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COMPUTING THE OBSERVED INFORMATION MATRIX

FOR DYNAMIC MIXTURE MODELS

1. INTRODUCTION

Mixture distributions are widely used in statistical analysis to model data originating

from a number of distinct sources. In these models, each source is represented by a component

of the mixture. The distance between the sources in the sample space determines both the

level of difficulty of estimating the mixture parameters, and the amount of uncertainty in the

parameter estimates. Intuitively, the uncertainty associated with assigning measurements to

sources should increase as the distance between the sourcesin the sample space decreases.

This report is concerned with accurately assessing the estimation error in mixture estimation

problems for which measurement-to-source assignment uncertainty is a major contributor to

uncertainty in the data.

Mixture estimation can be treated as a missing data problem where the missing data are

the measurement-to-source assignments. Consequently, theexpectation-maximization (EM)

method of Dempster et al. [1] provides a convenient iterative approach for finding maximum

likelihood estimates of the mixture parameters. Indeed, mixture estimation is one of the

numerous applications of the EM method discussed in their paper. The EM method is most

useful in situations where the corresponding complete data(i.e., observed data + missing

data) problem has a straightforward solution. Gaussian mixture estimation is one example.

In this case, application of the EM method yields a sequence of weighted linear least-squares

estimates for each of the Gaussian mean vectors that converge to their maximum likelihood

estimates. Gaussian mixture models have been studied extensively by many authors (see, for

example, the monograph by McLachlan and Basford [2] and the references therein) and are

the basis for the more complex mixture models considered here.

The main criticisms of the EM method are that it does not give an immediate expression

for the error-covariance matrix for the estimated parameters, and that it converges slowly near

the solution (in contrast to gradient-based techniques, which at least approximate the error-

covariance matrix for the parameter estimates, and often converge rapidly near the solution).

Louis [3] addresses both criticisms in his paper on finding the observed information matrix

when using the EM method for incomplete data problems. In hispaper, Louis shows that

the observed information matrix, defined as minus the secondderivative of the observed (or

incomplete) data log-likelihood function, evaluated at the maximum likelihood estimate, is

obtained by straightforward manipulations of the completedata log-likelihood function. The

inverse of this matrix can then be used as an estimate of the error-covariance matrix for the
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estimated parameters, as suggested by Efron and Hinkley [4]. Furthermore, Louis shows that

the observed information matrix can be used to accelerate convergence of the EM iterations.

In this report Louis’s results are applied to an important class of mixture models termed

“dynamic mixture models.” A dynamic (or time-varying) mixture model constitutes a se-

quence of standard mixture distributions related in time bya process model. Dynamic mixture

distributions are used to model data collected over time originating from a number of distinct

movingsources. (Here, source motion refers to a change over time ofany characteristic of

the source—for example, location, orientation, and intensity.) If the sources are stationary,

one can pool data collected over multiple sampling times anduse a standard (static) mixture

to describe the sample distribution. However, if the sources are non-stationary, one must ac-

count for source motion in the mixture to accurately model the distribution of the sample at

each sampling time. A dynamic mixture model may be deterministic or stochastic. In the

former case, a parametric motion model is used to describe the trajectory of each source in

the mixture. In the latter case, the trajectory of each source is treated as a sequence of random

variables whose mean evolves according to a deterministic motion model. In either case, the

objective of this report is to compute the observed information matrix for the estimated mix-

ture parameters, and to assess the quality of this matrix (or, more precisely, the inverse of this

matrix) as a characterization of estimation error.

1.1 RELATED WORK

Work related specifically to computing the observed information matrix for dynamic

mixture models—and, more generally, to assessing the impact of measurement-to-source as-

signment uncertainty on estimation error—is found in both the statistics and engineering liter-

ature. One paper from the statistics literature is particularly relevant. In [5], Meng and Rubin

propose the supplemented EM (SEM) algorithm as an alternative approach for computing

the error-covariance matrix for parameter estimates obtained using the EM method. Their

approach, in contrast to Louis’s analytical approach, is half analytical and half numerical. In

short, the SEM algorithm requires analytical differentiation to obtain the information matrix

associated with the complete data, but uses numerical differentiation to compute the informa-

tion matrix associated with the missing data. The difference between these two matrices is the

observed information matrix, which is then inverted to obtain the error-covariance matrix. For

problems where the algebraic analysis required by Louis’s procedure is tedious or intractable,

the SEM algorithm is an attractive alternative.

Two other papers from the statistics literature are worth mentioning. Green [6] dis-

cusses the EM method in the context of maximum penalized likelihood estimation (mathe-

matically equivalent to maximuma posterioriestimation), a problem for which he laments
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the EM method has seen little use. In his paper, Green makes a simple modification to the EM

algorithm for maximum penalized likelihood estimation to obtain the one-step-late (OSL) al-

gorithm, which is often easier to compute and converges at least as quickly. Green’s paper

is relevant to this discussion because the estimation problem for stochastic dynamic mixture

models is a maximuma posteriori estimation problem for which the OSL algorithm may

be potentially useful. In a later paper, Segal et al. [7] combine the results of Meng, Rubin,

and Green to compute error-variances via the SEM algorithm for maximum penalized like-

lihood estimates obtained using the OSL algorithm. Their approach is directly applicable to

computing the error-covariance matrix for stochastic dynamic mixture models. However, this

report will show that the algebraic analysis required by Louis’s approach yields insightful ex-

pressions for the particular stochastic dynamic mixture model considered here—namely, the

linear Gauss-Markov model.

In the engineering literature, and the target tracking literature in particular, related work

falls into three overlapping categories: mixture models for multiple target tracking, informa-

tion reduction factors for single target tracking in clutter, and minimum variance (Craḿer-

Rao) bound calculations for tracking performance prediction. The report by Streit and Lugin-

buhl [8] and the paper by Gauvrit et al. [9] are the primary references for the mixture model

approach to multiple target tracking considered in this report. In this approach, each target

is represented by a component (or possibly a collection of components) in a mixture model

for the measurement distribution. By the very nature of this model, it is assumed that every

measurement originates from all the targets; more precisely, each measurement is assigned to

every target with a certain probability. This unorthodox tracking model is a contradistinction

to the widely accepted multiple hypothesis tracking (MHT) model proposed by Reid [10], in

which each measurement is assigned to one and only one target, or to clutter (background

noise). While the MHT assignment model is perhaps more realistic, it leads to a set of track

hypotheses that grows exponentially with the number of measurements. Consequently, MHT

algorithms require sophisticated heuristics to manage hypothesis enumeration, which typi-

cally involves pruning and merging branches on the hypothesis tree. Alternatively, the mix-

ture model algorithms have complexity that is roughly linear in the numbers of measurements

and targets; thus, hypothesis management is not required for these algorithms. However, as

succinctly put by Streit in [11], the price to be paid for the “heresy” of violating the one-

measurement-per-target rule of multiple target tracking is a likelihood function that may be

“riddled” with local maxima. Streit goes on in [11] to blend amixture model with “limited

enumeration” to address this problem.

The stochastic dynamic mixture model discussed in this report is precisely the mixture

model used by Streit and Luginbuhl [8] and Gauvrit et al. [9] for multiple target tracking.
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Streit and Luginbuhl call the approach “probabilistic multi-hypothesis tracking (PMHT).”

Of these works, only the former considers computation of theerror-covariance matrices for

the track estimates. However, the analysis of Streit and Luginbuhl is incomplete in that the

matrices identified in their report as the error-covariancematrices for PMHT do not account

for the information lost to the missing data. Hence, what have become widely accepted as the

error-covariance matrices for PMHT are incorrect and, worse, as will be shown in this report,

are overly-optimistic. This report gives a precise statistical interpretation of these matrices

and derives expressions for the correct error-covariance matrices for PMHT that account for

the information lost to the missing data.

Two additional approaches related to PMHT must also be acknowledged. Avitzour’s

work [12], a remarkably similar but independent antecedentto PMHT, is perhaps the first ap-

plication of missing data and EM to multiple target tracking. The similarities and differences

between the two approaches are discussed in [8]; notably, PMHT substitutes a stochastic

(Markovian) motion model for the deterministic (polynomial) motion model of Avitzour’s

approach. Also, Avitzour does not discuss computation of error-covariance matrices for track

estimates. The multiple target tracking approach proposedby Molnar and Modestino [13]

also uses missing data and EM, although their measurement-to-target assignment model is

markedly different than that of Avitzour’s or PMHT’s. Nevertheless, Molnar and Modestino

propose an approximation to the error-covariance matrix for the target state estimates that ex-

plicitly accounts for measurement-to-target assignment uncertainty. In their approximation,

each measurement’s contribution to the total information content of all the measurements with

respect to each target is scaled by the measurement-to-target assignment probability. Neither

the development nor the quality of this approximation is discussed in [13].∗

The notion that measurement assignment uncertainty in tracking should increase the

variance of the track estimates is not new. For example, in [14] Fortmann et al. analyze

the effect of clutter on the update of the target state covariance matrix. Specifically, they

consider a deterministic approximation to the stochastic matrix Riccati equation associated

with the probabilistic data association (PDA) filter of Bar-Shalom and Tse [15]. (Recall that

the matrix Riccati equation of Kalman filtering theory is a recursion for the update of the

state covariance matrix.) This approximation, which replaces the random (data-dependent)

quantities in the stochastic matrix Riccati equation with their expected values, leads to a

modified matrix Riccati equation that looks like the standardequation, with the addition of

a scalar factor in front of the Kalman gain term. This scalar factor, called the information

reduction factor and denotedq2 in their paper, takes values between 0 and 1; these extremes

correspond to total assignment uncertainty and no assignment uncertainty, respectively. A

∗Note that the critical term in this approximation (the term inbrackets in [13, equation (48)]) is missing an inverse.
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value ofq2 = 0 eliminates the Kalman gain term, so that the updated state covariance matrix

equals the predicted state covariance matrix; a value ofq2 = 1 reduces the modified matrix

Riccati equation to the standard equation, so that the updated state covariance matrix is equal

to the minimum state covariance matrix. The information reduction factorq2 is a function

of the probability of detectionPD and the probability of false alarmPFA, with q2 = 1 when

PD = 1 andPFA = 0, and0 ≤ q2 < 1 whenPD ≤ 1 andPFA > 0. In short, the information

reduction factor accounts for measurement assignment uncertainty due to missed detections

and clutter. Computation ofq2 is nontrivial, and is described by Gelfand et al. in [16].

The most commonly used baseline for judging target trackingperformance is the Craḿer-

Rao lower bound (CRLB), that is, the minimum variance bound on estimation error. Recall

that the CRLB is defined in terms of an average (expectation) over all possible values of

the observed data. Hence, for any given tracking model, the CRLB can be used to predict

tracking performance in the absence of measurements. The multiple target tracking problem

complicates computation of the CRLB, since the measurement-to-target assignments are al-

most never observed. The approach then is to marginalize over the assignment hypotheses and

compute the minimum variance bound based on the marginal distribution of measurements

and target states. This is the approach presented by Daum in [17]. As described by Daum,

computation of this marginal is impractical, as the number of association hypotheses is enor-

mous even for small problems. To address this problem, Daum provides a family of lower

bounds on the minimum variance bound, where each member of the family corresponds to a

collection of association hypotheses that include the correct hypothesis. The lower bound cor-

responding to the set of all possible hypotheses corresponds to the minimum variance bound,

whereas the lower bound corresponding to the subset that containsonly the correct hypothesis

corresponds to the trivial lower bound, which ignores measurement assignment uncertainty

entirely. Thus, tighter bounds can be achieved at the expense of computational complexity by

considering progressively larger sets of association hypotheses.

Further approximations to the CRLB when there is measurement assignment uncer-

tainty have been computed by Jauffret and Bar-Shalom [18] andKirubarajan and Bar-Shalom

[19] for tracking a single target in clutter. Both works use the approach of Fortmann et al. [14]

to show that the Fisher information matrix (FIM) for this problem is a scalar multiple of the

FIM for the problem without clutter, where the scalar multiple is the information reduction

factorq2 developed in [14]. It follows that the CRLB (inverse of the FIM)increases rapidly

with the amount of assignment uncertainty and, in fact, grows without bound asq2 → 0.

Subsequent papers by Willett and Bar-Shalom [20] and Niu et al. [21] extend these results by

finding a set of sufficient conditions for the class of models for single target tracking in clutter

whose CRLB takes this form.
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Another set of references relevant to this report deal with CRLB computations for the

mixture model approach to multiple target tracking. In [22], Perlovsky develops explicit

CRLB expressions for the parameters of a normal (Gaussian) mixture model of the measure-

ment distribution for tracking multiple targets in clutter. This work is based on his earlier

paper [23] on computing the CRLB for normal mixtures. While the CRLB expressions de-

veloped in these papers are indeed explicit, they are written in terms of quantities (“class

overlap” terms) that ultimately require numerical evaluation of multi-dimensional integrals

(expectations over all values of the observed data), where there are as many integrals as there

are observations, and each integral has dimension equal to that of a data point. Le Cadre

et al. [24] address the same problem in their paper on computing the CRLB for the multi-

ple target version of a classic subject in the tracking literature known as bearings-only target

motion analysis. As in Perlovsky’s papers, the class overlap or “source interaction” terms in-

duced in the CRLB expressions by the mixture model for measurement-to-target assignment

lead to integrals that cannot be evaluated in closed form. Among the contributions in [24]

are analytical approximations to these integrals based on series expansions. In [25], Hue et

al. derive recursive formulas for computing the “posterior” CRLB for multiple target track-

ing assuming stochastic (Markovian) target motion and three different measurement-to-target

assignment models—namely, the known assignment model, theone-measurement-per-target

model, and the PMHT model. The posterior CRLB for the PMHT modelis closely related

to the posterior observed information matrix derived in this report; specifically, the posterior

CRLB is the inverse of the expected value of the posterior information matrix over all values

of the observed data and all values of the target states. These expectations are evaluated in

Hue et al. [25] using Monte-Carlo integration techniques. Notably, Hue et al. show that mea-

surement assignment uncertainty raises the posterior lower bound on estimation error, often

substantially. Analogous results are obtained in this report with regard to the impact of mea-

surement assignment uncertainty on thein-situ assessment of estimation error given by the

inverse of the posterior observed information matrix.

