were the specific design targets for the

work. The majority of the QMF design work was done in the VHDL Hardware

Definition Language. However, a portion of the design was duplicated in the C language

based programming environment developed by SRC for their reconfigurable systems. As

a development platform, the SRC-6 interface and programming environment simplified

portions of the work, and the portion of the work duplicated in C based language proved

to require significantly lower development times at the expense of slightly increased

hardware utilization at the FPGA level.

The work for this thesis consists of two main parts. The first portion is the

construction and testing of a hardware interface between the SRC-6 system and a

separate Analog to Digital Converter (ADC) board. The interface consists of the physical

cabling and connection devices, the electrical specifications of the interface, and the

logical interface designed for implementation on the SRC-6 to accept the incoming data

and format it for further processing. The specific design of the interface and components

 xviii

is discussed in depth and complete information for duplication or extension of the

interface is provided.

The second portion of the design consists of the design, implementation, and

testing of a demonstration QMF in VHDL. Several design choices required for designing

a QMF implementation and these choices are discussed in depth. Future extensibility of

the QMF is discussed, along with several methodologies to increase the capabilities of the

demonstration design. Special attention is given to a method of interleaving separate data

streams along a single data path in order to reduce hardware utilization in the design. A

method for interleaving data streams along a fully pipelined real-time data path is shown

and proven in a working demonstration model.

The demonstration model QMF developed for this work consists of a filter bank

that accepts six simultaneous input values from the hardware interface on each clock

cycle. It then passes the incoming input values into a three stage QMF built using six tap

Finite Impulse Response (FIR) filters as the primary elements of the design. By using

delay elements and multiplexers, the design interleaves the filter outputs along a single

data path allowing for minimal hardware to be used for the design.

Test results from the demonstration QMF is compared with results from a similar

filter designed in MATLAB. The demonstration QMF shows comparable performance to

the MATLAB based filter within the limits of accuracy imposed by the real-time

processing limitations of the VHDL QMF and design choices made for its

implementation. The output of the data path from the VHDL QMF is successfully de-

interleaved, returning eight separate data streams from the continuous output.

A discussion of the limitations of the current design is given with

recommendations for future work and the extension of the current design into a larger

practical design.

1

I. INTRODUCTION

A. PURPOSE
Reconfigurable computer systems offer a number of performance advantages over

general purpose computer systems and significant economy advantages over custom

computing devices. A general purpose system is capable of a wide variety of tasks but

must necessarily include all the hardware elements required to complete any task. As a

result, although modern general purpose systems have become extremely fast, the

optimization choices made in their construction require many simple operations, such as

arithmetic functions, to require multiple clock cycles to complete. Competing space

requirements on the chip restrict the quantity of hardware that can be dedicated to a

particular task and subsequently limits the number of parallel operations that can occur in

a general purpose processor.

At the other end of the spectrum are Application Specific Integrated Circuit

(ASIC) chips, which contain only the hardware elements required for their designed task,

and can contain sufficient quantities of hardware elements to complete large numbers of

parallel tasks. While very efficient, they must be custom designed for a specific task and

are incapable of any other task. As a result, ASIC designs are generally inflexible and

have high development costs that tend to restrict their employment to high volume

applications where the devices are disposable once the particular application for which

they have been designed is obsolete.

In between these extremes lie reconfigurable computing devices. The most

common reconfigurable device today is the Field Programmable Gate Array (FPGA). By

itself, the FPGA is similar in some ways to an ASIC, although normally of lower

performance. Developing FPGA applications is similar in cost to developing ASIC based

designs but the FPGA device can be reconfigured to run a different application at a later

time. The power of the FPGA is magnified when it is combined with a general purpose

computer to provide a reconfigurable hardware asset to a computer system. In systems

such as the SRC Computers Corporation SRC-6 reconfigurable computer, the advantages

of a high speed general purpose system are joined with the dedicated hardware speed

2

advantages of the FPGA. In addition, the cost of application development can be

considerably lower on these systems as they can be programmed in the C programming

language without specialized knowledge of hardware engineering.

This thesis explores the practicality of utilizing a reconfigurable computer system

for capturing a digital signal in real-time and performing multiple parallel signal

processing tasks. The specific application explored involves work done on using a

Quadrature Mirror Filter Bank (QMF) in the detection and classification of Low

Probability of Intercept (LPI) radar signals.[1] This thesis will detail the issues involved

in physically connecting an external Analog to Digital Converter (ADC) to the SRC-6

reconfigurable computer system, the digital logic involved in reading the ADC data and

converting it to the internal clock domain, and the digital logic involved in a practical

QMF design. In Addition, working prototype designs for a real-time data capture and a

QMF bank will be characterized and compared with respect to hardware utilization and

accuracy.

B. DESIGN OVERVIEW
Figure 1 shows the basic data flow required to implement a QMF design on the

SRC-6. Most of the effort in this thesis was devoted to the physical interface between the

ADC and the SRC, the logical interface that reads the ADC data into the SRC, and the

implementation of a QMF design. The signal source can be any source readable by the

ADC within the Nyquist sampling rate of the ADC clock speed and will not be addressed

in depth. The user interface between the MAP and the user will also not be significantly

addressed in this work.

3

Figure 1. QMF Data Flow Diagram

1. Hardware Elements
This research addresses a specific hardware configuration. However, it will also

attempt to draw conclusions about general hardware configurations. The specific

hardware utilized for this work is a National Semiconductor ADC081500D Analog to

Digital Converter (ADC) mounted on a custom evaluation board produced by Ballenger

Creek Consulting. The cable configuration required to transfer the signal from the ADC

board to the SRC-6 is examined and the hardware capabilities and configuration of the

SRC-6 reconfigurable computer system will be addressed. In particular, elements of the

Xilinx FPGA incorporated into the SRC-6 is discussed in detail with respect to their

capabilities and limitations, as well as the effects of the hardware elements on the

software and mathematical elements of the design.

2. Software Elements
This research covers the logical interface required to read external data into the

SRC-6, a three stage QMF written in VHDL, a small Finite Impulse Response (FIR) filter

written in VHDL, and a comparable FIR written in C but implemented on the SRC. The

support software required to operate the SRC-6, as well as the software tools used to

write and test the FPGA related code, is examined. Output comparisons of the

performance of the QMF running on the SRC are made against a high precision QMF

running in MATLAB. The MATLAB code used to make the comparisons and perform

post processing on the data is examined.

4

3. Mathematical Elements
Due to the limited time available to complete each stage of the QMF processing

and the constant flow of incoming data, normal floating point mathematical operations,

such as done by a general purpose processor, are not practical for a real-time data capture

and processing system. As a result, methods to reduce the processing requirements for the

required arithmetic operations are examined along with binary fixed point arithmetic in

order to reduce the hardware requirements but still maintain an acceptable degree of

precision. In this type of number system, maintaining knowledge of the decimal point

location is the responsibility of the designer. In addition, great care must be taken when

designing the binary number formats to ensure that overflow conditions are either not

possible, within a set of filter coefficients, or can be dealt with effectively by the system.

For this project, binary bit widths for each stage of calculations were chosen to exclude

the possibility of overflows resulting from the calculations but maintained only the

minimum total binary word size necessary to maintain a reasonable precision in the final

result.

C. THESIS ORGANIZATION
The remainder of this thesis is organized as follows:

• Chapter II discusses previous and related work in similar areas. It also details

some of the potential applications of the QMF bank with respect to detection and

classification of ELINT signals.

• Chapter III gives a basic overview of the major hardware elements used in this

work, as well as their capabilities and limitations, and will provide a functional

reference to the various hardware elements with respect to the requirements of

this project.

• Chapter IV provides an in-depth review of the hardware interface between the

ADC and the SRC-6. It covers the areas listed in Figure 1 as the ADC, the

physical interface, and the logical interface.

• Chapter V provides an in depth discussion of the design concepts developed and

employed to provide a real-time QMF implementation. It covers the actual

implementation of a prototype QMF design in VHDL, a FIR filter design in C for

5

implementation on the SRC-6, and the support software written to implement the

design.

• Chapter VI discusses the results of the implementations with respect to hardware

utilization and relative error rates compared to high precision calculations made

using MATLAB on the same raw ADC outputs as the VHDL filters.

• Chapter VII provides a summarization of results, draws some conclusions based

on the work, and suggests some areas for future work.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. BACKGROUND

A. QUADRATURE MIRROR FILTER BANK AS PART OF AN LPI ELINT
DETECTION SYSTEM

A detailed description of a possible Electronic Intelligence (ELINT)

detection and classification system is given by [1]. Figure 2 shows a block

diagram of the proposed system. This work is concerned with the portion of the

design connecting the Digital Receiver to the system and the Quadrature mirror

filtering. Work on implementing other portions of the design is ongoing but is not

the focus of this thesis. Results from porting the Image Analysis section shown in

Figure 2 to the SRC-6 are given by [2].

Figure 2. LPI Detection and Classification system (From [1])

A Quadrature Mirror Filter bank is a type of wavelet decomposition filter that

reduces the time domain resolution of a signal to produce a higher resolution in the

frequency domain. A more detailed explanation of the elements of a QMF is given in

Chapter V but the basic design is shown in Figure 3. The blocks labeled G and H in

Figure 3 represent high and low pass digital filters. The focus on this work is to

determine practical methods for the implementation of a QMF on a particular hardware

8

suite and to provide generalized guidelines for QMF implementation in similar types of

reconfigurable logic.

Figure 3. Quadrature Mirror Filter Bank (From [1])

B. RELATED WORK
Most of the individual elements required for a real-time implementation of a QMF

on the SRC hardware have been explored in previous research and designs, though a

complete implementation has not been realized.

1. Filter Design Principals
In general, filter design principals for FPGA implementation have been well

discussed in the literature [3,4,5]. The designs in this work are a compilation of several

standard filter design practices. Various options for filter element design will be

discussed where appropriate. In particular, [3] provides some useful discussion on

wavelet decomposition filter trees similar in nature to the target QMF with regards to

hardware reutilization.

2. General FPGA Design Practices
The FPGA in the model of SRC-6 available for testing is an older Xilinx Virtex-II

FPGA, which is a very well known chip. A large volume of application notes and general

design guidelines such as [6,7,8,9,10] have provided useful design elements. Almost all

9

the code used in this work is original and based on standard design practices. The

exception is the multiplier element outlined in [6]. Specific code for this multiplier

element was downloaded from the Xilinx website along with the associated application

note, [6], and modified for this particular application by replacing the multiplier output

registers with configurable pipeline delay elements.

3. Previous SRC-6 Hardware Interface Designs
Previous work has been done at the Naval Postgraduate school on a hardware

interface system between and ADC and the SRC-6 computer system, as detailed in

[11,12]. The previous design proved effective and was completely compliant with the

listed specifications of the SRC-6 model available to NPS. The previous design was,

however, limited in effective sampling rate and fairly complex due to the necessity of

meeting the listed interface specifications of the SRC-6. The signal input specifications

listed for the SRC-6 at NPS indicated it was only compatible the Low Voltage TTL

(LVTTL) specification and the previous design work was based on that requirement.

Since LVTTL outputs are not standard on most commercially available high speed

ADC’s, a fairly complex design was required to process the ADC output for input into

the SRC-6. Also, the previous design was based on clocking the ADC using the SRC-6

clock, which also limited the possible ADC sampling rate to the maximum clock output

rate of the FPGAs in the SRC-6 (approximately 400 MHz). This work will attempt to

extend the previous work to overcome the speed limitations imposed by the LVTTL

standard and sampling rate limitations from the limits of the SRC-6 clock.

Since the initial hardware interface work at NPS, SRC computers has developed

an ADC board specifically designed for connection to the newer SRC systems. It uses the

Low-Voltage Differential Signaling (LVDS) specification and is not meant to be

compatible with Revision C and older SRC systems. As of September 2006 it is not yet

available for purchase but is expected to be available in the near future. Future work with

the SRC involving external connections may be able to benefit from a commercially

designed and tested interface. Limited information on the specifics of the SRC ADC

board is available at this time, other than it is capable of a 2GSps sampling rate.

10

THIS PAGE INTENTIONALLY LEFT BLANK

11

III. HARDWARE ELEMENTS

A. OVERVIEW
For this work, there are two main hardware elements, the ADC board and the

SRC-6 reconfigurable computer system. The physical connection used on the SRC-6 was

a direct cable connection to the MAP General Purpose Input Output (I/O) port, which is

directly connected to pins on the internal Xilinx Virtex-II FPGA. Much of the effort of

this project involves low-level optimizations within the FPGA itself. Certain hardware

resources within the FPGA require a detailed description for the design choices made in

this work to be fully explained. The Xilinx FPGA contained within the MAP board will

be described as a separate component.

B. SRC RECONFIGURABLE COMPUTER
The reconfigurable computer system used for this work is the SRC-6 computer

manufactured by SRC Incorporated of Colorado Springs, Colorado. The main elements

of the SRC-6 consist of the microprocessor, the MAP board, and the custom software

environment developed by SRC for programming the system. The SRC-6 contains all of

the support hardware and software necessary to develop FPGA projects. The SRC-6

software environment allowed the development of a QMF prototype with reasonable

effort. However, significant development effort was devoted to VHDL code. As a result,

this work does not fully take advantage of the capabilities of the SRC-6 software

environment. Of additional interest is the General Purpose Input Output port (GPIO),

also referred to as the chain port, on the MAP board within the SRC-6, which allows

multiple MAP units to be interconnected or interfaces connecting other equipment to be

constructed. Figure 4 shows a simplified block diagram of the SRC-6 internal structure.

This diagram represents the older model MAP board used for this work and omits

components not directly related to this work.

12

Figure 4. Simplified SRC-6 Architecture

1. Microprocessor
The microprocessor in the SRC-6 used for this work is a standard rack mounted

2U server form factor with dual 2.8 GHz Intel Xeon processors. It runs the Linux Fedora

Core 3 operating system. The microprocessor has a SNAP interface board that has been

installed in one of the standard memory slots on the microprocessor mother board. It is

physically connected to the MAP board using micro-coaxial cables, allowing high rate

data transfers between the Microprocessor and the MAP board. The SNAP interface

creates a communication path between the Microprocessor and the MAP board by

allowing the software on the microprocessor to treat the MAP as if it were a memory

location. This avoids the necessity of extensive modifications to the computer

architecture of the microprocessor. Currently, the SNAP interface only allows half-

duplex communication between the MAP and microprocessor. This is not pertinent to the

current work but may be an issue in development of a real-time signal processing system

using the SRC-6. Since data can only flow in one direction at a time, and in a real-time

signal processing system it can be assumed that the data flowing from the MAP would be

continuous, control signaling from the Microprocessor to the MAP is potentially

problematic. Future versions of the SRC may remedy this situation, but for the purposes

of this work, data was sampled in fixed size blocks of 60,000 samples and transferred to

the microprocessor for storage, with the program terminating after the conclusion of the

transfer. Larger block transfers are well within the capability of the SRC, however, file

sizes for the stored data quickly become unmanageable. The SRC-6 is also capable of

13

continuously streaming data across the interface to the microprocessor, however, that

level of functionality is beyond the scope of this work.

2. MAP
Figure 4 details the layout of the pertinent components of the SRC-6 MAP board.

This work is based primarily in the User Logic FPGA of the MAP board. The onboard

RAM is only used as an intermediary storage location for data samples and is not used for

any other purpose in this work. Other SRC-6 applications may use the onboard RAM,

and an SRC-6 programmer must normally be cognizant of a number of memory access

issues but those are beyond the scope of this work.

Of particular interest at the MAP level is the interconnection between the two

User Logic FPGAs, which is a very wide, high-speed data bus. Also of interest are the

GPIO port inputs that allow connections with external devices or additional MAP units.

One GPIO port is labeled as the GPIO-in port while the other is labeled as the GPIO-out

port. While both GPIO ports have connections to both User Logic chips, the actual pin

assignments on each FPGA are different. This work is concerned only with the GPIO-in

port connected to User Logic 1.

There is one noted operational detail of the MAP board that is not documented by

SRC that could prove to be of interest to future expansion of the current work. Once a

process has been run on the microprocessor that programs the User Logic chips on the

MAP, the logic is not reconfigured until the next time the User Logic is accessed. In a

configuration with multiple MAP boards chained together using the GPIO ports, the

MAP boards can be configured by activating processes on the microprocessors that

instantiate logic on the MAP boards, and then terminate and leave the MAP boards

functioning autonomously. In this situation, only one microprocessor connection needs

to maintain a running process to interface with multiple MAPs running portions of a

program that spans multiple MAP boards. It is unlikely that a practical system would

make use of this special case. However, it opens up a number of possibilities for

prototype testing of large, FPGA based systems using the SRC interface and support

software. Operations that involve interaction between the User Logic portion of the MAP

and other MAP elements have not been observed in this special case scenario and further

study would be necessary to verify functionality.

14

3. Software Environment
The software development environment of the SRC-6 is known as CARTE and

was developed by SRC for their systems. CARTE includes a C superset programming

language, which allows any C programmer to write software that is capable of

instantiating dedicated logic in hardware to allow significant improvements in

performance for some types of applications. This functionality is the major advantage of

the SRC system, which allows for a significant reduction in development time over the

use of Hardware Definition Language (HDL) based designs with comparable

performance. SRC currently provides a significant number of dedicated functions, called

macros, which allow a programmer familiar with the SRC system to produce highly

optimized code, which are detailed in [13]. While it is possible to run most C code on the

SRC, for code to written for the SRC to be fully optimized and gain maximum

performance, an in-depth study of the system or attending a training course [14] is highly

recommended.

The CARTE libraries contain many useful functions (referred to as macros) that

have been optimized for the SRC. All of the macros designed for off chip

communication assume the communication will be between User Logic chips. For access

to custom off-chip hardware, such as used in this thesis, user-designed macros written in

Verilog HDL or VHDL can be integrated into the C code and are accessed as if they were

a C type function from within the code. Since the hardware interface portion of this work

was written as a VHDL macro, limited attention was given to the C Code portions of the

project. A comparison is made for the hardware utilization of a FIR filter written in C

versus one written in VHDL. In addition, benchmarking of the SRC-6 performance has

been done in [11,12,15] and is not the focus of this work.

Detailed listings for the file formats and CARTE specific software requirements

are contained in [13]. For purposes of this work, the important files consist of the main C

file (.c extension), the MAP code file (.mc) extension, and the user macro file (.v

extension if written in Verilog or .vhd extension if written in VHDL). Code meant to

execute on the Microprocessor is placed by the programmer into the main.c file, which in

turn calls the .mc file containing the code meant to execute in dedicated logic on the

15

MAP. Code in the .mc file can call user defined macros written in HDL, and contained in

the user macro file, as if they were a C style functions. There are additional support files

necessary to implement user macros which are detailed in [13], but a full description is

not necessary for this work.

A programmer attempting to compile software for the SRC has a number of

compilation options that can significantly affect compile times. If a program is written

only in C, the user can compile the program in the debug mode, which effectively creates

an executable that runs the MAP code in an emulation mode. This significantly reduces

the compile time since the compiler does not have to synthesize and perform a Place And

Route (PAR) operation for all the circuitry destined for MAP execution. For programs

utilizing user macros, the macro writer has the option of including a piece of C code that

emulates the functionality of the HDL macro when the program is compiled in debug

mode. Unfortunately, debugging large user macros becomes very tedious as the macros

themselves do not compile in debug mode. Only the C code meant to emulate the

functionality of the macro compiles. While there is a simulation mode available as a

compile operation, NPS does not have the software licenses for the simulation mode

compilation. Hardware mode compilation is always available, but for larger programs,

this may require several hours to complete. This is because all the code must be

synthesized by the HDL compiler and the resulting hardware design must undergo a

multiple pass PAR operation, where each component and net is mapped to a physical

location on the FPGA. Full hardware compiles with large designs normally require

several hours to complete.

C. XILINX FPGA
While the Xilinx XC2V6000 User Logic FPGA is actually part of the MAP board

in the SRC-6, the focus of this work was at a very low hardware level and certain key

design elements require a basic understanding of the FPGA functionality. The basic

internal structure of the target FPGA is shown in Figure 5, which is from [16]. Table 1

shows the relative component capacities of the XC2V6000 chip used in this thesis and of

the XC2VP100 chip that is integrated into newer model SRC systems. The number of

available multipliers and block RAM devices is of interest later in this work when

capacity planning for practical QMF implementations is discussed.

16

Figure 5. Xilinx Virtex-II Architecture Overview (From [16])

Table 1. Selected Xilinx FPGA Component Capacity (After [16,17])

Figure 6. Xilinx FPGA Slice Configuration (From [16])

1. FPGA Structure
The basic structure of the Xilinx Virtex-II FPGA is shown in Figure 5, with

component capacities listed in Table 1. Figure 6 shows the basic logic of a single slice, of

which four make up a Configurable Logic Block (CLB). Not represented in the figures is

the switch matrix and high speed interconnects between components. The switch matrix

consists of numerous data lines that surround all of the components shown in Figure 5.

17

They allow signals to be routed to any location on the chip from any other location on the

chip. In addition to the global switch matrix, there are low delay interconnects between

all adjacent (horizontally, vertically, and diagonally) CLB elements and between adjacent

CLB elements, Multipliers, Block Select RAM, and IOB pads. There are also dedicated

low delay interconnect lines running vertically in the CLB columns to connect

specialized logic in each slice that is used for arithmetic operations, shift operations, and

multiplexing operations. Each slice contains two configurable logic elements that can act

as small 16-bit RAM or ROM modules and Look Up Tables (LUT) which can implement

any arbitrary 4-input combinational logic function, or function as a 16-bit shift register.

2. Key Elements
The general FPGA layout also includes Digital Clock Managers (DCM) and

Global Clock Buffers (physically located with the Global Clock Multiplexer elements in

Figure 5). The DCMs are physically located along the top and bottom of the chip while

the clock buffers are located at top and bottom center. The physical placement of the

DCM modules and the clock buffers is important to this work as several DCM modules

are required for the designs described in later chapters. The DCM modules are capable of

creating modified clock signals by phase shifting the clock, multiplying the clock, or

dividing the clock, or any combination of these modifications, while maintaining a phase

lock with a source clock.

Around the edge of the chip are Input Output Block (IOB) elements that contain

the IO pads, Electro Static Discharge (ESD) protection, Double Data Rate (DDR)

registers to clock in data from external lines, and IO buffers capable of transmitting and

receiving a wide variety of signal standards on and off the chip. The IOB elements are

grouped into eight IO banks equally spaced around the edge of the chip. Each IO bank

has individual power connections that allow different IO banks to be configured for

individual IO electrical specifications. The IOB elements are able, with the correct

electrical connections, to receive and transmit 33 different specified transmission

standards [16] and another 16 with Digitally Controlled Impedance (DCI) termination. In

addition, each IOB is connected to one adjacent IOB and the two share differential signal

input and output buffers for use with differential signal specifications.

18

As stated in Chapter II, the model SRC computer at NPS is only designed for the

LVTTL IO electrical specification. Jon Huppenthal, of SRC, has stated that this was

because the design of the older model SRC systems did not include some of the necessary

electrical connections for transmission of differential standards, or the single ended

standards that require a different reference voltage than the LVTTL standard. However,

there was no reason why the FPGA IOB elements could not be configured to receive the

different standards. This work makes use of this distinction in the interconnection of the

ADC board to the SRC-6 using the LVDS 3.3V electrical specification with DCI enabled.

