
Semantic Web Research Trends and Directions

Jennifer Golbeck1, Bernardo Cuenca Grau, Christian Halaschek-Wiener,
Aditya Kalyanpur, Yarden Katz, Bijan Parsia, Andrew Schain, Evren Sirin,

and James Hendler

MINDSWAP, University of Maryland, College Park, MD 20742, USA,
golbeck@cs.umd.edu, bernardo.cuenca@uv.es, {halasche,aditya}@cs.umd.edu,

yarden@umd.edu, bparsia@isr.umd.edu,

andrew@schain.org,{evren,hendler}@cs.umd.edu
WWW home page: http://www.mindswap.org

Abstract. The Semantic Web is not a single technology, but rather a
collection of technologies designed to work together. As a result, research
on the Semantic Web intends both to advance individual technologies as
well as to integrate them and take advantage of the result. In this paper
we present new work on many layers of the Semantic Web, including
content generation, web services, e-connections, and trust.

1 Introduction

Defining the Semantic Web is a difficult task. It is the next generation of the
web. It is a set of languages and standards. It has a strong logic and reasoning
component. Web services, web portals, markup tools, and applications are all
components. As a result, there are many interesting, intertwined research areas.

In this paper, we address several emerging trends of research in the Semantic
Web space. We begin by presenting two tools for creating content on the Seman-
tic Web: SWOOP, an ontology browser and editor, and PhotoStuff, an image
annotation tool that integrates with a web portal. We follow with descriptions
of E-Connections, a logical formalism for combining ontologies, and of work in
web services. Finally, we describe a project using social trust on the semantic
web that builds upon the previous work to create end user applications that
benefit from the semantic foundation.

2 Swoop - Web Ontology Editor

Swoop is a hypermedia-inspired Ontology Browser and Editor based on OWL,
the first standardized Web-oriented ontology language. Swoop takes the stan-
dard Web browser as the UI paradigm, believing that URIs are central to the
understanding and construction of OWL Ontologies. The familiar look and feel
of a browser emphasized by the address bar and history buttons, navigation side
bar, bookmarks, hypertextual navigation etc are all supported for web ontolo-
gies, corresponding with the mental model people have of URI-based web tools
based on their current Web browsers.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2006 2. REPORT TYPE

3. DATES COVERED
 00-00-2006 to 00-00-2006

4. TITLE AND SUBTITLE
Semantic Web Research Trends and Directions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,MINDSWAP,College Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

24

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Fig. 1. The Swoop Interface

All design decisions are in keeping with the OWL nature and specifications.
Thus, multiple ontologies are supported easily, various OWL presentation syntax
are used to render ontologies, open-world semantics are assumed while editing
and OWL reasoners can be integrated for consistency checking. A key point in
our work is that the hypermedia basis of the UI is exposed in virtually every
aspect of ontology engineering — easy navigation of OWL entities, comparing
and editing related entities, search and cross referencing, multimedia support for
annotation, etc. — thus allowing ontology developers to think of OWL as just
another Web format, and thereby take advantage of its Web-based features.

2.1 Summary of Features

Swoop functionality is characterized by the following basic features (for an elab-
orate discussion of the features see [?]).

– Multiple Ontology Browsing and Editing Swoop has a variety of mechanisms
for pulling in different Web ontologies into its model using bookmarks; load-
ing via the address bar; during navigation across ontologies etc. Addition-
ally, ontology browsing and editing are done in a single pane, which helps to
maintain context.

– Renderer Plugins for OWL Presentation Syntaxes Swoop bundles in six ren-
derers; two Ontology Renderers-Information and Species Validation; and
four Entity Renderers Concise Format, OWL Abstract Syntax, Turtle and
RDF/XML. By supporting different presentation syntaxes, accessibility is
enhanced tremendously.

– Reasoner plugins in Swoop Swoop contains two additional reasoners (besides
the basic Reasoner that simply uses the asserted structure of the ontology):

RDFS-like and Pellet [2]. While the former is a lightweight reasoner based on
RDFS semantics, the latter, Pellet, is a powerful description logic tableaux
reasoner. The reasoners provide a tradeoff between speed and quality of in-
ference results, e.g., the RDFS-like reasoner, while much faster than Pellet
in execution, is unsound (results maybe inaccurate if the ontology is incon-
sistent) and incomplete (does not list all possible inferences). Yet, in most
cases, it provides interesting and useful results for ontology authors, and
moreover, the reasoners can be used in conjunction to analyze the ontology
quickly while editing it.

– Semantic Search Swoop takes inspiration from the hyperlink based search
and cross-referencing utility present in a programming IDE such as Eclipse
(http://www.eclipse.org/). For example, a non-standard search feature in
Swoop is Show References, which lists all references of a single OWL entity
(concept/property/individual) in local or external ontological definitions.
This feature can help understand usage of an entity in a specific context
and is especially useful in ontology debugging where non-local interactions
can lead to errors of a single concept.

– Ontology Versioning Swoop supports ad hoc undo/redo of changes (with log-
ging) coupled with the ability to checkpoint and archive different ontology
versions. Each change set or checkpoint can be saved at three different gran-
ularity levels - entity, ontology, workspace - which specify its scope. While
the change logs can be used to explicitly track the evolution of an ontology,
checkpoints allows the user to switch between versions directly exploring dif-
ferent modeling alternatives.Swoop also has the option to save checkpoints
automatically, i.e., during specific tasks such as loading a new ontology, ap-
plying changes, removing or renaming an entity etc. Note that each time a
checkpoint is saved, a snapshot of the entity definition is cached as well, and
can be used to preview a checkpoint before reverting back to it.

2.2 Advanced Features

Additionally, Swoop has the following advanced features, which represent work
in progress:

– Resource Holder (Comparator/Mapping utility) In Swoop, there is a pro-
vision to store and compare OWL entities during an extended search and
browsing process via the Resource Holder panel. This common placeholder
acts as an excellent platform for performing interesting engineering tasks
such as comparing differences in definitions of a set of entities; determin-
ing semantic mappings between a specific pair of entities or simply storing
entities for reusing in another ontology.