The work most relevant to the present discussion among this set of references is the

report by Graham and Streit [26], which discusses computation of the CRLB for PMHT and

which shows that the Fisher information matrix for PMHT is equal to the Fisher informa-

tion matrix derived from the complete data likelihood function, minus the information matrix

associated with the missing data (measurement-to-target assignments). This result is a man-

ifestation of the “missing information principle” to be discussed in more detail later in this

report. Thus, the complete data lower bound obtained by inverting the complete data Fisher

information matrix, which Graham and Streit show to be block-diagonal, is a lower bound

on the CRLB. This lower bound on the lower bound, they argue, is analogous to the trivial
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lower bound of Daum’s approach. The present report is not concerned with the computation

of the Fisher information matrix and the minimum variance bound, which are independent

of observed data, but rather with the observed information matrix and its inverse, and their

assessment of estimation accuracy as a function of the measurements. Furthermore, explicit

closed-form expressions for the complete data and missing data information matrices, in terms

of the maximum likelihood estimates for the mixture parameters, are derived.

Finally, a recent paper by Cai et al. [27] presents an EM algorithm for tracking maneu-

vering targets in clutter, and uses the SEM algorithm to compute the error-covariance matrix

for the estimated target parameters. Theirs appears to be the first use of the SEM algorithm in

the tracking literature. In fact, their algorithm is essentially Avitzour’s algorithm with posi-

tion and amplitude measurements. Hence their paper contains the first accurate computation

in the literature of the error-covariance matrix for a PMHT-related algorithm. In contrast, the

error-covariance matrix for PMHT is computed in this reportusing the analytical approach of

Louis. The benefit of Louis’s approach in this case is that it gives precise statistical meaning

to certain quantities fundamental to the PMHT computationsthat have often been incorrectly

interpreted as the error-covariance matrices for PMHT.

1.2 REPORT ORGANIZATION

To establish terms and notation used throughout this report, the EM method for maxi-

mum likelihood estimation for incomplete data problems is introduced in section 2. In section

3, Louis’s derivation of the observed information matrix for the general case of incomplete

data is summarized, and a simplification of his expressions for the special case of indepen-

dent observations is presented. Also in this section, the posterior observed information matrix,

which is used to compute the error-covariance matrix for stochastic dynamic mixture models,

is defined. In section 4, maximum likelihood estimation for finite mixture models using the

EM method is reviewed, and general expressions for the corresponding observed information

matrix are presented. Expressions for the maximum likelihood estimates and the observed

information matrix for Gaussian mixture models are also given in this section.

The observed information matrix and the posterior observedinformation matrix for the

deterministic and stochastic dynamic mixture models, respectively, are derived in section 5.

In both cases, the maximization step at the final EM iterationis shown to be equivalent to a

standalone estimation problem for which the error-covariance matrix is given by the inverse

of the complete data information matrix in the case of deterministic motion, and the inverse

of the posterior complete data information matrix in the case of stochastic motion. The latter

result provides a precise statistical interpretation of the error-covariance matrices obtained as

byproducts of PMHT for the linear-Gaussian case.
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Section 6 discusses the suitability of the inverse of the observed information and poste-

rior observed information matrices as estimates of the error-covariance matrices for the deter-

ministic and stochastic dynamic mixture models, respectively, and the cost of computing these

inverses when the number of sampling times is large. Section7 includes two target tracking

examples using the stochastic dynamic mixture model, one oftwo crossing targets, and one

of a single target in clutter. The consistency of the target parameter estimates is examined for

each example. The report concludes in section 8 with a summary of findings, a discussion of

alternative approaches for computing the observed information matrix, in particular the SEM

algorithm, and a discussion of topics for future investigation.
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2. MAXIMUM LIKELIHOOD ESTIMATION USING THE EM METHOD

2.1 GENERAL CASE

Consider the general incomplete data problem in which there are two sample spaces,

the complete data sample spaceX and the incomplete (or observed) data sample spaceY,

and a many-to-one mappingY : X → Y. Let x denote an arbitrary point inX . The point

x is not observed directly; rather, the pointy = Y (x) in Y is observed. Assume a family

of density functionsfX(x; θ) on X indexed by the parameter vectorθ from a spaceΩ. Let

L = {x : Y (x) = y} denote the section ofX determined byy. The corresponding family of

observed data density functionsfY (y; θ) onY is given by

fY (y; θ) =

∫

L

fX(x; θ) dx, (2-1)

where integration here is meant in the most general sense.

For a fixed sampley, the density functionfY (y; θ) taken as a function of the parameter

vectorθ is the incomplete or observed data likelihood function. LetλY (y; θ) = log fY (y; θ)

denote the observed data log-likelihood (or support) function. The maximum likelihood es-

timate of the parameter vectorθ, denoted̂θ, is that value ofθ in the spaceΩ that maximizes

fY (y; θ) or, equivalently,λY (y; θ) for the given sampley; that is,

θ̂ = arg max
θ

λY (y; θ). (2-2)

Let λX(x; θ) denote the complete data support function for a fixed samplex. Using the EM

method, the maximum likelihood estimate ofθ is obtained by solving the following sequence

of complete data problems:

θ(k+1) = arg max
θ

Eθ(k) [λX(X; θ) |X ∈ L] (2-3)

for k = 0, 1, . . . , whereθ(0) is an initial estimate ofθ, and

Eθ(k) [λX(X; θ) |X ∈ L] =

∫

L

λX(x; θ) fX|Y (x|y; θ(k)) dx (2-4)

is the conditional expectation of the complete data supportfunction at thekth iteration. As-

suming that the observed data density functionsfY (y; θ) are strictly positive, the conditional

density functionsfX|Y (x|y; θ) are defined by

fX|Y (x|y; θ) =
fX(x; θ)

fY (y; θ)
=

fX(x; θ)
∫

L
fX(x; θ) dx

. (2-5)

Expressions (2-4) and (2-3) are the expectation step, or E-step, and the maximization step, or

M-step, respectively, of the EM method. The sequenceθ(k) of EM iterates converges to the
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maximum likelihood estimatêθ under the regularity conditions stated in Dempster et al. [1]

and Wu [28]. These conditions are assumed to hold here and throughout the report. The usual

regularity conditions for the existence of maximum likelihood estimates and information ma-

trices, and the interchangeability in order of differentiation and integration, are also assumed

in the sequel. (See, for example, Cramér [29, chapters 7, 32, and 33] and Casella and Berger

[30, chapters 2 and 7] for statements of these conditions.)

2.2 INDEPENDENT OBSERVATIONS

Suppose the complete datax consists ofn independent (but not necessarily identically

distributed) samplesx1, . . . , xn. These samples are not observed directly; rather, the samples

y1 = Y1(x1), . . . , yn = Yn(xn) through the many-to-one mappingsY1 : X1 → Y1, . . . ,

Yn : Xn → Yn. Then,L = L1 × · · · × Ln, whereLi = {x : Yi(x) = yi} is the section of

Xi determined byyi. Consequently, the complete data and observed data likelihood functions

fX(x; θ) andfY (y; θ) become products, and the corresponding support functionsλX(x; θ)

andλY (y; θ) become summations. Substituting these results into (2-3) and interchanging the

order of integration and summation gives

θ(k+1) = arg max
θ

n
∑

i=1

Eθ(k) [λXi
(Xi; θ) |Xi ∈ Li] (2-6)

for the update of the parameter vectorθ(k), where

Eθ(k) [λXi
(Xi; θ) |Xi ∈ Li] =

∫

Li

λXi
(xi; θ) fXi|Yi

(xi|yi; θ
(k)) dxi (2-7)

is the conditional expectation of the support function for the complete data vectorxi at the

kth iteration, and

fXi|Yi
(xi|yi; θ) =

fXi
(xi; θ)

fYi
(yi; θ)

=
fXi

(xi; θ)
∫

Li
fXi

(xi; θ) dxi

. (2-8)

is the conditional density function ofxi given the observed data vectoryi.

2.3 MAXIMUM A POSTERIORIESTIMATION

The EM method can also be used to find the maximuma posterioriestimate ofθ in a

Bayesian model for the parameter vector. LetΘ denote the random variable associated withθ,

let fΘ(θ) denote its prior density function, and letλΘ(θ) = log fΘ(θ) denote the prior support

function. The posterior observed data support functionλΘ|Y (θ|y) = log fΘ|Y (θ|y) is obtained

using Bayes’ formula:

λΘ|Y (θ|y) = λY |Θ(y|θ) + λΘ(θ) − λY (y). (2-9)
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The observed data support functionλY (y; θ) is written in this expression asλY |Θ(y|θ) to

emphasize Bayesian conditioning rather than parametric dependence onθ. The maximuma

posterioriestimate ofθ, denoted̂θ, is that realization of the random variableΘ that maximizes

fΘ|Y (θ|y) or, equivalently,λΘ|Y (θ|y), given the sampley; in other words,

θ̂ = arg max
θ
λΘ|Y (θ|y) = arg max

θ

{

λY |Θ(y|θ) + λΘ(θ)
}

. (2-10)

As discussed in [1], the maximuma posterioriestimate ofθ is obtained using the EM method

by solving the following sequence of complete data problems:

θ(k+1) = arg max
θ

{

Eθ(k) [λX|Θ(X|θ) |X ∈ L] + λΘ(θ)
}

(2-11)

for k = 0, 1, . . . , whereθ(0) is an initial estimate ofθ, andλX|Θ(X|θ) is the complete data

support function conditioned onθ. The arguments in [1] and [28] imply that each EM iteration

increases the value ofλΘ|Y (θ|y). Also, as stated in [1], whenfΘ(θ) is a natural conjugate prior

density function forΘ, the function to be maximized in (2-11) often has the same form as that

in (2-3) and, so, can be maximized in the same way. This is indeed the case for the Gaussian

mixture models discussed later. (Recall that a natural conjugate prior density function forΘ

has the property that the posterior density function is a member of the same family of density

function. See Redner et al. [31] for a discussion of a natural family of priors, which they

refer to as a family of “class conditional” priors, for mixtures of density functions of the

exponential type.)
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3. OBSERVED INFORMATION FOR INCOMPLETE DATA PROBLEMS

Louis’s approach to computing the observed information matrix for the general case

of incomplete data is presented in this section, as well as a simplification of his result for

the special case of independent observations. The posterior observed information matrix,

used here as an information measure for stochastic dynamic mixture models, is also defined.

Throughout this section, the observationy is assumed given.

3.1 GENERAL CASE

Before deriving the observed information matrix for the general case, some additional

notation and useful identities are presented. (The notation adopted here follows Louis’s, with

a few differences. His derivation is found in the appendix of[3].) Let SX(x; θ) andBX(x; θ)

denote the first derivatives and negative second derivatives with respect to the parameter vec-

tor θ of the complete data support functionλX(x; θ), respectively. Likewise, letSY (y; θ) and

BY (y; θ) denote the corresponding derivatives of the observed data support function. (The

functionsSX(x; θ) andSY (y; θ) are often referred to as the complete data and observed data

score functions, respectively.) These definitions lead to the following identities:

SX(x; θ) = λ′X(x; θ) =
f ′

X(x; θ)

fX(x; θ)
, (3-1)

−BX(x; θ) = λ′′X(x; θ) =
f ′′

X(x; θ)

fX(x; θ)
− SX(x; θ)ST

X(x; θ). (3-2)

Taking the conditional expectation of these expressions asin (2-4) yields the identities

Eθ

[

f ′
X(X; θ)

fX(X; θ)
|X ∈ L

]

= Eθ [SX(X; θ) |X ∈ L] , (3-3)

Eθ

[

f ′′
X(X; θ)

fX(X; θ)
|X ∈ L

]

= −Eθ [BX(X; θ) |X ∈ L]

+Eθ

[

SX(X; θ)ST

X(X; θ) |X ∈ L
]

. (3-4)

The information matrix, denotedIY (y; θ), is by definition equal to minus the second

derivative with respect to the parameter vectorθ of the observed data support function:

IY (y; θ) = −λ′′Y (y; θ) = BY (y; θ). (3-5)

Evaluated at the maximum likelihood estimateθ̂, the information matrix is called theobserved

information matrixor, sometimes, theobserved Fisher information matrix. The expected

(Fisher) information matrixis defined as the expected value of the information matrixIY (y; θ)

evaluated at the “true” value of the parameter vectorθ, denotedθ∗; that is,

I(θ∗) =

∫

Y

IY (y; θ∗) fY (y; θ∗) dy. (3-6)
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(See Edwards [32] for statements of these definitions.) In practice, the inverse of the expected

value of the information matrix evaluated atθ̂, that is,I−1(θ̂), is often used as an estimate of

the error-covariance matrix for̂θ. However, Efron and Hinkley [4] give several justifications

for preferring the inverse of the observed information matrix, namely,I−1
Y (y; θ̂), as a mea-

sure of estimation uncertainty, at least for the scalar parameter case. As noted by Louis, the

observed information matrix is often much easier to computethan the expected information

matrix. This is certainly the case for mixture distributions.