Two portions of the CLB slice are key elements used by this work. Figure 6

shows a small block at the bottom labeled arithmetic logic. What this actually represents

is a dedicated hardware block that functions as a high speed Carry Look Ahead (CLAH)

logic element and is connected by high speed interconnect to other CLAH elements

vertically in columns of slices in the chip architecture. These elements allow large, very

fast adders to be instantiated in hardware for very low device utilization. The high speed

adders are a key element of the designs in this work. The other key element in the slice is

the SRL16 configuration of the two configurable logic elements located in each slice. In

the SRL16 mode, the element acts as a single bit shift register that can be configured to

delay a bit stream from 0 to 16 clock cycles. When in 0 delay mode, the element

effectively functions as a logic flip-flop. When combined with the vertical interconnect

lines, 18 slices can implement a pipeline delay of up to 16 clock cycles on a 36-bit binary

value and 36 slices can implement a 32 clock delay on a 36-bit value. This functionality,

along with the high speed adders that can be implemented using the dedicated slice logic,

allow for very inexpensive, pipelined arithmetic modules that make up the main elements

of the designs in this work.

The final two key elements of the FPGA are the Block SelectRAM elements and

the 18x18 Multiplier blocks shown in Figure 6 running vertically between sections of

CLB elements. An important issue concerning these elements is that they are grouped

with a Block RAM next to a Multiplier element and they share physical input lines.

Basically, this means that, if both devices are in use simultaneously, the width of data

stored in the Block RAM is limited to 18-bits wide. This is an important consideration

that will be discussed in later chapters. While the multiplier blocks are very fast, by the

19

nature of the binary multiply operation, they are not able to complete a full 18x18-bit

multiply producing a reliable 36-bit output in a single clock cycle with the addition of

normal routing delays. This produced some specific design concerns that are detailed in

later chapters.

3. Xilinx Tools
While not directly related to the SRC-6, Xilinx produces some software tools for

the creation of FPGA designs that warrant some attention in this section. Xilinx produces

a suite of FPGA design tools known as the ISE Foundation suite of tools. The tools

include software for editing schematics, Verilog, or VHDL based designs. The software

suite includes integrated design verification and simulation tools. Xilinx schematic

capture for conversion to VHDL was used for a portion of the macro code design, and the

remainder of the code was written directly in VHDL in the Xilinx editor. The Xilinx

editor is compatible with LINUX file conventions (non printing character issues) and

files modified in the Xilinx editor were immediately transferable from the Windows

based workstation on which most development took place to the SRC-6, whereas some

other editors (including Windows notepad) produced incompatibilities within the design

files.

The Xilinx tools are integrated with a ModelSim simulation tool for design

verification and also include all Xilinx FPGA layouts and capacities. The Xilinx tools

were invaluable for small scale simulations and component testing but the older versions

of the tools licensed by NPS did encounter some difficulties simulating larger portions of

the design and proved incapable of fully simulating the design performance. There is

some hardware instantiated in the SRC-6 FPGA by the SRC compiler for control and

connection to the other devices in the MAP for which the design files are unavailable.

Thus, the Xilinx tools could not accurately produce the full chip design for testing. SRC

does make simulation files available, but they require the user to simulate the design on

the SRC, and as stated in the preceding section, NPS does not currently have a software

license available for the third-party simulation software on the SRC.

D. ANALOG TO DIGITAL CONVERTER
The Analog to Digital Converter used for this work is the National Semiconductor

ADC08D1500 chip mounted on a custom evaluation board produced by Ballenger Creek

20

Consulting. The complete data sheet for the ADC chip is available in [18]. Full

specifications for the evaluation board are not available.

Figure 7. ADC Block Diagram (From [18])

1. ADC Specifications
The ADC08D1500 chip is a single or dual channel ADC capable of sampling two

channels at 1.5GSps or a single channel at 3GSps in Dual Edge Sampling (DES) mode.

All signal inputs and the clock inputs are differential. All output samples are 8-bit binary

values ranging from 0 to 255, with 128 equating to a zero voltage differential on the

signal input pins. Complete electrical specifications for the chip are in [18]. The sample

outputs on the chip are in the LVDS specification. As shown in Figure 7, the input clock

enters the chip on the left and is sent to the two ADC units and a clock divider that

divides the clock period by two before sending the clock signal off chip in the LVDS IO

specification. Figure 8 shows the timing diagram for the output samples from the ADC

when it is operating in Single Data Rate (SDR) mode. Two 8-bit samples are available

for the full clock cycle of the ADC output clock signal from each of the two channels

when the chip is operating in SDR mode. Depending on a control setting, the output

clock from the ADC can transition on either the beginning or middle of the data valid

window for the output samples. In DES mode, the input clock is phase shifted 180

21

degrees for channel 2 and four output samples are available for each cycle with the data

samples interleaved between the four 8-bit outputs.

Figure 8. ADC Output Timing in SDR Mode (From [18])

2. Board Specifications
The ADC used for this work is mounted on a custom evaluation board shown in

Figure 9. The ADC chip can be seen just to the left of the cables connected on the right

of the board and just to the right of the two coaxial cables connected in the center of the

board.

Figure 9. ADC Board

The two cable connections to the right of the board are both 80-pin MICTOR

connectors that provide connections for the 32 LVDS pair output lines for the ADC

22

samples and one LVDS pair for the clock output from the ADC. The two coaxial cables

connected to the board in Figure 9 are the clock input cable (upper cable) and the input

signal cable connected to the ADC channel-2 input connector. Transformers and

circuitry mounted on the board conditions single ended input signals into a differential

standard suitable for input into the ADC chip. The board was acquired by NPS for work

on another project but was of interest to this work due to the LVDS output.

Subsequently, complete specifications for the board are not available.

Input clock waveforms of sinusoidal or square forms with a 50% duty cycle and

between 1 and 2 Vpp amplitudes were found to be satisfactory for clocking the ADC.

However, the ADC board did prove to be very sensitive to variations in the clock input

waveform at higher frequencies. The channel input is capable of accepting any

waveform ranging from 0 to approximately 800 mVpp. The board is configurable for

two different input waveform voltage ranges by means of the row of switches mounted in

the upper right corner of the board that drive several control pins on the ADC chip. The

specific switch setting used for this work will be detailed in the hardware interface

section. The board requires a +5.2VDC, -5.2VDC, and ground input for power. Onboard

voltage regulators provide appropriate power to all board components from the three

input wires connected to the power block on the lower left of the board. Finally, there is

a small push button switch located adjacent to the channel-2 input connector for

activating the self calibration mode on the ADC chip. It is intended that this button be

pressed and released after the ADC board has been powered up to initiate self calibration

of the ADC.

The configuration of the board does not allow the ADC to enter certain modes of

operation. Specifically, the row of switches in the upper right of the board is connected to

control lines running to control pins on the ADC chip. The control lines are driven high

by pull-up resistors connected to a positive voltage when the switches are open but pulled

to ground when the switches are closed. Unfortunately, as specified in [18], for the ADC

to enter DES mode, pin 127 on the ADC chip must either be floating or connected to one-

half the chip operating voltage. The board design does not allow for this, only ground or

high voltage settings are possible, and the specific control lines are not accessible for

external modification. In addition, pin 4 on the ADC must be floating or at one-half chip

23

voltage for the ADC to enter the Dual Data Rate (DDR) mode of operation. These

limitations prevented some explorations of the maximum attainable data sampling rate of

the SRC-6 when connected to this ADC. However, both output channels were tested

separately. It is reasonable to assume that by using an identical ADC chip on a different

board, effective sampling rates used for this work can be doubled by placing the ADC in

DES mode and doubling the number of inputs into the SRC-6.

24

THIS PAGE INTENTIONALLY LEFT BLANK

25

IV. HARDWARE INTERFACE

A. INTRODUCTION
The hardware interface between the ADC board and the SRC-6 system consists of

two main parts. First, the physical interface consists of the actual cable connections and

the electrical specifications of the interface. The physical portion spans from the two 80-

pin MICTOR connectors on the ADC board to the actual input pins of the FPGA within

the SRC-6. Second, the logical interface includes all of the hardware that needs to be

instantiated in the FPGA to capture the signals from the FPGA pins and condition the

signals for further processing within the FPGA. Figure 10 shows the signal path from the

ADC through the major components of the hardware interface. Once the signal leaves

the First-In First-Out (FIFO) buffer, the signal has been converted to the clock domain

used by the SRC-6 and is ready for further processing with logic instantiated with an

HDL as a user macro, or passed back to the C code instantiated logic. The following

sections will detail the individual portions of the design.

ADC BOARD

80-PIN MICTOR
CONNECTORS

#1 #2

114-PIN
MICTOR

CONNECTOR

114-PIN
MICTOR

CONNECTOR

INPUT REGISTERS

IOB BUFFERS

FIFO

CLOCK
GENERATOR

GPIO IN
114-PIN MICTOR

USER LOGIC 1
FPGA

17 LVDS PAIRS

SRC-6 MAP
BOARD

(CLOCK SIGNAL)

OTHER LOGIC

16

48

3

1

48

SYSTEM CLOCK

Figure 10. Hardware Interface Block Diagram

26

B. PHYSICAL INTERFACE

The physical interface portion begins with a custom manufactured cable from

Tyco Electronics that combines specified pins on two 80-pin MICTOR connectors into a

single 114-pin MICTOR connector, of the type used by the SRC-6. This cable is

connected to a board that breaks the 114-pin MICTOR connector out into 114 2-pin pads.

Each 2-pin pad consists of a signal pin and a ground pin. High quality 50 ohm coaxial

jumpers are used to connect the 2-pin pads carrying signals (66 total, however only 34 are

used) to an identical board which is directly connected to the SRC-6 MAP board GPIO-in

port via a 114-pin MICTOR cable. Figure 11 shows the setup used for testing. The actual

connection to the ADC board is visible in Figure 9. All of the switches on the ADC

board (upper right corner of Figure 9) are set to OPEN, except for switches one and two,

which are set to CLOSED. These settings configure the input voltage range of the ADC,

the output voltage of the ADC, the calibration delay, and set the output clock to transition

in the middle of the data valid window for the output data (equivalent to OUTEDGE = 0

in Figure 8). The clock output transition is an arbitrary choice, but the code must be

optimized for a particular choice to account for internal delays in the FPGA.

Figure 11. Physical Interface

27

1. Electrical Specifications
Detailed electrical specifications for the ADC chip are given in [18]. The ADC

chip outputs are directly connected to the output pins in the two MICTOR connector

blocks located on the ADC board. The ADC output is Low-Voltage Differential

Signaling (LVDS), with approximately 700 mVpp difference between the positive and

negative signal lines for each data bit. The MICTOR connector is a high quality, low loss

connector type. All of the cables are of high quality 50 ohm micro-coaxial cable suitable

for transmission of high frequency signals over distances ranging from a few inches to

several feet, depending on the signal frequency. The short jumpers connecting the two

breakout boards are of high quality 50 ohm coaxial cable. However, the actual two-pin

connector is effectively a balanced transmission line at higher frequencies while the

jumper coaxial cable is unbalanced. The multiple balanced to unbalanced transitions is

non-optimal and proved unsatisfactory for achieving the target sampling rates. However,

it proved to be a workable solution for lower frequency transmissions.

It proved impractical to conduct direct electrical testing on the physical

connection between the ADC and the SRC. The extremely small size of the individual

signal lines and the proprietary nature of the MICTOR connectors limited the options for

connecting test equipment without signal distortion caused by the test equipment

connections themselves. Subsequently, it was determined by experimentation that the

cable setup would reliably transfer data at low error rates up to approximately 340 MHz

(seen at ADC sampling rates of 680 MSps). At this frequency, the signal quality seen on

the input pins of the SRC-6 begins to degrade significantly and becomes unusable by 345

MHz.

The custom cables fabricated for this project by Tyco Electronics would, ideally,

be used to directly connect the ADC board to the SRC-6, reducing the total cable length

and removing the two breakout board connections. This would significantly reduce the

noise on the signal lines caused by the slight impedance mismatch inherent in any

physical connector of this type and the multiple balanced to unbalanced transitions. The

connections at each end of the short jumpers used to connect the two breakout boards

would be especially desirable to remove, as they provide a much lower quality

28

connection than the MICTOR cable connections. The next section details the reasons for

the non-optimal physical connection.

2. Pin to Pin Connection Requirements
Inquiries were made to custom cable vendors concerning the fabrication of the

custom cable used to combine the two 80-pin MICTOR cables into a single 114-pin

connector. It was determined that a custom cable could be made but the expense for

certain configurations might be prohibitive. Fabrication costs could be minimized by

connecting contiguous blocks of pins on one connector to contiguous blocks of pins on

the other connector. Since the MICTOR connectors have rows of pins down both sides

of a center channel (even numbered pins on one side, odd numbered pins on the other

side), this would require that pins starting on the even side of one connector all terminate

on either the even or the odd side of the opposite connector. Figure 12 shows a diagram

of the custom cable fabricated. Even numbered pins are shown on the top half and odd

numbered pins are shown on the bottom half. The actual connector places pin 1 directly

across a center channel from pin 2 with all subsequent even and odd pins directly across

from each other. Appendix A contains a complete listing of all pin assignments with

their related signal for the ADC board, both breakout boards, and the User Logic 1 FPGA

on the MAP board of the SRC-6. Pin assignments on the user logic chips inside the SRC-

6 were taken from [18,19].

Figure 12. Custom Cable Assembly

29

Each MICTOR connector is physically attached to a ribbon cable containing

micro-coaxial cables by means of a small Printed Circuit Board (PCB). The extremely

small size of each individual micro-coaxial cable and the requirement to collectively

ground the shield on all of the coaxial cables prohibits direct connections between the

connector and the cables. To allow individual pins to be swapped from the even to the

odd side, would require a custom PCB to be built that made the necessary pin swaps

between the even and odd sides of the connectors. Directly swapping individual micro-

coaxial cables would be very difficult. Due to time and expense constraints, the custom

PCB option was impractical and not believed to be necessary due to an error interpreting

the output of a Xilinx software tool.

Unfortunately, pin swapping was necessary between the even and odd sides of the

MICTOR cable connectors. The LVDS pairs are placed on physically adjacent pins on

the same side of the ADC MICTOR connectors (see Appendix A for complete pin

charts), whereas the LVDS pairs line up on pins directly across from each other on the

MICTOR connector for the GPIO port. The solution that met the time and expense

restrictions for this project was to use existing breakout boards and coaxial jumpers to

make the pin swaps required, aligning each LVDS pair from the ADC to an LVDS pair

on the User Logic FPGA within the SRC-6. While this solution proved to be workable at

some frequencies, the additional cable length added by a second MICTOR cable and the

additional connections added by the breakout boards have restricted the maximum

attainable performance and sampling rate for the ADC.

C. LOGICAL INTERFACE
Appendix B contains the full set of schematics for the logical interface portion of

the design. The logical interface was coded entirely in the Xilinx schematic capture

utility and automatically converted to VHDL by the Xilinx software. Schematic capture

was chosen for this portion of the design due to the large number of Xilinx pre-defined

components available. The logical interface portion generated just over 1000 lines of

VHDL code. The complete VHDL code for this portion of the design is not included but

is completely reproducible from the schematics, except for some specific component

settings that are noted in the text description of this section.

30

The physical interface is configured to connect both the channel 1 and channel 2

outputs from the ADC to the SRC-6. However, as stated in Section D of Chapter III, the

ADC board is not capable of entering DES mode, which limits the ADC output to two 8-

bit samples per clock cycle. This results in a requirement for the logical interface to

accept a total of 16 LVDS signal pairs and one LVDS clock input. Logical connections

were tested for both channel 1 and channel 2 output from the ADC but channel 2 was

chosen for the final design. The lower portion of figure 10 shows the major components

of the logical interface.

1. LVDS Input Buffer
The first logical components encountered by the input signals are the differential

input buffers. The buffers are instantiated using the Xilinx IBUFDS component.

Complete descriptions for the IOB components of the FPGA are contained in [16], along

with differential pair assignment specifications between adjacent IOB elements. The

IBUFDS components are shared between two adjacent IOB elements. Each is capable of

accepting 8 [16] different differential signal specifications, assuming the correct electrical

connections are made on the IO bank to which it belongs. DCI is also enabled or

disabled for a differential input pair based upon the IBUFDS attributes. Most of the

differential signal specifications require some type of termination on the receiver side of

a signal path to prevent reflections back along the signal path from an impedance

mismatch. Built-in circuitry in the IOB provides this termination when the DCI attribute

is active on an input buffer. For each IBUFDS component in the design, the

IOSTANDARD attribute was set to LVDS_33_DCI. This attribute sets the input buffer

to receive 3.3V LVDS with DCI enabled.

Using the LVDS 2.5V standard would have been preferential based on the output

of the ADC. However, each of the IO banks physically occupied by the pins associated

with the GPIO ports also contained pins assigned by SRC for onboard communications

with other MAP components. These pins were configured for LVTTL, which cannot

share an IO bank with 2.5V LVDS. 3.3V LVDS was found to work effectively with low

bit error rates up to 340 MHz (which equates to an ADC input clock of 680 MHz). A

combination of the input standard mismatch and the problems noted in the physical

interface section are most likely to be the factors limiting higher performance.

31

Each of the input wires connected to the input pins on the IBUFDS components

have the LOC attribute set to the identifier of their assigned package pin. Both the LOC

and IOSTANDARD attributes can be set in VHDL or in schematic capture mode. In

VHDL, the attributes are set using the ‘attribute’ command and in schematic capture they

are set by double-clicking the device and adding or modifying the attribute in the attribute

list. These two attributes are the only non-visible settings contained within the

schematics listed in Appendix B.

After passing through the differential input buffers, the number of signal lines is

decreased by one half. The input buffers for the GPIO-in port are physically located in

the upper right corner of the User Logic 1 FPGA, with the exception of the clock input

pins. Special input pads designed specifically for clock signals are located in the upper

and lower center regions of the Xilinx FPGA (Figure 5). The clock input pins contain the

global clock buffers and are placed adjacent to blocks containing the DCM elements.

Since multiple DCM elements were required for this design, the clock input was placed

on a clock input pin instead of in a block with the other input signals. There is only one

choice available for a differential clock input from the GPIO-in port, so the actual

location was nondiscretionary.

2. Input Registers
After passing through the input buffers, the next logical interface components are

the input registers. Figure 13 is the schematic for the input registers for a single bit input.

Figure 13. Input Registers

32

Ideally, the initial input registers for a high speed input signal would be placed in

the IOB. Two Double Data Rate (DDR) registers are available in each IOB specifically

to clock in high speed signals. These DDR registers are physically located adjacent to the

input buffer. There is a very small line delay between the input buffer and the DDR

registers, resulting in very good performance at higher clock rates. This presented a

design choice for the first stage registers. Either the two DDR input registers contained

in the IOB could be used to reduce the 300 MHz input clock to two inputs clocked at 150

MHz each, or the input registers could be moved to the first row of CLB slices adjacent

to the IOB and three input registers could be used to down-clock the input directly to

three 100 MHz inputs.

The first option of clocking the 300 MHz input down to two 150 MHz signals is

incompatible with the rest of the design. This would produce two 150 MHz signals that

would have to be down-clocked to 100 MHz. This proves to be inconvenient and

produces an uneven number of outputs on every clock (i.e. 2 outputs first clock, 4 outputs

next clock). Placing two of the three input registers of the second option in the IOB,

while leaving the third in the first row of CLB slices, is inadvisable due to the different

line delays between the input buffer and the registers. The different line delays make

clock phase alignment with the data valid windows of the input signals much more

problematic and the margins are fairly low with a 300 MHz input signal. Figure 14

shows a timing chart for the design optimized for 300 MHz (600 MSps on the ADC).

Figure 14. Timing Diagram for 300 MHz Input

The clock inputs to the three initial input registers are listed on the left column of

Figure 14. The input clock period is approximately 3.3ns at 300 MHz and the resulting

33

data valid window slightly is shorter. The input data is valid for approximately 1.5ns

before and after the input clock pulse transitions from low to high. From [16], the setup

time for the registers in a slice is approximately 370ps and the hold time is approximately

90ps. The worst case clock skew between the input registers assigned to channel 2 (16

input bits, for 48 total registers) is approximately 500ps. Clock jitter produced by the

DCM elements described in the next section is approximately 450ps. Taken together,

this produces a required time block of 1.41ns that must be centered in a data valid

window slightly less than 3.3ns wide. There is an effective margin of error of

approximately 800ps for line delays caused by routing on the FPGA. Clock delay from

the DCM and an average value for line delay from the IOB elements to the input registers

located in the first CLB row is removed in the clock generator and will be explained in

detail in the following section.

The second column of registers in Figure 13 is not strictly necessary, but they

serve to immediately align all three input bits to the clock domain used by the FIFO

input. This ensures that any routing delays introduced during the PAR of the FPGA

compilation process do not cause timing errors between the input registers and the clock

synchronization stage.

The output of the individual bit input registers are combined into a single bus

containing three 8-bit words of data from each of the two 8-bit inputs from the ADC

channel. The two resulting 24-bit wide data buses are combined into a single 48-bit wide

bus for transfer to the clock synchronization stage.

The current design is non-optimal and can be improved by individually setting the

LOC attribute for each of the initial input registers to manually assign them a specific

physical location on the FPGA. This was not done during initial testing since no timing

errors attributable to line delay between the IBUFDS and the input registers were

observed. However, in later designs with much higher chip utilizations, timing errors

attributable to the input registers not being placed by the PAR process consistent

distances (in terms of line delay) from the input buffers have been observed. This has not

occurred on every design and can largely be compensated for by modification of the

clock phase shift in the DCM elements. The Bit Error Rate (BER) for low utilization

34

designs has been observed to be on the order of 10-4 (approximately one error every

10,000 samples), while the BER for higher utilization designs is on the order of 10-3.

Due to time constraints, adding individual LOC attributes to 96 separate registers was not

considered critical while the BER was still reasonable.

Appendix B also contains the schematic and timing diagram for an input register

design optimized for 400 MHz (800 MSps on the ADC). As previously stated, input

frequencies over 340 MHz proved unreliable, so the 400 MHz design was not used for

the final design. The logic was tested and performed better than the 300 MHz design at

lower clock frequencies. Since a 400 MHz design is able to use the two DDR input

registers located in the IOB (defined by setting the IOB=TRUE attribute on any register

type), the timing margins for the individual components are actually better than the 300

MHz design. A design using the IOB DDR registers should be capable of much higher

input speeds than can be tested with the physical interface used for this work. A design

for an LVDS receiver operating at 644 MHz is detailed in [6] and speeds up to 720 MHz

are theoretically possible (720 MHz is the input limit for the DCM modules in the model

of FPGA used in the older SRC-6 systems), assuming a highly optimized design. The

XC2VP100 FPGA installed in newer SRC systems is capable of much higher input

speeds [17] and contains some additional input circuitry that allows Gigabit range IO

transfers.

3. Clock Generation
For this design it was necessary to generate three, 100 MHz clock signals, each

phase shifted 120 degrees apart. This allows each of the three input registers running on

the phase shifted 100 MHz clocks to sample the 300 MHz input signal and fully recover

the data, as shown in Figure 14. This portion of the design used the dedicated logic

designed into the Virtex-II series of FPGA specifically for clock modifications. The

Virtex-II FPGA in the NPS SRC-6 has a total of 12 Digital Clock Manager (DCM) units

located along the top and bottom edges of the chip. These specialized logic devices

contain the circuitry to phase shift a clock signal from zero to 360 degrees. They are also

capable of multiplying a clock signal, or dividing a clock signal, within the restrictions

listed in [16].

35

For this design, the incoming clock signal from the ADC was routed into a DCM

module with the CLKIN_DIVIDE_BY_2 attribute set to true. When set to true, this

attribute causes incoming clock signal to be divided to half rate before input to the DCM.

With this attribute set, the FPGA model in the NPS SRC-6 is capable of receiving up to

720 MHz incoming clock signals. However, due to the non-optimal signal path from the

ADC, incoming clock signals over 340 MHz were unsatisfactory for DCM input. Table 2

lists the complete timing specifications for the DCM modules. The FPGA speed grade in

the NPS SRC-6 is the -4 model. The initial DCM was set to the high frequency mode of

operation and subsequent DCM modules were set to low frequency modes of operation.