– Automatic Partitioning of OWL Ontologies (using E-Connections): Swoop
has a provision for automatically partitioning OWL Ontologies by trans-
forming them into an E-connection. For more details on the theory and
significance of E-connections, their use in the context of OWL Ontologies
see section 4.

– Ontology Debugging and Repair Swoop uses two techniques for ontology
debugging and repair: glass box and black box. In glass box techniques,
information from the internals of the reasoner is extracted and presented
to the user (typically used to pinpoint the type of clash/contradiction and
axioms leading to the clash [4]). In black box techniques, the reasoner is used
as an oracle for a certain set of questions e.g., the standard description logic
inferences (subsumption, satisfiability, etc.) and the asserted structure of the
ontology is used to help isolate the source of the problems (can be used to
find dependencies between unsatisfiable classes).

– Annotea Client in Swoop: Collaborative Annotations and Change Sets

The Annotea protocol [5] allows for publishing and finding out-of-band annota-
tions on arbitrary web resources. Annotea support in Swoop is provided via a
simple plug in that uses the default Annotea RDF schema to specify annota-
tions. Any public Annotea Server can then be used to publish and distribute the
annotations created in Swoop. In addition to annotations, users can attach and
share Ontology Change sets that are created using Swoop.

3 PhotoStuff Semantic Image Annotation Tool

PhotoStuff is a platform-independent image annotation tool that allows users to
annotate regions of an image with respect to concepts in any ontology specified
in RDFS or OWL. It provides the functionality to import images (and their
embedded metadata), ontologies, instance-bases, perform markup, and export
the resulting annotations to disk or a Semantic Web portal.

3.1 Overview

PhotoStuff is designed to load multiple ontologies at once, enabling a user to
markup images with concepts distributed across any of the loaded ontologies.

this was all cut and used to create the paragraph that follows the commented
out text

Each ontology is stored in a local knowledge base. The ontologies are visual-
ized in both a class tree and list (depicted below in Figure 2 in the far left pane of
the tool). User can load images (from the Web and/or local disk) in PhotoStuff.
The tool currently takes advantage of existing embedded image metadata by
extracting and encoding this information into RDF/XML, thus allowing embed-
ded metadata to be directly incorporated into the tool and the Semantic Web
in general. Using a variety of region drawing tools, users are able to highlight
regions around portions of loaded in PhotoStuff. The terms listed in both the
tree and list can be dragged into any region, or into the image itself, creating a
new instance of the selected class. An instance creation form is dynamically gen-
erated from the properties of the selected class (range restrictions are imposed).
Especially valuable, existing instances can be loaded from any URI on the Web.
Using these preloaded instances, depictions can reference existing instances.

Fig. 2. PhotoStuff Screenshot

PhotoStuffs underlying functionality of making assertions regarding the high
level content of digital images is driven by an ontology-based approach. More
specifically, an image-region ontology is used to provide the expressiveness re-
quired to assert what is actually depicted within an image, as well information
about the image (date created, etc.). In this work, such an ontology has been
specified, using OWL, which defines a small set of concepts for images, videos,
regions, depictions, etc. Using these concepts and their associated properties, it
is possible to assert that an image/imageRegion depicts some instance, etc. The
complete RDF/XML representation of the ontology described here is available
on the MINDSWAP website .

The ontologies are visualized in both a class tree and list (depicted below
in Figure 2 in the far left pane of the tool). User can load images (from the
Web and/or local disk) in PhotoStuff. The terms listed in both the tree and list
can be dragged into any region, or into the image itself, creating a new instance
of the selected class. An instance creation form is dynamically generated from
the properties of the selected class (range restrictions are imposed). Especially
valuable, existing instances can be loaded from any URI on the Web. Using these
preloaded instances, depictions can reference existing instances.

Communication between the two is done via HTTP/S using simple Web
server side Python scripts and other available technology, including WebDAV.

PhotoStuff maintains a loose coupling with a Semantic Web portal There
are three ways in which PhotoStuff interacts with the portal, namely retriev-
ing all instances that have been submitted to the portal, submitting generated
RDF/XML, and uploading local images so they can be referenced by a URI
(thus allowing them to be referenced using RDF/XML).

Fig. 3. Image Browsing By Class

The ability to retrieve markup from the portal allows users to annotate photos
against existing instances they, or others, have already created. Essentially in
PhotoStuff, URIs (to RDF/XML documents containing instances) can be pre-
specified from which the tool can read in. These instances are read into the tools
local knowledge base and subsequently available for annotation purposes.

When submitting newly created image annotations to the portal, PhotoStuff
can add to existing instance bases already maintained on the portal and make
it available on the Semantic Web. Lastly, PhotoStuff provides the functionality
to upload any local image that the user has annotated. When a user imports a
local image, a copy of the image is uploaded to a WebDAV repository maintained
from with the portal. This is required so that the annotations can reference the
image on the Web.

3.2 Image Metadata Browsing and Searching

After metadata of annotated images is submitted to the Semantic Web portal,
semantics based image browsing and searching is provided. The portal uses infor-
mation from the various ontologies image content is annotated against to guide
the display of and interaction with metadata (e.g., class hierarchy drives the
browsing layout, as seen in Figure 3). The main interface for browsing images is
displayed below in Figure 3. All instances that are depicted within an image are
presented. As noted earlier, the underlying class of each instance drives the ac-
tual order of the depictions, thus providing a high level view of all the metadata
of images that have been annotated using PhotoStuff.

Fig. 4. Instance Descriptions and Image Co-Region Browsing

When an instance is selected, the user is presented with all images in which
the instance is depicted (illustrated in Figure 4). All of the metadata regarding
that instance is presented to the user as well (currently in tabular form). We
note here that this links the images with pre-existing metadata maintained in
the portal.

In Figure 4, it can be seen that specific regions are highlighted. This is ac-
complished using an SVG outline of the region drawn on the various images
(this data is embedded in RDF/XML as well). By selecting an image region, the
various co-regions of the selected image region are displayed (shown in Figure
4). This allows browsing of the metadata associated with the various regions
depicted in the image. Lastly, the portal provides support for searching image
metadata. Images are searchable at the instance and class level.