The information matrixIY (y; θ) as given by (3-5) is often difficult to compute explicitly

due to the complexity of the observed data support functionλY (y; θ). Indeed, it is for this

reason that the EM method is often used in the first place. The goal of the EM method is to

obtain an expression for the maximum likelihood estimateθ̂ in terms of the simpler complete

data support functionλX(x; θ). Likewise, the goal here is to obtain an expression forIY (y; θ)

in terms of the complete data support function and its derivatives.

To derive the information matrixIY (y; θ) in terms of the complete data statisticsSX(x; θ)

andBX(x; θ) requires two steps. The first step is to compute the implicit derivative of the ob-

served data support function. From (2-1),

SY (y; θ) = λ′Y (y; θ) =

∫

L

f ′
X(x; θ) dx

/
∫

L

fX(x; θ) dx. (3-7)

Moving the denominator inside the integral in the numeratorand multiplying the numerator

and denominator of the integrand byfX(x; θ), it follows from (2-5) and (3-3) that

SY (y; θ) = Eθ [SX(X; θ) |X ∈ L] , (3-8)

where the conditional expectation is defined as in (2-4). Thesecond step is to implicitly

compute the negative second derivative of the observed datasupport function. From (3-7),

BY (y; θ) = −λ′′Y (y; θ) = −

∫

L

f ′′
X(x; θ) dx

/
∫

L

fX(x; θ) dx+ SY (y; θ)ST

Y (y; θ). (3-9)

Again, moving the denominator inside the integral in the numerator and multiplying the nu-

merator and denominator of the integrand byfX(x; θ), it follows from (3-4) and (3-5) that

IY (y; θ) = Eθ [BX(X; θ) |X ∈ L] − Eθ

[

SX(X; θ)ST

X(X; θ) |X ∈ L
]

+ SY (y; θ)ST

Y (y; θ).

(3-10)

By definition, the derivative of the observed data support function is zero at the maximum

likelihood estimate, that is,SY (y; θ̂) = 0. Thus, the observed information matrix in the

general case can be expressed entirely in terms of conditional expectations of the complete

data statisticsSX(x; θ) andBX(x; θ):

IY (y; θ̂) = Eθ̂

[

BX(X; θ̂) |X ∈ L
]

− Eθ̂

[

SX(X; θ̂)ST

X(X; θ̂) |X ∈ R
]

. (3-11)
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These expectations are straightforward to compute for the finite and dynamic mixture models

considered in this report, and they result in intuitive and revealing expressions for the observed

information and error-covariance matrices for these models.

The first term on the right-hand side of (3-11) represents theinformation in the complete

data; the second term is a correction for the information lost to the missing data. To see this,

recall expression (2-5) for the conditional densityfX|Y (x|y; θ) of the complete data random

variableX given y. Let λX|Y (x|y; θ) = log fX|Y (x|y; θ). Taking the natural logarithm of

(2-5) and rearranging terms gives

λY (y; θ) = λX(x; θ) − λX|Y (x|y; θ). (3-12)

Furthermore, taking the conditional expectation as in (2-4) of minus the second derivative of

this expression and evaluating the result at the estimateθ̂ gives

IY (y; θ̂) = Eθ̂

[

BX(X; θ̂) |X ∈ L
]

− Eθ̂

[

−λX|Y (X|y; θ̂) |X ∈ L
]

(3-13)

for the observed information matrix. This result is writtensuccinctly as

IY (y; θ̂) = IX(x; θ̂) − IX|Y (x|y; θ̂), (3-14)

where, by analogy with definition (3-5), the matrixIX(x; θ̂) is called the (conditional ex-

pected) complete data observed information matrix, andIX|Y (x|y; θ̂), the observed informa-

tion matrix associated with the missing data. (For brevity,but with some abuse of terminology,

these matrices will be referred to as the complete and missing information matrices, respec-

tively.) Clearly, the observed information decreases as theinformation lost to the missing

data increases. Consequently, the error-covariance matrixfor the maximum likelihood esti-

mateθ̂ (taken here to be the inverse of the observed information matrix) increases with the

information lost to the missing data. As pointed out by Louis, the factorization (3-14) is an

application of what Orchard and Woodbury [33] call the “missing information principle” to

the observed information matrix.

3.2 INDEPENDENT OBSERVATIONS

In this case of independent observations, the complete dataand observed data support

functionsλX , λY and their first and second derivativesSX , SY and−BX , −BY become

summations, and expression (3-11) for the observed information matrix becomes

IY (y; θ̂) =
n
∑

i=1

Eθ̂

[

BXi
(Xi; θ̂) |Xi ∈ Ri

]

−
n
∑

i=1

Eθ̂

[

SXi
(Xi; θ̂)S

T

Xi
(Xi; θ̂) |Xi ∈ Li

]

− 2
n−1
∑

i=1

n
∑

j=i+1

Eθ̂

[

SXi
(Xi; θ̂) |Xi ∈ Li

]

Eθ̂

[

ST

Xj
(Xj; θ̂) |Xj ∈ Rj

]

. (3-15)
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This expression from Louis [3] simplifies further in the following way. SinceSY (y; θ̂) = 0,

it follows from (3-8) that
n
∑

i=1

Eθ̂

[

SXi
(Xi; θ̂) |Xi ∈ Li

]

= 0. (3-16)

Hence, solving for theith term,

Eθ̂

[

SXi
(Xi; θ̂) |Xi ∈ Li

]

= −

n
∑

j=1, j 6=i

Eθ̂

[

SXj
(Xj; θ̂) |Xj ∈ Lj

]

. (3-17)

By straightforward algebraic manipulation, it is easy to show using these identities that

Eθ̂

[

SX(X; θ̂)ST

X(X; θ̂) |X ∈ R
]

=
n
∑

i=1

Eθ̂

[

SXi
(Xi; θ̂)S

T

Xi
(Xi; θ̂) |Xi ∈ Li

]

−

n
∑

i=1

Eθ̂

[

SXi
(Xi; θ̂) |Xi ∈ Li

]

Eθ̂

[

ST

Xi
(Xi; θ̂) |Xi ∈ Rj

]

. (3-18)

Thus, the observed information matrix in the case of independent observations becomes

IY (y; θ̂) =
n
∑

i=1

Eθ̂

[

BXi
(Xi; θ̂) |Xi ∈ Ri

]

−
n
∑

i=1

Eθ̂

[

SXi
(Xi; θ̂)S

T

Xi
(Xi; θ̂) |Xi ∈ Li

]

+
n
∑

i=1

Eθ̂

[

SXi
(Xi; θ̂) |Xi ∈ Li

]

Eθ̂

[

ST

Xi
(Xi; θ̂) |Xi ∈ Rj

]

. (3-19)

This simplified expression eliminates the double sum over the cross terms in (3-15).

Finally, for independent and identically distributed data, the observed information ma-

trix IY (y; θ̂) can be approximated by theempirical Fisher information matrix, denotedIe(y; θ̂),

and defined asIe(y; θ̂) = nĪe(y; θ̂), where

Īe(y, θ) =
1

n

n
∑

i=1

SYi
(yi; θ)S

T

Yi
(yi; θ) −

1

n2
SY (y; θ)ST

Y (y; θ) (3-20)

is the empirical (sample) covariance matrix of the score vectors SYi
(yi; θ). (Recall that if

the data are identically distributed, the score functionsSYi
are all the same function.) Since

SY (y; θ̂) = 0, it follows that

Ie(y; θ̂) =
n
∑

i=1

SYi
(yi; θ̂)S

T

Yi
(yi; θ̂). (3-21)

Using relationship (3-8), the empirical Fisher information matrix can be written in terms of

conditional expectations of the complete data score functions:

Ie(y; θ̂) =
n
∑

i=1

Eθ̂[SXi
(Xi; θ̂) |Xi ∈ Li]Eθ̂[S

T

Xi
(Xi; θ̂) |Xi ∈ Li]. (3-22)
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The appropriateness of this approximation to the observed information matrix depends on the

size of the data set, as discussed in appendix A. See Redner andWalker [34] and Meilijson

[35] for a complete discussion of the empirical Fisher information matrix and its use in the

EM method.

3.3 POSTERIOR OBSERVED INFORMATION

By analogy with the definition of the information matrixIY (y; θ), theposterior infor-

mation matrixIΘ|Y (θ|y) is defined as minus the second derivative with respect toθ of the

posterior observed data support functionλΘ|Y (θ|y). From (2-9),

IΘ|Y (θ|y) = −λ′′Θ|Y (θ|y) = −λ′′Y |Θ(y|θ) − λ′′Θ(θ), (3-23)

where−λ′′Y |Θ(y|θ) is the information matrixIY (y; θ), denotedIY |Θ(y|θ) here to emphasize

Bayesian conditioning onθ, and−λ′′Θ(θ) is the prior information matrix, denotedIΘ(θ).

Hence,

IΘ|Y (θ|y) = IY |Θ(y|θ) + IΘ(θ). (3-24)

When evaluated at the maximuma posterioriestimateθ̂, IΘ|Y (θ̂|y) andIΘ(θ̂) are called the

posterior observed information matrixand theprior observed information matrix, respec-

tively. Consequently, the posterior observed information matrix is equal to the observed

information matrix plus the prior observed information matrix. Evaluating (3-24) at̂θ and

substituting the factorization (3-14) for the observed information matrix gives the following

expression for the posterior observed information matrix:

IΘ|Y (θ̂|y) = IX|Θ(x|θ̂) − IX|Y,Θ(x|y, θ̂) + IΘ(θ̂), (3-25)

where the information matricesIX|Θ(x|θ) andIX|Y,Θ(x|y, θ) are the analogs of the complete

and missing information matricesIX(x; θ) and IX|Y (x|y; θ), respectively, in the Bayesian

model forθ. Thus, the posterior observed information matrix can be written entirely in terms

of complete data and prior statistics. Again for brevity, but with some abuse of terminol-

ogy, the combination of the first and last terms in (3-25) willbe referred to as the posterior

complete information matrix, denotedIΘ|X(θ̂|x), so that

IΘ|Y (θ̂|y) = IΘ|X(θ̂|x) − IX|Y,Θ(x|y, θ̂); (3-26)

that is, the posterior observed information matrix is equalto the posterior complete informa-

tion matrix minus the information lost to the missing data.
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4. OBSERVED INFORMATION FOR FINITE MIXTURE MODELS

Maximum likelihood estimation and computation of the observed information matrix

for finite mixture models (and Gaussian mixture models, in particular) are reviewed in this

section. Gaussian mixture models are the basis for the dynamic mixture models considered

in later sections.

4.1 GENERAL CASE

Let y = {yi : i = 1, . . . , n} be a given set ofn independent and identically distributed

p-variate observations, assumed to come from a mixture ofm distinct sources in unknown

proportions. The goal is to find the maximum likelihood estimates of the parameters for each

source distribution in the mixture, and the proportion eachsource contributes to the data.

(In general, the number of sourcesm must also be inferred from the data, but that problem

is not addressed here.) Finding these estimates would be straightforward if the data were

labeled, that is, if each observationyi came with a labelzi taking a value in the set{1, . . . ,m}

indicating the source from which it came. The labelsz = {zi : i = 1, . . . , n} are the missing

data in this problem. The complete data are thenx = {xi : i = 1, . . . , n}, wherexi = (yi, zi)

is the complete data vector associated with the observed data vectoryi.

It is assumed that the labelsz are independent; since the observed datay are assumed

to be independent, it follows that the complete datax are independent as well. Moreover,

since the sectionLi of the complete data sample spaceXi determined by the observationyi

is simply the set{yi} × {1, . . . ,m}, it follows that the integrals overLi described in the

preceding sections are simply sums over them possible sources ofyi. In particular, using the

identity

fXi
(xi; θ) = fYiZi

(yi, zi; θ) = fYi|Zi
(yi|zi; θ)fZi

(zi; θ), (4-1)

the observed data likelihood function for the sampleyi is given by the marginal

fYi
(yi; θ) =

∫

Li

fXi
(xi; θ) dxi =

m
∑

j=1

fYi|Zi
(yi|j; θ)fZi

(j; θ). (4-2)

Thus,fYi
(yi; θ) is a mixture density function, wherefYi|Zi

(yi|j; θ) is the density function for

the sampleyi given that it comes from sourcej, andfZi
(j; θ) is thea priori probability of

drawing a sample from this source.

Given an estimateθ(k) for the mixture parametersθ, the updated estimateθ(k+1) is

obtained by evaluating the conditional expectations (2-7), and maximizing the sum of the

results, as in (2-6). Combining the previous two results withthe identity

fXi|Yi
(xi|yi; θ) =

fXi
(xi; θ)

fYi
(yi; θ)

=
fYiZi

(yi, zi; θ)

fYi
(yi; θ)

= fZi|Yi
(zi|yi; θ), (4-3)
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the conditional expectations (2-7) for the finite mixture model become

Eθ(k) [λXi
(Xi; θ) |Xi ∈ Li] =

m
∑

j=1

[

λYi|Zi
(yi|j; θ) + λZi

(j; θ)
]

fZi|Yi
(j|yi; θ

(k)), (4-4)

where

fZi|Yi
(j|yi; θ) =

fYi|Zi
(yi|j; θ)fZi

(j; θ)
∑m

l=1 fYi|Zi
(yi|l; θ)fZi

(l; θ)
(4-5)

is the conditional probability that the sampleyi comes from sourcej.