The Virtex-II datasheet specifies that when the CLKIN_DIVIDE_BY_2 attribute is set,

the frequencies listed in Table 2 for CLKIN can be doubled.

Table 2. DCM Timing Parameters (From [16])

36

It is within specifications for the initial DCM to operate in the high frequency

mode of operation without the CLKIN_DIVIDE_BY_2 attribute set and still receive the

300 MHz signal used for this work. However, this would require the clock signal to be

processed through an additional clock buffer element and incur more delay in the signal

that would require compensation. The design trade-off chosen is that the clock divide on

the initial DCM is set to 1.5 to process the incoming 300 MHz (150 MHz seen by the

DCM) down to the required 100 MHz (nominal clock speed of the FPGA). The choice

incurs an additional 150ps of jitter on the clock out of the first DCM for a total of 300ps

of jitter on the first DCM. Applying the full 300 MHz clock and dividing by 3 would

reduce the total jitter out of the first DCM to 150ps. It was determined experimentally

that the actual clock signal received from the ADC was more stable when the

CLKIN_DIVIDE_BY_2 was set, so the choice was made to accept the extra 150ps of

clock jitter. Future designs with access to a lower noise input clock could benefit from

configuring the DCM modules to divide by an integer value, thus reducing clock jitter by

150ps.

The clock output of the initial DCM is set to 100 MHz and phase locked to the

input clock. The initial output clock is used to drive one of the 3 input registers on each

input bit and to drive the FIFO circuitry for synchronization to the normal clock domain

of the FPGA. It is also used as the input clock to the two second stage DCM modules.

Both second stage modules are configured for low frequency operation and each

produces an output clock phase shifted either plus or minus 120 degrees from the input

clock. These clock outputs are only used to drive the other two input registers on each

input bit. The second stage DCM modules also introduce an additional 150ps of clock

jitter. This means that one of the three registers suffers from a maximum of 300ps of

clock jitter while the other two suffer from up to 450ps of clock jitter. Complete

schematics are available in Appendix B.

To compensate for line delay incurred by the clock signals as they travel from the

top center region of the FPGA to the top right corner of the FPGA, an additional phase

shift is entered into the initial DCM. The average delay between the DCM modules and

the input registers is approximately 2.5ns. Since the clock period of the 300 MHz input

signal is 3.3ns, some compensation must occur. This line delay has the effect of shifting

37

the clock pulse approximately 800ps within the data valid window. As stated in the

previous section, the error margin for line delay from the input buffer to the initial input

registers is also approximately 800ps.

The phase shift attribute value for the DCM is a number between zero and 255,

which corresponds to phase shift values between zero and 360 degrees. A phase shift on

the initial DCM of between 15 and 60 was found to be satisfactory to compensate for the

line delay. Values of 35 or 40 were used for most testing in this work. A calculated

value of 64 should be optimal but the lower values produced slightly better performance.

The clock generation design has one major non-optimal element. The coding in

VHDL of the phase shift for the initial DCM is unnecessary and fails to provide an

optimal solution under all operating conditions. To correct this, future designs could

make use of the additional circuitry in the DCM modules specifically designed for

dynamically phase shifting the clock. Complete instructions and sample code are

available from Xilinx in [10] for actively aligning clock signals using the DCM modules.

Time constraints prevented the realization of a complete active clock phase alignment

circuit in this work, so the expedient of coding a constant phase shift into the VHDL was

substituted. This is acceptable for a laboratory environment where component

temperatures are stable and predictable but might be unsatisfactory for any application

where the components would undergo temperature variations, as this would cause the line

delay values to fluctuate. In addition, an active phase alignment system would be more

accurate than coding a phase shift manually.

4. Clock Synchronization
To process data coming into the SRC from an external source, it is necessary at

some point to synchronize the externally generated data stream with the internal clock of

the FPGA. As noted in Chapter II, some of the previous work at NPS involved collecting

data from an external ADC. The previous work partially avoided the issue of clock

synchronization by sending the SRC-6 internal clock to the external ADC. This proved a

workable solution but limited the maximum achievable sampling rate of the ADC to one

reachable by the SRC-6. Table 2 gives the maximum clock output value of the DCM as

270 MHz on the CLKFX (clock multiplier) output pin. Also, in the previous work

[11,12], the data valid signal from the ADC was used as an input to a DCM to ensure that

38

data would be properly clocked into the SRC-6. While the SRC-6 provides a mechanism

to send the FPGA clock signal to any user macro, any modification of the clock signal (as

in [11,12]), or any external clock signal used by a user macro, is only used by the logic to

which it is assigned in the user macro and cannot be used by the C code portion of the

program. It is the responsibility of the user macro programmer to resynchronize the logic

with the clock used by the SRC code before returning the data to the C code portion of

the program. Since the C code portion of the program is mandatory for communication

with the microprocessor, this must be done for any program that will return data to the

microprocessor. The previous work maintained fairly low data rates without returning

the data to the SRC-6 clock domain only because it used the SRC clock to drive the

hardware external to the SRC-6. This solution is impractical for achieving the higher

sampling rates possible by using an externally generated clock.

The simplest solution to the synchronization issue is to instantiate a First-In First-

Out (FIFO) buffer in the user logic macro that writes data into the buffer using the macro

or external clock and reads data out of the buffer using the system clock passed to the

user macro by the C code portion of the program. There are other methods that can be

used to achieve the necessary clock synchronization, such as the asynchronous method

described in [9], but the FIFO method is both simple and reliable, using the Block

SelectRam (BRAM) logic elements built into the Virtex-II FPGA.

The BRAM units can be instantiated in a variety of ways with many different

options but, for this work, they were instantiated using the Xilinx component for a dual-

ported, 16-bit wide word, 256 location RAM block, with each memory location

addressed by an 8-bit address line. Three of these units are combined to input and output

the 48-bit wide data bus from the input registers. The 16-bit wide word was chosen to

prevent the data lines used by the BRAM blocks from interfering with the multipliers

with which they share data lines. Also, increasing the width of the word stored in a

BRAM unit decreases the number of memory locations available. A FIFO depth of 256

has proved to be reliable with this design and only consumes three BRAM blocks.

The dual ported design of the BRAM units allows data to be written into port A,

running off the external clock, while other data is simultaneously being read from port B,

39

which is running off the clock signal passed from the C code portion of the program. The

data read from port B is now synchronized with the internal clock of the SRC and is

ready for further processing within the user macro, or can be passed directly back to the

C code that called the user macro. In this work, FIFO placement in the design could be

anywhere before the data stream is returned to the C code portion. However, since the

QMF design relies on very tight timing windows for correct operation, it makes sense to

place the FIFO directly after the input is received and before further processing occurs.

Should the FIFO be placed after the QMF, the QMF would be required to function using

a modified version of the externally generated clock, which is undesirable.

a. Addressing Circuit
The addressing sub-circuit in the FIFO is used to create the memory

addresses used in both the port A writes and the port B reads. It accomplishes this using

the very simple expedient of two 8 bit counters that continuously cycle sequentially

through all 256 possible address locations with each counter clock being driven by the

clock appropriate to the operation. If both clocks are running at exactly 100 MHz, the

read operation of port B would always occur on the memory location that was just written

by port A. In fact, it is very improbable that both clocks would ever be running at exactly

the same speed. One clock will always be slightly faster than the other which will cause

it to cycle faster than the other clock, eventually causing either a buffer underflow or an

overflow, depending on which clock is faster.

It is possible to build FIFO systems that are immune to buffer underflow

or overflow but these systems require a mechanism to halt the operation of the writing

system when the buffer is full, or to halt the operation of the reading system when the

buffer is empty. Since this is a real-time data capture and processing system, halting the

data capture or the processing is undesirable. For this purpose the addressing circuit is

designed in such a way that upon system initialization, the write buffer starts at address

zero and writes continuously. The read addressing circuit remains at zero until the most

significant bit of the write address first changes from zero to one. At this point, the read

address counter begins counting. This introduces a gap of 128 memory locations

between the read and write address counters.

40

Since one clock will, inevitably, be slightly faster than the other, an

underflow or overflow situation will eventually occur. A 1% variation in clock speeds is

calculated to produce an underflow or overflow approximately every 12,800 cycles, or

every 128ms. While this seems excessive, actual clock variations have been observed to

be much lower, with an observed underflow or overflow occurring approximately every

100,000-200,000 clock cycles, or every one to two seconds. This error rate would most

likely still be too large for an operational system, but can be further reduced simply by

enlarging the FIFO size, at the expense of additional BRAM units. When an underflow

or overflow does occur, data stream read out of the FIFO either jumps forward in time

256 samples, or falls back in time 256 samples. While this would be problematic for

larger filter designs, the small demonstration filters in this design are not significantly

affected by the discontinuity.

The output of the read address counter is also passed out of the FIFO for

reuse in timing some of the pipeline elements of the QMF design. There is a requirement

within the QMF design for multiplexer elements to switch between two input busses

every 1, 2, and 4 clock cycles. The three least significant bits of the read address counter

are used to switch the multiplexer elements.

41

V. QUADRATURE MIRROR FILTER BANK
IMPLEMENTATION

A. OVERVIEW
Chapter II introduced a Quadrature Mirror Filter (QMF) as a form of wavelet

decomposition filter made up primarily of a tree structure containing high pass filters,

low pass filters, and down samplers. This chapter will introduce some options for

construction of a QMF on the SRC-6 written in both C code and implemented entirely in

VHDL. A fully working demonstration model was completed in VHDL, with a working

FIR filter (the main element of a QMF) completed in C, for comparison to the VHDL

FIR filter elements contained in the full VHDL based QMF. The following two sections

detail the design requirements and some of the discretionary options that were chosen to

fulfill the design requirements.

1. Design Requirements
The first main requirement of the design is that it be real-time. For purposes of

this work, real-time is defined as a code block being able to accept input values on each

clock cycle equal in size to those values delivered from the hardware interface on each

clock. The design must be able to complete processing of the inputs in a fashion that

returns output values at a rate determined by the size of the QMF. Specifically, for a

three stage QMF, six simultaneous 8-bit input values from the hardware interface must

produce 48 8-bit output values, once every eight clock cycles. This may be accomplished

by a pipeline architecture, with pipeline depth not limited by the requirement.

The next main requirement is that the QMF is as large as practical. Since the

input size is fixed by the data flow from the hardware interface, the size of the filter is

determined by the number of taps in each FIR filter and the total number of filter stages.

Taken further, this requirement means that each filter design uses the absolute minimal

hardware so that more total filters can be instantiated.

 The demonstration filter design must also be extensible into a practical design.

This means that individual elements should be constructed in such a fashion that the

majority of the components could be re-used in a practical filter design. A practical filter

design is defined to mean a filter with 30 or more filter taps in each high pass and low

42

pass filter element and contain at least four total QMF stages. For this to be feasible, the

filter design must take into account that one user logic FPGA will not be large enough for

a practical design. Thus, the design should be easily extensible across multiple user logic

chips and across multiple SRC-6 MAP boards.

The design must maintain as much numerical precision as possible. As stated in

Chapter II, it is intended for the data output of the QMF to be passed on to another stage

in a larger design for processing. Thus, it is desirable that any precision loss through the

arithmetic operations and number format changes in the QMF be less than or equal to the

quantization error that will result when the calculated output values are returned to an 8-

bit format.

While not a requirement, it is assumed for the purpose of this work, that all high

pass and low pass FIR filters used in the design will be identical to each other with

identical constant coefficients used in all filters of the same type.

2. Design Element Options
Assuming that the construction of the high pass and low pass filters are identical,

with only the coefficients being different, there are only two main components of the

QMF. They are the filter element, configured as high pass or low pass by the

coefficients, and the down sampler. The only purpose of the down sampler is to discard

every second sample. Through careful design, the down sampler can be removed entirely

by the simple expedient of not calculating the values that would be discarded by the

down sampler. This leaves the filter element as the only required element and reduces by

one half the total number of multiplications that must occur in each filter.

The filter element is made up of some form and number of multipliers, and some

form and number of adders that sum the results of the multipliers. In addition, since the

full operation cannot be completed in one clock cycle, some type of register or delay

element must be used in a practical design, resulting in a pipelined data flow through the

filter.

a. Multiplier Instantiation

There are four main methods of instantiating a multiplier in the Xilinx

FPGA used by the SRC-6. The first method is to simply multiply a binary number by

43

any power of two by right or left shifting the bits in the number. Actually, building a

multiplier of this type is trivial and requires effectively no actual hardware be

instantiated. This type of multiplier will be discussed in Chapter VI but will not be used

in the demonstration design. The next type of multiplier can be instantiated in the CLB

matrix. An array type binary multiplier can be constructed that only utilizes CLB

resources. However it is not possible to build a multiplier of this type that can execute

large multiplies in a single clock cycle. The array-type multiplier will be discussed in

Chapter VI but was not considered for the demonstration design.

Another interesting method for multiplier instantiation is to simply use a

look up table based in either BRAM modules configured as ROM units, or to directly

instantiate ROM units in the CLB matrix. There are some definite limitations to this

method of multiplication, but it is potentially a useful method in cases such as a QMF

design where all multiplications use constant coefficient values. Due to some scaling

issues, ROM based look up tables are not appropriate as the primary multiplier type for

the demonstration QMF design, but their utility is discussed in Chapter VI. A future

design using ROM based look up tables could easily be used for the first stage of the

QMF, where the 8-bit values from the ADC are used to address two BRAM modules

producing a 32-bit product. Since the BRAM modules are dual ported, two BRAM

modules could be used to provide two parallel results from two 8-bit inputs using

separate ports.

The fourth type of multiplier exists as a dedicated hardware device within

the Virtex-II. The specialized multiplier circuit in the Virtex-II is capable of one clock

multiplies of two 18-bit binary values, returning a 36-bit binary value, in a single clock

cycle. This hardware multiplier was chosen as the multiplier element for the

demonstration design. The use of mixed multiplier types will be discussed in Chapter VI

but was not used for the demonstration QMF design.

b. Bit Truncation
Another choice made in the design was to utilize bit truncation instead of

rounding whenever the bit length of a number had to be reduced. Truncation is generally

undesirable since truncation of signed binary numbers effectively causes signal

attenuation much greater than a rounding operation. When a positive signed binary

44

number has a portion of its least significant bits removed during truncation, it can only

become less positive. Inversely, negative signed binary numbers can only become more

positive during truncation. Truncation was chosen for the demonstration design because

implementation is simpler than a binary rounding system and can be accomplished with

wired connections that do not include combinational logic. A rounding system would

most likely (depending on complexity and accuracy) require an extra pipeline stage to be

added to the system. Also, the VHDL compiler will remove any logic whose output

values are not referenced by other logic. This allows standard components to be used in

all locations by the designer but still allows a savings in hardware utilization when the

excess hardware elements are removed when the design is compiled.

c. Filter Coefficient Selection
A Six tap FIR filter design was chosen. The filter coefficients were

chosen using the FIR function in MATLAB. An odd number of filter coefficients are

required to produce an even order high pass filter, which is required for a symmetric FIR

design of this type. As a result, the filter coefficients were chosen in such a manner that

the least significant filter coefficient was of the same order as the precision limit of the

system. By omitting the final filter coefficient, filter performance is degraded but the

effect is limited because of the small magnitude value of the omitted coefficient. Table 3

shows the listing of the chosen coefficients.

Coefficient # 1 2 3 4 5 6 7
High Pass -0.0013 -0.0052 -0.0128 0.982 -0.0128 -0.0052 -0.0013
Low Pass 0.0287 0.143 0.3282 0.3282 0.143 0.0287

Table 3. Filter Coefficients

Figure 15 shows the normalized frequency response of the high pass filter

with the chosen coefficients and Figure 16 shows the normalized frequency response of

the low pass filter. At 600MSps, both filters were designed to have a cutoff frequency of

approximately 5 GHz. The figures demonstrate the poor performance of these filters with

only six taps available. Performance is particularly bad for the high pass filter. A

practical filter design would require a significant increase in the total number of filter taps

to achieve acceptable performance.

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-600

-500

-400

-300

-200

-100

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (d

eg
re

es
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (d

B
)

Figure 15. High Pass Filter Frequency Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-500

-400

-300

-200

-100

0

Normalized Frequency (×π rad/sample)

P
ha

se
 (d

eg
re

es
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-80

-70

-60

-50

-40

-30

-20

-10

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (d

B
)

Figure 16. Low Pass Filter Frequency Response

46

B. DATA INTERLEAVING TO REDUCE HARDWARE REQUIREMENTS
A QMF tree is shown in Figure 17 with the outputs of each stage numbered.

Figure 17. Annotated QMF Tree

As shown in Figure 17, each filter stage produces 2S outputs every 2S clock

cycles, where S is the stage number. Designing a QMF identical to Figure 17 for

hardware implementation is possible but very impractical. Every stage after stage 1

would have to be halted for every clock cycle where the down sampled output from the

previous stage left a gap. Also, enough hardware elements would need to be committed

to the design for each stage to allow simultaneous processing on 2S inputs. This would

be a very inefficient design in terms of hardware, both because of the amount of hardware

necessary for simultaneous processing, and for the complicated control circuitry required

to halt and restart a pipelined architecture. These issues can be mitigated by hardware

reuse through data interleaving. Through data interleaving the 2S filters (both high pass

47

and low pass) in each stage can be reduced to a single filter of each type that operates

continuously. This also removes the requirement for control circuitry to halt and restart

the data path due to the gaps caused by down sampling.

1. Single Input Data Interleaving

Figure 18. Single Input Data Interleaving QMF Design

To fully illustrate the data interleaving concept of design for a QMF filter, Figure

18 shows a single input QMF block diagram. The stage outputs, as numbered in Figure

16, are listed in Figure 18 in the order that they appear on the output multiplexer from the

previous stage. In this representation, there is a single input value entering the QMF on

every clock. The first stage operates by passing the data stream through a high pass and

low pass FIR filter, then down sampling the resulting data streams by removing every

other value, producing outputs 1-1 and 1-2 on every second clock cycle. The delay

element and multiplexer return the data stream to one value on every clock cycle. With

the outputs of filter 1-1 and 1-2 alternating, as shown in the figure, by switching the

selected input for the multiplexer on every clock cycle, a single data path is produced in

which two separate data streams are interleaved.

The second stage of the QMF then receives the interleaved data stream and passes

it to two identical filter elements, one a high pass filter, and the other a low pass filter.

We will ignore the inner workings of the filter blocks labeled F2, F4, and F8. They are

pipelined filter elements, designed to handle the interleaved data stream, and produce a

continuous flow of filtered outputs with the same interleaved data stream as their input.

Down sampling is not required in these filter elements, as every other value from each

48

previous stage filter output will not be selected by the multiplexer to move to the next

stage. The multiplexers in Figure 18 switch inputs every N clock cycles, where N is the

number labeled on the multiplexer.

The resulting outputs for each stage are labeled with the final number of outputs

being equal to 2S samples every 2S clock cycles. This format produces an equivalent

design to Figure 17 but with a substantial reduction in hardware requirements since only

two filter elements are required for each stage.

2. Parallel Input Data Interleaving
Figure 18 shows a practical design strategy, although for simplicity it omits some

details of filter construction. However, it is only designed to handle a single input on

each clock, and it still produces and discards the values that are down sampled. Since

most ADC units are designed to operate at higher sampling rates than can be handled by

FPGAs. ADC units are usually designed to allow for parallel data outputs at lower clock

rates. Any practical QMF design capable of handing high ADC sampling rates must be

able to handle multiple parallel inputs on every clock cycle. Also, since every second

value in a particular data stream (there may be multiple streams occupying a single data

path) leaving a filter is discarded, additional hardware savings can be generated by not

calculating those values. For a FIR filter, this can be accomplished by only multiplying

odd numbered inputs with the odd numbered filter coefficients and even number inputs

with even numbered filter coefficients.

QMF INPUT FROM
FIFO

(6 8-BIT INPUTS
EVERY CLOCK

CYCLE)

6x8
48

Bit extender
(pads 0's onto

end of each 8-bit
bus to make 18-

bit busses)

6x18
108 Filter

Bank

6x18
108 Filter

Bank

6x18
108 Filter

Bank

6x18
108 Bit truncation

(truncates 18-bit
busses to 8-bit

busses)

6x8
48

6x18
108

3x36
108

3x36
108

Truncater

Truncater

3x18
54

3x18
54

Delay

>>

Delay

6x18
108

6x18
108

>>

s == stage number of filter bank
Delay = 2(s-1) clocks

6x18
108

High Pass Filter

Low Pass Filter

Figure 19. 6 Parallel Input QMF

49

Figure 19 shows the block diagram of the actual demonstration QMF as it was

implemented. The design accepts a 48-bit bus containing 6 8-bit values on every clock

cycle directly from the FIFO stage of the hardware interface. Each input is padded with

trailing zeros to generate 6 18-bit values, which is the common input for all the filter

bank stages. All filter bank stages are identical hardware instantiations which take as

inputs, values representing the appropriate element delays for their stage in the QMF.

After passing through the three stages of the demonstration QMF, the data outputs are

truncated back to 6 8-bit values. Details of the filter bank implementation and pipeline

timing are explained in the next section.

C. IMPLEMENTATION IN VHDL
All VHDL code for the complete implementation described in this section is

contained in Appendix C.

The first consideration for an implementation of a QMF in hardware is the

number system and number format that will be used. Next, an actual filter design must

be created that produces the required number of outputs for the required number of

inputs. Components for the filter must then be designed and constructed. Finally, for a

fully pipelined design capable of correctly processing interleaved data streams, a timing

structure and control must be implemented to ensure that individual values in each

interleaved data stream are correctly calculated in the correct order and calculations are

made with values that are members of the same data stream.

1. Number System
The number system chosen for this design is a variable length fixed point

numbering scheme using signed binary arithmetic operations on signed binary values.

Figure 20 shows the bit position values and decimal point placement for the different

number formats used in this design. The current design accounts for overflow conditions

in the multiplication operations but not in the addition operations. All addition operations

occur using the format given in Figure 20 for the multiplier output, two sign bits,

followed by seven integer bits, followed by 27 fractional bits.

50

Figure 20. Binary Number System

The initial sign bit in the stage one input is generated by inverting the most

significant bit of the ADC input value. This creates a signed binary value between -128

and 127. Trailing zeros are then added before the value is passed to the stage 1 filter

bank so that all filter banks have the same input format. The use of look-up table based

multiplication for the first stage of a large design would not require the zero padding and

would exist as a unique stage design. The hardware multipliers in the FPGA produce the

format given by the multiplier output format in Figure 20, which is also used by the adder

elements.

The number system and the adder hardware can ignore the possibility of overflow

during addition operations because of coefficient scaling in the multiplication operations.

This assumption is true for most cases in FIR filter design where the sum of the

coefficients in the filter is less than one. As long as the filter coefficients are chosen so

that when all the filter inputs are -128 or 127 simultaneously (minimum and maximum

ADC output values), the sum of all the multiplications must add to less than or equal to

-128 or 127. The stage output format is generated by truncation of the redundant sign bit

and the 10 least significant fractional bits.

This number scheme allows the maximum precision to be retained during the

arithmetic operations but reduces the length of values to more manageable lengths

between stages. The inter-stage format retains 10 fractional bits which equates to

approximately three decimal places of precision in base 10 numbers. As shown in Figure

19, the inter-stage data bus is 108 bits wide. While large, this size is still small enough to

allow a single clock transfer between user logic chips on the SRC-6 MAP board utilizing

the 192 line bridge port between them. It is also the exact size of the GPIO port, which

51

could be used to transfer data to a separate MAP board for the next stage of processing.

Using the GPIO port would require clock synchronization between the chips, so one of

the 108 bits in the inter-stage bus would most likely need to be dropped in favor of a

clock output. These factors meet the design requirements of precision and extensibility

across multiple user logic chips.