4 E-Connections of Web Ontologies

An E-Connection is a knowledge representation (KR) formalism defined as a
combination of other logical formalisms. The component logics that can be used
in an E-Connection include Description Logics (and hence OWL-DL), some tem-
poral and spatial logics, Modal and Epistemic logics. E-Connections were orig-
inally introduced as a way to go beyond the expressivity of each of the compo-
nent logics, while preserving the decidability of the reasoning services. Obviously,
different component logics will give rise to different combined languages, with
different expressivity and computational properties.

In a Semantic Web context, E-Connections allow the user to combine OWL-
DL ontologies. A combination of OWL-DL ontologies is called a combined knowl-
edge base. A combined knowledge base is a set of “connected ontologies. These

Fig. 5. Image Co-Region Browsing

connected ontologies are basically OWL-DL ontologies extended with the ability
to define and use link properties.

In OWL-DL, object properties are used to relate individuals within a given
ontology, while datatype properties relate individuals to data values. In a com-
bined knowledge base, link properties are used to relate individuals belonging to
different ontologies in the combination.

A link property can be used to define classes in a certain ontology in terms
of other classes corresponding to different ontologies in the combination. For
example, a “Graduate Student” in an ontology about “people” could be de-
fined as a student who is enrolled in at least one graduate course, by using the
class “Student” in the people ontology and a someValuesFrom restriction on the
link property “enrolledIn” with value “GraduateCourse”: a class in a different
ontology dealing with the domain of “academic courses”.

Link properties are logically interpreted as binary relations, where the first
element belongs to the “source” ontology and the second to the “target ontology”
of the link property. Conceptually, a link property will be defined and used in its
“source” ontology. For example, the link property “enrolledIn” would be defined
as a link property in the “people” ontology with target ontology “academic
courses”.

From the modeling perspective, each of the component ontologies in an E-
Connection is modeling a different application domain, while the E-Connection
itself is modelling the union of all these domains. For example, an E-Connection
could be used to model all the relevant information referred to a certain univer-
sity, and each of its component ontologies could model, respectively, the domain

of people involved in the university, the domain of schools and departments, the
domain of courses, etc.

As an example, suppose that we want to model the domain of “tourism” as
a combination of the following sub-domains: “travel accommodations”, “leisure
activities”, “travel destinations”, and “people”. We want to model each applica-
tion sub-domain in a different ontology and then use link properties to represent
their relationships.

We would like to define classes like “BudgetDestination (a travel destina-
tion which provides a choice of budget accommodations) in the “destinations”
ontology, or “CaribbeanHotel (a hotel accommodation offered at a Caribbean
destination) in the “accommodations” ontology.

For such a purpose, we define the link properties “providesAccomodation and
“offersActivity, which relate the domain of “destinations” to the domain of “ac-
commodations” and “activities” respectively, and the link property “hasHobby,
that relates the domain of “people” and the domain of “activities”.

Restrictions on link properties can be used to generate new classes. For ex-
ample, we can define a “budget destination” in the destinations ontology as a
travel destination that offers at least one kind of budget accommodation.

4.1 Applications

Integration of OWL Ontologies E-Connections can be used as a suitable rep-
resentation for combining and integrating OWL-DL ontologies on the Semantic
Web. For example, suppose a set of ontologies that have been independently
developed and are now required to interoperate within an application. In order
to provide support for integrating Web ontologies, OWL defines the owl:imports
construct, which allows to include by reference in a knowledge base the axioms
contained in another ontology, published somewhere on the Web and identified
by a global name (a URI). However, the only way that the owl:imports construct
provides for using concepts from a different ontology is to bring into the original
ontology all the axioms of the imported one. This keeps the ontologies in sepa-
rate files, providing some syntactic modularity, but not a logical modularity, as
in the case of E-Connections.

Analysis and Decomposition of OWL Ontologies E-Connections have also
proved useful for analyzing the structure of knowledge bases and, in particular, to
discover relevant sub-parts of ontologies, commonly called modules. For example,
suppose one wants to annotate a word in a document using a class from an
ontology, published elsewhere on the Web. It would be natural for a Semantic
Web application to retrieve only the minimal set of axioms that “capture” the
meaning of that specific class in the remote ontology.

In general, the ability to identify relevant sub-parts of ontologies is impor-
tant for virtually every Semantic Web application. For example, in ontology
engineering, achieving some sort of “modularity” is a key requirement to facil-
itate collaborative, large scale, long term development. Modularity worthy of

the name should provide benefits in the following aspects: processability of the
ontology by applications, evolvability and maintenance, knowledge reuse and
understandability for humans.

E-Connections provide a sensible way for identifying modules within an on-
tology. The main idea of the method is to transform the original ontology into
an E-Connection with the largest possible number of connected knowledge bases
such that it preserves the semantics of the original ontology in a very specific
way. The obtained connected ontologies are used to generate, for each entity, a
subset of the original ontology that encapsulates the entity, i.e., that preserves
a certain set of crucial entailments related to the entity. The key advantage of
relying on E-Connections for such a task is that modules are obtained in a com-
pletely automatic way, without relying on any heuristics or user intervention.

Integration of OWL Ontologies with Spatial and Temporal Knowl-
edge Bases Spatial and temporal information is crucial for many Semantic
Web applications, such as Geographic Information Systems and Web Services.
However, OWL has not been conceived for such a purpose and hence represent-
ing spatial and temporal knowledge in OWL is always hard and sometimes not
even possible.

E-Connections can be used to connect Description Logics knowledge bases
(and hence OWL-DL ontologies) with many spatial and temporal modal logics.
Hence, E-Connections provide an infrastructure for providing interoperability
between OWL ontologies and spatial and temporal knowledge bases.

Tool Support We have provided support for E-Connection in both an OWL on-
tology editor, SWOOP, and an OWL reasoner, Pellet. Our aim has been to build
an E-Connection aware infrastructure that people with a large commitment to
OWL will find understandable and useful. We have been mostly concerned with
reusing as much of our current tool support for OWL as possible. Our experience
in implementing OWL tools has taught us that implementing a SemanticWeb
Knowledge Representation formalism is different from implementing the very
same formalism outside the Semantic Web framework. In particular, any new
formalism for the Semantic Web needs to be compatible with the existing stan-
dards, such as RDF and OWL. For such a purpose, we have extended the syntax
and semantics of the OWL-DL recommendation. Thus, we have explored both
the issues related to the implementation of a new KR formalism, E-Connections,
and those concerning its integration in a Semantic Web context.