The observed information matrix for the finite mixture modelis given by (3-19). The

conditional expectations in (3-19) are computed as in (4-4). In particular,

Eθ̂ [BXi
(Xi; θ) |Xi ∈ Ri] = −

m
∑

j=1

[

λYi|Zi
(yi|j; θ) + λZi

(j; θ)
]′′
fZi|Yi

(j|yi; θ̂), (4-6)

Eθ̂ [SXi
(Xi; θ) |Xi ∈ Ri] =

m
∑

j=1

[

λYi|Zi
(yi|j; θ) + λZi

(j; θ)
]′
fZi|Yi

(j|yi; θ̂), (4-7)

and

Eθ̂

[

SXi
(Xi; θ)S

T

Xi
(Xi; θ) |Xi ∈ Li

]

=
m
∑

j=1

[

λYi|Zi
(yi|j; θ) + λZi

(j; θ)
]′ [
λYi|Zi

(yi|j; θ) + λZi
(j; θ)

]′T
fZi|Yi

(j|yi; θ̂). (4-8)

The expectations (4-6) and (4-7) simplify further by interchanging the order of summation

and differentiation:

Eθ̂ [BXi
(Xi; θ) |Xi ∈ Ri] = −{Eθ̂ [λXi

(Xi; θ) |Xi ∈ Li]}
′′ , (4-9)

Eθ̂ [SXi
(Xi; θ) |Xi ∈ Ri] = {Eθ̂ [λXi

(Xi; θ) |Xi ∈ Li]}
′ . (4-10)

Therefore, once the expectation (4-4) required to computeθ̂ is obtained, it need only be dif-

ferentiated twice to obtain two out of the three expectations required to compute the observed

information matrixIY (y; θ̂), as given by (3-19).

4.2 GAUSSIAN MIXTURES

For finite Gaussian (or normal) mixture models, the conditional observed data density

functionfYi|Zi
(yi|zi; θ) is taken to be the multivariate Gaussian density functionφ(yi|µzi

,Σzi
),

where

φ(a|b, C) =
1

(2π)p/2|C|1/2
exp

{

−
1

2
(a− b)TC−1(a− b)

}

(4-11)

is thep-variate Gaussian density function with mean vectorb and covariance matrixC. Addi-

tionally, the prior probabilityfZi
(zi; θ) is taken to be the probabilityπzi

, where{π1, . . . , πm}

is a fixed set ofa priori probabilities.
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4.2.1 Parameter Estimation

The parameters to be estimated in this model are, in general,the mean vectorsµj, the

covariance matricesΣj, and the prior probabilitiesπj for the missing measurement-to-source

labels. However, to simplify the analysis of the observed information matrix, unequal but

known values of the covariance matricesΣj are assumed. Hence, the parameter vectorθ for

this problem contains the mean vectorsµj and the mixing proportionsπj. Consequently, the

complete data support functionλXi
(xi; θ) for this model is

λXi
((yi, zi); θ) = −1

2
(yi − µzi

)TΣ−1
zi

(yi − µzi
) + log πzi

, (4-12)

where the first and second terms correspond to the conditional observed data support function

λYi|Zi
(yi|zi; θ) and the prior support functionλZi

(zi; θ), respectively, and terms not dependent

on the parameter vectorθ are dropped from this expression.

It is important to emphasize that the mixing proportionsπj are not independent. In

particular,
m
∑

j=1

πj =
m
∑

j=1

fZi
(j; θ) = 1, πj ≥ 0, j = 1, . . . ,m, (4-13)

and one must be careful to account for this dependence when estimating the mixing propor-

tions and computing the observed information matrixIY (y; θ̂). In the sequel,πm is used to

denote1 − π1 − · · · − πm−1, and the full expression is employed when taking derivatives of

the complete data support function to ensure proper accounting of the constraint in (4-13).

The update equations for the mixing proportionsπj and mean vectorsµj are obtained by

substituting the Gaussian mixture model described above into expressions (4-4) and (4-5), and

performing the maximization in (2-6) subject to the constraint in (4-13). To simplify notation,

letwji denote the conditional probabilityfZi|Yi
(j|yi; θ) that observationyi comes from source

j. Then, given estimates forπj andµj from thekth iteration, the update equations are

π
(k+1)
j =

1

n

n
∑

i=1

w
(k)
ji , (4-14)

and

µ
(k+1)
j =

1

nπ
(k+1)
j

n
∑

i=1

w
(k)
ji yi, (4-15)

with

w
(k)
ji =

π
(k)
j φ(yi|µ

(k)
j ,Σj)

∑m
l=1 π

(k)
l φ(yi|µ

(k)
l ,Σl)

. (4-16)
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4.2.2 Observed Information Matrix Computation

The observed information matrix for this case is an((m− 1) + pm)× ((m− 1) + pm)

block matrix, where the(m − 1) × (m − 1) block in the upper left-hand corner contains the

information contribution from the firstm− 1 mixing proportions, and thepm× pm block in

the lower right-hand corner contains the information contribution due to them mean vectors,

each of lengthp. The off-diagonal blocks pertain to information in the various mixing propor-

tion and mean vector combinations. The observed information matrix computation requires

computation of the expectations (4-8) through (4-10). Letαj, βl denote any two parame-

ters in the set{π1, . . . , πm−1, µ1, . . . , µm}. To simplify notation, the following shorthand is

introduced for expressions (4-8) through (4-10):

〈SiS
T

i 〉αjβl
= Eθ̂

[

{∇αj
λXi

(Xi; θ)}{∇βl
λXi

(Xi; θ)}
T |Xi ∈ Li

]

, (4-17)

〈Bi〉αjβl
= −∇αj

{∇βl
Eθ̂ [λXi

(Xi; θ) |Xi ∈ Li]}
T, (4-18)

〈Si〉αj
= ∇αj

Eθ̂ [λXi
(Xi; θ) |Xi ∈ Li] . (4-19)

Substituting the complete data support function (4-12) forthe Gaussian mixture into the above

expressions yields the following results:

a. From (4-19),

〈Si〉πj
= wji/πj − wmi/πm, j = 1, . . . ,m− 1, (4-20)

〈Si〉µj
= wjiΣ

−1
j (yi − µj), j = 1, . . . ,m. (4-21)

b. From (4-18),

〈Bi〉πjπl
=







wji/π
2
j + wmi/π

2
m, j = l,

wmi/π
2
m, j 6= l,

j, l = 1 . . . ,m− 1, (4-22)

〈Bi〉µjµl
=







wjiΣ
−1
j , j = l,

0, j 6= l,
j, l = 1, . . . ,m, (4-23)

〈Bi〉πjµl
= 0, j = 1 . . . ,m− 1, l = 1, . . . ,m. (4-24)

c. From (4-17),

〈SiS
T

i 〉πjπl
=







wji/π
2
j + wmi/π

2
m, j = l,

wmi/π
2
m, j 6= l,

j, l = 1, . . . ,m− 1, (4-25)
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〈SiS
T

i 〉µjµl
=







wjiΣ
−1
j (yi − µj)(yi − µj)

TΣ−1
j , j = l,

0, j 6= l,
j, l = 1, . . . ,m, (4-26)

〈SiS
T

i 〉πjµl
=



















wji

πj
(yi − µj)

TΣ−1
j , j, l = 1, . . . ,m− 1, j = l,

0, j, l = 1, . . . ,m− 1, j 6= l,

−wmi

πm
(yi − µm)TΣ−1

m , j = 1, . . . ,m− 1, l = m.

(4-27)

The expectations required in (4-25) through (4-27) are obtained using the following results

for the first derivatives of the complete data support function:

∇πj
λXi

((yi, zi); θ) =



















1
πj

if zi = j,

− 1
πm

if zi = m,

0 otherwise,

(4-28)

∇µj
λXi

((yi, zi); θ) =







Σ−1
j (yi − µj) if zi = j,

0 otherwise.
(4-29)

Finally, let Iα̂j β̂l
denote the sub-block of the observed information matrix associated

with the parameter estimatesα̂j, β̂l. Then, from (3-19), using the above shorthand,

Iα̂j β̂l
=

n
∑

i=1

〈Bi〉α̂j β̂l
−

n
∑

i=1

〈SiS
T

i 〉α̂j β̂l
+

n
∑

i=1

〈Si〉α̂j
〈ST

i 〉β̂l
. (4-30)

Substituting (4-20) through (4-27) into (4-30), it followsthat the terms in (4-22) cancel with

the terms in (4-25). Also, the sum of the terms in (4-27) equals zero when evaluated at

the estimateŝπj and µ̂j as given by (4-14) and (4-15). These results lead to the following

simplifications of the observed information matrix for Gaussian mixtures:

Iπ̂j π̂l
=

n
∑

i=1

〈Si〉π̂j
〈ST

i 〉π̂l
, j, l = 1, . . . ,m− 1, (4-31)

Iπ̂j µ̂l
=

n
∑

i=1

〈Si〉π̂j
〈ST

i 〉µ̂l
, j = 1, . . . ,m− 1, l = 1, . . . ,m, (4-32)

Iµ̂j µ̂l
=

n
∑

i=1

〈Si〉µ̂j
〈ST

i 〉µ̂l
, j, l = 1, . . . ,m, j 6= l. (4-33)

Thus, use of the empirical Fisher information matrix as an approximation to the observed

information matrix is somewhat justified in this case, although the extra calculations in (4-23)

and (4-26) required to obtain the exact observed information matrix are hardly prohibitive.
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5. OBSERVED INFORMATION FOR DYNAMIC MIXTURE MODELS

As discussed in the introduction, dynamic mixtures are useful models for data collected

over time originating from a number of distinct moving sources. The goal is to estimate

the source trajectories, that is, to “track” the sources in the parameter space and to accurately

characterize the uncertainty in the track estimates. Intuitively, the uncertainty in the estimated

tracks should increase when the sources interfere with eachother in the observation space,

for example, when two or more trajectories cross paths; measurement-to-source assignment

uncertainty is often a significant source of uncertainty in these situations.

In the following sections two important dynamic mixture models are presented, one

in which the sources follow unknown but deterministic trajectories, and one in which the

trajectories themselves are subject to random perturbations. Gaussian mixtures are used to

model the distribution of the observations at each samplingtime in both cases. It is assumed

that at each timet = 1, . . . , T , a set ofnt independent samplesyt = {yti}, i = 1, . . . , nt,

is obtained from the mixture. Lety = {yt} denote the entire collection of samples, and let

xt = {xti} andx = {xt} denote the corresponding sets of complete data samples. It is also

assumed that the setsxt andyt are independent across the sampling times. Note, however,

that since the sources in the mixture are in motion, these sets are not identically distributed

from one time to the next.

5.1 DETERMINISTIC MOTION

In the deterministic case the motion model for each source isembedded in the observa-

tion matrix of the standard multivariate linear model. In particular, assuming that thep × 1

measurement vectoryti comes from sourcej, yti is related to theq × 1 vector of kinematic

parametersµj through the equation

yti = Mjtµj + ǫjti, (5-1)

whereMjt is ap× q matrix that mapsµj to the observation space at timet, andǫjti is ap× 1

Gaussian random vector with zero mean and covariance matrixRjt. The random errorsǫjti
are assumed independent.

For example, supposem sources move with constant velocity in a plane, and observa-

tions of the source positions are obtained at multiple sampling times. The trajectory of source

j is completely specified by its position and velocity at an arbitrary reference timet∗. Letµj

be thexy-position andxy-velocity of sourcej at timet∗. The position of sourcej at any time

t is given byMjtµj, where

Mjt =

[

1 0 ∆t,t∗ 0

0 1 0 ∆t,t∗

]

(5-2)
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and∆t,t∗ is the elapsed time betweent andt∗.

Given the linear Gaussian model (5-1) for observationyti assuming sourcej, the con-

ditional observed data density functionfYti|Zti
(yti|zti; θ) is the multivariate Gaussian density

functionφ(yti|Mjtµj, Rjt). As before, the prior probabilityfZti
(zti; θ) of observing source

j at time t is taken to be the probabilityπzi
, where{π1, . . . , πm} is a fixed set ofa priori

probabilities for observing data from each source.

5.1.1 Parameter Estimation

The parameters to be estimated in this model are, in general,the kinematic parameter

vectorsµj and the measurement covariance matricesRj, together with the prior probabilities

πj for the missing measurement-to-source assignments. However, to simplify the analysis of

the observed information matrix for this case, unequal but known values of the covariance

matricesRj are assumed. Thus, the parameter vectorθ contains the kinematic vectorsµj and

the mixing proportionsπj. Consequently, the complete data support functionλXi
(xi; θ) for

this model is

λXti
((yti, zti); θ) =

[

−1
2
(yti −Mjtµj)

TR−1
j (yti −Mjtµj) + log πj

]∣

∣

j=zti
, (5-3)

where the first and second terms in brackets correspond to theconditional support function

λYti|Zti
(yti|zti; θ) and the prior support functionλZti

(zti; θ), respectively, and terms not de-

pendent onθ are dropped from this expression for clarity.

The update equations for the mixing proportionsπ and the kinematic parametersµ are

obtained by substituting the linear Gaussian dynamic mixture model described above into the

analogs of expressions (4-4) and (4-5) for data collected over more than one sampling time,

and maximizing the resulting expressions with respect toπ andµ as in (2-6) subject to the

constraint (4-13); the single sum over the measurement index i in (2-6) is replaced by the

double sum over the time and measurement indicest andi, respectively, in this case. Letwjti

denote the conditional probabilityfZti|Yti
(j|yti; θ) that observationyti comes from sourcej.