2. Filter Stage Structure
The structure for an individual FIR filter is shown in Figure 21. The N values

indicate 18-bit inputs. The circles indicate multipliers with the constant 18-bit coefficient

index indicated by the number. The rhomboids indicate 36-bit by 36-bit adder units. All

multiplier and adder components are constructed with a variable length delay element on

the component output. The equations for the delay values that must be applied to each

component for each QMF stage are listed in Figure 21. In addition, each component is

designed to complete its operation in one clock cycle.

Since the intent is to only calculate every other filter output value, it is not

necessary to multiply every input by every coefficient as it would be in a traditional

transposed FIR filter like those presented in [5]. The limitation this imposes is that an

even number of filter coefficients is required. This creates a problem for using the design

as a high pass FIR filter, since high pass filters must normally be of an even order, which

means an odd number of filter coefficients. To avoid this issue, the implemented high

pass filter was chosen with seven coefficients. The least significant coefficient was

omitted (numerical value of -.0013). This introduces inaccuracies into the design.

However, since the omitted value is approximately equal to the degree of precision

carried over from stage to stage, and significantly smaller than the quantization error at

the end of the QMF, the loss of the coefficient has a minimal impact on total system

accuracies.

52

Figure 21. 6 Tap, 6 Input, Pipelined FIR filter

The output register delay equations are listed in Figure 21. The wiring pattern

between adders is designed to allow values calculated during the previous and subsequent

six-value input from a particular data stream to arrive simultaneously with the sums from

the current six-value input at the k-level adders. The specifics of the timing used to

accomplish this are covered in a later section. The components shown as part of the filter

bank in Figure 19 are described in detail in the next sections. It should be noted that the

actual ordering of the outputs from the k level adders in time is k1, k2, then k0. The

VHDL code correctly orders the outputs for delivery to the next stage.

a. Multipliers
As previously stated, the multipliers in this design are modified from [6].

The timing requirements for a single clock multiply are very strict and great care must be

taken in the design of a single clock multiplier unit of this type. The multiplier elements

consist of input registers individually assigned a physical location relative to the

53

multiplier block by the use of the RLOC attribute in VHDL. Since the assigned

locations are relative to the multiplier block, multiple instantiations of the multiplier code

are handled properly by the VHDL compiler. Each input bit is physically aligned

adjacent to the input line that will be used to input the bit into the multiplier. The

multiplier itself is a dedicated logic device physically located between CLB columns in

the FPGA as shown in Figure 5. The output lines on the multiplier were originally

connected to D-registers located directly adjacent to the output lines for each respective

bit. Modifications to the code from [6] connected the multiplier output lines to SRL16

logic blocks (Figure 6) contained in the same slice as the original D-registers. This

change allows the multiplier component to be configured with a variable length output

pipeline delay from zero to 16 with zero delay being the equivalent of a D-register.

The current design does not take advantage of the output delay on the

multipliers. A design using a mixed configuration of dedicated multiplier elements and

array multipliers instantiated in the CLB logic of the FPGA would require the dedicated

multipliers to generate a pipeline delay on their output equivalent to the pipeline delay of

the array multiplier. The ramifications of this are discussed more fully in Chapter VI.

b. Adders
Each of the adder elements are 36-bit by 36-bit adders with a variable

length delay element of the same type as used by the multiplier on their output. The

adders are inferred in VHDL by a single line of code: S = A + B. While this method of

instantiation seems simplistic, the VHDL compiler on the SRC-6 will infer an optimized

adder vertically in a column of slices and utilize the CLAH dedicated logic of the slices

to generate a very efficient single clock adder. This functionality was verified with both

the Xilinx software tools as well as actual implementation on the SRC-6.

This simple solution works very well for the implemented design but has

some potential, though correctable, flaws if used with a larger design. First, the input of

the adder does not have a direct, mandatory connection to a register immediately adjacent

to the adder, nor does the adder have a guarantee that the delay element will be

immediately adjacent to it. This means that any routing delays from the previous

component are added to the combinational logic delays of the adder and to the line delay

between the adder and the subsequent delay element. If the combined delay exceeds the

54

length of a clock cycle a timing failure will occur. Normally this would not be an issue

since the PAR routine automatically attempts to remove any routing delays that would

cause this to occur. The second major flaw is that one clock additions are not guaranteed

in the current design. If the PAR routine is not able to place the adder contiguously in a

vertical column of slices, the low delay interconnect lines and dedicated CLAH logic may

not be fully utilized. Both of these flaws will not normally occur unless chip utilization is

very close to 100%. Both flaws can also be corrected by the addition of user constraints

to the VHDL code. The first flaw can be corrected by placing maximum delay

constraints on all of the incoming lines from the previous element. The second flaw can

be corrected simply by adding a user constraint that defines the adder and delay element

as an object that must occupy a block of 36 vertically contiguous slices tall and two

horizontally contiguous slices wide.

c. Delay elements
The stand-alone delay elements are identical to the delay elements that are

part of the adder and multiplier elements. They consist entirely of SRL16 configured

logic units within a CLB slice. One slice can contain the delay elements for two bits of

data to be delayed from 0 to 16 clock cycles, or a single bit to be delayed up to 32 clock

cycles. No constraints are placed on the compiler or PAR routing for placement of the

delay elements, allowing the automated systems flexibility in their placement. Since the

stand-alone delay elements are isolated from combinational logic by dedicated delay

elements, the current delay element design should be extensible into any size design.

d. Truncation
The truncation elements are small VHDL modules that accept a 36-bit

input and wire connect bits 17 to 35 to an 18-bit output. As previously mentioned, this

truncation will cause the VHDL compiler to remove any logic whose only output is one

of the truncated bits from the design before it is instantiated and the PAR routine places

the components. This produces a savings in hardware utilization without the designer

being required to audit every possible path to verify which can be deleted safely. Since

the truncation elements are simple wired connections, they are fully extensible into any

size design, though it may be preferable to replace them with a rounding system.

55

e. Output Multiplexer
The output multiplexer from each stage is implemented by a VHDL

process statement that switches between the two 108-bit inputs from the two filters within

the stage based on a single control line passed to each stage. The output multiplexers

must change inputs every 2S-1 clock cycles with S being the stage number. The three

least significant bits of the output address counter of the FIFO element are used to drive

the three output multiplexers at this rate for this design. Since each slice in the CLB

matrix contains two dedicated 2-to-1 single bit multiplexers (Figure 6), the hardware

implementation will result in the partial utilization of 54 slice elements. Since the inputs

to the multiplexers are the outputs of SRL16 based delay registers, the VHDL compiler

and PAR routine will attempt to place the actual multiplexers into slices already occupied

by the preceding logic. This design is both simple and robust and should be easily

extensible into a larger design. However, the system designer needs to be aware of the

alignment of the multiplexer transition with respect to transitions in the preceding stages.

Since the multiplexers control the interleave order of the data streams, the output order of

the individual streams within the data path are determined by multiplexer alignment

between the various stages.

3. Pipeline Timing
Derivation of the pipeline timing for the filter element is the most complex

portion of the design. The pipeline delays and component connections must be organized

in such a way that the only data values that exist in the same data stream be used in

calculations, and that the data values in each data stream are correctly ordered. In

addition, the filter elements for each stage must be able to handle 2S-1 data streams

interleaved together in one continuous data path.

56

Figure 22. First Stage QMF Pipeline Timing Diagram

Figure 22 shows the timing diagram for the first stage pipeline of the

demonstration QMF design. The input sets are numbered to illustrate a continuous input

stream of sequential values in six value sets. In the first stage, the input sets enter the

successive elements shown in Figure 21 in the relative time slots shown in Figure 22. It

should be noted that the diagram assumes that the pipeline is full and that a value from

the equivalent of input set 0 would be available at the output of adder i6 for the

calculation of the first output set. Since each six input data set outputs three values, the

values of two successive sets are combined using the delay element shown just before the

multiplexer in Figure 19. The low pass filters in the design were arbitrarily chosen to

have additional delay on the output of the k-level adders so that they are aligned properly

when the output multiplexer switches to the low pass filter output. The notation for the

first value in the multiplexer out line of Figure 22 indicates that the value is the result of

the high pass filter calculations on input sets one and two combined into a single output

set of six values. The next element is the low pass filter calculation on input sets one and

two. Because the stage 1 output multiplexer switches every clock cycle, every other

output set from each filter and delay element is discarded, although the individual three

value components of each discarded set exist as part of the previous or following six

value set.

57

Adders
i0,i1,i3,i4,i5,i7-out

j,j1,j2-in

Adder i2 to
k0-in

Adders
k0,k1,k2-out

Clock

Adders
j0,j1,j2-out

Adder i6 to
k1-in

Adder i8 to
k2-in

Highpass hold
register out H1,2,3,4

Stage 2
Multipliers in H1,2 H3,4 H5,6 H7,8 H9,10 H11,12 H13,14L1,2 L3,4 L5,6 L7,8 L9,10 L11,12

Multipliers-out
Adders-in H1,2 H3,4 H5,6 H7,8 H9,10 H11,12 H13,14L1,2 L3,4 L5,6 L7,8 L9,10 L11,12

H1,2 H3,4 H5,6 H7,8 H9,10 H11,12 H13,14L1,2 L3,4 L5,6 L7,8 L9,10 L11,12

H1,2 H3,4 H5,6 H7,8 H9,10 H11,12 H13,14L1,2 L3,4 L5,6 L7,8 L9,10 L11,12

H1,2 H3,4 H5,6 H7,8 H9,10 H11,12 H13,14L1,2 L3,4 L5,6 L7,8 L9,10 L11,12

H1,2 H3,4 H5,6 H7,8 H9,10 H11,12L1,2 L3,4 L5,6 L7,8 L9,10 L11,12

H1,2 H3,4 H5,6 H7,8 H9,10 H11,12 H13,14L1,2 L3,4 L5,6 L7,8 L9,10 L11,12

H1,2 H3,4 H5,6 H7,8 H9,10 H11,12 H13,14L1,2 L3,4 L5,6 L7,8 L9,10 L11,12

L1,2,3,4 H3,4,5,6 H5,6,7,8L3,4,5,6 H7,8,9,10L5,6,7,8 L7,8,9,10 H9,10,11,12 L9,10,11,12 H11,12,13,14

Lowpass hold
register out H1,2,3,4 L1,2,3,4 H3,4,5,6 H5,6,7,8L3,4,5,6 H7,8,9,10L5,6,7,8 L7,8,9,10 H9,10,11,12

HH1-4 LH1-4 HL1-4 HH5-8LL1-4 HL5-8LH5-8 LL5-8 HH9-12 LH9-12 HL9-12Stage 2
Multiplexer out

Figure 23. Second Stage QMF Pipeline Timing Diagram

Figure 23 shows the pipeline timing diagram for the second stage filter of the

QMF design. The second stage filter bank is instantiated with the same VHDL module as

stage 1 and stage 3, but different delay values for the various components are specified.

Again, the diagram assumes the pipeline is full and a preceding value is available at the

i6 output for the calculation of the first output set shown. Delay values on the various

elements must be increased to ensure the proper data streams are aligned at each stage of

the calculation. The labeling of the first output on the multiplexer out line indicates it has

passed through two successive high pass filters and is the composite six-value data set

derived from data sets 1-4 by combinations and down sampling. The second output is the

low pass output from the first stage that has subsequently passed through the high pass

filter in the second stage and is also the composite of sets 1-4. Successive data sets are

labeled accordingly.

58

Adders
i0,i1,i3,i4,i5,i7-out

j,j1,j2-in

Adder i2 to
k0-in

Adders
k0,k1,k2-out

Clock

Adders
j0,j1,j2-out

Adder i6 to
k1-in

Adder i8 to
k2-in

Highpass hold
register out

Lowpass hold
register out

Stage 3
Multiplexer out

HH1-4 LH1-4 HL1-4 HH5-8LL1-4 HL5-8LH5-8 LL5-8 HH9-12 LH9-12 HL9-12

HH1-4 LH1-4 HL1-4 HH5-8LL1-4 HL5-8LH5-8 LL5-8 HH9-12 LH9-12 HL9-12

HH1-4 LH1-4 HL1-4 HH5-8LL1-4 HL5-8LH5-8 LL5-8 HH9-12 LH9-12 HL9-12

HH1-4 LH1-4 HL1-4 HH5-8LL1-4 HL5-8LH5-8 LL5-8 HH9-12 LH9-12 HL9-12

HH1-4 LH1-4 HL1-4 HH5-8LL1-4 HL5-8LH5-8 LL5-8 HH9-12 LH9-12 HL9-12

HH1-4 LH1-4 HL1-4 HH5-8LL1-4 HL5-8LH5-8 LL5-8 HH9-12 LH9-12 HL9-12

HH1-4 LH1-4 HL1-4 HH5-8LL1-4 HL5-8LH5-8 LL5-8

HH1-4 LH1-4 HL1-4 HH5-8LL1-4 HL5-8LH5-8 LL5-8 HH9-12 LH9-12 HL9-12

HH1-8 LH1-8 HL1-8 HH5-12LL1-8 HL5-12LH5-12

HH1-8 LH1-8 HL1-8

HHH1-8 LHH1-8 HLH1-8 HHL1-8LLH1-8 HLL1-8LHL1-8

Stage 2
Multipliers in

Multipliers-out
Adders-in

Figure 24. Third Stage QMF Pipeline Timing

Component delays are increased for the third QMF stage as given by the

equations in Figure 21 and shown in Figure 24. The labeling on the first output data set

indicates that it has passed through three successive high pass filters and is the composite

data set derived from input data sets 1-8. The second output set first passed through the

low pass filter in stage 1, then the high pass filters in stage 2 and stage 3. Subsequent

data sets are labeled accordingly.

The data sets belonging to specific data streams representing a particular path

through the filter bank are output in a consistent order which allows the data sets to be

de-interleaved before being passed to another stage for further processing. Currently, the

design outputs the data to the C code portion of the program while it is still interleaved.

For purposes of this work, the de-interleaving is done by using MATLAB to separate the

data streams.

D. IMPLEMENTATION IN SRC C CODE
An implementation of a single low pass filter element in C code is included in

Appendix D. In Chapter VI, the hardware utilization and accuracy of this

implementation is compared against a single low pass filter element from the QMF

design in terms of hardware utilization and precision. A speed comparison between a C

code based FIR and a VHDL based FIR is irrelevant since they both accept inputs on

each clock cycle and produce outputs on each clock cycle. The pipeline depth is different

59

but not relevant since the output is continuous once the pipeline is full of data and any

pipeline depth meets the real-time requirement. The C code version of the FIR filter was

written in a form optimized for the execution on the SRC-6 MAP. A fixed point number

scheme similar to the VHDL code is used for data storage between calculations.

However, number widths are slightly smaller than the VHDL code, with 18-bit VHDL

values residing in 16-bit variables in C and 36-bit VHDL values residing in 32-bit values

in the C code version. Calculations are ordered in a non-intuitive manner in the C code.

The ordering is designed to avoid any intermediate storage of values in either the MAP

onboard memory or BRAM modules instantiated by the C code, both of which could

cause significant increases in pipeline depth or potentially cause the code not to execute

in real-time, as required.

E. IMPLEMENTATION IN MATLAB
A MATLAB version of single filter elements, as well as a complete QMF design,

is included in Appendix E along with the MATLAB code used to de-interleave and

process the output data from the SRC into a format for comparison to the MATLAB

QMF results.

60

THIS PAGE INTENTIONALLY LEFT BLANK

61

VI. PERFORMANCE RESULTS AND COMPARISONS

A. HARDWARE INTERFACE RESULTS

Figure 25. Selected Input Waveforms Sampled at 600 MSps

Figure 25 shows some selected waveforms sampled at 600 MSps on the ADC and

read into the SRC-6. These waveforms were collected utilizing a user macro containing

only the hardware interface portion of the design code. The performance of the hardware

interface portion of the design was determined to be sufficient to collect ADC data for

use in testing the QMF designs. Numerical error rates were not determined for the

hardware interface since the purpose of the interface was to enable the testing of the

QMF design, not as a stand-alone design element. However, error rates for the hardware

interface are seen to be fairly low when large samples groups are viewed. Figure 26

shows a group of 6000 samples with no visible errors. When the hardware interface code

block is instantiated by itself, results as shown in Figure 26 are typical. However, when

combined with larger logic blocks such as the VHDL filters or the full QMF, higher error

rates are visible in the unfiltered data output from the SRC-6. As previously mentioned,

62

the most likely cause for the rise in error rates is lack of location constraints placed on the

input registers within the hardware interface section of code. With the current code, the

PAR routine does not recognize the tight timing tolerances for the input registers since it

has no knowledge of the input signal clock rates. Without additional constraints, the

PAR routine will route signals from the input buffers so that they will arrive at the input

registers within tolerance for 100MHz signals. Since the incoming signal is at a higher

frequency, this can be a problem if the delays are not consistent. Consistent delays can

be removed by a phase shift on the incoming clock signal.

Figure 26. 1 MHz Sine Wave Sampled at 600 MSps

One additional improvement that can be made to the hardware interface, besides

the location constraints on the components, involves the cable interface. By improving

the cable interface, much faster transfer rates should be possible using the same design

techniques described in this work. Data input at up to 644 MHz is documented in [7] and

would translate to an ADC sampling rate over 1.2GSps. In addition, by connecting to the

63

same ADC chip model that is mounted on a board that would allow the chip to enter DES

mode, the effective sampling rate could be doubled to over 2GSps.

B. HARDWARE UTILIZATION

 Flip-Flop FF % LLUT
LLUT

% SRL SRL %
Total
LUT TLUT % SLICES

SLICE
%

18x18
Multipliers MULT %

Full QMF 2827 4.2% 3281 4.9% 6829 10.1% 10110 15.0% 8526 25.2% 108 75.0%

VHDL Filter 471 0.7% 547 0.8% 1099 1.6% 1646 2.4% 1423 4.2% 18 12.5%

C Code Filter 5406 8.0% 3550 5.3% 137 0.2% 3687 5.5% 3157 9.3% 0 0.0%

C Code Filter 2 4526 6.7% 2726 4.0% 50 0.1% 2776 4.1% 4740 14.0% 36 25.0%

Overhead 3661 5.4% 1307 1.9% 0 0.0% 1307 1.9% 2610 7.7% 0 0.0%

Table 4. Hardware Utilization Comparison

Table 4 is a detailed listing of the hardware utilization of the FPGA for the full

VHDL QMF design, a VHDL high pass filter, and two versions of the C code high pass

filter. Also listed is the overhead that is common to all four designs. The overhead

consists of the hardware interface portion of the design and the logic instantiated by the

SRC compiler for MAP communications and control. The table shows the total number

of flip-flops used, the number of LUTs configured as 4-input logic, the number of LUTs

configured as SRL16s, the total number of LUTs used, the number of slices containing

logic, and the number of 18x18 multipliers used. Each quantity also has the percentage

of the total chip resources of that type that are used. The numbers are derived from the

compilation reports produced by the SRC compiler. The utilization for the overhead

logic has been subtracted from the actual generated report values to produce the values

shown in the table.

1. Full design
Note that the full QMF uses the largest fraction of the 18x18 multipliers, 75%.

An upper bound on the size of the QMF is given by Equation 6.1,

 I F S M≤ (6.1)

where I is the number inputs, F is the number of filter taps, S is the number of QMF

stages, and M is the number of available multipliers. The demonstration QMF design has

nearly reached the maximum size using the 18x18 multipliers with 108 multipliers in use

out of 144 available. With the current design, one more stage containing two filter

64

elements with 36 multipliers could be added or the tap size of each filter could be

enlarged to eight taps. Either option would increase the multiplier module utilization to

100 percent. It can also be observed that the utilization of the other FPGA components

scale linearly from the VHDL filter design. The VHDL filter is copied six times in the

full design, and component usage for the full design, is approximately six times that of

the filter only design. This indicates that without considering multiplier usage, the QMF

design could grow to approximately four times its current size and still fit on a single

chip. The addition of the overhead would appear to push this percentage over 100

percent. However, most of the instantiated logic is not fully packed into the available

space on the chip.

The percentage of slice utilization is approximately five percent higher than the

sum of the total LUT utilization and total flip-flop utilization. This indicates that logic

which could be packed into a single slice is instead residing in separate slices. As chip

utilization increases, more time will be spent by the PAR routine to more efficiently pack

logic into slices. When chip utilization is low, as in all these designs, less effort is spent

on combining logic elements into tighter physical locations.

2. VHDL Filter Element
The chip utilization shown for the VHDL high pass filter is within the expected

bounds for the design. There is a slight reduction in component utilization from what is

explicitly defined within the VHDL. This is due to portions of logic being removed by

the compiler because the output dependencies of the logic are located only within the bits

that are truncated at the end of the calculations. Replacing the bit truncation with a

rounder would reduce the savings in hardware utilization.

3. C Code Filter Element
The two different versions of the C code high pass filter shown indicate two

different methods for instantiating the same function from within the C code. The

process, operations conducted, and operation ordering are identical between the two

versions. The only difference in the code that produced these two utilization reports is

the size of some of the variables. One of the intermediate variable types involved in the

multiplication operations was changed from an 8-bit variable to a 16-bit variable data

type. The first version, using the 8-bit data type, created multipliers in the CLB matrix

65

instead of utilizing the dedicated multiplier units. The second version does use the

dedicated multiplier blocks. It used twice as many as the VHDL version, for slightly

lower precision variables. Both versions of the C code filter used between two and three

times the total utilization seen in the VHDL module.

Neither version of the C code utilizes LUT elements configured as SRL16 shift

registers. This seems to indicate that all pipeline delays within the C code filters utilize

flip-flops as delay registers. This is supported by the total flip-flop utilization seen for

the C code variants. It would be interesting to observe the behavior of the C code version

with the much longer delays in the data path that occur in later stages of the full QMF

design. Due to time constraints, completion and testing of a full QMF design in C code

was impractical.

C. EXPANSION OPTIONS
As previously noted in Chapter V, there are several methods of creating multiplier

elements within the FPGA. The main limiting factor of the current design is the number

of multipliers available. By augmenting the dedicated multipliers with alternate

multiplier instantiations methods, significant increases in total filter size are possible. By

utilizing wired multiplies (bit shifts) where filter coefficients can be approximated by

negative powers of two, effectively no additional hardware is instantiated for the

multiply.

Utilization of BRAM modules as look-up tables will increase the number of

multipliers available. This method would be most effective for the first stage of the

QMF. Since the first stage can accept the 8-bit value output of the hardware interface,

two BRAM modules can be used as look up tables to produce two 32 bit wide values

from two inputs. If it is assumed a FIR filter with satisfactory performance can be made

with 40 filter taps, and each of the six inputs is multiplied by one half of the filter taps,

each stage of the QMF would require 240 total multiplies to implement both a high pass

and low pass filter. In terms of multipliers, this is well within the 288 bound of 144

dedicated multipliers plus 144 BRAM modules (minus BRAMs used in the FIFO). The

adder trees associated with each of the two filter elements in the stage will each require

117 adders to complete their operations for a total of 234 adders. A very rough

calculation of chip utilization based on the utilization for the VHDL high pass filter,

66

would place the utilization percentage for the chip at around 50 percent. This is

satisfactory for the first QMF stage where the inputs are 8-bit inputs.

Subsequent stages, which are assumed to exist on a separate FPGA, can also

make use of the dedicated multipliers and the BRAM look up tables. However,

subsequent stages incur an additional penalty for BRAM usage. Without decreasing the

precision of the 18-bit inputs for each stage after the first, two BRAM modules will no

longer be sufficient to produce two 16-bit values. However, by reducing the inputs to 16-

bit values, four BRAM modules can produce two 32-bit partial products that will result in

the correct product when added together. This results in four BRAM look up tables

supporting two inputs, decreasing the available multipliers to 221 as well as requiring a

two clock multiply. The two clock multiply can be handled by the multiplier units

designed for the demonstration filter simply by modification of the delay value passed to

their integral output delay modules. An additional 13 multipliers are still necessary to

fulfill the requirements for later stages. These can be created as array type multipliers

within the CLB matrix. The array type multipliers will require additional pipeline delay

and are also much more resource intensive, as demonstrated by the C code variant which

instantiated multipliers within the CLB matrix. A design of this size is practical and

could be realized by placing one QMF stage on each available FPGA.