5 Web Services

In this section, we describe various different projects and applications we devel-
oped for Web Services. Our work on Web Services concentrates on three core
tasks: matchmaking, composition, and execution; always focusing on the end-to-
end experience. To enable the automation of such tasks, we needed expressive

descriptions of Web Services. For this reason, we have been involved with the
development of the OWL-S language. The OWL-S is a collection of ontologies
written in OWL to describe Web Services. Currently it is the most mature and
probably the most widely deployed comprehensive Semantic Web Service tech-
nology.

Initially, we have looked at the problem of semi-automated composition of
services [?][?], wherein the composition is primarily driven by a person. Building
complex workflows by hand is notoriously difficult. At every step of a composi-
tion, users face a plethora of choices. Our assisted composition approach uses the
richness of Semantic Web Service descriptions and information from the compo-
sitional context to filter matching services and help select appropriate services.

Semi-automated composition is a goal-directed approach where the composi-
tion is gradually generated with a forward or backward chaining of services. At
each step, a new service is added to the composition and further possibilities are
filtered based on the current context and user decisions. The system primarily
uses the input/output types of the services to find compatible services. Sub-
sumption relation between OWL concepts is inspected to find flexible matches
between services. The notion of ontology mapping is used to improve the interop-
erability between services described using ontologies that contains fairly similar
but distinct concepts. OWL aims to increase the interoperability by allowing
full and partial mappings between distributed ontologies using logical axioms.
However, in some cases it is not possible to map two terms without ad hoc proce-
dural computations. In our system, such procedural mappings are also described
as Web Services (where translation is achieved using XSLT transformations) and
these services are classified in a special service category. Then, system can au-
tomatically fuse these translation services to world affecting actions to produce
more and better matches for a composition step.

Finding compatible services does not provide enough clues to a domain ex-
pert as to which service is the most suitable choice to accomplish the task at
hand. There are generally a large number of type-compatible services with differ-
ent characteristics. To filter these possibilities, we utilize the information about
other service parameters that describe the non-functional attributes, i.e. prop-
erties other than the input/output functional signature. The non-functional at-
tributes of a service include the information about the service provider, the QoS
information about the service reliability and cost, the security and privacy poli-
cies the service adheres to and so on. Constraints on these properties may be
used to filter the compatible services to find the most relevant service for the
current task. Based on the ontologies used to describe such non-functional at-
tributes, we automatically generate filtering forms where user can enter such
constraints easily.

The work described above was done in collaboration with Fujitsu Labs of
America, College Park and most of these features made it way into, or inspired
aspect of, Fujitsu’s Task Computing Environment [3]. In a joint work, we also
produced a semi-automated ontology mapping tool called OntoLink [4] to ease
the generation of translation services.

The OWL-S descriptions are invaluable for many web service tasks. How-
ever, the intended semantics of OWL-S service descriptions is not expressed (or
expressable, often) in OWL. Furthermore, working with OWL-S descriptions
at the RDF or even the OWL level is quite difficult and tedious as they tend
to be at the wrong level of abstraction. For this reason, we have developed the
Mindswap OWL-S API [?], a Java API developed for parsing, validating, manip-
ulating, executing, matching, and in general reasoning over OWL-S descriptions.
OWL-S API provides a programmatic interface that has been designed closely
to match the definitions in the OWL-S ontology. This interface helps developers
build applications using OWL-S without having to deal with all the details of
the syntax. The API provides an execution engine to invoke atomic services as
well as composite processes that are built using the OWL-S control constructs.

Our work on Semantic Web Services focuses on the automated composition of
services using Hierarchical Task Network (HTN) planning formalism [?]. Instead
of looking at each service in isolation, we focus on the descriptions of workflow
templates. Workflow templates are used for various different tasks such as en-
coding business rules in a B2B application, specifying domain knowledge in a
scientific Grid application, and defining preferences for users that interact with
Web Services. A template describes the general outline of how to achieve a cer-
tain task and the planners job is to find which of these possible execution paths
will be successful in the current state of the world with the current requirements
and preferences.

We have developed a mapping [?] from OWL-S to the HTN formalism as
implemented in the SHOP2 planner [?]. Using this translation, we implemented a
system that plans over sets of OWL-S descriptions using SHOP2 and executes the
resulting plans over the Web. The planning system is also capable of executing
information-providing Web Services during the planning process to decide which
world-altering services to use in the plan. It is possible to completely automate
the information gathering process by inspecting the preconditions of a service
and finding the relevant information-providing services during planning [?].

The problem of using a planner for composing OWL-S services is the limited
reasoning capabilities provided by the planner. The typical logic for expressing
preconditions and effects in a planning system has a radically different expres-
siveness then RDF and OWL do. In order to evaluate such formulas, the planners
must understand the semantics of OWL. We have integrated the SHOP2 plan-
ner with our OWL-DL reasoner Pellet to overcome this problem [?]. In this
integrated system, the precondition evaluation is done by the OWL reasoner
against the local and remote OWL ontologies. Such integration poses some effi-
ciency challenges because the planner constantly simulates the effects of services
resulting in modifications to its internal OWL KB and continues to query the
KB as it continues the planning process. We have developed several query opti-
mization methods to increase the performance of the system.

Most recently, we are looking at how to handle more expressive workflow
templates where HTN task selection is extended to incorporate OWL-S based
matchmaking [?]. We aim to extend the OWL-S language to describe the ab-

stract processes using profile hierarchies and complex OWL concept descriptions.
This extension will allow a clearer way to define soft and hard preferences in a
template along with a prioritization of these preferences. Consequently, we can
have more elaborate ranking mechanisms for choosing out of the possible op-
tions during planning. We are currently working on the implementation of this
extended HTN formalism (HTN-DL) [?].