Then, given estimates forπj andµj from thekth EM iteration, the update equations for the

conditional probabilities and mixing proportions are

w
(k)
jti =

π
(k)
j φ(yti|Mjtµ

(k)
j , Rjt)

∑m
l=1 π

(k)
l φ(yti|Mltµ

(k)
l , Rlt)

, (5-4)

and

π
(k+1)
j =

1

n

T
∑

t=1

nt
∑

i=1

w
(k)
jti , (5-5)

wheren =
∑T

t=1 nt is the total number of observations over all sampling times.
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The update equations for the kinematic parametersµj assume intuitively appealing

forms when written in terms of the “synthetic” measurements∗

ỹ
(k)
jt =

∑nt

i=1 w
(k)
jti yti

∑nt

i=1 w
(k)
jti

, (5-6)

and synthetic measurement covariance matrices

R̃
(k)
jt =

Rjt
∑nt

i=1 w
(k)
jti

. (5-7)

The synthetic measurementỹjt for sourcej at timet is the probabilistic centroid of the ob-

servationsyti with respect to the assignment probabilitieswjti. The synthetic measurement

covariance matrix̃Rjt is the measurement covariance matrix for sourcej at timet divided by

the expected number of measurements from this source, conditioned on the observationsyti.

To see this, define the indicator functions

1j(xti) = 1j((yti, zti)) =







1, if zti = j,

0, otherwise,
(5-8)

and letnjt(xt) =
∑nt

i=1 1j(xti) be the number of measurements that come from sourcej at

time t. Then,

E[njt(Xt)|Xt ∈ Lt] =
m
∑

l=1

nt
∑

i=1

1j((yti, l))wlti =
nt
∑

i=1

wjti. (5-9)

is the expected number of observationsyti that come from sourcej. Incidentally, thea priori

expected number of observations from sourcej at timet is

E[njt(Xt)] =
m
∑

l=1

nt
∑

i=1

1j((yti, l))πl = nt πj. (5-10)

Using expressions (5-6) and (5-7) for the synthetic measurements and synthetic mea-

surement covariance matrices for sourcej, the update equation for the kinematic parameter

vectorµj is
(

T
∑

t=1

MT

jt[R̃
(k)
jt ]−1Mjt

)

µ
(k+1)
j =

(

T
∑

t=1

MT

jt[R̃
(k)
jt ]−1ỹ

(k)
jt

)

. (5-11)

This set of linear equations to be solved forµj is the set of normal equations forµj from

linear least-squares theory. It follows that the updated estimate forµj is the weighted least-

squares estimate forµj given the synthetic measurementsỹjt with weights determined by the

synthetic measurement covariance matricesR̃jt.
∗The term “synthetic” in this context is adopted from Streit and Luginbuhl [8].
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5.1.2 Observed Information Matrix Computation

The observed information matrix for the linear Gaussian dynamic mixture model is

similar to that for the standard Gaussian mixture model as given by expressions (4-20) through

(4-33), but with the subscripts for the measurement indexi replaced with subscripts for the

time and measurement indicest andi, respectively, and the single sums overi replaced with

double sums overt andi. In particular, the observed information matrix for this case is an

((m − 1) + qm) × ((m − 1) + qm) block matrix, where the(m − 1) × (m − 1) block in

the upper left-hand corner contains the information contribution from the firstm− 1 mixing

proportions, and theqm × qm block in the lower right-hand corner contains the information

contribution due to them kinematic parameter vectors, each of lengthq. Substituting the

complete data support function (5-3) into the analogs of expressions (4-17) through (4-19)

for data collected over multiple sampling times gives the following results:

a. From the time-dependent form of (4-19),

〈Sti〉πj
= wjti/πj − wmti/πm, j = 1, . . . ,m− 1, (5-12)

〈Sti〉µj
= wjtiM

T

jtR
−1
jt (yti −Mjtµj), j = 1, . . . ,m. (5-13)

b. From the time-dependent form of (4-18),

〈Bti〉πjπl
=







wjti/π
2
j + wmti/π

2
m, j = l,

wmti/π
2
m, j 6= l,

j, l = 1 . . . ,m− 1, (5-14)

〈Bti〉µjµl
=







wjtiM
T

jtR
−1
jt Mjt, j = l,

0, j 6= l,
j, l = 1, . . . ,m, (5-15)

〈Bti〉πjµl
= 0, j = 1 . . . ,m− 1, l = 1, . . . ,m. (5-16)

c. From the time-dependent form of (4-17),

〈StiS
T

ti〉πjπl
=







wjti/π
2
j + wmti/π

2
m, j = l,

wmti/π
2
m, j 6= l,

j, l = 1, . . . ,m− 1, (5-17)

〈StiS
T

ti〉µjµl
=







wjtiM
T

jtR
−1
jt (yti −Mjtµj)(yti −Mjtµj)

TR−1
jt Mjt, j = l,

0, j 6= l,

j, l = 1, . . . ,m, (5-18)
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〈StiS
T

ti〉πjµl
=



















wjti

πj
(yti −Mjtµj)

TR−1
jt Mjt, j, l = 1, . . . ,m− 1, j = l,

0, j, l = 1, . . . ,m− 1, j 6= l,

−wmti

πm
(yti −Mmtµm)TR−1

mtMmt, j = 1, . . . ,m− 1, l = m.

(5-19)

As before, letαj, βl denote any two parameters in the set{π1, . . . , πm−1, µ1, . . . , µm}, and let

Iα̂j β̂l
denote the sub-block of the observed information matrix associated with the parameter

estimateŝαj, β̂l. Then, from the time-dependent form of (3-19), using the above shorthand,

Iα̂j β̂l
=

T
∑

t=1

nt
∑

i=1

〈Bti〉α̂j β̂l
−

T
∑

t=1

nt
∑

i=1

〈StiS
T

ti〉α̂j β̂l
+

T
∑

t=1

nt
∑

i=1

〈Sti〉α̂j
〈ST

ti〉β̂l
. (5-20)

Substituting (5-12) through (5-19) into (5-20), it followsthat the terms in (5-14) cancel with

the terms in (5-17), and that the sum of the terms in (5-19) equals zero when evaluated at

the estimateŝπj and µ̂j, as given by (5-5) and (5-11). These results lead to the following

simplifications of the observed information matrix for linear Gaussian dynamic mixtures:

Iπ̂j π̂l
=

T
∑

t=1

nt
∑

i=1

〈Sti〉π̂j
〈ST

ti〉π̂l
, j, l = 1, . . . ,m− 1, (5-21)

Iπ̂j µ̂l
=

T
∑

t=1

nt
∑

i=1

〈Sti〉π̂j
〈ST

ti〉µ̂l
, j = 1, . . . ,m− 1, l = 1, . . . ,m, (5-22)

Iµ̂j µ̂l
=

T
∑

t=1

nt
∑

i=1

〈Sti〉µ̂j
〈ST

ti〉µ̂l
, j, l = 1, . . . ,m, j 6= l. (5-23)

Note, however, that use of the empirical Fisher informationmatrix as an approximation to the

observed information matrix is not strictly speaking justified in this case, as the observations

yti are not identically distributed across sampling times. Indeed, the mixture distribution for

the observationsyti in general changes location and shape from one time to the next due to

the motion of the sources.

5.1.3 Interpretation of Complete Information Matrix

Before proceeding to stochastic motion models for dynamic mixtures, it is worth ex-

amining the statistical interpretation of the complete information matrix for the deterministic

case. The first term in (5-20) is the sub-block of the completeinformation matrix associated

with the estimateŝαj, β̂l; the last two terms represent the information lost to the missing data.

Let [IX ]µ̂µ̂ denote theqm× qm block of the complete information matrix associated with the

collection of kinematic vectorsµj, let [IX ]µ̂j µ̂j
denote thejth diagonalq× q sub-block of this

matrix, and let{uj : j = 1, . . . ,m} be the collection of unit vectors of lengthm, where the
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jth element ofuj equals one and all other elements ofuj equal zero. Substituting (5-15) into

the first term of (5-20) and using the synthetic measurement covariance matrices (5-7) gives

[IX ]µ̂µ̂ =
m
∑

j=1

uju
T

j ⊗ [IX ]µ̂j µ̂j
=

m
∑

j=1

uju
T

j ⊗

T
∑

t=1

MT

jtR̃
−1
jt Mjt. (5-24)

This result may be interpreted in terms of the M-step at the final EM iteration (that is, iteration

k = ∞) as follows. For eachj ∈ {1, . . . ,m}, consider the multivariate linear model

ỹjt = Mjtµj + γjt, t = 1, . . . , T, (5-25)

whereỹjt is ap × 1 measurement vector,Mjt is a knownp × q observation matrix,µj is a

q × 1 parameter vector to be estimated, andγjt arep × 1 independent, normally distributed

noise vectors with zero means and known covariance matricesR̃jt. Then,

µ̂(MV U)j =

(

T
∑

t=1

MT

jtR̃
−1
jt Mjt

)−1( T
∑

t=1

MT

jtR̃
−1
jt ỹjt

)

(5-26)

is the minimum variance unbiased (MVU) estimate forµj with error-covariance matrix

Cµ̂(MV U)j
=

(

T
∑

t=1

MT

jtR̃
−1
jt Mjt

)−1

, (5-27)

assuming that this matrix has full rank. The inverse of this matrix is the Fisher information

matrix for this problem. Comparing (5-26) with (5-11), it follows that the M-step at the final

EM iteration is equivalent to the MVU estimation problem forthe multivariate linear model

(5-25) with independent measurementsỹ(∞)
jt and known measurement covariance matrices

R̃
(∞)
jt . Furthermore, from (5-27) and (5-24), it follows that the complete information matrix

for µ̂j is equivalent to the Fisher information matrix forµj for this MVU estimation problem;

that is,

[IX ]µ̂j µ̂j
= C−1

µ̂(MV U)j
. (5-28)

Thus, the observed information matrix forµ̂j can be written using the missing information

principle as in (3-14) as follows:

[IY ]µ̂j µ̂j
= C−1

µ̂(MV U)j
− [IX|Y ]µ̂j µ̂j

, (5-29)

where[IX|Y ]µ̂j µ̂j
is the information lost to the missing data. This seemingly obvious con-

nection between the complete information matrix obtained at the final EM iteration and the

Fisher information matrix obtained from the equivalent MVUestimation problem for this de-

terministic dynamic mixture model leads to a clearer understanding of the analogous result

for the stochastic model discussed in the next section.
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5.2 STOCHASTIC MOTION

Suppose the trajectory of each source is subject to random perturbations about an under-

lying deterministic motion model. Then, each source trajectory may be treated as a sequence

of random variables for which the deterministic motion model is the mean. In particular, let

µjt denote the kinematic “state” of sourcej at time t. Then, it is assumed that the states

µj = {µjt : t = 0, 1, . . . , T} are related by the first-order Gauss-Markov process

µjt = Fjt,t−1µj,t−1 + δj,t−1, (5-30)

whereFjt,t−1 are knownq×q state transition matrices, andδjt are independentq×1 Gaussian

random vectors with zero means and known covariance matricesQjt. Additionally, the state

of sourcej at time t0 is assumed to be normally distributed with meanηj and covariance

matrix Γj. As for the deterministic case, it is assumed that the observationsyti are related

linearly to the source statesµjt so that, assuming that observationyti comes from sourcej,

yti = Mjtµjt + ǫjti, (5-31)

where againMjt are knownp× q observation matrices, andǫjti are independentp× 1 Gaus-

sian random vectors with zero means and known covariance matricesRjt. Furthermore, it is

assumed that the random perturbationsδjt andǫjti are independent.

Consider again the constant-velocity motion example presented for the deterministic

case. As before, suppose thatm sources move (nominally) with constant velocity in a plane,

and that observations of source positions are obtained at multiple sampling times, but that the

kinematic state vectors for the sources are subject to random perturbations between sampling

times. Then, to within these perturbations, the position and velocity of sourcej at timet can

be predicted based on the position and velocity of the sourceat time t − 1 using the state

transition matrixFtj,t−1. For the nominal constant-velocity model, the predictedxy-position

andxy-velocity of sourcej at timet is Fjt,t−1µj,t−1, with state transition matrix

Fjt,t−1 =













1 0 ∆t,t−1 0

0 1 0 ∆t,t−1

0 0 1 0

0 0 0 1













. (5-32)

The position of sourcej at timet is simplyMjtµjt, with observation matrix

Mjt =

[

1 0 0 0

0 1 0 0

]

. (5-33)
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With the distributional assumptions on the source statesµ = {µj : j = 1, . . . ,m} in the

Gauss-Markov process model (5-30), and assuming a diffuse prior for the mixing proportions

π = {πj : j = 1, . . . ,m}, the joint density function for the parametersθ = (π, µ) is

fΘ((π, µ)) ∝
m
∏

j=1

φ(µj0|ηj,Γj)
T
∏

t=1

φ(µjt|Fjt,t−1µj,t−1, Qj,t−1), (5-34)

where the sources are assumed to be independent, and the states for each source are condi-

tionally independent from one sampling time to the next. Thecomplete data and observed

data density functions for this stochastic dynamic mixturemodel are essentially the same as

for the deterministic model, except for the dependence of the state vectorsµjt on the sampling

times. Specifically, the complete data density function is

fX|Θ((y, z)|θ) =
T
∏

t=1

nt
∏

i=1

[πj φ(yti|Mjtµjt, Rjt)]|j=zti
. (5-35)

Marginalizing over the missing measurement-to-source assignmentsz, and interchanging the

order of the sums and products, gives the observed data density function

fY |Θ(y|θ) =
T
∏

t=1

nt
∏

i=1

m
∑

j=1

πj φ(yti|Mjtµjt, Rjt). (5-36)

5.2.1 State Estimation

The parameters to be estimated in this model are the mixing proportionsπ and the

kinematic state vectorsµ. The state vectorsµj = {µjt : t = 0, 1, . . . , T} for sourcej are

treated as a concatenated state (column) vector for the restof this discussion. The system

matrices{Fjt,t−1}, {Qjt}, {Mjt}, and{Rjt} are all assumed to be known.