Newer model SRC-6 systems contain an upgraded Xilinx FPGA. The component

specifications for this chip are listed in Table 1 under the XC2VP100 model. It contains

a total of 444 dedicated multipliers and 444 BRAM modules. However, it only has an

increase of about 30 percent in total CLB capacity. With this chip, large QMF designs

would be possible. By using the techniques described in the preceding paragraphs,

multipliers are no longer the only limiting factor with this chip. CLB logic would likely

be exhausted before full utilization of the dedicated multipliers and BRAM look up tables

is reached.

D. QMF PERFORMANCE
The exact performance of the SRC based QMF filter is difficult to quantize

numerically. Uncertainties in the system startup timing make it difficult to determine the

exact starting point of the filter. While it is possible to de-interleave the output path

correctly by means of an additional output bit that identifies the state of the final output

67

multiplexer, the current design does not allow the determination of the first discarded

sample. This means that calculations on the exact same sample set are not possible from

MATLAB, using the current design. Visual comparisons of the QMF calculations in the

SRC-6 agree with the calculations in MATLAB. In many cases, individual data points

are within the quantization error between the high precision MATLAB calculations and

the integer values returned by the SRC-6 QMF. By averaging the difference between the

VHDL QMF data point and MATLAB data point occupying each time slice, an average

difference value can be generated for the sample set. This value is not an exact

representation of the error between the sample sets, since the VHDL data points will be

shifted by some unknown amount. The average difference does provide an upper bound

on the actual error. The MATLAB correlation function was also used to produce a linear

correlation coefficient for the two waveforms. This value is useful for comparison but

does not properly represent magnitude errors between the waveforms. Correlation

function calculations are generally consistent across the eight waveforms produced by the

three stage QMF design.

Figure 27. Comparison of 1Mhz Sine Wave Through the QMF Path

68

Figure 28. Comparison of 1Mhz Sine Wave Through the QMF Path

Figure 29. Comparison of 1Mhz Cardiac Wave Through the QMF Path

69

Figure 30. Comparison of 1Mhz Cardiac Wave Through the QMF Path

Figure 31. Comparison of 1Mhz Sine Wave Through the QMF Path

70

Figure 32. Comparison of 1Mhz Cardiac Wave Through the QMF Path

Figures 27-32 show the output of both the VHDL based QMF and the MATLAB

based QMF through all of the possible QMF paths. To produce these figures, the offset

caused by the pipeline delay in the VHDL version has been removed. Additional Figures

are included in Appendix F.

The signal path that passes through all low-pass filters consistently produces the

largest average difference. There is a small but visible attenuation of the signal on this

path. This is most likely due to truncation errors adding up through the QMF path. The

particular coefficients of this path seem to be especially sensitive to the bit truncation

errors. This can be partially corrected by replacing the truncation system with a

rounding system. As previously stated, this will affect the hardware utilization since the

VHDL compiler will no longer delete logic when outputs are not used, as well as

requiring additional logic and pipeline delays.

71

There is a very high degree of congruence between the MATLAB calculated

waveforms and the waveforms produced by the real-time VHDL filter. The average

difference value is fairly low in most cases. The cardiac waveforms provide an

especially clear display of the time shifting between the VHDL and MATLAB QMF

implementations. From observation of the these waveforms, it can be observed that the

individual data points appear to fall along the same waveform path but with a small time

shift introduced by the uncertainty of which samples were discarded by the SRC-6 based

code. This uncertainty could be removed by adding additional circuitry to report the

interleave status of the data streams through the entire QMF path in the same fashion that

the final multiplexer control bit is passed out to allow the de-interleaving of the data

streams. This would not be required for normal operation of the program as the intent is

to pass on only processed data.

The QMF output interleave pattern for this particular design is different from the

generic timing charts shown in Figures 22-24. The interleave multiplexers for the

demonstration design were controlled by the least significant bits of the hardware

interface FIFO address counter. The pipeline depth for the implementation would require

the multiplexer control signals to be on a slightly different timing than the FIFO address

circuit to produce the exact output order shown in the timing diagrams. The actual output

order of the data streams for demonstration QMF with respect to the output multiplexer

control line transitioning from high to low is: high-low-low, low-high-low, low-low-low,

high-high-low, high-low-high, low-high-high, low-low-high, and high-high-high. With

this design, the sequential order of the data streams will remain the same. The starting

point for the pattern occurs when bit 48 of the output bus transitions from high to low.

72

THIS PAGE INTENTIONALLY LEFT BLANK

73

VII. CONCLUSION

A. SUMMARY
This work has provided an overview of the hardware and software concerns

relevant to the construction of a Quadrature Mirror Filter bank on the SRC-6

reconfigurable computer system. A discussion is given for a possible practical use of a

QMF for the detection and classification of Low Probability of Intercept signals, as part

of a larger system. Specific elements of the SRC-6 reconfigurable computer are

discussed with respect to their relevance to the designs contained in this work, and a

background of related and similar work is given.

The main design project of this work was focused on two main goals. The first

main section consists of the hardware interface between a National Semiconductor

ADC08D1500 Analog to Digital Converter and the SRC-6 reconfigurable computer. The

hardware interface was detailed in terms of the physical interface and the logical

interface. The physical interface was defined as the specifications of the ADC board, the

cabling and physical connections, and the electrical specifications of the signal path. The

logical interface was defined to include hardware instantiated in the reconfigurable logic

on the SRC-6 in order to receive the incoming data stream from the ADC and prepare it

for further processing or storage within the SRC-6 MAP board. Several of the important

design choices associated with the design were discussed and compared to alternative

approaches. Deficiencies in the design were identified and proposals were made for

correcting the design deficiencies.

The second main section of the work involved the actual construction and testing

of a QMF design in VHDL for implementation on the SRC-6. After a detailed listing of

the design requirements for a demonstration size QMF design, a discussion was given for

some of the critical design choices made in the design along with the advantages and

limitations of the design choices. An explanation for reducing hardware utilization,

through the re-use of hardware elements by interleaving different streams of data along

the same data path, was provided. Details of the actual implementation were given with

respect to the binary number formats and the actual hardware component design in

74

VHDL. Several timing diagrams were provided to illustrate the process used by the

design for implementation of a data stream interleaving scheme to allow maximum

utilization for the minimum amount of hardware. Brief descriptions were given for

versions of a single high pass filter created using the SRC CARTE programming

language for comparison against the VHDL version of a high pass filter element.

Finally, performance results for the hardware interface and QMF design were

given. The goal of a working hardware interface with acceptable error rates was

achieved for that portion of the design. Hardware utilization comparisons were made

between the full QMF design in VHDL, the high pass filter design in VHDL, and two

versions of the C Code high pass filter. Options available for expanding the size of the

demonstration design into a larger practical design were given along with a discussion of

relevant issues in expanding the design. A display of the actual performance of the real-

time, VHDL QMF design were made against the unfiltered data and QMF calculations

made in MATLAB using a similar filter design.

1. Practical Limitations
This work has discussed a number of practical limitations in designing a full scale

QMF for implementation on a particular FPGA architecture. The main limitation of the

design is set by the number of simultaneous multiplications that can be accomplished

within the target FPGA. The number of simultaneous multiplies is determined by

multiplying the number of filter taps with the number of simultaneous inputs to the

system and the total number of QMF stages.

As the number of filter taps increase, the complexity of the filter design increases

significantly. The design methodology described in this work will always result in filter

output sets one half the size of the input sets (6 inputs equal 3 outputs), however the

number of components and simultaneous operations are approximately equal to the

number of filter taps multiplied by the number of simultaneous inputs. Developing the

pipeline timing and wiring structure for larger designs is extremely complex and will

require significant development time.

2. Data Interleaving
The methods described in this work for interleaving multiple data streams along a

single data path have proven to be effective with the demonstration QMF design. While

75

the complexity of the filter design will increase with larger designs, the complexity of the

data interleaving system does not increase. The width of the data path may vary

depending on the number of simultaneous system inputs but the interleave system will

not. Larger designs will have to account for changes in pipeline depth to properly de-

interleave the data. However, once the interleave pattern for a particular pipeline depth is

known, it remains constant.

3. C Code versus VHDL on the SRC-6
Some useful conclusions can be drawn involving the benchmarking the SRC-6

system. The VHDL code filter design was two to three times smaller than the C Code

versions, while maintaining slightly better precision. Development time for the C code

filter was less than one hour, while the development time for the VHDL version was well

over five hours for the comparable code block. Including the research required for the

background to complete the VHDL version, the VHDL version required approximately

ten times the total time to produce.

The conclusion that can be drawn from the disparity in development times is that

the C code environment provides an outstanding development platform for FPGA based

code design. Even for designs that will eventually be ported to VHDL for improved

performance, the rapid development times possible using the C code environment may

significantly enhance a design project.

One area where the SRC-6 software environment currently lacks features is when

dealing with connections to external hardware. VHDL user macros are currently required

for the interface, as well as for synchronizing external data to the internal clock domain.

A process for synchronizing external data collected from a custom interface would reduce

the requirements for the interface designer developing a clock synchronization system.

Such a system must already exist within the standard SRC macro libraries for use by the

SRC macros for GPIO port access but are not available as separately callable functions.

B. SUGGESTED FUTURE WORK
There are a number of areas related to this work that can be extended with future

work. With respect to the SRC code libraries, the addition of standard DSP filter

elements to the macro libraries would be beneficial for any signal processing application.

Construction of optimized FIR type filters, which could be passed a data stream and a set

76

of coefficients, would greatly enhance the utility of the SRC-6 for prototype and

developmental testing of signal processing systems. Also, with respect to the SRC macro

library, some type of synchronization routine, such as the FIFO used in this work, could

be written to simplify data synchronization for a user macro when there is a requirement

to deal with data in a different clock domain.

With respect to the QMF filter design, future work could involve extending the

size of the filter elements to a practical size. As previously stated, the size and

complexity of the filter elements will increase significantly as the number of

simultaneous inputs and filter taps are increased. Also, with respect to the QMF design,

support code and structures could be developed to extend the QMF across multiple user

logic chips or MAP boards. Spanning of multiple FPGA devices would be a requirement

for a practical QMF design, and while the data path size in the current design will support

spanning multiple devices, there must also be control and synchronization systems that

have not been developed.

With respect to the SRC general environment, future real-time signal processing

systems require an interface capable of continuously transferring data from the MAP

board to the microprocessor. While limitations in the current architecture of the interface

prevent simultaneous bi-directional communications, a software system could be

developed that samples data in a near-continuous stream from the MAP, yet is still

capable of passing control signals back to the MAP on some interval. Such a system

would allow for active control of a real-time system and continuous display of data on the

microprocessor.

77

APPENDIX A. PHYSICAL INTERFACE MAPPINGS

ADC CONN
1 80-PIN

CABLE PIN

ADC CONN
2 80-PIN

CABLE PIN

ADC
114-pin
cable #

Breakout Board
Pad # ADC side

Breakout Board
Pad # SRC side

SRC
114-pin
cable # Signal Name

User
Logic 1
Pad #

77 1 D00 D03 4 c1_e_7n N2
78 2 D01 D01 2 c1_e_6n T12
79 3 D02 D02 3 c1_e_7p M2
80 4 D03 D00 1 c1_e_6p U12
 3 5 D04 D38 39 clk_p F19
 1 7 D06 NC1 79 clk_n F20
 7 11 D10 D13 14 c1_e_5n P10
 8 12 D11 D11 12 c1_e_4n N5
 9 13 D12 D12 13 c1_e_5p R10
 10 14 D13 D10 11 c1_e_4p M5
 13 17 D16 D19 20 c1_e_3n N9
 14 18 D17 D17 18 c1_e_2n M4
 15 19 D18 D18 19 c1_e_3p P9
 16 20 D19 D16 17 c1_e_2p L4
 19 23 D22 D22 23 c1_e_1n M6
 20 24 D23 D26 27 c1_e_0n K2
 21 25 D24 D21 22 c1_e_1p L6
 22 26 D25 D25 26 c1_e_0p J2
 37 41 D40 D42 43 c2_o_7n K6
 38 42 D41 D44 45 c2_o_6n M10
 39 43 D42 D41 42 c2_o_7p J6
 40 44 D43 D43 44 c2_o_6p N10
 41 45 D44 D46 47 c2_o_5n J3
 42 46 D45 D48 49 c2_o_4n H4
 43 47 D46 D45 46 c2_o_5p H3
 44 48 D47 D47 48 c2_o_4p G4
 47 51 D50 D50 51 c2_o_3n L9
 48 52 D51 D54 55 c2_o_2n K7
 49 53 D52 D49 50 c2_o_3p M9
 50 54 D53 D53 54 c2_o_2p J7
 53 57 D56 D56 57 c2_o_1n K9
 54 58 D57 D60 61 c2_o_0n H5
 55 59 D58 D55 56 c2_o_1p L10
 56 60 D59 D59 60 c2_o_0p G5
 59 63 D62 D62 63 c2_e_7n J8
 60 64 D63 D66 67 c2_e_6n H6
 61 65 D64 D61 62 c2_e_7p K8
 62 66 D65 D65 66 c2_e_6p H7
 65 69 D68 D68 69 c2_e_5n M12

78

 66 70 D69 VALID0 73 c2_e_4n G6
 67 71 D70 D67 68 c2_e_5p N12
 68 72 D71 D71 72 c2_e_4p F5
 71 75 VALID1 VALID1 75 c2_e_3n L12
 72 76 VALID2 VALID3 77 c2_e_2n F4
 73 77 VALID3 FULL 74 c2_e_3p M11
 74 78 VALID4 VALID2 76 c2_e_2p E4
 77 81 SPARE1 SPARE4 84 c2_e_1n C4
 78 82 SPARE2 SPARE2 82 c2_e_0n E3
 79 83 SPARE3 SPARE3 83 c2_e_1p B4
 80 84 SPARE4 SPARE1 81 c2_e_0p D2

53 85 SPARE5 SPARE8 88 c1_o_7n F8
54 86 SPARE6 SPARE6 86 c1_o_6n C5
55 87 SPARE7 SPARE7 87 c1_o_7p E8
56 88 SPARE8 SPARE5 85 c1_o_6p C6
59 91 INT DCLK PROC RST 94 c1_o_5n H12
60 92 INT D0 INT D0 92 c1_o_4n B5
61 93 INT D1 INT D1 93 c1_o_5p H11
62 94 PROC RST INT DCLK 91 c1_o_4p B6
65 97 UID P1 RESERVED 100 c1_o_3n E9
66 98 UID P2 UID P2 98 c1_o_2n D8
67 99 UID P3 UID P3 99 c1_o_3p E10
68 100 RESERVED UID P1 97 c1_o_2p E7
71 103 BK2 SEG2 107 c1_o_1n G9
72 104 BK3 BK3 104 c1_o_0n H10
73 105 SEG0 SEG1 106 c1_o_1p G10
74 106 SEG1 BK2 103 c1_o_0p J10

CHANNEL NAME FORMAT: c1_e_0p = ADC channel 1, even sample, bit 0, positive LVDS
Table 5. Physical Interface Pin Map

79

APPENDIX B. LOGICAL INTERFACE SCHEMATICS

Logical Interface Top Level Schematic

80

Figure 33. Logical Interface Input Register Block Schematic

81

Figure 34. Logical Interface Input Register Schematic

82

Figure 35. Logical Interface Clock Generator Schematic

83

Figure 36. Logical Interface FIFO Schematic

84

Figure 37. 400 MHz Input Register Schematic

1 2 3 4 5 6 7 8

Clk input
400Mhz

Clk_hdr
200Mhz

Clk_qdr_90
100Mhz

1 3 5 7

9 10 11 12 13 14 15 16

9 11 13 15

17 18

2 4 6 8 10 12 14 16

17

18

Clk_hdr
200Mhz

Clk_qdr_90
100Mhz

Input

4 8 12 16

Clk_qdr
100Mhz

2 6 10 14

Clk_qdr
100Mhz

1 5 9 13 17

3 7 11 15

Figure 38. 400 MHz Input Register Timing diagram

85

APPENDIX C. QMF VHDL CODE

The following VHDL code has been reformatted to remove extra spaces and

header files to reduce the size of the code. The filter element entity for a high pass filter

is not included, but is identical to the low pass element with different filter coefficients.

entity qmf3 is
 Port (D : in std_logic_vector(47 downto 0);
 Sin : in std_logic_vector(7 downto 0);
 O : out std_logic_vector(48 downto 0);
 CLK : in std_logic);
end qmf3;
architecture Behavioral of qmf3 is
component filter6x6 is
 Port (D : in std_logic_vector(107 downto 0);
 i6dly : in std_logic_vector(3 downto 0);
 i8dly : in std_logic_vector(3 downto 0);
 jdly : in std_logic_vector(3 downto 0);
 S : in std_logic;
 O : out std_logic_vector(107 downto 0);
 CLK : in std_logic);
end component;
component bit_drop_18x8 is
 Port (D : in STD_LOGIC_VECTOR (17 downto 0);
 Q : out STD_LOGIC_VECTOR (7 downto 0));
end component;
component bit_ext_8x18 is
 Port (D : in STD_LOGIC_VECTOR (7 downto 0);
 Q : out STD_LOGIC_VECTOR (17 downto 0));
end component;
 signal d0: STD_LOGIC_VECTOR (7 downto 0);
 signal d1: STD_LOGIC_VECTOR (7 downto 0);
 signal d2: STD_LOGIC_VECTOR (7 downto 0);
 signal d3: STD_LOGIC_VECTOR (7 downto 0);
 signal d4: STD_LOGIC_VECTOR (7 downto 0);
 signal d5: STD_LOGIC_VECTOR (7 downto 0);
 signal o0: STD_LOGIC_VECTOR (7 downto 0);
 signal o1: STD_LOGIC_VECTOR (7 downto 0);
 signal o2: STD_LOGIC_VECTOR (7 downto 0);
 signal o3: STD_LOGIC_VECTOR (7 downto 0);
 signal o4: STD_LOGIC_VECTOR (7 downto 0);
 signal o5: STD_LOGIC_VECTOR (7 downto 0);
 signal s1in: STD_LOGIC_VECTOR (107 downto 0);
 signal s1out: STD_LOGIC_VECTOR (107 downto 0);
 signal s2out: STD_LOGIC_VECTOR (107 downto 0);
 signal s3out: STD_LOGIC_VECTOR (107 downto 0);
 signal s1mux: STD_LOGIC;
 signal s2mux: STD_LOGIC;
 signal s3mux: STD_LOGIC;
begin
 s1mux <= Sin(0);
 s2mux <= Sin(1);
 s3mux <= Sin(2);
 d0 <= D(47 downto 40);
 d1 <= D(39 downto 32);
 d2 <= D(31 downto 24);
 d3 <= D(23 downto 16);
 d4 <= D(15 downto 8);
 d5 <= D(7 downto 0);
 samp0ext : bit_ext_8x18 port map(D => d0, Q => s1in(107 downto 90));
 samp1ext : bit_ext_8x18 port map(D => d1, Q => s1in(89 downto 72));
 samp2ext : bit_ext_8x18 port map(D => d2, Q => s1in(71 downto 54));
 samp3ext : bit_ext_8x18 port map(D => d3, Q => s1in(53 downto 36));

86

 samp4ext : bit_ext_8x18 port map(D => d4, Q => s1in(35 downto 18));
 samp5ext : bit_ext_8x18 port map(D => d5, Q => s1in(17 downto 0));

stage1 : filter6x6 port map(D => s1in, i6dly => "0010", i8dly => "0001",jdly => "0000",S => s1mux , O => s1out, CLK =>
CLK);
stage2 : filter6x6 port map(D => s1out, i6dly => "0100", i8dly => "0010",jdly => "0001",S => s2mux , O => s2out, CLK
=> CLK);
stage3 : filter6x6 port map(D => s2out, i6dly => "1000", i8dly => "0100",jdly => "0011",S => s3mux , O => s3out, CLK
=> CLK);

 samp0drop : bit_drop_18x8 port map(Q => o0, D => s3out(107 downto 90));
 samp1drop : bit_drop_18x8 port map(Q => o1, D => s3out(89 downto 72));
 samp2drop : bit_drop_18x8 port map(Q => o2, D => s3out(71 downto 54));
 samp3drop : bit_drop_18x8 port map(Q => o3, D => s3out(53 downto 36));
 samp4drop : bit_drop_18x8 port map(Q => o4, D => s3out(35 downto 18));
 samp5drop : bit_drop_18x8 port map(Q => o5, D => s3out(17 downto 0));
 O(48) <= s3mux;
 O(47 downto 40) <= o0;
 O(39 downto 32) <= o1;
 O(31 downto 24) <= o2;
 O(23 downto 16) <= o3;
 O(15 downto 8) <= o4;
 O(7 downto 0) <= o5;
end Behavioral;

entity filter6x6 is
 Port (D : in std_logic_vector(107 downto 0);
 i6dly : in std_logic_vector(3 downto 0);
 i8dly : in std_logic_vector(3 downto 0);
 jdly : in std_logic_vector(3 downto 0);
 S : in std_logic;
 O : out std_logic_vector(107 downto 0);
 CLK : in std_logic);
end filter6x6;
architecture Behavioral of filter6x6 is
 component filter6x3_h is
 Port (n0 : in std_logic_vector(17 downto 0);
 n1 : in std_logic_vector(17 downto 0);
 n2 : in std_logic_vector(17 downto 0);
 n3 : in std_logic_vector(17 downto 0);
 n4 : in std_logic_vector(17 downto 0);
 n5 : in std_logic_vector(17 downto 0);
 i6dly : in std_logic_vector(3 downto 0);
 i8dly : in std_logic_vector(3 downto 0);
 jdly : in std_logic_vector(3 downto 0);
 o0 : out std_logic_vector(17 downto 0);
 o1 : out std_logic_vector(17 downto 0);
 o2 : out std_logic_vector(17 downto 0);
 o3 : out std_logic_vector(17 downto 0);
 o4 : out std_logic_vector(17 downto 0);
 o5 : out std_logic_vector(17 downto 0);
 CLK : in std_logic);
end component;
component filter6x3_l is
 Port (n0 : in std_logic_vector(17 downto 0);
 n1 : in std_logic_vector(17 downto 0);
 n2 : in std_logic_vector(17 downto 0);
 n3 : in std_logic_vector(17 downto 0);
 n4 : in std_logic_vector(17 downto 0);
 n5 : in std_logic_vector(17 downto 0);
 i6dly : in std_logic_vector(3 downto 0);
 i8dly : in std_logic_vector(3 downto 0);
 jdly : in std_logic_vector(3 downto 0);
 o0 : out std_logic_vector(17 downto 0);
 o1 : out std_logic_vector(17 downto 0);
 o2 : out std_logic_vector(17 downto 0);
 o3 : out std_logic_vector(17 downto 0);
 o4 : out std_logic_vector(17 downto 0);
 o5 : out std_logic_vector(17 downto 0);
 CLK : in std_logic);
end component;
component mux108x2 is