6 Combining OWL and Rule Languages

6.1 Introduction

The need for integrating Datalog languages within the Semantic Web DL on-
tology languages has been the focus of several research initiatives [?,?,?,?,?,?].
The combination seems to take advantage of the best characteristics of both
formalisms : DLs are appropriate for structuring knowledge in terms of con-
cepts and relationships, but the subset of Horn rules that can be expressed in
a decidable DL are only those that satisfy the tree-like property. In Datalog we
can express any safe Horn rule where the interaction between variables is unre-
stricted.
On the other hand, in DL, an axiom variable may be either existentially or uni-
versally quantified and we can express disjunction and disjointness of classes;
therefore, complex class expressions and relationships required in many knowl-
edge domains can be expressed. In plain Datalog, disjunction and disjointness
cannot be expressed, and all variables are universally quantified.
With respect to query languages, OWL-DL in general provides ABox query lan-
guages which support instantiation (if an individual is an instance of a class),
realisation (most specific classes that an individual belongs to) and retrieval
(instances of a certain class). Techniques have been developed that are used to
provide a more expressive query language that involves classes, roles and vari-
ables [?,?]. The basic idea for queries involving roles is to convert the role term in
a query to a class term; this technique is called ’rolling up’ a query. It is defined
for tree-shaped query graphs. When combining DL and Rules languages, Dat-
alog is used as a query language. subsectionApproaches There are three main
approaches for integrating OWL and rule languages:

1. Intersection
This is the approach taken by Description Logic Programs (DLP) [?], which
finds the expressive intersection between DL and Logic Programming (LP)
without function symbols. Some DL constructors cannot be mapped, and
DL queries are reduced to LP queries. This is not a practical interoperability
solution for rules and OWL for two reasons:
– If the DLP subset is used, then most of the power and naturalness of

expression of both languages is sacrificed.
– If a DLP ontology is used as a common core to be extended, as needed,

by OWL on the one hand and a rules language on the other, then one
ends up with two, incompatible ontologies. The extended ontologies are
completely insensitive to the other’s semantics.

2. Hybrid systems
These systems consider a KB with two subsystems: the DL and the Datalog
subsystem. They permit the use of ”DL atoms” in the heads and bodies of
Datalog style rules [?,?,?,?]. All these combinations have the virtue of in-
creasing the expressivity of the combined logics while remaining decidable.
AL-Log, for example, involves the weakest combination. The interaction be-
tween the subsystems is done through the specification of constraints in the
Datalog rules which ”type” variables appearing elsewhere in the body These
constraints are expressed in terms of ALC classes. The structural subsystem
represents the knowledge in terms of classes, roles and individuals, while the
relational subsystem allows to express constrained Horne clauses and the
formulation of deductive queries in terms of these clauses.
In CARIN [?], classes and roles may appear in the antecedent of Horn rules
in the Datalog component. In the DL-SafeRules approach [?], classes and
roles are allowed to occur in the antecedent and consequent of Horn rules
in the Datalog component. Each variable in a rule is required to occur in a
non-DL atom in the rule body. DL-safety ensures that each variable is bound
to individuals that are explicit in the ABox.

3. Supersetting
The final method of combining rules and OWL is to simply extend OWL
axioms with fully generalized conditionals with arbitrary combinations of
DL-like atoms on both sides of the rule. This is the approach taken by the
Semantic Web Rules Language (SWRL) [?] when it includes Datalog safe
rules without negation and with built-ins . SWRL has the disadvantage of
being undecidable. However, it has been incorporated in other submissions
to the W3C, in particular, OWL-S. SWRL is a proper superset of all the
hybrid systems discussed above.

subsectionImplementation We attempt to evolve OWL DL toward SWRL, but
cautiously and carefully. We strive to retain practical decidability. We seek to
meet identifiable needs as simply as possible. We also attempt to make use of ex-
isting work on integrating rules systems, especially Datalog, with expressive de-
scription logics. We want to build a rules system that people with a large commit-
ment to OWL will find understandable and useful. With such an aim, we explore
different ways to give the users what they want, while staying “close” to OWL,
and “cautiously far” from the full expressivity of SWRL. We have implemented
a hybrid system for combining OWL and rules by extending our Web ontology
browsing and editing tool, SWOOP (http://www.mindswap.org/2004/SWOOP).
The hybrid system, as a decidable fragment of SWRL, provides validation of
SWRL’s usefulness and implementability. The features of our system are the
following:

1. Rules Expressivity
Following the SWRL proposal, the user can edit and browse rules. Different
(increasing) ”levels” of rules expressivity are considered: syntactic sugar for
OWL, AL-log, CARIN, DL Safe and SWRL. For each set of rules, the number
of rules in each level and the expressivity of the set is displayed.

2. Syntactic sugar for OWL
We define a method of representing a subset of SWRL directly in OWL,
while preserving its semantics. We do this by utilizing techniques used in
the processing of conjunctive ABox queries to transform rules into class
axioms in DL. This approach allows for some rules to be treated as syntactic
sugar for complex DL class expressions and axioms, but it imposes significant
restrictions on the structure of these rules. The rolling-up technique used in
answering conjunctive queries can also be applied to a subset of SWRL,
to gain some of the syntactic expressivity of rules without extending the
semantic expressivity of OWL-DL. In this approach, the antecedent and
consequent of a rule are each treated as a conjunctive query, and transformed
into DL class expressions using the rolling-up technique. The addition of the
assertion that the antecedent class expression is a subclass of the consequent
class expression ensures the intended rule semantics. We must define the
set of rules (subset of SWRL) that can be translated directly into DL class
axioms using this technique. Since the rolling-up technique is to be applied
to both the antecedent and consequent, it is clear that each must satisfy
the requirements of a conjunctive query, described above. However, further
conditions must be imposed to ensure that the subclass relation between
the two resulting classes will have its intended semantics. These conditions
are the following, depending on the number of variables shared between the
consequent and antecedent:
– If 0 variables are shared, then the rule can be represented in OWL if at

least one individual is shared. All variables in each query are undistin-
guished.

– If 1 variable is shared, then the rule can be represented in OWL. Only the
shared variable is distinguished, and so is used as the target of rolling-up.