The update equations for the maximuma posterioriestimates ofπ andµ are obtained

by substituting (5-34) and (5-35) into (2-11) and performing the necessary expectations and

maximizations. Let

Ψ(θ|θ(k)) = Eθ(k) [λX|Θ(X|θ)|X ∈ L] + λΘ(θ) (5-37)

denote the E-step at thekth EM iteration. Substituting (5-34) and (5-35) into this expression

and performing the expectation gives

Ψ(θ|θ(k)) =
m
∑

j=1

{

log φ(µj0|ηj,Γj) +
T
∑

t=1

log φ(µjt|Fjt,t−1µj,t−1, Qj,t−1)

+
T
∑

t=1

nt
∑

i=1

w
(k)
jti log φ(yti|Mjtµjt, Rjt)

}

+
m
∑

j=1

T
∑

t=1

nt
∑

i=1

w
(k)
jti log πj, (5-38)
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where the conditional probabilitieswjti = fZti|Yti,Θ(zti|yti, θ) are obtained from the ratio of

(5-35) and (5-36):

w
(k)
jti =

π
(k)
j φ(yti|Mjtµ

(k)
jt , Rjt)

∑m
l=1 π

(k)
l φ(yti|Mltµ

(k)
lt , Rlt)

. (5-39)

Since the prior distribution for the mixing proportionsπj is assumed to be uninformative (that

is, uniform), the update equations forπj are identical to the update equations (5-5) for the

deterministic case.

The update equations for the kinematic state vectorsµj are more complicated for the

stochastic case because of the time dependence between states due to the Markov model

(5-30). As for the deterministic case, these update equations assume intuitively appealing

forms when the E-step is written in terms of the synthetic measurements (5-6) and synthetic

measurement covariance matrices (5-7). After some tediousalgebraic manipulation, and ig-

noring an additive constant that does not depend onπ or µ, the result is

Ψ(θ|θ(k)) =
m
∑

j=1

{

log φ(µj0|ηj,Γj) +
T
∑

t=1

log φ(µjt|Fjt,t−1µj,t−1, Qj,t−1)

+
T
∑

t=1

log φ(ỹ
(k)
jt |Mjtµjt, R̃

(k)
jt )

}

+
m
∑

j=1

T
∑

t=1

nt
∑

i=1

w
(k)
jti log πj. (5-40)

Let {e◦t : t = 0, 1, . . . , T} be the collection of unit vectors of lengthT + 1, where thetth

element ofe◦t equals one and all other elements ofe◦t equal zero, and letE◦
tτ = e◦t e

◦
τ
T for all

t, τ = 0, 1, . . . , T . Taking the derivative of (5-40) with respect to theµj and setting the result

equal to zero gives the followingq(T + 1) × q(T + 1) system of equations for sourcej:
[

I
(k)
(data)j + I(prior)j

]

µ
(k+1)
j =

[

d
(k)
(data)j + d(prior)j

]

, (5-41)

where

I
(k)
(data)j =

T
∑

t=1

E◦
tt ⊗MT

jt[R̃
(k)
jt ]−1Mjt, (5-42)

d
(k)
(data)j =

T
∑

t=1

e◦t ⊗MT

jt[R̃
(k)
jt ]−1ỹ

(k)
jt , (5-43)

and

I(prior)j = E◦
00 ⊗ Γ−1

j +
T
∑

t=1

E◦
tt ⊗Q−1

j,t−1 +
T−1
∑

t=0

E◦
tt ⊗ FT

j,t+1,tQ
−1
jt Fj,t+1,t

−

T
∑

t=1

E◦
t−1,t ⊗ FT

jt,t−1Q
−1
j,t−1 −

T
∑

t=1

E◦
t,t−1 ⊗Q−1

j,t−1Fjt,t−1, (5-44)

d(prior)j = e◦0 ⊗ Γ−1
j ηj. (5-45)
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The linear system of equations (5-41) can be efficiently solved forµ(k+1)
j using a specialized

form of Gaussian elimination for block-tridiagonal systems. Alternatively, as shown by Streit

and Luginbuhl in [8], the system can be solved efficiently using a fixed interval Kalman

smoothing filter. To see this, observe that the term in bracesin expression (5-40) is the natural

logarithm of the joint density function for the random statesequenceµj with Gauss-Markov

process model (5-30), and observationsỹjt with measurement model

ỹjt = Mjtµjt + γjt, t = 1, . . . , T, (5-46)

whereγjt are independentp × 1 normally distributed noise vectors with zero means and

known covariance matrices̃Rjt. The joint density function for the combined model (5-30)

and (5-46) is the joint density function for the fixed interval smoothing problem of Kalman

filtering theory. (A useful reference on Kalman filtering theory for this work is the book

by Mendel [36].) Hence, the state estimatesµ̂j obtained from the M-step at the final EM

iteration (k = ∞) are equivalent to the minimum mean-squared error (MMSE) estimates for

µj obtained from the fixed interval Kalman smoothing filter given the synthetic measurements

ỹ
(∞)
jt and synthetic measurement covariance matricesR̃

(∞)
jt .

The linear Gauss-Markov dynamic mixture model presented inthis section is precisely

the tracking model used in the PMHT method of Streit and Luginbuhl [8]. In their report,

the authors attempt to interpret the Fisher information matrix for the statesµj in terms of the

error-covariance matrices obtained at the output of the equivalent Kalman smoothing filter for

the M-step at the final EM iteration. Their interpretation isnot theoretically, by their own ad-

mission, completely satisfactory. At the end of this section, an exact statistical interpretation

of these matrices is given in terms of the complete information matrix for the state estimates

µ̂j. Specifically, it is shown that the error-covariance matrices from the Kalman smoothing

filter for µ̂j in the PMHT model are the diagonal blocks of the inverse of theposterior com-

plete information matrixIΘ|X(θ̂|x) corresponding tôµj. Consequently, these error-covariance

matrices do not account for the information lost to the missing data and, thus, are overly op-

timistic estimates of estimation error.

5.2.2 Posterior Observed Information Matrix Computation

The posterior observed information matrixIΘ|Y (θ̂|y) for the linear Gauss-Markov dy-

namic mixture is, by (3-24), the sum of the observed information matrix IY |Θ(y|θ̂) for the

linear Gaussian mixture measurement model (5-36), and the prior observed information ma-

trix IΘ(θ̂) for the Gauss-Markov process model (5-34). The observed information matrix

IY |Θ(y|θ̂) is similar to that for the deterministic case, as given by expressions (5-12) through

(5-23), except that the sub-block for each state vectorµj is itself a block matrix, with sub-
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blocks corresponding to the kinematic state of the source attimest = 0, 1, . . . , T . In partic-

ular, the observed information matrix for this case is an((m − 1) + q(T + 1)m) × ((m −

1) + q(T + 1)m) block matrix, where the(m − 1) × (m − 1) block in the upper left-hand

corner contains the information contribution from the firstm − 1 mixing proportions, and

the q(T + 1)m × q(T + 1)m block in the lower right-hand corner contains the information

contribution from them concatenated state vectorsµj, each of lengthq(T + 1). Substitut-

ing the complete data support function obtained from (5-35)into the analogs of expressions

(4-17) through (4-19) for data collected over multiple sampling times gives the following

computations for the information matrixIY |Θ(y|θ):

a. From the time-dependent form of (4-19),

〈Sti〉πj
= wjti/πj − wmti/πm, j = 1, . . . ,m− 1, (5-47)

〈Sti〉µj
= e◦t ⊗ wjtiM

T

jtR
−1
jt (yti −Mjtµjt), j = 1, . . . ,m. (5-48)

b. From the time-dependent form of (4-18),

〈Bti〉πjπl
=







wjti/π
2
j + wmti/π

2
m, j = l,

wmti/π
2
m, j 6= l,

j, l = 1 . . . ,m− 1, (5-49)

〈Bti〉µjµl
=







E◦
tt ⊗ wjtiM

T

jtR
−1
jt Mjt, j = l,

0, j 6= l,
j, l = 1, . . . ,m, (5-50)

〈Bti〉πjµl
= 0, j = 1 . . . ,m− 1, l = 1, . . . ,m. (5-51)

c. From the time-dependent form of (4-17),

〈StiS
T

ti〉πjπl
=







wjti/π
2
j + wmti/π

2
m, j = l,

wmti/π
2
m, j 6= l,

j, l = 1, . . . ,m− 1, (5-52)

〈StiS
T

ti〉µjµl
=







E◦
tt ⊗ wjtiM

T

jtR
−1
jt (yti −Mjtµjt)(yti −Mjtµjt)

TR−1
jt Mjt, j = l,

0, j 6= l,

j, l = 1, . . . ,m, (5-53)

〈StiS
T

ti〉πjµl
=



















e◦t ⊗
wjti

πj
(yti −Mjtµjt)

TR−1
jt Mjt, j, l = 1, . . . ,m− 1, j = l,

0, j, l = 1, . . . ,m− 1, j 6= l,

−e◦t ⊗
wmti

πm
(yti −Mmtµmt)

TR−1
mtMmt, j = 1, . . . ,m− 1, l = m.

(5-54)
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Recall that the prior information matrixIΘ(θ) is the negative second derivative of the prior

support functionλΘ(θ) = log fΘ(θ). Hence, from (5-34),

−∇πj
{∇πl

λΘ(θ)}T = 0, j, l = 1, . . . ,m− 1, (5-55)

−∇µj
{∇µl

λΘ(θ)}T =







I(prior)j, j = l,

0, j 6= l,
j, l = 1, . . . ,m, (5-56)

−∇πj
{∇µl

λΘ(θ)}T = 0, j = 1, . . . ,m− 1, l = 1, . . . ,m. (5-57)

Let αj, βl denote any two parameters in the set{π1, . . . , πm−1, µ0, µ1, . . . , µm}, and letIα̂j β̂l

denote the sub-block of the posterior observed informationmatrix associated with the es-

timatesα̂j, β̂l. Then, from (3-24) and the time-dependent form of (3-19), using the above

shorthand,

Iα̂j β̂l
=

T
∑

t=1

nt
∑

i=1

〈Bti〉α̂j β̂l
−

T
∑

t=1

nt
∑

i=1

〈StiS
T

ti〉α̂j β̂l
+

T
∑

t=1

nt
∑

i=1

〈Sti〉α̂j
〈ST

ti〉β̂l

−∇α̂j

{

∇β̂l
λΘ(θ̂)

}T

. (5-58)

Substituting (5-47) through (5-57) into (5-58), it followsthat the terms in (5-49) cancel with

the terms in (5-52). These results lead to the following simplifications of the posterior ob-

served information matrix for linear Gauss-Markov dynamicmixtures:

Iπ̂j π̂l
=

T
∑

t=1

nt
∑

i=1

〈Sti〉π̂j
〈ST

ti〉π̂l
, j, l = 1, . . . ,m− 1, (5-59)

Iµ̂j µ̂l
=

T
∑

t=1

nt
∑

i=1

〈Sti〉µ̂j
〈ST

ti〉µ̂l
, j, l = 1, . . . ,m, j 6= l. (5-60)

Again, use of the empirical Fisher information matrix as an approximation to the observed

information matrix is not appropriate in this case, since the observationsyti are not identically

distributed across sampling times due to source motion.

5.2.3 Interpretation of PMHT Error-Covariance Matrices

Finally, the connection between the error-covariance matrices for the state estimatesµ̂j

obtained from the equivalent Kalman smoothing filters for the M-step at the final EM iteration

for the linear Gauss-Markov mixture model and the posteriorcomplete information matrix for

these estimates needs to be established. The first and last terms in (5-58) constitute the sub-

block of the posterior complete information matrix associated with the estimateŝαj andβ̂l;

the middle two terms in this expression represent the information lost to the missing data.
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Let [IΘ|X ]µ̂µ̂ denote theq(T + 1)m × q(T + 1)m block of the complete information matrix

associated with all of the kinematic state vectors, and let[IΘ|X ]µ̂j µ̂j
denote thejth diagonal

q(T +1)× q(T +1) sub-block of this matrix. Substituting (5-50) and (5-56) into the first and

last terms of (5-58) and using the synthetic measurement covariance matrices (5-7) gives

[IΘ|X ]µ̂µ̂ =
m
∑

j=1

uju
T

j ⊗ [IΘ|X ]µ̂j µ̂j
=

m
∑

j=1

uju
T

j ⊗ [I(data)j + I(prior)j]. (5-61)

This result may be interpreted in terms of the equivalent Kalman smoothing filters for the

M-step at the final EM iteration (k = ∞) as follows. Consider the concatenated form of the

Kalman smoothing model. In particular, let{et : t = 1, . . . , T} be the collection of unit

vectors of lengthT , where thetth element ofet equals one and all other elements ofet equal

zero, and letEtτ = ete
T

τ for all t, τ = 1, . . . , T . Let ỹj =
∑T

t=1 et ⊗ ỹjt be the concatenated

synthetic measurement vector for sourcej. Then,

ỹj = Mjµj + γj, (5-62)

where

Mj =
[

0
∑T

t=1 Ett ⊗Mjt

]