87

 Port (D0 : in std_logic_vector(107 downto 0);
 D1 : in std_logic_vector(107 downto 0);
 O : out std_logic_vector(107 downto 0);
 S : in std_logic);
end component;
 signal hout0: STD_LOGIC_VECTOR (17 downto 0);
 signal hout1: STD_LOGIC_VECTOR (17 downto 0);
 signal hout2: STD_LOGIC_VECTOR (17 downto 0);
 signal hout3: STD_LOGIC_VECTOR (17 downto 0);
 signal hout4: STD_LOGIC_VECTOR (17 downto 0);
 signal hout5: STD_LOGIC_VECTOR (17 downto 0);
 signal lout0: STD_LOGIC_VECTOR (17 downto 0);
 signal lout1: STD_LOGIC_VECTOR (17 downto 0);
 signal lout2: STD_LOGIC_VECTOR (17 downto 0);
 signal lout3: STD_LOGIC_VECTOR (17 downto 0);
 signal lout4: STD_LOGIC_VECTOR (17 downto 0);
 signal lout5: STD_LOGIC_VECTOR (17 downto 0);
 signal input0: STD_LOGIC_VECTOR (17 downto 0);
 signal input1: STD_LOGIC_VECTOR (17 downto 0);
 signal input2: STD_LOGIC_VECTOR (17 downto 0);
 signal input3: STD_LOGIC_VECTOR (17 downto 0);
 signal input4: STD_LOGIC_VECTOR (17 downto 0);
 signal input5: STD_LOGIC_VECTOR (17 downto 0);
 signal muxin0: STD_LOGIC_VECTOR (107 downto 0);
 signal muxin1: STD_LOGIC_VECTOR (107 downto 0);
begin
 input0 <= D(107 downto 90);
 input1 <= D(89 downto 72);
 input2 <= D(71 downto 54);
 input3 <= D(53 downto 36);
 input4 <= D(35 downto 18);
 input5 <= D(17 downto 0);
 highpass : filter6x3_h port map(
 n0 => input0,n1 => input1,n2 => input2,n3 => input3,n4 => input4,n5 => input5,
 i6dly => i6dly,i8dly => i8dly,jdly =>jdly,
 o0 => hout0,o1 => hout1,o2 => hout2,o3 => hout3,o4 => hout4,o5 => hout5,
 CLK => CLK);
 lowpass : filter6x3_l port map(
 n0 => input0,n1 => input1,n2 => input2,n3 => input3,n4 => input4,n5 => input5,
 i6dly => i6dly,i8dly => i8dly,jdly => jdly,
 o0 => lout0,o1 => lout1,o2 => lout2,o3 => lout3,o4 => lout4,o5 => lout5,
 CLK => CLK);
 muxin0(107 downto 90) <= hout0;
 muxin0(89 downto 72) <= hout1;
 muxin0(71 downto 54) <= hout2;
 muxin0(53 downto 36) <= hout3;
 muxin0(35 downto 18) <= hout4;
 muxin0(17 downto 0) <= hout5;
 muxin1(107 downto 90) <= lout0;
 muxin1(89 downto 72) <= lout1;
 muxin1(71 downto 54) <= lout2;
 muxin1(53 downto 36) <= lout3;
 muxin1(35 downto 18) <= lout4;
 muxin1(17 downto 0) <= lout5;
 outmux : mux108x2 port map (D0 => muxin0, D1 =>muxin1,O => O,S => S);
end Behavioral;

entity filter6x3_l is
 Port (n0 : in std_logic_vector(17 downto 0);
 n1 : in std_logic_vector(17 downto 0);
 n2 : in std_logic_vector(17 downto 0);
 n3 : in std_logic_vector(17 downto 0);
 n4 : in std_logic_vector(17 downto 0);
 n5 : in std_logic_vector(17 downto 0);
 i6dly : in std_logic_vector(3 downto 0);
 i8dly : in std_logic_vector(3 downto 0);
 jdly : in std_logic_vector(3 downto 0);
 o0 : out std_logic_vector(17 downto 0);
 o1 : out std_logic_vector(17 downto 0);
 o2 : out std_logic_vector(17 downto 0);

88

 o3 : out std_logic_vector(17 downto 0);
 o4 : out std_logic_vector(17 downto 0);
 o5 : out std_logic_vector(17 downto 0);
 CLK : in std_logic);
end filter6x3_l;
architecture Behavioral of filter6x3_l is
component Mult18x18_var_hld is
 port(A, B: in std_logic_vector(17 downto 0);
 Dly: in std_logic_vector(3 downto 0);
 CLK, RST, CE: in std_logic;
 P: out std_logic_vector(35 downto 0));
end component;
component add_36x36_var_hld is
 Port (A : in STD_LOGIC_VECTOR (35 downto 0);
 B : in STD_LOGIC_VECTOR (35 downto 0);
 S : out STD_LOGIC_VECTOR (35 downto 0);
 Dly : in STD_LOGIC_VECTOR (3 downto 0);
 CLK : in STD_LOGIC);
end component;
component var_dly18 is
 Port (Din : in STD_LOGIC_VECTOR (17 downto 0);
 Dly : in STD_LOGIC_VECTOR (3 downto 0);
 Clk : in STD_LOGIC;
 Qout : out STD_LOGIC_VECTOR (17 downto 0));
end component;
 signal xn0c1: STD_LOGIC_VECTOR (35 downto 0);
 signal xn0c3: STD_LOGIC_VECTOR (35 downto 0);
 signal xn0c5: STD_LOGIC_VECTOR (35 downto 0);
 signal xn1c2: STD_LOGIC_VECTOR (35 downto 0);
 signal xn1c4: STD_LOGIC_VECTOR (35 downto 0);
 signal xn1c6: STD_LOGIC_VECTOR (35 downto 0);
 signal xn2c1: STD_LOGIC_VECTOR (35 downto 0);
 signal xn2c3: STD_LOGIC_VECTOR (35 downto 0);
 signal xn2c5: STD_LOGIC_VECTOR (35 downto 0);
 signal xn3c2: STD_LOGIC_VECTOR (35 downto 0);
 signal xn3c4: STD_LOGIC_VECTOR (35 downto 0);
 signal xn3c6: STD_LOGIC_VECTOR (35 downto 0);
 signal xn4c1: STD_LOGIC_VECTOR (35 downto 0);
 signal xn4c3: STD_LOGIC_VECTOR (35 downto 0);
 signal xn4c5: STD_LOGIC_VECTOR (35 downto 0);
 signal xn5c2: STD_LOGIC_VECTOR (35 downto 0);
 signal xn5c4: STD_LOGIC_VECTOR (35 downto 0);
 signal xn5c6: STD_LOGIC_VECTOR (35 downto 0);
 signal i0: STD_LOGIC_VECTOR (35 downto 0);
 signal i1: STD_LOGIC_VECTOR (35 downto 0);
 signal i2: STD_LOGIC_VECTOR (35 downto 0);
 signal i3: STD_LOGIC_VECTOR (35 downto 0);
 signal i4: STD_LOGIC_VECTOR (35 downto 0);
 signal i5: STD_LOGIC_VECTOR (35 downto 0);
 signal i6: STD_LOGIC_VECTOR (35 downto 0);
 signal i7: STD_LOGIC_VECTOR (35 downto 0);
 signal i8: STD_LOGIC_VECTOR (35 downto 0);
 signal j0: STD_LOGIC_VECTOR (35 downto 0);
 signal j1: STD_LOGIC_VECTOR (35 downto 0);
 signal j2: STD_LOGIC_VECTOR (35 downto 0);
 signal k0: STD_LOGIC_VECTOR (35 downto 0);
 signal k1: STD_LOGIC_VECTOR (35 downto 0);
 signal k2: STD_LOGIC_VECTOR (35 downto 0);
begin

mult_n0_c1 : Mult18x18_var_hld port map(P => xn0c1, A => n0, B => "111111111101010110", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n0_c3 : Mult18x18_var_hld port map(P => xn0c3, A => n0, B => "111111100101110010", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n0_c5 : Mult18x18_var_hld port map(P => xn0c5, A => n0, B => "111111100101110010", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n1_c2 : Mult18x18_var_hld port map(P => xn1c2, A => n1, B => "111111110101010110", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n1_c4 : Mult18x18_var_hld port map(P => xn1c4, A => n1, B => "011111011010001110", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');

89

mult_n1_c6 : Mult18x18_var_hld port map(P => xn1c6, A => n1, B => "111111110101010110", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n2_c1 : Mult18x18_var_hld port map(P => xn2c1, A => n2, B => "111111111101010110", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n2_c3 : Mult18x18_var_hld port map(P => xn2c3, A => n2, B => "111111100101110010", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n2_c5 : Mult18x18_var_hld port map(P => xn2c5, A => n2, B => "111111100101110010", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n3_c2 : Mult18x18_var_hld port map(P => xn3c2, A => n3, B => "111111110101010110", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n3_c4 : Mult18x18_var_hld port map(P => xn3c4, A => n3, B => "011111011010001110", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n3_c6 : Mult18x18_var_hld port map(P => xn3c6, A => n3, B => "111111110101010110", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n4_c1 : Mult18x18_var_hld port map(P => xn4c1, A => n4, B => "111111111101010110", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n4_c3 : Mult18x18_var_hld port map(P => xn4c3, A => n4, B => "111111100101110010", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n4_c5 : Mult18x18_var_hld port map(P => xn4c5, A => n4, B => "111111100101110010", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n5_c2 : Mult18x18_var_hld port map(P => xn5c2, A => n5, B => "111111110101010110", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n5_c4 : Mult18x18_var_hld port map(P => xn5c4, A => n5, B => "011111011010001110", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');
mult_n5_c6 : Mult18x18_var_hld port map(P => xn5c6, A => n5, B => "111111110101010110", Dly => "0000", CLK =>
CLK, CE => '1', RST => '0');

 add_i0 : add_36x36_var_hld port map(S => i0, A => xn0c1, B => xn1c2, Dly => "0000", CLK => CLK);
 add_i1 : add_36x36_var_hld port map(S => i1, A => xn0c3, B => xn1c4, Dly => "0000", CLK => CLK);
 add_i2 : add_36x36_var_hld port map(S => i2, A => xn0c5, B => xn1c6, Dly => "0000", CLK => CLK);
 add_i3 : add_36x36_var_hld port map(S => i3, A => xn2c1, B => xn3c2, Dly => "0000", CLK => CLK);
 add_i4 : add_36x36_var_hld port map(S => i4, A => xn2c3, B => xn3c4, Dly => "0000", CLK => CLK);
 add_i5 : add_36x36_var_hld port map(S => i5, A => xn2c5, B => xn3c6, Dly => "0000", CLK => CLK);
 add_i6 : add_36x36_var_hld port map(S => i6, A => xn4c1, B => xn5c2, Dly => i6dly, CLK => CLK);
 add_i7 : add_36x36_var_hld port map(S => i7, A => xn4c3, B => xn5c4, Dly => "0000", CLK => CLK);
 add_i8 : add_36x36_var_hld port map(S => i8, A => xn4c5, B => xn5c6, Dly => i8dly, CLK => CLK);
 add_j0 : add_36x36_var_hld port map(S => j0, A => i1, B => i5, Dly => jdly, CLK => CLK);
 add_j1 : add_36x36_var_hld port map(S => j1, A => i0, B => i4, Dly => jdly, CLK => CLK);
 add_j2 : add_36x36_var_hld port map(S => j2, A => i3, B => i7, Dly => jdly, CLK => CLK);
 add_k0 : add_36x36_var_hld port map(S => k0, A => i2, B => j2, Dly => i8dly, CLK => CLK);
 add_k1 : add_36x36_var_hld port map(S => k1, A => j0, B => i6, Dly => i8dly, CLK => CLK);
 add_k2 : add_36x36_var_hld port map(S => k2, A => j1, B => i8, Dly => i8dly, CLK => CLK);
 o_hold0 : var_dly18 port map(Qout => o0, Din => k1(34 downto 17), Dly => jdly, CLK => CLK);
 o_hold1 : var_dly18 port map(Qout => o1, Din => k2(34 downto 17), Dly => jdly, CLK => CLK);
 o_hold2 : var_dly18 port map(Qout => o2, Din => k0(34 downto 17), Dly => jdly, CLK => CLK);
 o3 <= k1(34 downto 17);
 o4 <= k2(34 downto 17);
 o5 <= k0(34 downto 17);
end Behavioral;

entity bit_drop_18x8 is
 Port (D : in STD_LOGIC_VECTOR (17 downto 0);
 Q : out STD_LOGIC_VECTOR (7 downto 0));
end bit_drop_18x8;
architecture Behavioral of bit_drop_18x8 is
begin
 Q(7 downto 0) <= D(17 downto 10);
end Behavioral;

entity bit_ext_8x18 is
 Port (D : in STD_LOGIC_VECTOR (7 downto 0);
 Q : out STD_LOGIC_VECTOR (17 downto 0));
end bit_ext_8x18;
architecture Behavioral of bit_ext_8x18 is
begin
 Q(17) <= not D(7);
 Q(16 downto 10) <= D(6 downto 0);
 Q(9) <= '0';
 Q(8) <= '0';
 Q(7) <= '0';
 Q(6) <= '0';

90

 Q(5) <= '0';
 Q(4) <= '0';
 Q(3) <= '0';
 Q(2) <= '0';
 Q(1) <= '0';
 Q(0) <= '0';
end Behavioral;
entity mux108x2 is
 Port (D0 : in std_logic_vector(107 downto 0);
 D1 : in std_logic_vector(107 downto 0);
 O : out std_logic_vector(107 downto 0);
 S : in std_logic);
end mux108x2;
architecture Behavioral of mux108x2 is
begin
 process (D0, D1, S)
 begin
 case S is
 when '0' => O <= D0;
 when '1' => O <= D1;
 when others => NULL;
 end case;
 end process;
end Behavioral;

entity add_36x36_var_hld is
 Port (A : in STD_LOGIC_VECTOR (35 downto 0);
 B : in STD_LOGIC_VECTOR (35 downto 0);
 S : out STD_LOGIC_VECTOR (35 downto 0);
 Dly : in STD_LOGIC_VECTOR (3 downto 0);
 CLK : in STD_LOGIC);
end add_36x36_var_hld;
architecture Behavioral of add_36x36_var_hld is
component add_36x36
 port(
 Ain : in STD_LOGIC_VECTOR (35 downto 0);
 Bin : in STD_LOGIC_VECTOR (35 downto 0);
 Sout : out STD_LOGIC_VECTOR (35 downto 0));
end component;
component var_dly36 is
 Port (Din : in STD_LOGIC_VECTOR (35 downto 0);
 Dly : in STD_LOGIC_VECTOR (3 downto 0);
 Clk : in STD_LOGIC;
 Qout : out STD_LOGIC_VECTOR (35 downto 0));

end component;
signal s_wire: std_logic_vector (35 downto 0);
begin
inst_add_36x36 : add_36x36 port map(Ain => A, Bin => B, Sout => s_wire);
inst_var_dly36 : var_dly36 port map(Din => s_wire, Dly => Dly, Clk => Clk, Qout => S);
end Behavioral;

entity add_36x36 is
 Port (Ain : in STD_LOGIC_VECTOR (35 downto 0);
 Bin : in STD_LOGIC_VECTOR (35 downto 0);
 Sout : out STD_LOGIC_VECTOR (35 downto 0));
end add_36x36;
architecture Behavioral of add_36x36 is
begin
 Sout <= Ain + Bin;
end Behavioral;
entity var_dly36 is
 Port (Din : in STD_LOGIC_VECTOR (35 downto 0);
 Dly : in STD_LOGIC_VECTOR (3 downto 0);
 Clk : in STD_LOGIC;
 Qout : out STD_LOGIC_VECTOR (35 downto 0));
end var_dly36;
architecture Behavioral of var_dly36 is
component SRL16
 port(

91

 Q : out STD_ULOGIC;
 D : in STD_ULOGIC;
 CLK : in STD_ULOGIC;
 A0 : in STD_ULOGIC;
 A1 : in STD_ULOGIC;
 A2 : in STD_ULOGIC;
 A3 : in STD_ULOGIC);
end component;
begin
REG_S0 : SRL16 port map(Q => Qout(0) , CLK => CLK, D => Din(0) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S1 : SRL16 port map(Q => Qout(1) , CLK => CLK, D => Din(1) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S2 : SRL16 port map(Q => Qout(2) , CLK => CLK, D => Din(2) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S3 : SRL16 port map(Q => Qout(3) , CLK => CLK, D => Din(3) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S4 : SRL16 port map(Q => Qout(4) , CLK => CLK, D => Din(4) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S5 : SRL16 port map(Q => Qout(5) , CLK => CLK, D => Din(5) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S6 : SRL16 port map(Q => Qout(6) , CLK => CLK, D => Din(6) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S7 : SRL16 port map(Q => Qout(7) , CLK => CLK, D => Din(7) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S8 : SRL16 port map(Q => Qout(8) , CLK => CLK, D => Din(8) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S9 : SRL16 port map(Q => Qout(9) , CLK => CLK, D => Din(9) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S10 : SRL16 port map(Q => Qout(10) , CLK => CLK, D => Din(10) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S11 : SRL16 port map(Q => Qout(11) , CLK => CLK, D => Din(11) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S12 : SRL16 port map(Q => Qout(12) , CLK => CLK, D => Din(12) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S13 : SRL16 port map(Q => Qout(13) , CLK => CLK, D => Din(13) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S14 : SRL16 port map(Q => Qout(14) , CLK => CLK, D => Din(14) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S15 : SRL16 port map(Q => Qout(15) , CLK => CLK, D => Din(15) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S16 : SRL16 port map(Q => Qout(16) , CLK => CLK, D => Din(16) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S17 : SRL16 port map(Q => Qout(17) , CLK => CLK, D => Din(17) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S18 : SRL16 port map(Q => Qout(18) , CLK => CLK, D => Din(18) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S19 : SRL16 port map(Q => Qout(19) , CLK => CLK, D => Din(19) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S20 : SRL16 port map(Q => Qout(20) , CLK => CLK, D => Din(20) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S21 : SRL16 port map(Q => Qout(21) , CLK => CLK, D => Din(21) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S22 : SRL16 port map(Q => Qout(22) , CLK => CLK, D => Din(22) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S23 : SRL16 port map(Q => Qout(23) , CLK => CLK, D => Din(23) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S24 : SRL16 port map(Q => Qout(24) , CLK => CLK, D => Din(24) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S25 : SRL16 port map(Q => Qout(25) , CLK => CLK, D => Din(25) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S26 : SRL16 port map(Q => Qout(26) , CLK => CLK, D => Din(26) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S27 : SRL16 port map(Q => Qout(27) , CLK => CLK, D => Din(27) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S28 : SRL16 port map(Q => Qout(28) , CLK => CLK, D => Din(28) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S29 : SRL16 port map(Q => Qout(29) , CLK => CLK, D => Din(29) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));

92

REG_S30 : SRL16 port map(Q => Qout(30) , CLK => CLK, D => Din(30) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S31 : SRL16 port map(Q => Qout(31) , CLK => CLK, D => Din(31) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S32 : SRL16 port map(Q => Qout(32) , CLK => CLK, D => Din(32) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S33 : SRL16 port map(Q => Qout(33) , CLK => CLK, D => Din(33) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S34 : SRL16 port map(Q => Qout(34) , CLK => CLK, D => Din(34) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S35 : SRL16 port map(Q => Qout(35) , CLK => CLK, D => Din(35) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
end Behavioral;

entity var_dly18 is
 Port (Din : in STD_LOGIC_VECTOR (17 downto 0);
 Dly : in STD_LOGIC_VECTOR (3 downto 0);
 Clk : in STD_LOGIC;
 Qout : out STD_LOGIC_VECTOR (17 downto 0));
end var_dly18;
architecture Behavioral of var_dly18 is
component SRL16
 port(
 Q : out STD_ULOGIC;
 D : in STD_ULOGIC;
 CLK : in STD_ULOGIC;
 A0 : in STD_ULOGIC;
 A1 : in STD_ULOGIC;
 A2 : in STD_ULOGIC;
 A3 : in STD_ULOGIC);
end component;
begin
REG_S0 : SRL16 port map(Q => Qout(0) , CLK => CLK, D => Din(0) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S1 : SRL16 port map(Q => Qout(1) , CLK => CLK, D => Din(1) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S2 : SRL16 port map(Q => Qout(2) , CLK => CLK, D => Din(2) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S3 : SRL16 port map(Q => Qout(3) , CLK => CLK, D => Din(3) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S4 : SRL16 port map(Q => Qout(4) , CLK => CLK, D => Din(4) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S5 : SRL16 port map(Q => Qout(5) , CLK => CLK, D => Din(5) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S6 : SRL16 port map(Q => Qout(6) , CLK => CLK, D => Din(6) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S7 : SRL16 port map(Q => Qout(7) , CLK => CLK, D => Din(7) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S8 : SRL16 port map(Q => Qout(8) , CLK => CLK, D => Din(8) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S9 : SRL16 port map(Q => Qout(9) , CLK => CLK, D => Din(9) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S10 : SRL16 port map(Q => Qout(10) , CLK => CLK, D => Din(10) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S11 : SRL16 port map(Q => Qout(11) , CLK => CLK, D => Din(11) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S12 : SRL16 port map(Q => Qout(12) , CLK => CLK, D => Din(12) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S13 : SRL16 port map(Q => Qout(13) , CLK => CLK, D => Din(13) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S14 : SRL16 port map(Q => Qout(14) , CLK => CLK, D => Din(14) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S15 : SRL16 port map(Q => Qout(15) , CLK => CLK, D => Din(15) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S16 : SRL16 port map(Q => Qout(16) , CLK => CLK, D => Din(16) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
REG_S17 : SRL16 port map(Q => Qout(17) , CLK => CLK, D => Din(17) , A0 => Dly(0) , A1 => Dly(1) , A2 =>
Dly(2) , A3 => Dly(3));
end Behavioral;

93

entity Mult18x18_var_hld is
 port(A, B: in std_logic_vector(17 downto 0);
 Dly: in std_logic_vector(3 downto 0);
 CLK, RST, CE: in std_logic;
 P: out std_logic_vector(35 downto 0));
end Mult18x18_var_hld;
architecture Behavioral of Mult18x18_var_hld is
component FDR
 port(
 Q : out STD_ULOGIC;
 D : in STD_ULOGIC;
 C : in STD_ULOGIC;
 R : in STD_ULOGIC);
end component;
component SRL16
 port(
 Q : out STD_ULOGIC;
 D : in STD_ULOGIC;
 CLK : in STD_ULOGIC;
 A0 : in STD_ULOGIC;
 A1 : in STD_ULOGIC;
 A2 : in STD_ULOGIC;
 A3 : in STD_ULOGIC);
end component;
component MULT18X18S
 port (A : in STD_LOGIC_VECTOR (17 downto 0);
 B : in STD_LOGIC_VECTOR (17 downto 0);
 C : in STD_ULOGIC ;
 CE : in STD_ULOGIC ;
 P : out STD_LOGIC_VECTOR (35 downto 0);
 R : in STD_ULOGIC);
end component;
signal a_wire0: STD_ULOGIC ;
signal a_wire1: STD_ULOGIC ;
signal a_wire2: STD_ULOGIC ;
signal a_wire3: STD_ULOGIC ;
signal a_wire4: STD_ULOGIC ;
signal a_wire5: STD_ULOGIC ;
signal a_wire6: STD_ULOGIC ;
signal a_wire7: STD_ULOGIC ;
signal a_wire8: STD_ULOGIC ;
signal a_wire9: STD_ULOGIC ;
signal a_wire10: STD_ULOGIC ;
signal a_wire11: STD_ULOGIC ;
signal a_wire12: STD_ULOGIC ;
signal a_wire13: STD_ULOGIC ;
signal a_wire14: STD_ULOGIC ;
signal a_wire15: STD_ULOGIC ;
signal a_wire16: STD_ULOGIC ;
signal a_wire17: STD_ULOGIC ;
signal b_wire0: STD_ULOGIC ;
signal b_wire1: STD_ULOGIC ;
signal b_wire2: STD_ULOGIC ;
signal b_wire3: STD_ULOGIC ;
signal b_wire4: STD_ULOGIC ;
signal b_wire5: STD_ULOGIC ;
signal b_wire6: STD_ULOGIC ;
signal b_wire7: STD_ULOGIC ;
signal b_wire8: STD_ULOGIC ;
signal b_wire9: STD_ULOGIC ;
signal b_wire10: STD_ULOGIC ;
signal b_wire11: STD_ULOGIC ;
signal b_wire12: STD_ULOGIC ;
signal b_wire13: STD_ULOGIC ;
signal b_wire14: STD_ULOGIC ;
signal b_wire15: STD_ULOGIC ;
signal b_wire16: STD_ULOGIC ;
signal b_wire17: STD_ULOGIC ;
signal p_wire0: STD_ULOGIC ;
signal p_wire1: STD_ULOGIC ;