– If 2 or more variables are shared, then the rule can not be represented
directly in OWL.

Consider the following rule, which describes a set of conditions that imply a
given computer is a fast computer.
FastComputer(?c) : −

Computer(?c), hasCPU(?c, ?cpu), hasSpeed(?cpu, ?sp),HighSpeed(?sp).
The initial step, the transformation of the rule into two conjunctive queries,
is straightforward. For the consequent and antecedent, each predicate in the
rule maps directly to a conjunctive query term by the mapping below:
C(?x) →?x : C
R(?x, ?y) → 〈?x, ?y〉 : R
Applying this mapping to the consequent of the example rule above sim-
ply yields ?c:FastComputer. However, for the more complex antecedent, we
obtain the following query:
?c : Computer∧〈?c, ?cpu〉 : hasCPU∧〈?cpu, ?sp〉 : hasSpeed∧?sp : HighSpeed
Applying the rolling-up technique to each of the queries will yield the class
expressions needed to represent the rule in DL. Both queries contain the vari-
able ?c, so this will be the only distinguished variable in each of the queries.
Rolling-up the consequent produces the simple class expression FastComputer.

Rolling-up the antecedent query to this variable generates the class expres-
sion Computer u ∃hasCPU.∃hasSpeed.HighSpeed. To complete the repre-
sentation of the original rule, we simply need to add the following subclass
axiom to the KB:
Computer u ∃hasCPU.∃hasSpeed.HighSpeed v FastComputer

3. Query answering for AL-log
We have implemented an AL-Log reasoner. It computes answers to queries
based on the specification of both components and is based on the notion of
constrained SLD-derivation and constrained SLD-refutation, as presented in
[?]. The system has been implemented in Prolog, coupled to our OWL rea-
soner Pellet (http://www.mindswap.org/2003/pellet). The key idea of this
implementation is to pre-process all of the DL atoms that appear in the Dat-
alog rules, and include them as facts in the relational subsystem. In order
to cover all the possible models, if two or more rules have the same (ob-
viously non-DL) atom in the head, and they also share a DL-atom in the
body, whose (single) variable appears in the same argument of the head in
the rules, then the disjunction of all those (unary) DL-atoms must also be
computed and realized by the DL reasoner. Once the pre-processing is done,
any query can be answered by the relational component using any of the
known techniques for Datalog query evaluation.

7 Trust: Computations and Applications

One of the ultimate goals of the Semantic Web is to produce a so-called ”Web
of Trust”. Much work in this space has been made in the spheres of security,
authentication, and privacy. However, the social component of trust is one that
is both important and ideally suited for the Semantic Web. When the Semantic
Web-based social networks are augmented with trust information, it is possible
to make computations over the values, and integrate the results into applications.

7.1 Adding Trust to FOAF

In the FOAF vocabulary, the only mechanism for describing social connections
between people is the foaf:knows property which indicates one person knows
another. The FOAF Trust Module extends the FOAF vocabulary by providing
a mechanism for describing the trust relationships. It allows people to rate the
trustworthiness of another person on a scale from 1 to 10 where 1 is low trust
and 10 is a high trust. This scale is intuitive for human users, but our algorithms
can be applied to any scale of values.

The Trust Project1 regularly spiders the Semantic Web for trust files, and
maintains a network with over 2,000 people. The ontology is also used by the
FilmTrust social network [?] with over 400 members. These networks can be seen
in Figure 6, and are used as testbeds for our algorithms for computing trust.

1 see http://trust.mindswap.org

Fig. 6. Visualizations of the Trust Project’s network (left) and the FilmTrust network
(right).

7.2 Computing with Trust

If one person, the source, wants to know how much to trust another person, the
sink, how can that information be obtained? Clearly, if the source knows the
sink, the solution is simple. However, if the two do not know one another, the
trust values within the social network can be used to compute a recommendation
to the source regarding the trustworthiness of the sink.

Because social trust is an inherently personal concept, a computed trust
value must also be personal. Thus, we do not compute a global measure of how
trustworthy the sink is; rather, we use the source’s perspective on the network
to find paths of trust that are in turn used for making the trust computation.

TidalTrust is an algorithm for computing trust over a range of values, such as
those provided by the FOAF Trust Module. It is a simple recursive algorithm:
the source asks each of its neighbors for their trust rating of the sink. The
source then computes a weighted average of these values, giving more weight
to neighbors with higher trust ratings, and less weight to neighbors with lower
trust ratings. If a neighbor has a direct trust rating of the sink, it returns that
value; otherwise, the sink repeats the algorithm for its neighbors, and returns
the weighted average that it computes. Because this algorithm is essentially a
modified Breadth First Search, it runs in linear time with respect to the site of
the network. More detail on the algorithm can be found at [?].

Previous work[?] has shown that the results returned by TidalTrust when
it is run on both the Trust Project network and the FilmTrust network can be
expected to be relatively accurate. The error varies from network to network,
but is usually within 10%.

7.3 Applying Trust

These trust computations are made generally, with networks on the Semantic
Web. As such, they can be integrated into a variety of applications.

There are two major projects we have undertaken to illustrate the benefit of
trust ratings to the user. The first is FilmTrust, a website built on a semantic
social network with movie ratings and reviews from users. On the websit, the
user’s movie ratings are combined with trust values to generate predictive movie
ratings. We have shown that, in FilmTrust, the trust-based predictive ratings
outperform other methods of generating these predictions in certain situations[?].
The second application is TrustMail, and email client that uses the trust rating
of a message’s sender as a score for the email. The trust ratings work as the
complement to a spam filter by allowing users to identify potentially important
messages by the trustworthiness of their sender.

Because trust and social networks are general and available publicly on the
Semantic Web, there is great potential for any application to integrate this data,
make computations with it, and use the results to improve the user experience.

8 Pychinko: A Rete-based RDF friendly Rule Engine

Rules continue to play a role in the Semantic Web. The numerous proposals
for rule languages offered recently suggest that rules are desirable in this space,
both in terms of their expressivity, and in some cases, due to their attractive
computational properties. For the latter, several insights from research into rule-
based expert systems in the AI community are relevant. A primary example is
the Rete algorithm, developed by Forgy[?], which allows for efficient processing
of very large rule bases.