(5-63)

is the corresponding concatenated observation matrix,γj is a normally distributed concate-

nated noise vector with zero mean and known covariance matrix R̃j =
∑T

t=1 Ett ⊗ R̃jt, and

the concatenated state vectorµj is normally distributed with mean vector

vj =
T
∑

t=0

e◦t ⊗ vjt (5-64)

and covariance matrix

Pj =
T
∑

t=0

T
∑

τ=0

E◦
tτ

T ⊗ Pjtτ , (5-65)

given by the following recursions from Theorem 15-5 in Mendel [36, pp.#217–218]:

vjt =







ηj, t = 0,

Fjt,t−1vj,t−1, t = 1, . . . , T,
(5-66)

and

Pjtt =







Γj, t = 0,

Fjt,t−1Pj,t−1,t−1F
T

jt,t−1 +Qj,t−1, t = 1, . . . , T,
(5-67)

Pjtτ =







FjtτPjττ , t > τ,

PjttF
T

jτt, t < τ,
t, τ = 0, 1, . . . , T, t 6= τ, (5-68)
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where

Fjtτ = Fjt,t−1Fj,t−1,t−2 · · ·Fj,τ+1,τ for t > τ. (5-69)

From Theorem 13-2 in Mendel [36, p.#180], the MMSE estimate for µj for this linear Gaus-

sian model is given by

µ̂(MMSE)j = vj + PjM
T

j (MjPjM
T

j + R̃j)
−1(ỹj −Mjvj), (5-70)

with associated error-covariance matrix

Pµ̂(MMSE)j
= (P−1

j +MT

j R̃
−1
j Mj)

−1. (5-71)

It is straightforward to show that

MT

j R̃
−1
j Mj = I(data)j. (5-72)

Furthermore, it is shown in appendix B that

P−1
j = I(prior)j. (5-73)

Thus, from (5-61),

Pµ̂(MMSE)j
= (P−1

j +MT

j R̃
−1
j Mj)

−1 = [I(data)j + I(prior)j]
−1 = [IΘ|X ]−1

µ̂j µ̂j
; (5-74)

that is, the inverse of the posterior complete information matrix for the estimatêµj is equal to

the error-covariance matrix for the MMSE estimate forµj given the synthetic measurements

and synthetic measurement covariance matrices at the final EM iteration. Moreover, since the

fixed interval Kalman smoothing filter is just an efficient algorithm for obtaining the MMSE

estimates (5-70) and the diagonal blocks of the error-covariance matrix (5-71), it follows that

the error-covariance matrices for the smoothed states obtained from this filter are the diagonal

blocks of the inverse of the posterior complete informationmatrix for the estimatêµj.

The posterior observed information matrix forµ̂j can be written using the missing in-

formation principle as in (3-26). From (3-26) and (5-74),

[IΘ|Y ]µ̂j µ̂j
= P−1

µ̂(MMSE)j
− [IX|Y,Θ]µ̂j µ̂j

, (5-75)

where [IX|Y,Θ]µ̂j µ̂j
is the information lost to the missing data. Thus, while it istempting

to interpret the error-covariance matrices from the Kalmansmoothing filters for the M-step

of the final EM iteration asthe error-covariance matrices for the states estimatesµ̂j, it is

clear from this expression that these matrices provide onlypart of the information required

to compute error-covariance matrices forµ̂j. In short, the error-covariance matrices obtained
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from the Kalman smoothing filters do not account for the information lost to the missing

measurement-to-source assignments. It is also clear from (5-75) that the posterior observed

information matrix forµ̂j requires computation of thefull MMSE covariance matrix (5-71),

and not just the diagonal blocks provided by the Kalman smoothing filter.

Furthermore, in general, the error-covariance matrix forµ̂j must be taken from the

inverse of theentireposterior observed information matrixIΘ|Y for all estimated source states

µ̂ and their mixing proportionŝπ, because in generalIΘ|Y is not block-diagonal; that is,

[I−1
Θ|Y ]µ̂j µ̂j

6= [IΘ|Y ]−1
µ̂j µ̂j

. (5-76)

Only in the case of no assignment uncertainty does this inequality become an equality. Indeed,

from expressions (5-49) through (5-51), (5-55) through (5-57), and (5-58), it follows that as

the information in the missing data (the contribution from the second and third terms in (5-58))

approaches zero, as when the sources move farther apart, theposterior observed information

matrix approaches the posterior complete information matrix, which is block-diagonal, so

that from (3-26), (5-74), and (5-75),

[I−1
Θ|Y ]µ̂j µ̂j

→ [I−1
Θ|X ]µ̂j µ̂j

= [IΘ|X ]−1
µ̂j µ̂j

= Pµ̂(MMSE)j
. (5-77)

Subsequently, when there is no missing data, that is, when the measurement-to-source assign-

ments are known, the diagonal blocks of the inverse of the posterior observed information

matrix, or the error-covariance matrices for the state estimatesµ̂j, are equal to the error-

covariance matrices obtained from the Kalman smoothing filter, which is expected given the

assumptions on the distributions of the measurements and the states. Moreover, the inverse

of the posterior observed information matrix for the estimates µ̂j is equal to the posterior

Craḿer-Rao lower bound for the statesµj in this case.
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6. THEORETICAL AND PRACTICAL CONSIDERATIONS

At least two issues need to be considered when using the inverse of the observed infor-

mation matrix as an estimate of the error-covariance matrixfor dynamic mixture models: the

accuracy of the normal approximation to the distribution ofθ̂, and the cost of computing the

inverse. These issues are discussed below.

6.1 ASYMPTOTIC NORMALITY OF θ̂

Recall that the asymptotic distribution of the maximum likelihood estimatêθ is normal

with mean vectorθ∗ and covariance matrixI−1(θ∗), whereθ∗ is the “true” value of the param-

eter vectorθ, andI(θ∗) is the Fisher information matrix. There are two obvious estimators for

the asymptotic error-covariance matrixI−1(θ∗), namely,I−1(θ̂) andI−1
Y (y; θ̂). In [4], Efron

and Hinkley give theory, examples, and evidence from Fisher’s original writings supporting a

preference for the estimatorI−1
Y (y; θ̂) overI−1(θ̂) for scalar parameter families. The simple

example at the beginning of their paper succinctly illustrates their reasoning. In any event,

both estimators are inferentially valid only for large sample sizen. However, with regard to

the scalar parameter examples presented in their paper, Efron and Hinkley note that “repeated

sampling, withn as low as 10, seems to induce normality of the likelihood rather quickly.”

On the other hand, McLachlan and Peel [37] state that “the sample sizen has to be very large

before the asymptotic theory applies to mixture models.” Determining sufficient sample sizes

for appropriate use of these large sample approximations tothe error-covariance matrix for

the mixture models examined in this report requires furtherinvestigation.

In a Bayesian model forθ, the distribution of the maximum a posteriori estimateθ̂

depends on the sample sizen and the nature of the prior distribution. Asymptotically, as

n→ ∞, the distribution of̂θ approaches the distribution of the maximum likelihood estimate

for θ discussed above. For finite sample sizes, the distribution of θ̂ depends on the relative

strengths of the data and the prior. If the prior is relatively weak, the distribution of̂θ will be

closer to that of the maximum likelihood estimate. On the other hand, in the absence of data,

the distribution of̂θ is equivalent to the prior distribution forθ.

6.2 SEQUENTIAL VERSUS BATCH PROCESSING

Depending on the number of sourcesm and sampling timesT , the posterior observed

information matrix for stochastic dynamic mixture models can be costly to invert. For ex-

ample, the number of parameters to be estimated in the linearGauss-Markov mixture model

grows roughly linearly withm andT . Specifically, the observed information matrix for this

model has dimension((m−1)+ q(T +1)m)× ((m−1)+ q(T +1)m), whereq is the length

of the state vector for each source. Suppose, for instance, the xy-positions of two sources
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(m = 2) moving with constant velocity (q = 4) are observed at 10 different sampling times

(T = 10). The posterior observed information matrix for the one independent mixing propor-

tion and both sets of state vectors in this case has dimension89 × 89. Computing the inverse

of this matrix requires roughly893 ≈ 700×103 operations. There are perhaps efficient meth-

ods for obtaining this inverse, or selected portions of thisinverse (for example, the diagonal

elements), but investigations of such methods are beyond the scope of this report.

An alternative but suboptimal approach for computing the posterior observed infor-

mation matrix for stochastic dynamic mixture models is to reduce the size of the matrix by

processing the data sequentially. In this approach, the data collected at each sampling time are

processed as if they were the only data collected, and the state estimates and error-covariance

matrices computed at this time are used as the mean vectors and covariance matrices of the

prior distributions for the states at the next sampling time. The estimates obtained in this way

are suboptimal in that they are conditioned only on the data collected up to the current sam-

pling time, and not the entire data set. In the language of Kalman filtering theory, estimates

obtained by processing the data sequentially are called filtered estimates; those obtained by

conditioning on the entire batch of data are referred to as smoothed estimates. The reduction

in the number of computations required to compute error-covariance matrices in this subopti-

mal filtering approach can be substantial. For the example given above, the posterior observed

information matrix for the one independent mixing proportion and the state estimates for the

two sources at each sampling time has dimension17 × 17. Computing the inverses of these

matrices for each of the sampling times requires roughly10 · 173 ≈ 50 × 103 operations, a

reduction by an order of magnitude over the optimal smoothing approach.

While the error-covariance matrices for the state estimatesare cheaper to compute using

the filtering approach described above, the savings come at the expense of accuracy in both

the state estimates and the error-covariance matrices. This is true even for the state estimates

and error-covariance matrices obtained at the final sampling time T , for which one would

think smoothing would have no impact. When there is no measurement-to-source assignment

uncertainty (for instance, when the sources are widely separated), the filtered estimates and

the smoothed estimates of the source states at timeT , and the associated error-covariance

matrices, are identical. The EM iterations for this case degenerate to a single iteration that,

in terms of the equivalent Kalman smoothers, corresponds toone forward-backward pass

over the synthetic measurements for timest = 1, . . . , T . However, when there is significant

interference between the sources, many EM iterations may berequired for the state estimates

to converge to their final values; each iteration corresponds to a forward-backward pass over

the synthetic measurements, whose values change with each pass according to the updated

conditional measurement-to-source assignment probabilities.
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In practice, a balance between the filtering and smoothing approaches can be achieved

by implementing the algorithm as a “sliding” batch. In this approach, the algorithm is first run

at each sampling time on a batch of data that is expanded from one sampling time to the next

until it reaches a fixed length. When this length is reached, the batch is then slid forward at

each new sampling time, so that the data at the current sampling time are added to the batch,

and the data from the oldest sampling time in the batch are removed from the batch. Letρ(t)

denote the batch length at timet, and letρ̄ denote the fixed batch length. Then, the batch

length at timet is given by

ρ(t) =







t, t < ρ̄,

ρ̄, ρ̄ ≤ t ≤ T.
(6-1)

Several authors have proposed similar approaches (see, forexample, Rago et al. [38] and

Willett et al. [39]), and most have noted that the prior distributions for the states in each batch

must be determined in such a way so that they are not functionsof data in the current batch.

The prior distributions for the states in the sliding batch proposed here are determined as

follows. In the expanding stage, the prior mean vectors and covariance matrices specified

at time t = 0 are used for each batch. In the sliding stage, the state estimates and error-

covariance matrices from the batch at timet − ρ̄ are used in the prior distributions for the

batch at timet; these error-covariance matrices are computed from the inverse of the posterior

observed information matrix for all the sources for the batch at timet− ρ̄. This approach fixes

a problem with PMHT not identified in [39]. In particular, it would appear that the sliding

batch approach proposed in [39] uses the error-covariance matrices obtained from the inverse

of the posterior complete information matrix as priors for successive batches; it was shown in

the previous section that these error-covariance matricesare too small when there is significant

measurement-to-source assignment uncertainty.
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7. EXAMPLES

Two target tracking examples using the linear Gauss-Markovmixture model (that is,

the PMHT model) are presented in this section. The first example is of two constant-velocity

crossing targets. This example is idealized in the sense that there are no missed detections

(PD = 1) and no false alarms (PFA = 0). The second example is of a single constant-velocity

target in clutter (PFA > 0). This example is further complicated by the possibility ofmissed

detections (PD < 1). In each case, the consistency of the target state estimates is examined.

As described in the next section, consistency in this context is a measure of how well the

estimated error-covariance matrices reflect the actual errors in the state estimates.

7.1 ESTIMATOR CONSISTENCY

7.1.1 Parametric Test

Let µ̂j(t|t) denote the state estimate of targetj at timet given a batch of measurements

of lengthρ(t) ≥ 1 with leading edge at timet and trailing edge at timet−ρ(t), and letCj(t|t)

denote the corresponding error-covariance matrix. When there is no assignment uncertainty

(for instance, when the target measurements are labeled, orwhen the targets are widely sep-

arated) and under the linear Gauss-Markov model, the posterior distribution of the stateµjt

given the batch of measurementsyt−ρ(t), . . . , yt is the normal distribution with mean vector

µ̂j(t|t) and covariance matrixCj(t|t). Let µ̃j(t|t) = µjt − µ̂j(t|t) denote the estimation error.

Under these assumptions, it follows that

E[µ̃j(t)|yt−ρ(t), . . . , yt] = 0, (7-1)

cov(µ̃j(t)|yt−ρ(t), . . . , yt) = Cj(t|t). (7-2)

A state estimator is said to beconsistentif the estimation errors have these two properties.

Said another way, a state estimator is consistent if the estimation errors have zero mean, and

their covariances equal the estimated covariances. (See Bar-Shalom and Li [40] for a full

discussion of estimator consistency.)