94

signal p_wire2: STD_ULOGIC ;
signal p_wire3: STD_ULOGIC ;
signal p_wire4: STD_ULOGIC ;
signal p_wire5: STD_ULOGIC ;
signal p_wire6: STD_ULOGIC ;
signal p_wire7: STD_ULOGIC ;
signal p_wire8: STD_ULOGIC ;
signal p_wire9: STD_ULOGIC ;
signal p_wire10: STD_ULOGIC ;
signal p_wire11: STD_ULOGIC ;
signal p_wire12: STD_ULOGIC ;
signal p_wire13: STD_ULOGIC ;
signal p_wire14: STD_ULOGIC ;
signal p_wire15: STD_ULOGIC ;
signal p_wire16: STD_ULOGIC ;
signal p_wire17: STD_ULOGIC ;
signal p_wire18: STD_ULOGIC ;
signal p_wire19: STD_ULOGIC ;
signal p_wire20: STD_ULOGIC ;
signal p_wire21: STD_ULOGIC ;
signal p_wire22: STD_ULOGIC ;
signal p_wire23: STD_ULOGIC ;
signal p_wire24: STD_ULOGIC ;
signal p_wire25: STD_ULOGIC ;
signal p_wire26: STD_ULOGIC ;
signal p_wire27: STD_ULOGIC ;
signal p_wire28: STD_ULOGIC ;
signal p_wire29: STD_ULOGIC ;
signal p_wire30: STD_ULOGIC ;
signal p_wire31: STD_ULOGIC ;
signal p_wire32: STD_ULOGIC ;
signal p_wire33: STD_ULOGIC ;
signal p_wire34: STD_ULOGIC ;
signal p_wire35: STD_ULOGIC ;
attribute RLOC : string;
attribute RLOC of REG_A0 : label is "X0Y0" ;
attribute RLOC of REG_A1 : label is "X0Y0" ;
attribute RLOC of REG_A2 : label is "X0Y1" ;
attribute RLOC of REG_A3 : label is "X0Y1" ;
attribute RLOC of REG_A4 : label is "X0Y2" ;
attribute RLOC of REG_A5 : label is "X0Y2" ;
attribute RLOC of REG_A6 : label is "X0Y3" ;
attribute RLOC of REG_A7 : label is "X0Y3" ;
attribute RLOC of REG_A8 : label is "X0Y4" ;
attribute RLOC of REG_A9 : label is "X0Y4" ;
attribute RLOC of REG_A10: label is "X0Y5" ;
attribute RLOC of REG_A11: label is "X0Y5" ;
attribute RLOC of REG_A12: label is "X0Y6" ;
attribute RLOC of REG_A13: label is "X0Y6" ;
attribute RLOC of REG_A14: label is "X0Y7" ;
attribute RLOC of REG_A15: label is "X0Y7" ;
attribute RLOC of REG_A16: label is "X-1Y7";
attribute RLOC of REG_A17: label is "X-1Y7";
attribute RLOC of REG_B0 : label is "X2Y0" ;
attribute RLOC of REG_B1 : label is "X2Y0" ;
attribute RLOC of REG_B2 : label is "X2Y1" ;
attribute RLOC of REG_B3 : label is "X2Y1" ;
attribute RLOC of REG_B4 : label is "X2Y2" ;
attribute RLOC of REG_B5 : label is "X2Y2" ;
attribute RLOC of REG_B6 : label is "X2Y3" ;
attribute RLOC of REG_B7 : label is "X2Y3" ;
attribute RLOC of REG_B8 : label is "X2Y4" ;
attribute RLOC of REG_B9 : label is "X2Y4" ;
attribute RLOC of REG_B10: label is "X2Y5" ;
attribute RLOC of REG_B11: label is "X2Y5" ;
attribute RLOC of REG_B12: label is "X2Y6" ;
attribute RLOC of REG_B13: label is "X2Y6" ;
attribute RLOC of REG_B14: label is "X2Y7" ;
attribute RLOC of REG_B15: label is "X2Y7" ;
attribute RLOC of REG_B16: label is "X-1Y6";

95

attribute RLOC of REG_B17: label is "X-1Y6";
attribute RLOC of REG_P0 : label is "X-2Y0";
attribute RLOC of REG_P1 : label is "X1Y0" ;
attribute RLOC of REG_P2 : label is "X1Y0" ;
attribute RLOC of REG_P3 : label is "X1Y1" ;
attribute RLOC of REG_P4 : label is "X1Y1" ;
attribute RLOC of REG_P5 : label is "X3Y0" ;
attribute RLOC of REG_P6 : label is "X3Y0" ;
attribute RLOC of REG_P7 : label is "X3Y1" ;
attribute RLOC of REG_P8 : label is "X-2Y2";
attribute RLOC of REG_P9 : label is "X1Y2" ;
attribute RLOC of REG_P10: label is "X1Y2" ;
attribute RLOC of REG_P11: label is "X1Y3" ;
attribute RLOC of REG_P12: label is "X1Y3" ;
attribute RLOC of REG_P13: label is "X3Y2" ;
attribute RLOC of REG_P14: label is "X3Y2" ;
attribute RLOC of REG_P15: label is "X3Y3" ;
attribute RLOC of REG_P16: label is "X-2Y4";
attribute RLOC of REG_P17: label is "X1Y4" ;
attribute RLOC of REG_P18: label is "X1Y4" ;
attribute RLOC of REG_P19: label is "X1Y5" ;
attribute RLOC of REG_P20: label is "X1Y5" ;
attribute RLOC of REG_P21: label is "X3Y4" ;
attribute RLOC of REG_P22: label is "X3Y4" ;
attribute RLOC of REG_P23: label is "X3Y5" ;
attribute RLOC of REG_P24: label is "X-2Y6";
attribute RLOC of REG_P25: label is "X1Y6" ;
attribute RLOC of REG_P26: label is "X1Y6" ;
attribute RLOC of REG_P27: label is "X1Y7" ;
attribute RLOC of REG_P28: label is "X1Y7" ;
attribute RLOC of REG_P29: label is "X3Y6" ;
attribute RLOC of REG_P30: label is "X3Y6" ;
attribute RLOC of REG_P31: label is "X3Y7" ;
attribute RLOC of REG_P32: label is "X3Y1" ;
attribute RLOC of REG_P33: label is "X3Y3" ;
attribute RLOC of REG_P34: label is "X3Y5" ;
attribute RLOC of REG_P35: label is "X3Y7" ;
attribute BEL : string;
attribute BEL of REG_A0 : label is "FFX" ;
attribute BEL of REG_A1 : label is "FFY" ;
attribute BEL of REG_A2 : label is "FFX" ;
attribute BEL of REG_A3 : label is "FFY" ;
attribute BEL of REG_A4 : label is "FFX" ;
attribute BEL of REG_A5 : label is "FFY" ;
attribute BEL of REG_A6 : label is "FFX" ;
attribute BEL of REG_A7 : label is "FFY" ;
attribute BEL of REG_A8 : label is "FFX" ;
attribute BEL of REG_A9 : label is "FFY" ;
attribute BEL of REG_A10: label is "FFX" ;
attribute BEL of REG_A11: label is "FFY" ;
attribute BEL of REG_A12: label is "FFX" ;
attribute BEL of REG_A13: label is "FFY" ;
attribute BEL of REG_A14: label is "FFX" ;
attribute BEL of REG_A15: label is "FFY" ;
attribute BEL of REG_A16: label is "FFX" ;
attribute BEL of REG_A17: label is "FFY" ;
attribute BEL of REG_B0 : label is "FFX" ;
attribute BEL of REG_B1 : label is "FFY" ;
attribute BEL of REG_B2 : label is "FFX" ;
attribute BEL of REG_B3 : label is "FFY" ;
attribute BEL of REG_B4 : label is "FFX" ;
attribute BEL of REG_B5 : label is "FFY" ;
attribute BEL of REG_B6 : label is "FFX" ;
attribute BEL of REG_B7 : label is "FFY" ;
attribute BEL of REG_B8 : label is "FFX" ;
attribute BEL of REG_B9 : label is "FFY" ;
attribute BEL of REG_B10: label is "FFX" ;
attribute BEL of REG_B11: label is "FFY" ;
attribute BEL of REG_B12: label is "FFX" ;
attribute BEL of REG_B13: label is "FFY" ;

96

attribute BEL of REG_B14: label is "FFX" ;
attribute BEL of REG_B15: label is "FFY" ;
attribute BEL of REG_B16: label is "FFX" ;
attribute BEL of REG_B17: label is "FFY" ;
attribute BEL of REG_P0 : label is "G" ;
attribute BEL of REG_P1 : label is "F" ;
attribute BEL of REG_P2 : label is "G" ;
attribute BEL of REG_P3 : label is "F" ;
attribute BEL of REG_P4 : label is "G" ;
attribute BEL of REG_P5 : label is "F" ;
attribute BEL of REG_P6 : label is "G" ;
attribute BEL of REG_P7 : label is "F" ;
attribute BEL of REG_P8 : label is "G" ;
attribute BEL of REG_P9 : label is "F" ;
attribute BEL of REG_P10: label is "G" ;
attribute BEL of REG_P11: label is "F" ;
attribute BEL of REG_P12: label is "G" ;
attribute BEL of REG_P13: label is "F" ;
attribute BEL of REG_P14: label is "G" ;
attribute BEL of REG_P15: label is "F" ;
attribute BEL of REG_P16: label is "G" ;
attribute BEL of REG_P17: label is "F" ;
attribute BEL of REG_P18: label is "G" ;
attribute BEL of REG_P19: label is "F" ;
attribute BEL of REG_P20: label is "G" ;
attribute BEL of REG_P21: label is "F" ;
attribute BEL of REG_P22: label is "G" ;
attribute BEL of REG_P23: label is "F" ;
attribute BEL of REG_P24: label is "G" ;
attribute BEL of REG_P25: label is "F" ;
attribute BEL of REG_P26: label is "G" ;
attribute BEL of REG_P27: label is "F" ;
attribute BEL of REG_P28: label is "G" ;
attribute BEL of REG_P29: label is "F" ;
attribute BEL of REG_P30: label is "G" ;
attribute BEL of REG_P31: label is "G" ;
attribute BEL of REG_P32: label is "G" ;
attribute BEL of REG_P33: label is "G" ;
attribute BEL of REG_P34: label is "G" ;
attribute BEL of REG_P35: label is "F" ;
attribute MAXDELAY : string;
attribute MAXDELAY of a_wire0: signal is "500 ps";
attribute MAXDELAY of a_wire1: signal is "500 ps";
attribute MAXDELAY of a_wire2: signal is "500 ps";
attribute MAXDELAY of a_wire3: signal is "500 ps";
attribute MAXDELAY of a_wire4: signal is "500 ps";
attribute MAXDELAY of a_wire5: signal is "500 ps";
attribute MAXDELAY of a_wire6: signal is "500 ps";
attribute MAXDELAY of a_wire7: signal is "500 ps";
attribute MAXDELAY of a_wire8: signal is "500 ps";
attribute MAXDELAY of a_wire9: signal is "500 ps";
attribute MAXDELAY of a_wire10: signal is "500 ps";
attribute MAXDELAY of a_wire11: signal is "500 ps";
attribute MAXDELAY of a_wire12: signal is "500 ps";
attribute MAXDELAY of a_wire13: signal is "500 ps";
attribute MAXDELAY of a_wire14: signal is "500 ps";
attribute MAXDELAY of a_wire15: signal is "500 ps";
attribute MAXDELAY of a_wire16: signal is "500 ps";
attribute MAXDELAY of a_wire17: signal is "500 ps";
attribute MAXDELAY of b_wire0: signal is "500 ps";
attribute MAXDELAY of b_wire1: signal is "500 ps";
attribute MAXDELAY of b_wire2: signal is "500 ps";
attribute MAXDELAY of b_wire3: signal is "500 ps";
attribute MAXDELAY of b_wire4: signal is "500 ps";
attribute MAXDELAY of b_wire5: signal is "500 ps";
attribute MAXDELAY of b_wire6: signal is "500 ps";
attribute MAXDELAY of b_wire7: signal is "500 ps";
attribute MAXDELAY of b_wire8: signal is "500 ps";
attribute MAXDELAY of b_wire9: signal is "500 ps";
attribute MAXDELAY of b_wire10: signal is "500 ps";

97

attribute MAXDELAY of b_wire11: signal is "500 ps";
attribute MAXDELAY of b_wire12: signal is "500 ps";
attribute MAXDELAY of b_wire13: signal is "500 ps";
attribute MAXDELAY of b_wire14: signal is "500 ps";
attribute MAXDELAY of b_wire15: signal is "500 ps";
attribute MAXDELAY of b_wire16: signal is "500 ps";
attribute MAXDELAY of b_wire17: signal is "500 ps";
attribute MAXDELAY of p_wire0: signal is "500 ps";
attribute MAXDELAY of p_wire1: signal is "500 ps";
attribute MAXDELAY of p_wire2: signal is "500 ps";
attribute MAXDELAY of p_wire3: signal is "500 ps";
attribute MAXDELAY of p_wire4: signal is "500 ps";
attribute MAXDELAY of p_wire5: signal is "500 ps";
attribute MAXDELAY of p_wire6: signal is "500 ps";
attribute MAXDELAY of p_wire7: signal is "500 ps";
attribute MAXDELAY of p_wire8: signal is "500 ps";
attribute MAXDELAY of p_wire9: signal is "500 ps";
attribute MAXDELAY of p_wire10: signal is "500 ps";
attribute MAXDELAY of p_wire11: signal is "500 ps";
attribute MAXDELAY of p_wire12: signal is "500 ps";
attribute MAXDELAY of p_wire13: signal is "500 ps";
attribute MAXDELAY of p_wire14: signal is "500 ps";
attribute MAXDELAY of p_wire15: signal is "500 ps";
attribute MAXDELAY of p_wire16: signal is "500 ps";
attribute MAXDELAY of p_wire17: signal is "500 ps";
attribute MAXDELAY of p_wire18: signal is "500 ps";
attribute MAXDELAY of p_wire19: signal is "500 ps";
attribute MAXDELAY of p_wire20: signal is "500 ps";
attribute MAXDELAY of p_wire21: signal is "500 ps";
attribute MAXDELAY of p_wire22: signal is "500 ps";
attribute MAXDELAY of p_wire23: signal is "500 ps";
attribute MAXDELAY of p_wire24: signal is "500 ps";
attribute MAXDELAY of p_wire25: signal is "500 ps";
attribute MAXDELAY of p_wire26: signal is "500 ps";
attribute MAXDELAY of p_wire27: signal is "500 ps";
attribute MAXDELAY of p_wire28: signal is "500 ps";
attribute MAXDELAY of p_wire29: signal is "500 ps";
attribute MAXDELAY of p_wire30: signal is "500 ps";
attribute MAXDELAY of p_wire31: signal is "500 ps";
attribute MAXDELAY of p_wire32: signal is "500 ps";
attribute MAXDELAY of p_wire33: signal is "500 ps";
attribute MAXDELAY of p_wire34: signal is "500 ps";
attribute MAXDELAY of p_wire35: signal is "500 ps";
begin
REG_A0 : FDR port map(Q => a_wire0 , C => CLK, D => A(0) , R => RST);
REG_A1 : FDR port map(Q => a_wire1 , C => CLK, D => A(1) , R => RST);
REG_A2 : FDR port map(Q => a_wire2 , C => CLK, D => A(2) , R => RST);
REG_A3 : FDR port map(Q => a_wire3 , C => CLK, D => A(3) , R => RST);
REG_A4 : FDR port map(Q => a_wire4 , C => CLK, D => A(4) , R => RST);
REG_A5 : FDR port map(Q => a_wire5 , C => CLK, D => A(5) , R => RST);
REG_A6 : FDR port map(Q => a_wire6 , C => CLK, D => A(6) , R => RST);
REG_A7 : FDR port map(Q => a_wire7 , C => CLK, D => A(7) , R => RST);
REG_A8 : FDR port map(Q => a_wire8 , C => CLK, D => A(8) , R => RST);
REG_A9 : FDR port map(Q => a_wire9 , C => CLK, D => A(9) , R => RST);
REG_A10 : FDR port map(Q => a_wire10 , C => CLK, D => A(10) , R => RST);
REG_A11 : FDR port map(Q => a_wire11 , C => CLK, D => A(11) , R => RST);
REG_A12 : FDR port map(Q => a_wire12 , C => CLK, D => A(12) , R => RST);
REG_A13 : FDR port map(Q => a_wire13 , C => CLK, D => A(13) , R => RST);
REG_A14 : FDR port map(Q => a_wire14 , C => CLK, D => A(14) , R => RST);
REG_A15 : FDR port map(Q => a_wire15 , C => CLK, D => A(15) , R => RST);
REG_A16 : FDR port map(Q => a_wire16 , C => CLK, D => A(16) , R => RST);
REG_A17 : FDR port map(Q => a_wire17 , C => CLK, D => A(17) , R => RST);
REG_B0 : FDR port map(Q => b_wire0 , C => CLK, D => B(0) , R => RST);
REG_B1 : FDR port map(Q => b_wire1 , C => CLK, D => B(1) , R => RST);
REG_B2 : FDR port map(Q => b_wire2 , C => CLK, D => B(2) , R => RST);
REG_B3 : FDR port map(Q => b_wire3 , C => CLK, D => B(3) , R => RST);
REG_B4 : FDR port map(Q => b_wire4 , C => CLK, D => B(4) , R => RST);
REG_B5 : FDR port map(Q => b_wire5 , C => CLK, D => B(5) , R => RST);
REG_B6 : FDR port map(Q => b_wire6 , C => CLK, D => B(6) , R => RST);
REG_B7 : FDR port map(Q => b_wire7 , C => CLK, D => B(7) , R => RST);

98

REG_B8 : FDR port map(Q => b_wire8 , C => CLK, D => B(8) , R => RST);
REG_B9 : FDR port map(Q => b_wire9 , C => CLK, D => B(9) , R => RST);
REG_B10 : FDR port map(Q => b_wire10 , C => CLK, D => B(10) , R => RST);
REG_B11 : FDR port map(Q => b_wire11 , C => CLK, D => B(11) , R => RST);
REG_B12 : FDR port map(Q => b_wire12 , C => CLK, D => B(12) , R => RST);
REG_B13 : FDR port map(Q => b_wire13 , C => CLK, D => B(13) , R => RST);
REG_B14 : FDR port map(Q => b_wire14 , C => CLK, D => B(14) , R => RST);
REG_B15 : FDR port map(Q => b_wire15 , C => CLK, D => B(15) , R => RST);
REG_B16 : FDR port map(Q => b_wire16 , C => CLK, D => B(16) , R => RST);
REG_B17 : FDR port map(Q => b_wire17 , C => CLK, D => B(17) , R => RST);
inst_mult18x18s : MULT18X18S port map(

P(0) => p_wire0, P(1) => p_wire1, P(2) => p_wire2, P(3) => p_wire3, P(4) => p_wire4, P(5) => p_wire5,
P(6) => p_wire6, P(7) => p_wire7, P(8) => p_wire8, P(9) => p_wire9, P(10) => p_wire10, P(11) => p_wire11,
P(12) => p_wire12, P(13) => p_wire13, P(14) => p_wire14, P(15) => p_wire15, P(16) => p_wire16, P(17) => p_wire17,
P(18) => p_wire18, P(19) => p_wire19, P(20) => p_wire20, P(21) => p_wire21, P(22) => p_wire22, P(23) => p_wire23,
P(24) => p_wire24, P(25) => p_wire25, P(26) => p_wire26, P(27) => p_wire27, P(28) => p_wire28, P(29) => p_wire29,
P(30) => p_wire30, P(31) => p_wire31, P(32) => p_wire32, P(33) => p_wire33, P(34) => p_wire34, P(35) => p_wire35,

 (0) => a_wire0, A(1) => a_wire1, A(2) => a_wire2, A(3) => a_wire3, A(4) => a_wire4, A(5) => a_wire5,
 A(6) => a_wire6, A(7) => a_wire7, A(8) => a_wire8, A(9) => a_wire9, A(10) => a_wire10, A(11) => a_wire11,
 A(12) => a_wire12, A(13) => a_wire13, A(14) => a_wire14, A(15) => a_wire15, A(16) => a_wire16, A(17) => a_wire17,
 B(0) => b_wire0, B(1) => b_wire1, B(2) => b_wire2, B(3) => b_wire3, B(4) => b_wire4, B(5) => b_wire5,
 B(6) => b_wire6, B(7) => b_wire7, B(8) => b_wire8, B(9) => b_wire9, B(10) => b_wire10, B(11) => b_wire11,
 B(12) => b_wire12, B(13) => b_wire13, B(14) => b_wire14, B(15) => b_wire15, B(16) => b_wire16, B(17) => b_wire17,
 C => CLK, CE => CE, R => RST);
REG_P0 : SRL16 port map(Q => P(0) , CLK => CLK, D => p_wire0 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P1 : SRL16 port map(Q => P(1) , CLK => CLK, D => p_wire1 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P2 : SRL16 port map(Q => P(2) , CLK => CLK, D => p_wire2 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P3 : SRL16 port map(Q => P(3) , CLK => CLK, D => p_wire3 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P4 : SRL16 port map(Q => P(4) , CLK => CLK, D => p_wire4 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P5 : SRL16 port map(Q => P(5) , CLK => CLK, D => p_wire5 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P6 : SRL16 port map(Q => P(6) , CLK => CLK, D => p_wire6 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P7 : SRL16 port map(Q => P(7) , CLK => CLK, D => p_wire7 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P8 : SRL16 port map(Q => P(8) , CLK => CLK, D => p_wire8 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P9 : SRL16 port map(Q => P(9) , CLK => CLK, D => p_wire9 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P10 : SRL16 port map(Q => P(10) , CLK => CLK, D => p_wire10 , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P11 : SRL16 port map(Q => P(11) , CLK => CLK, D => p_wire11 , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P12 : SRL16 port map(Q => P(12) , CLK => CLK, D => p_wire12 , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P13 : SRL16 port map(Q => P(13) , CLK => CLK, D => p_wire13 , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P14 : SRL16 port map(Q => P(14) , CLK => CLK, D => p_wire14 , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P15 : SRL16 port map(Q => P(15) , CLK => CLK, D => p_wire15 , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P16 : SRL16 port map(Q => P(16) , CLK => CLK, D => p_wire16 , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P17 : SRL16 port map(Q => P(17) , CLK => CLK, D => p_wire17 , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P18 : SRL16 port map(Q => P(18) , CLK => CLK, D => p_wire18 , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P19 : SRL16 port map(Q => P(19) , CLK => CLK, D => p_wire19 , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P20 : SRL16 port map(Q => P(20) , CLK => CLK, D => p_wire20 , A0 => Dly(0), A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P21 : SRL16 port map(Q => P(21) , CLK => CLK, D => p_wire21 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P22 : SRL16 port map(Q => P(22) , CLK => CLK, D => p_wire22 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));