Pychinko is a forward chaining rule engine, written in Python, that imple-
ments Rete. Its rules are expressed in the N3 language and its facts as RDF
triples. The use of Rete allows it to scale far better than a similar and more
popular rule engine, CWM[?], which uses a naive rule processing algorithm.
We provide a brief overview of the Rete algorithm, and outline the features of
Pychinko as well as some of its applications.

8.1 The Rete Algorithm

The basic principle of Rete (latin for net) is the trading of memory for speed.
A typical speed inefficiency of the naive approaches to processing rules is the
checking of every newly added fact (in our case, simply an RDF triple) against
every antecedent in the left-hand side (LHS) of every rule, in order to determine
whether the rule needs to be fired in light of the new fact. Naturally this becomes
expensive as the number of rules in the knowledge base grows. The Rete algo-
rithm improves the speed aspect of the problem by constructing a discrimination
tree (or a Rete) that channels newly added facts only to relevant ancedents of
rules, i.e. antecedents that could be matched by the fact and lead to a firing of
the rule.

The Rete is built out of three components: an alpha node, a beta node and
a rule node. It is built as follows. First, for every pattern in the LHS of a rule,

we construct a corresponding alpha node.2 An alpha node will store facts that
match the pattern it is associated with. This process of matching facts to their
alpha nodes is called a project operation.

Secondly, the result of a join operation (same as in ordinary databases) on
two alpha nodes is stored in a corresponding beta node. The resulting beta node
can then be used, along with another alpha node, as input to subsequent join
operations. Finally, the right-hand side (RHS) of the rule will correspond to a
rule node which is always attached to the last beta node in the Rete. This is
illustrated more clearly with an example. Consider the Rete corresponding to
the following 2-pattern rule, represented in N3:

{?x :parentOf ?y. ?y :parentOf ?z.} => {?x :grandparentOf ?z}

Fig. 7. Rete for a 2-pattern rule

Each arrow in the diagram describes the direction of input from one node
to another. As described earlier, the first and second pattern of the LHS each
correspond to an alpha node (A1 and A2, respectively), and the outcome of
their join correspond to the beta node B1. The consequences of the rule (i.e.
facts of the form {?x grandparentOf ?z} where ?x and ?z are properly bound)
are taken care of by the rule node R1. If we were to add a third pattern to the
LHS, a new beta node would be created whose inputs will be B1 and the alpha

2 This allows us to share alpha nodes that correspond to identical patterns on the LHS
of different rules. However, this is an implementation technique and is not dictated
by the algorithm. We ignore it and similar optimizations in the remaining sections.

node associated with the new pattern. As usual, the results of their join would
be stored in a new beta node.

Every newly added triple is propagated through the Rete. Starting with
the project operation, it is channeled to its relevant alpha node(s) (depending
on whether it matches the alpha node’s associated pattern) where it is stored,
assuming there are alpha nodes that match it. A series of join operations are
then performed, and, assuming all are successful, the results are sent to the rule
node where facts of the form described in the RHS of a rule are added to the
RDF store. With these selective operations in place, it is never necessary to check
a fact against every antecedent of every rule to determine a match, as done in
the naive algorithms. The cost comes, of course, from having to duplicate the
storage of matched facts in the nodes of the Rete.

8.2 Features, Applications and Future Work

As seen in the last section, Pychinko rules are written in N3. Alternatively,
one could construct rules programmatically in Pychinko as Python objects. In
addition, Pychinko provides conjunctive query over RDFlib stores and support
for several useful CWM math and string builtins.

A suitable application for Pychinko would be as a backend to web sites that
require a lightweight form of inference. For example, it could be used to dy-
namically compute closure of RDFS rules over small to mid-sized RDF stores.
Similarly, it could be used be used to obtain inference for certain subsets of OWL
where the overhead and completeness of a full-fledged description logic reasoner
might be excessive. Such functionality is sometimes achieved by developers by
writing application-specific code that generates the desired inferences from a set
of OWL documents. However, in most cases, a more attractive solution is to
simply write a rule that captures the inference needed, as it is reusable and less
error prone. The authors of the Semantic Web toolkit 4Suite have recently made
use of Pychinko for precisely these tasks in their new release, FuXi[?]. Finally,
work is underway to integrate Pychinko into the CWM engine as an alternative
faster rule processor.

9 Representing Web Service Policies in OWL-DL

To provide for a robust development and operational environment, web services
are described using machine-readable metadata. This metadata serves several
purposes, one of them being describing the capabilities and requirements of a
service – often called the service policy. Recently, there have been many differ-
ent web service policy language proposals, all of them describing languages with
varying degrees of expressivity and complexity [?,?,?]. However, with most cur-
rent proposals it is difficult to determine their expressivity and computational
properties as most lack formal semantics. One characteristic of the proposed
languages is that they involve policy assertions and combinations of assertions.
For example, a policy might assert that a particular service requires some form

of reliable messaging or security, or it may require both reliable messaging and
security. Several industrial proposals (e.g., WS-Policy [?] and Features and Prop-
erties [?]) appear to restrict them to a kind of propositional logic with policy
assertions being atomic propositions and the combinations being conjunction and
disjunction. By mapping the policy language constructs into a logic (e.g., some
variant of first order logic) we can acquire a clear semantics for the languages,
as well as a good sense of the computational aspects.

Also, if we can map the policy languages into a standardized logic, we can
benefit from the tools and general expertise one expects to come with a reason-
ably popular standard. By mapping two policy languages into the same back-
ground formalism, we will be able to provide some measure of interoperability
between policies written in distinct languages. If we are smart in our mapping,
we should also be able use pre-existing reasoners for the standardized logic to
do policy processing.

Mapping WS-Policy Operators to OWL Here we describe our mapping
of the WS-Policy constructs from a normal form policy expression into OWL
expressions. A policy in a normal form is a straightforward XML Infoset rep-
resentation, enumerating each of its alternatives that in turn enumerate each
of its assertions. Following is a schema outline for the normal form of a policy
expression:

<wsp: Policy>
<wsp:ExactlyOne>

[<wsp:All> [<Assertion> </Assertion>]* </wsp:All>]*
</wsp:ExactlyOne>

</wsp:Policy>

Listing 1. Normal form of a policy expression

Policy expressions can also be represented in more compact forms, using ad-
ditional operators such as wsp:Optional, however as shown in [?] the policy ex-
pressions can all be expanded to normal form. Therefore we only provide a map-
ping of the constructs used in a normal form policy expression: wsp:ExactlyOne
and wsp:All.

First, we map policy assertions directly into OWL-DL atomic classes (which
correspond to atomic propositions). Though WS-Policy assertions often have
some discernible substructure, it is not key to their logical status in WS-Policy.
Or rather, that substructure is idiosyncratic to the assertion set, rather than
being a feature of the background formalism. So a general WS-Policy engine
must be adapted to deal with their structure, if it is to do so.

Mapping wsp:All to an OWL construct is straightforward because wsp:All
means that all of the policy assertions enclosed by this operator have to be
satisfied in order for communication to be initiated between the endpoints. Thus,
it is a logical conjunction and can be represented as an OWL intersection. Each
of the members of the intersection is a policy assertion, and the resulting class

expression is a custom-made policy class that expresses the same semantics as
the WS-Policy one.

Handling wsp:ExactlyOne is trickier, because it means that only one, not
more, of the policy alternatives should be supported in order for the requester
to support the policy. Wsp:ExactlyOne can be translated to OWL in the follow-
ing way: for n different policy assertions, expressed as OWL classes themselves,
wsp:ExactlyOne is the class expression consisting of the members of each sepa-
rate policy class that do not also belong to another policy class. In OWL terms,
it is the union of all of the classes with the complement of their pair-wise inter-
sections.

WS-Policy Construct OWL Expression

Wsp:All (policies A and B) owl:intersectionOf(A B)

Wsp:ExactlyOne intersectionOf(
(policies A and B) complementOf(intersectionOf(A B))

unionOf(A B)
)

Table 1. Mapping of WS-Policy Constructs to OWL

WS-Policy Merge and Intersection Merge is the process of combining sub-
policies together to form a single policy. This operation is needed because a
policy might be specified in a distributed way, having its fragments defined in
separate files. It is necessary to combine all these policy fragments together to
form a single merged policy which could be processed further.

Merge works on policies already converted to normal form. The merged policy
is a cartesian product of the alternatives in the first policy and the alternatives in
the second policy. There is a straightforward way of doing the Merge operation
in OWL-DL. First, we translate each of the input policies into OWL-DL as
described above. Then, the merged policy is simply the intersection of the input
policies. Thus, Merge also maps cleanly onto OWL-DL.

The goal of WS-Policy is to allow endpoints to specify requirements for start-
ing a web service interaction. To achieve this goal, the Intersection operation
compares two Web services policies for common alternatives. The interaction is
possible only when both of the endpoints agree on at least one policy alternative.

Intersection cannot be mapped into a single OWL construct, however using
our OWL mappings of the policy assertions it is not difficult to rule out the
incompatible alternatives. If the policy assertions are mapped to classes, then to
check whether two alternatives are equal, we need to see whether the assertions
in the two alternatives are derived from the same base clases. Specifically, every
assertion in the first alternative needs to be derived from the same base class with

some assertions from the second alternative, and vice-versa, for the alternatives
to be compatible.

9.1 Policy Processing

One of our arguments for expressing policies using OWL was the ability to reason
about policy containment - whether the requirements for supporting one policy
are a subset of the requirements for another. That would allow us to be more
flexible in determining whether a particular requestor supports a policy, in the
cases where the requestor supports a superset of the requirements established
by the policy.

In general, we get the following inferences out of the box:

1. policy inclusion (if x meets policy A then it also meets policy B; a.k.a., A
rdfs:subClassOf B);

2. policy equivalence (A owl:equivalentTo B);
3. policy incompatibility (if x meets policy A then it cannot meet policy B;

a.k.a, A owl:disjointWith B);
4. policy incoherence (nothing can meet policy A; a.k.a., A is unsatisfiable)
5. policy conformance (x meets policy A; a.k.a, x rdf:type A)

One futher reasoning service supported by Pellet, and integrated with Swoop
[?], is explanations for inconsistencies [?], which can be used to help debug
policy incompatibility, incoherence, and the like. As we add further explanation
capability to our systems, this debugging power will grow.

Thus we see that with a fairly simple mapping, we can use an off the shelf
OWL reasoner as a policy engine and analysis tool, and an off-the-shelf OWL
editor as a policy development and integration environment. OWL editors can
also be used to develop domain specific assertion languages (essentially, domain
Ontologies) with a uniform syntax and well specified semantics. We can also
experiment with extensions to WS-Policy, by using more expressive constructs
from OWL at the policy language, as well as the assertion language, level.

Furthermore, ontology development techniques can be useful for policy devel-
opment as well. Most human generate ontology develop iteratively, with special-
izations added to the class tree over time. Similarly, we can build up our policies
from more general ones. A general policy could be very restrictive, setting tough
guidelines for all of a companies policies.

If we have a similar style mapping for another policy language, we will be
able to do policy analysis and integration across policy languages. We have taken
the first steps in this direction with providing a translation of the Features and
Properties compositors.

10 Conclusions

In this paper, we have presented tools and research projects for creating Se-
mantic Web content with SWOOP and PhotoStuff, combining ontologies with

E-Connections, working with web services, and computing with trust in Semantic
Web-based social networks. These topics illustrate both the breadth and depth
of research topics on the Semantic Web, and serve as clear examples of trends
in Semantic Web research.

11 Acknowledgements

This work, conducted at the Maryland Information and Network Dynamics Lab-
oratory Semantic Web Agents Project, was funded by Fujitsu Laboratories of
America – College Park, Lockheed Martin Advanced Technology Laboratory,
NTT Corp., Kevric Corp., SAIC, the National Science Foundation, the National
Geospatial-Intelligence Agency, DARPA, US Army Research Laboratory, NIST,
and other DoD sources.