99

REG_P23 : SRL16 port map(Q => P(23) , CLK => CLK, D => p_wire23 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P24 : SRL16 port map(Q => P(24) , CLK => CLK, D => p_wire24 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P25 : SRL16 port map(Q => P(25) , CLK => CLK, D => p_wire25 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P26 : SRL16 port map(Q => P(26) , CLK => CLK, D => p_wire26 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P27 : SRL16 port map(Q => P(27) , CLK => CLK, D => p_wire27 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P28 : SRL16 port map(Q => P(28) , CLK => CLK, D => p_wire28 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P29 : SRL16 port map(Q => P(29) , CLK => CLK, D => p_wire29 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P30 : SRL16 port map(Q => P(30) , CLK => CLK, D => p_wire30 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P31 : SRL16 port map(Q => P(31) , CLK => CLK, D => p_wire31 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P32 : SRL16 port map(Q => P(32) , CLK => CLK, D => p_wire32 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P33 : SRL16 port map(Q => P(33) , CLK => CLK, D => p_wire33 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P34 : SRL16 port map(Q => P(34) , CLK => CLK, D => p_wire34 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));
REG_P35 : SRL16 port map(Q => P(35) , CLK => CLK, D => p_wire35 , A0 => Dly(0) , A1 => Dly(1), A2 => Dly(2), A3 =>
Dly(3));

end Behavioral;

100

THIS PAGE INTENTIONALLY LEFT BLANK

101

APPENDIX D. C CODE FILTER

The code in this section is representative of all the code used for various portions

of the project. The main.c code returns output files containing either filtered or unfiltered

data collected by the SRC-6. The unfiltered data is the same data that was processed by

the internal filter to produce the filtered data. Data is returned to the main function

packed into 64-bit words, which are then unpacked into individual variable that are

printed in the output files with six values on each line separated by commas. This format

is easily imported into any spreadsheet or math program. Since the filtered data is a

signed value, the code determines the sign bit and extends it if required. The function t6c

in the first loop of the t6d.mc code block is the call to the VHDL macro that captures the

data, and in this case, returns both the unfiltered data and data filtered by the VHDL high

pass filter. The C code version of the high pass filter is applied to the unfiltered output

and a total of three outputs are returned to the main function.
*************************MAIN.C CODE BLOCK*************************

static char const cvsid[] = "$Id: main.c,v 2.1 2005/06/14 22:16:48 jls Exp $";
#include <libmap.h>
#include <stdlib.h>
void t6d (int64_t A[], int64_t B[], int64_t C[], int64_t *time, int mapnum);
int main (int argc, char *argv[]) {
 FILE *raw, *vhd, *ccode;
 if (argc < 4) {
 fprintf (stderr, "USAGE: t6dexe <raw data ouput file> <vhdl ouput file> <c code ouput file>\n");
 exit (1);
 }

 if ((raw = fopen (argv[1], "w")) == NULL) {
 fprintf (stderr, "failed to open raw data ouput file\n");
 exit (1);
 }
 if ((vhd = fopen (argv[2], "w")) == NULL) {
 fprintf (stderr, "failed to open vhdl data ouput file\n");
 exit (1);
 }
 if ((ccode = fopen (argv[3], "w")) == NULL) {
 fprintf (stderr, "failed to open c code data ouput file\n");
 exit (1);
 }
 int i;
 int64_t *A, *B, *C;
 int64_t tm, tm2;
 int mapnum = 0;
 int o1[10000];
 int o2[10000];
 int o3[10000];
 int o4[10000];
 int o5[10000];
 int o6[10000];
 int o7[10000];
 int o8[10000];
 int r1[10000];

102

 int r2[10000];
 int r3[10000];
 int r4[10000];
 int r5[10000];
 int r6[10000];
 int r7[10000];
 int r8[10000];
 int c1[10000];
 int c2[10000];
 int c3[10000];
 int c4[10000];
 int c5[10000];
 int c6[10000];
 int c7[10000];
 int c8[10000];

 A = (int64_t*) malloc (MAX_OBM_SIZE * sizeof (int64_t));
 B = (int64_t*) malloc (MAX_OBM_SIZE * sizeof (int64_t));
 C = (int64_t*) malloc (MAX_OBM_SIZE * sizeof (int64_t));
 map_allocate (1);

 t6d (A, B, C, &tm, mapnum);

 printf ("%lld clocks\n", tm);

 for (i=0; i<10000; i++) {
 o3[i]=(A[i] >> 40) & 0x00000000000000ff;
 if (o3[i]>128) o3[i]=o3[i] | 0xffffffffffffff00;
 o4[i]=(A[i] >> 32) & 0x00000000000000ff;
 if (o4[i]>128) o4[i]=o4[i] | 0xffffffffffffff00;
 o5[i]=(A[i] >> 24) & 0x00000000000000ff;
 if (o5[i]>128) o5[i]=o5[i] | 0xffffffffffffff00;
 o6[i]=(A[i] >> 16) & 0x00000000000000ff;
 if (o6[i]>128) o6[i]=o6[i] | 0xffffffffffffff00;
 o7[i]=(A[i] >> 8) & 0x00000000000000ff;
 if (o7[i]>128) o7[i]=o7[i] | 0xffffffffffffff00;
 o8[i]=A[i] & 0x00000000000000ff;
 if (o8[i]>128) o8[i]=o8[i] | 0xffffffffffffff00;

 r3[i]=(B[i] >> 40) & 0x00000000000000ff;
 r4[i]=(B[i] >> 32) & 0x00000000000000ff;
 r5[i]=(B[i] >> 24) & 0x00000000000000ff;
 r6[i]=(B[i] >> 16) & 0x00000000000000ff;
 r7[i]=(B[i] >> 8) & 0x00000000000000ff;
 r8[i]=B[i] & 0x00000000000000ff;

 c3[i]=(C[i] >> 40) & 0x00000000000000ff;
 c4[i]=(C[i] >> 32) & 0x00000000000000ff;
 c5[i]=(C[i] >> 24) & 0x00000000000000ff;
 c6[i]=(C[i] >> 16) & 0x00000000000000ff;
 c7[i]=(C[i] >> 8) & 0x00000000000000ff;
 c8[i]=C[i] & 0x00000000000000ff;
 }
 for (i=0; i<10000; i++) {
 fprintf (vhd, "%d,%d,%d,%d,%d,%d,%d,%d\n", i,o3[i],o4[i],o5[i],o6[i],o7[i],o8[i],o2[i]);
 }
 for (i=0; i<10000; i++) {
 fprintf (raw, "%d,%d,%d,%d,%d,%d,%d\n", i,r3[i],r4[i],r5[i],r6[i],r7[i],r8[i]);
 }
 for (i=0; i<10000; i++) {
 fprintf (ccode, "%d,%d,%d,%d,%d,%d,%d\n", i,c3[i],c4[i],c5[i],c6[i],c7[i],c8[i]);
 }
 map_free (1);
 exit(0);
 }

*************************T6D.MC CODE BLOCK*************************
#include <libmap.h>

103

void t6d (int64_t A[], int64_t B[], int64_t C[],int64_t *time, int mapnum) {
 OBM_BANK_A (AL, int64_t, MAX_OBM_SIZE)
 OBM_BANK_B (BL, int64_t, MAX_OBM_SIZE)
 OBM_BANK_C (CL, int64_t, MAX_OBM_SIZE)
 int64_t t0, t1, out, outraw;
 int i, out2;
 int8_t s0,s1,s2,s3,s4,s5,s6,s7;
 int8_t pad=0;
 int16_t n0=0;
 int16_t n1=0;
 int16_t n2=0;
 int16_t n3=0;
 int16_t n4=0;
 int16_t n5=0;
 int n0c1=0;
 int n0c3=0;
 int n0c5=0;
 int n1c2=0;
 int n1c4=0;
 int n1c6=0;
 int n2c1=0;
 int n2c3=0;
 int n2c5=0;
 int n3c2=0;
 int n3c4=0;
 int n3c6=0;
 int n4c1=0;
 int n4c3=0;
 int n4c5=0;
 int n5c2=0;
 int n5c4=0;
 int n5c6=0;
 int i0=0;
 int i1=0;
 int i2=0;
 int i3=0;
 int i4=0;
 int i5=0;
 int i6=0;
 int i6t1=0;
 int i6t2=0;
 int i7=0;
 int i8=0;
 int i8t1=0;
 int j0=0;
 int j1=0;
 int j2=0;
 int k0=0;
 int k1=0;
 int k2=0;
 int k3=0;
 int k4=0;
 int k5=0;
 int8_t k0t=0;
 int8_t k1t=0;
 int8_t k2t=0;
 int8_t k3t=0;
 int8_t k4t=0;
 int8_t k5t=0;
 int kd01,kd02,kd03,kd11,kd12,kd13,kd21,kd22,kd23,kd31,kd32,kd33,kd41,kd42,kd43,kd51,kd52,kd53;

 read_timer (&t0);

 for (i=0; i<MAX_OBM_SIZE; i++)
 {
 t6c(&out, &outraw);
 AL[i] = out;
 BL[i] = outraw;
 }
 for (i=0; i<MAX_OBM_SIZE; i++)

104

 {
 split_64to8(BL[i], &s6, &s7, &s0, &s1, &s2, &s3, &s4, &s5);

 k3 = k0;
 k4 = k1;
 k5 = k2;

 k0 = i2 + j2;
 k1 = i6t2 + j0;
 k2 = i8t1 + j1;

 split_32to8(k0, &k0t, &kd01, &kd02, &kd03);
 split_32to8(k1, &k1t, &kd11, &kd12, &kd13);
 split_32to8(k2, &k2t, &kd21, &kd22, &kd23);
 split_32to8(k3, &k3t, &kd31, &kd32, &kd33);
 split_32to8(k4, &k4t, &kd41, &kd42, &kd43);
 split_32to8(k5, &k5t, &kd51, &kd52, &kd53);

 comb_8to64(pad, pad, k1t,k2t,k0t,k4t,k5t,k3t, &CL[i]);

 j0 = i1 + i5;
 j1 = i0 + i4;
 j2 = i3 + i7;

 i8t1=i8;
 i6t2=i6t1;
 i6t1=i6;

 i0=n0c1+n1c2;
 i1=n0c3+n1c4;
 i2=n0c5+n1c6;
 i3=n2c1+n3c2;
 i4=n2c3+n3c4;
 i5=n2c5+n3c6;
 i6=n4c1+n5c2;
 i7=n4c3+n5c4;
 i8=n4c5+n5c6;

 n0c1=n0*1881;
 n0c3=n0*21509;
 n0c5=n0*9372;
 n1c2=n1*9372;
 n1c4=n1*21509;
 n1c6=n1*1881;
 n2c1=n2*1881;
 n2c3=n2*21509;
 n2c5=n2*9372;
 n3c2=n3*9372;
 n3c4=n3*21509;
 n3c6=n3*1881;
 n4c1=n4*1881;
 n4c3=n4*21509;
 n4c5=n4*9372;
 n5c2=n5*9372;
 n5c4=n5*21509;
 n5c6=n5*1881;
 comb_8to16(s0, pad, &n0);
 comb_8to16(s1, pad, &n1);
 comb_8to16(s2, pad, &n2);
 comb_8to16(s3, pad, &n3);
 comb_8to16(s4, pad, &n4);
 comb_8to16(s5, pad, &n5);
 }
 read_timer (&t1);
 *time = t1 - t0;
 DMA_CPU (OBM2CM, AL, MAP_OBM_stripe(1,"A"), A, 1, MAX_OBM_SIZE*sizeof(int64_t), 0);
 DMA_CPU (OBM2CM, BL, MAP_OBM_stripe(1,"B"), B, 1, MAX_OBM_SIZE*sizeof(int64_t), 0);
 DMA_CPU (OBM2CM, CL, MAP_OBM_stripe(1,"C"), C, 1, MAX_OBM_SIZE*sizeof(int64_t), 0);
 wait_DMA (0);
}

105

APPENDIX E. MATLAB CODE

This section contains the MATLAB code used to format that output data from the

SRC-6 and to generate reference calculations with which to compare the QMF data

generated on the SRC-6 . The splitter function is used to de-interleave the processed

output data from the SRC-6 QMF implementations. The lfilter and hfilter functions are

called by the qmf3 function or individually to generate comparison data from the

unprocessed samples from the ADC. The lfilter function is not included but is identical to

the hfilter function except for the filter coefficients.

function [out] = seri(in,length)
for m = 1:length
 for n = 1:6
 out(6*(m-1)+n) = in(m,n);
 end
end

function [out] = splitter(in)
for i = 1:8
 for m = (i+8):8:8008
 for n = 1:6
 out(i,6*(((m-i)/8)-1)+n) = in(m-8,n);
 end
 end
end

function [lout] = hfilter(in,stage)
hc1 = .0287;
hc2 = .1430;
hc3 = .3282;
hc4 = .3282;
hc5 = .1430;
hc6 = .0287;
in(stage+1)=0;
in(stage+2)=0;
in(stage+3)=0;
in(stage+4)=0;
in(stage+5)=0;
in(stage+6)=0;
for m = 1:2:stage
 lout(m) = hc1*in(m+5)+hc2*in(m+4)+hc3*in(m+3)+hc4*in(m+2)+hc5*in(m+1)+hc6*in(m);
end
lout=lout(1:2:stage);

function [lout] = qmf3(in)

lout(9,:) = in;

hhh=hfilter(in,6000);
hhh=hfilter(hhh,3000);
hhh=hfilter(hhh,1500);

lhh=lfilter(in,6000);
lhh=hfilter(lhh,3000);
lhh=hfilter(lhh,1500);

hlh=hfilter(in,6000);
hlh=lfilter(hlh,3000);

106

hlh=hfilter(hlh,1500);

llh=lfilter(in,6000);
llh=lfilter(llh,3000);
llh=hfilter(llh,1500);

hhl=hfilter(in,6000);
hhl=hfilter(hhl,3000);
hhl=lfilter(hhl,1500);

lhl=lfilter(in,6000);
lhl=hfilter(lhl,3000);
lhl=lfilter(lhl,1500);

hll=hfilter(in,6000);
hll=lfilter(hll,3000);
hll=lfilter(hll,1500);

lll=lfilter(in,6000);
lll=lfilter(lll,3000);
lll=lfilter(lll,1500);

lout(1,1:750)=hhh;
lout(2,1:750)=lhh;
lout(3,1:750)=hlh;
lout(4,1:750)=llh;
lout(5,1:750)=hhl;
lout(6,1:750)=lhl;
lout(7,1:750)=hll;
lout(8,1:750)=lll;

107

APPENDIX F. SAMPLE DATA

0 50 100 150 200 250 300 350 400
-100

-80

-60

-40

-20

0

20

40

60

80

100
Filter Path: High-High-High

Average Difference: 1.7934 Correlation: 0.9995
0 50 100 150 200 250 300 350 400

-100

-80

-60

-40

-20

0

20

40

60

80

100
Filter Path: Low-High-High

Average Difference: 1.2751 Correlation: 0.99988

0 50 100 150 200 250 300 350 400
-100

-80

-60

-40

-20

0

20

40

60

80

100
Filter Path: Low-Low-High

Average Difference: 1.5324 Correlation: 0.99975
0 50 100 150 200 250 300 350 400

-100

-80

-60

-40

-20

0

20

40

60

80

100
Filter Path: High-Low-High

Average Difference: 1.0998 Correlation: 0.99962

Raw data
SRC filter
Matlab filter

0 50 100 150 200 250 300 350 400
-100

-80

-60

-40

-20

0

20

40

60

80

100
Filter Path: Low-Low-Low

Average Difference: 2.4432 Correlation: 0.99993
0 50 100 150 200 250 300 350 400

-100

-80

-60

-40

-20

0

20

40

60

80

100
Filter Path: High-Low-Low

Average Difference: 0.34679 Correlation: 0.99995

0 50 100 150 200 250 300 350 400
-100

-80

-60

-40

-20

0

20

40

60

80

100
Filter Path: High-High-Low

Average Difference: 1.5378 Correlation: 0.99934
0 50 100 150 200 250 300 350 400

-100

-80

-60

-40

-20

0

20

40

60

80

100
Filter Path: Low-High-Low

Average Difference: 2.2132 Correlation: 0.99954

Raw data
SRC filter
Matlab filter

Figure 39. High Resolution View of 1MHz Sine Wave

108

0 50 100 150 200 250 300 350 400
-100

-50

0

50

100

150
Filter Path: High-High-High

Average Difference: 1.6787 Correlation: 0.99912
0 50 100 150 200 250 300 350 400

-100

-50

0

50

100

150
Filter Path: Low-High-High

Average Difference: 0.98884 Correlation: 0.99971

0 50 100 150 200 250 300 350 400
-100

-50

0

50

100

150
Filter Path: Low-Low-High

Average Difference: 1.6316 Correlation: 0.99925
0 50 100 150 200 250 300 350 400

-100

-50

0

50

100

150
Filter Path: High-Low-High

Average Difference: 2.2914 Correlation: 0.99399

Raw data
SRC filter
Matlab filter

0 50 100 150 200 250 300 350 400
-100

-50

0

50

100

150
Filter Path: Low-Low-Low

Average Difference: 4.3818 Correlation: 0.99466
0 50 100 150 200 250 300 350 400

-100

-50

0

50

100

150
Filter Path: High-Low-Low

Average Difference: 2.5512 Correlation: 0.99762

0 50 100 150 200 250 300 350 400
-100

-50

0

50

100

150
Filter Path: High-High-Low

Average Difference: 2.8714 Correlation: 0.99547
0 50 100 150 200 250 300 350 400

-100

-50

0

50

100

150
Filter Path: Low-High-Low

Average Difference: 2.1713 Correlation: 0.99832

Raw data
SRC filter
Matlab filter

Figure 40. High Resolution View of 1MHz Square Wave

109

0 50 100 150 200 250 300 350 400
-20

-10

0

10

20

30

40

50

60

70
Filter Path: High-High-High

Average Difference: 1.923 Correlation: 0.96692
0 50 100 150 200 250 300 350 400

-20

-10

0

10

20

30

40

50

60

70
Filter Path: Low-High-High

Average Difference: 1.9521 Correlation: 0.95853

0 50 100 150 200 250 300 350 400
-20

-10

0

10

20

30

40

50

60

70
Filter Path: Low-Low-High

Average Difference: 1.9747 Correlation: 0.95966
0 50 100 150 200 250 300 350 400

-20

-10

0

10

20

30

40

50

60

70
Filter Path: High-Low-High

Average Difference: 0.70803 Correlation: 0.9988

Raw data
SRC filter
Matlab filter

0 50 100 150 200 250 300 350 400
-20

-10

0

10

20

30

40

50

60

70
Filter Path: Low-Low-Low

Average Difference: 2.354 Correlation: 0.97027
0 50 100 150 200 250 300 350 400

-20

-10

0

10

20

30

40

50

60

70
Filter Path: High-Low-Low

Average Difference: 0.89401 Correlation: 0.99158

0 50 100 150 200 250 300 350 400
-20

-10

0

10

20

30

40

50

60

70
Filter Path: High-High-Low

Average Difference: 1.235 Correlation: 0.99111
0 50 100 150 200 250 300 350 400

-20

-10

0

10

20

30

40

50

60

70
Filter Path: Low-High-Low

Average Difference: 1.527 Correlation: 0.97991

Raw data
SRC filter
Matlab filter

Figure 41. High Resolution View of 1MHz Cardiac Wave

110

THIS PAGE INTENTIONALLY LEFT BLANK

111

LIST OF REFERENCES

[1] P. E. Pace, Detecting and Classifying Low Probability of Intercept Radar, Boston
Massachusetts: Artech House Inc., 2004, pp 263-302.

[2] D.A. Brown, “ELINT Signal Processing on Reconfigurable Computers for
Detection and Classification of LPI Emitters,” M.S. thesis, Naval Postgraduate
School, Monterey, California, 2006.

[3] R. Turney, C. Dick, A. Reza, “Multirate Filters and Wavelets: From Theory to
Implementation,” Xilinx Inc., Internet:
http://www.xilinx.com/products/logicore/dsp/wavelet_final.pdf, November 2,
1999 [September 5, 2006].

[4] J. B. Evans. Efficient FIR Filter Architectures Suitable for FPGA Implementation.
IEEE Transactions on Circuits and Systems, 41(7):490-493, July 1994.

[5] V. Pasham, A. Miller, K. Chapman, “Transposed Form FIR Filters,” Xilinx
XAPP219, Internet: http://direct.xilinx.com/bvdocs/appnotes/xapp219.pdf,
October 25, 2001 [September 5, 2006].

[6] M. Adhiwiyogo, “Optimal Pipelining of I/O Ports of the Virtex-II Multiplier,”
Internet: http://direct.xilinx.com/bvdocs/appnotes/xapp636.pdf, March 23, 2005,
[September 5, 2006].

[7] Xilinx, “644-MHz LVDS Transmitter/Receiver,” Xilinx XAPP622 Internet:
http://direct.xilinx.com/bvdocs/appnotes/xapp622.pdf, April 27, 2004, [September
5, 2006].

[8] N. Sawyer, “Data to Clock Phase Alignment,” Xilinx XAPP225, Internet:
http://direct.xilinx.com/bvdocs/appnotes/xapp225.pdf, April 4, 2002 [September
5, 2006].

[9] N. Sawyer, “High Speed Data Serialization and Deserialization,” Xilinx
XAPP265, Internet: http://direct.xilinx.com/bvdocs/appnotes/xapp265.pdf, June
19, 2002 [September 5, 2006].

[10] N. Sawyer, “Active Phase Alignment,” Xilinx XAPP268, Internet:
http://direct.xilinx.com/bvdocs/appnotes/xapp268.pdf, December 9, 2002
[September 5, 2006].

[11] T.L. King, “Hardware Interface to Connect and AN/SPS-65 Radar to an SRC-6E
Reconfigurable Computer,” M.S. Thesis, Naval Postgraduate School, Monterey,
California, 2005.

[12] T.G. Guthrie, “Design, Implementation, and Testing of a Software Interface
between the AN/SPS-65(V)1 Radar and the SRC-6E Reconfigurable Computer,”
M.S. Thesis, Naval Postgraduate School, Monterey, California, 2005.

[13] SRC Computers Inc., “SRC-6 C Programming Environment V2.1 Guide,” SRC-
007-16, SRC Computers Inc., Colorado Springs, Colorado, August 31, 2005.

[14] David Caliga, Private training session, “SRC Carte Training Course,” Colorado
Springs, Colorado, November 2005.

[15] K.R. Macklin, “Benchmarking and Analysis of the SRC-6E Reconfigurable
Computing System,” M.S. Thesis, Naval Postgraduate School, Monterey,
California, 2003.

112

[16] Xilinx, “Virtex-II Platform FPGAs: Complete Data Sheet,” Internet:
http://direct.xilinx.com/bvdocs/publications/ds031.pdf, March 1, 2005,
[September 5, 2006].

[17] Xilinx, “Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data
Sheet,” Internet: http://direct.xilinx.com/bvdocs/publications/ds083.pdf, October
10, 2005, [September 5, 2006].

[18] National Semiconductor, “ADC08D1500 High Performance, Low Power, Dual 8-
Bit, 1.5GSPS A/D Converter,” Internet:
http://www.national.com/ds.cgi/DC/ADC08D1500.pdf, October 2005 [September
5, 2006].

[19] SRC Computers Inc., “SRC-6 MAP© Hardware Guide,” SRC-005-05,” Colorado
Springs, Colorado, May 26, 2004.

[20] C. Orth, “User Hardware Interfacing to the Chain Port of the SRC MAP©
Revision D Board,” SRC-009-00, SRC Computers Inc., Colorado Springs,
Colorado, July 17, 2003.

113

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Marine Corps Represenative
Naval Postgraduate School
Monterey, California

4. Director, Training and Education, MCCDC, Code C46
Quantico, Virginia

5. Director, Marine Corps Research Center, MCCDC, Code C40RC
Quantico, Virginia

6. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
Camp Pendleton, California

7. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

8. Alan Hunsberger

National Security Agency
Ft. Meade Maryland

9. Douglas J. Fouts
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

10. Jon Butler
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

11. Phillip E. Pace
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

114

12. Jon Huppenthal

SRC Computers, Inc
Colorado Springs, Colorado