Recall from [40] that the normalized estimation error squared (NEES) for targetj at

time t is defined as

νj(t) = µ̃T

j (t|t)C−1
j (t|t) µ̃j(t|t). (7-3)

Given the modeling assumptions and ideal conditions described above, the NEESνj(t) is chi-

square distributed with mean (degrees of freedom)q, whereq is the length of the state vector

µjt. Suppose the tracking simulation is runN times. Then, one can compute the average
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NEES for each target:

ν̄j(t) =
1

N

N
∑

l=1

ν
(l)
j (t), t = 1, . . . , T, (7-4)

whereν(l)
j (t) is the NEES for targetj at time t for the lth run. By the properties of chi-

square distributed random variables, it follows thatN times the average NEES is chi-square

distributed withNq degrees of freedom. Hence, to test for estimator consistency, one can test

the simple hypothesis

H0 : Nν̄j(t) is chi-square distributed with meanNq (7-5)

at each timet. This is a two-sided test, the alternative hypothesisH1 being that the average

NEESν̄j(t) has mean less than or greater thanNq. The critical region for this test for a fixed

size (level of significance)α is typically taken to be the lower and upper tails of the chi-square

distribution, each with probability massα/2. Letχ2
ξ(r) denote the point in the interval[0,∞)

such that the left-tail probability of the chi-square distribution with degrees of freedomξ is

r. Then, the acceptance region (complement of the critical region) for this two-sided test is

the interval[χ2
Nq(α/2), χ2

Nq(1 − α/2)]. Simply put, if the null hypothesisH0 is true, then

on average(1 − α)% of the average NEES values̄νj(t), t = 1, . . . , T , will fall within the

acceptance region.

7.1.2 Nonparametric Test

The test for estimator consistency based on the average NEESvalue ν̄j(t) is standard

in the tracking literature [40]. For comparison, an alternative test based on the sample (or

empirical) distribution function of the NEES valuesν(1)
j (t), . . . , ν

(N)
j (t) is proposed. For

detailed discussions of tests of fit based on the empirical distribution function (EDF), see

Craḿer [29, section 30.8], D’Agostino and Stephens [41], and Stuart et al. [42, sections

25.35–25.44]. For the remainder of this discussion, consider an arbitrary but fixed targetj

at an arbitrary but fixed timet. Let ζ(l) denote thelth order statistic of the NEES values

ν
(1)
j (t), . . . , ν

(N)
j (t), so thatζ(1) ≤ · · · ≤ ζ(N). The EDF for this sample is defined by

FN(ζ) =



















0, ζ < ζ(1),

l/N, ζ(l) ≤ ζ < ζ(l+1),

1, ζ(N) ≤ ζ.

(7-6)

There are several statistics based on the EDF used to test against the hypothesized distribution

of the sample. The most well known is the Kolmogorov (K) statistic

DN = sup
ζ

|FN(ζ) − F (ζ)|, (7-7)
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whereF (ζ) is the true (hypothesized) distribution function for the sample (in this case, the

chi-square distribution with meanq). Less well known are those from the Cramér-von Mises

family of statistics

QN =

∫ ∞

−∞

(FN(ζ) − F (ζ))2 ψ(ζ) dF (ζ), (7-8)

whereψ(ζ) are non-negative weighting functions. Of these, the two most studied are the

statistic corresponding toψ(ζ) = 1, called the Craḿer-von Mises (CVM) statistic, denoted

WN , and the statistic corresponding toψ(ζ) = [F (ζ)(1 − F (ζ))]−1, called the Anderson-

Darling (AD) statistic, denotedAN . Each of the statisticsDN , WN , andAN is a distance

measure between the EDFFN(ζ) and the hypothesized distribution functionF (ζ), and each

of these statistics can be used in a test-of-fit with simple hypothesis

H0 : ν
(1)
j (t), . . . , ν

(N)
j (t) come from a chi-square distribution with meanq. (7-9)

This test is usually cast as a one-sided (upper-tail) test. (See [41, section 4.5.1] for the reason-

ing behind this.) Percentage points (critical values) for these statistics for various significance

levelsα are given in [41, table 4.2, p.#150] and in [42, p.#420]; the null hypothesisH0 is

rejected when these values are exceeded.

Properties of these non-parametric statistics are discussed at length in [41]. In summary,

DN is often much less powerful thanWN andAN , meaning that tests based onDN often have

a lower probability of accepting the alternative hypothesis H1 whenH1 is true than tests

based onWN andAN ; each of these statistics is sensitive to deviation from themean of

the hypothesized distributionF (ζ); AN often behaves similarly toWN , but is usually more

powerful when the EDFFN(ζ) deviates from the hypothesized distributionF (ζ) in the tails.

Computation of the EDF statisticsDN ,WN , andAN is typically accomplished using the

probability integral transformationυ(l)
j (t) = F (ν

(l)
j (t)). In particular, ifF is the true distribu-

tion function for the random variablesν(l)
j (t), then the random variablesυ(l)

j (t) are uniformly

distributed between 0 and 1, and the original test-of-fit becomes a test-of-fit between the EDF

for the transformed variablesυ(l)
j (t) and the standard uniform distribution function. Letυ(l)

denote thelth order statistic of the valuesυ(1)
j (t), . . . , υ

(N)
j (t), so thatυ(1) ≤ · · · ≤ υ(N).

Then, the statisticsDN ,WN , andAN are given by

DN = max

{

max
l

{

l

N
− υ(l)

}

,max
l

{

υ(l) −
l − 1

N

}}

, (7-10)

WN =
1

12n
+

N
∑

l=1

[

υ(l) −
2l − 1

2N

]2

, (7-11)

AN = −N −
1

N

N
∑

l=1

[

(2l − 1) log υ(l) + (2N + 1 − 2l) log(1 − υ(l))
]

. (7-12)
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For the examples presented here, the valuesυ
(l)
j (t) are obtained by evaluating the chi-square

distribution function forq degrees of freedom at the NEES valuesν
(l)
j (t) for each targetj at

each timet for simulationsl = 1, . . . , N . Proofs related to the probability integral transfor-

mation are found in [41, chapter 6] and Stuart and Ord [43, section 1.27].

7.2 TWO CROSSING TARGETS

In this example, two constant-velocity targets cross in thexy-plane; that is, the two

targets share the samexy-position at some timetc. (Such a scenario is possible, for instance,

when two aircraft cross paths at different altitudes.) At time t = 0, targets 1 and 2 are at

xy-positions(1, 0) and (2, 0), with xy-velocities(0.05, 2) and (−0.05, 2), respectively. It

follows that the targets cross paths at timetc = 10. A single measurement of each target’s

xy-position is obtained at each timet = 1, . . . , 25, for a total of 50 observations over the

entire scenario. These measurements have a standard deviation of 0.075 in each dimension.

The distance between the two targets in thex-dimension in units of measurement standard

deviation is shown in figure 1. For consistency with the assumption that a single measurement

of each target is obtained at each time, the mixing proportionsπ1 andπ2 are each set to 0.5

and held fixed for the simulation. Finally, the mean vector for the prior distribution for each

target is taken to be the true position and velocity vector ofeach target at timet = 0, so

that η1 = (1, 0, 0.05, 2) andη2 = (2, 0,−0.05, 2). The prior covariance and process noise

covariance matrices for each target are taken to be

Γj = diag((1, 1, 0.1, 0.1)) (7-13)

and

Qjt = 10−9 diag((1, 1, 0.1, 0.1)) (7-14)

for j = 1, 2, andt = 0, . . . , 24, respectively, wherediag(v) is the diagonal matrix with the

elements of the vectorv on the diagonal.

This simulation was run 100 times for each of four batch lengths: ρ̄ = 25, 10, 5, and 1.

For each run, the NEES values (7-3) were computed twice, onceusing the posterior observed

information matrix, that is, with

C−1
j (t|t) = [IΘ|Y ]µ̂j(t|t), (7-15)

and once using the posterior complete information matrix, that is, with

C−1
j (t|t) = [IΘ|X ]µ̂j(t|t), (7-16)

where[IΘ|Y ]µ̂j(t|t) and [IΘ|X ]µ̂j(t|t) denote the sub-blocks of the posterior observed and pos-

terior complete information matrices, respectively, associated with the state estimatêµj(t|t).
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In each case, the average NEES values (7-4) over the 100 runs were computed, as well as the

K, CVM, and AD statistics (7-10), (7-11), and (7-12). The average NEES curves for the four

batch lengths are plotted in figures 2 through 5. The K, CVM, andAD curves are plotted in

figures 6 through 9.

In figures 2 through 5, the horizontal solid line indicates the mean of the chi-square

distribution with degrees of freedomq = 4; the area between the horizontal dashed lines indi-

cates the 95% acceptance region for the null hypothesis (7-5). It is clear from these plots that

the posterior complete information matrixIΘ|X yields inconsistent estimates of estimation

error in the vicinity of the crossing. Indeed, the average NEES curves associated withIΘ|X

rise well above the acceptance regions near the crossing regardless of batch length, indicating

overly optimistic estimates of estimation error; said another way, the error-covariance matri-

ces computed using the posterior complete information matrix are too small in the vicinity of

the crossing, where the measurement-to-source assignmentuncertainty is large. In this region,

the information lost to the missing data (measurement-to-source assignments) is significant,

and the missing information term (the second term) in expression (5-75) for the posterior ob-

served information matrixIΘ|Y is nonzero. From (5-75), it follows that the error-covariance

matrix computed using the posterior observed information matrix IΘ|Y is always at least as

large as the error-covariance matrix computed using the posterior complete information ma-

trix IΘ|X . Hence, from (7-3) and (7-4), it follows that the average NEES curves computed

usingIΘ|Y in figures 2 through 5 are always bounded above by those computed usingIΘ|X .

It is also clear from these figures that estimator consistency deteriorates with smaller

batch length, in the sense that more average NEES values falloutside of the acceptance region

as batch length decreases. This result in summarized in table 1, which records the percentages

of the average NEES values for both targets and for all 25 sample times that fall within the

95% acceptance region. The shaded boxes in this table contain the percentages associated

with the average NEES values computed using the posterior observed information matrix.

The containment statistics for batch lengths of 25 and 10 indicate that the inverse of the

posterior observed information matrix gives a consistent estimate of estimation error for this

example; in both cases, 95.8% of the average NEES values fallwithin the 95% containment

region. The containment statistics drop by 4.1 and 10.4 percentage points for batch lengths

of 5 and 1, respectively. Interestingly, the containment statistics for the average NEES values

computed using the posterior complete information matrix increase with decreasing batch

length. These results are recorded in the unshaded boxes in table 1. The reason for this trend

is not clear. In any event, these containment statistics arealways worse than the corresponding

statistics computed using the posterior observed information matrix, and all are well below

the expected 95% containment level.
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Figures 6 through 9 show plots of the K, CVM, and AD statistics as functions of sam-

pling time for each of the four batch lengths. Recall that the test of estimator consistency

based on these statistics is one-sided; the area below the horizontal dashed line in these plots

is the 95% acceptance region for the test. All of the results discussed above for the average

NEES curves hold for the K, CVM, and AD curves shown here, with one exception: the

curves for the K, CVM, and AD statistics computed using the posterior observed information

matrix IΘ|Y are not necessarily bounded above by those computed from theposterior com-

plete information matrixIΘ|X . Nevertheless, the containment statistics in table 1 indicate that

I−1
Θ|Y is a consistent estimate of estimation error, whileI−1

Θ|X is not. Of the three statistics, the

AD statistic is closest in behavior to the average NEES.
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Figure 1. Distance Between Targets inx-Dimension in Units of Measurement Standard

Deviation for Crossing Targets Example
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Figure 2. Average NEES with 95% Acceptance Region for Crossing Targets Example with

Batch Length 25, Computed Using Posterior Complete Information Matrix (crosses) and

Posterior Observed Information Matrix (circles)
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Figure 3. Average NEES with 95% Acceptance Region for Crossing Targets Example with

Batch Length 10, Computed Using Posterior Complete Information Matrix (crosses) and

Posterior Observed Information Matrix (circles)
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Figure 4. Average NEES with 95% Acceptance Region for Crossing Targets Example with

Batch Length 5, Computed Using Posterior Complete InformationMatrix (crosses) and

Posterior Observed Information Matrix (circles)
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Figure 5. Average NEES with 95% Acceptance Region for Crossing Targets Example with

Batch Length 1, Computed Using Posterior Complete InformationMatrix (crosses) and

Posterior Observed Information Matrix (circles)
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Figure 6. K, CVM, and AD Statistics with 95% Acceptance Regions for Crossing Targets

Example with Batch Length 25, Computed Using Posterior Complete Information Matrix

(crosses) and Posterior Observed Information Matrix (circles)
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Figure 7. K, CVM, and AD Statistics with 95% Acceptance Regions for Crossing Targets

Example with Batch Length 10, Computed Using Posterior Complete Information Matrix

(crosses) and Posterior Observed Information Matrix (circles)
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Figure 8. K, CVM, and AD Statistics with 95% Acceptance Regions for Crossing Targets

Example with Batch Length 5, Computed Using Posterior Complete Information Matrix

(crosses) and Posterior Observed Information Matrix (circles)
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Figure 9. K, CVM, and AD Statistics with 95% Acceptance Regions for Crossing Targets

Example with Batch Length 1, Computed Using Posterior Complete Information Matrix

(crosses) and Posterior Observed Information Matrix (circles)
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Table 1. Percentage of NEES, K, CVM, and AD Values That Fall Within Their Respective

95% Acceptance Regions for the Crossing Targets Example (The first and second rows for

each statistic correspond to use of the posterior complete and posterior observed

information matrices, respectively, to compute the statistic.)

Batch Length
Statistic

25 10 5 1

64.6 70.8 70.8 77.1
NEES

95.8 95.8 91.7 85.4

68.8 64.6 66.7 75.0
K

91.7 87.5 85.4 85.4

68.8 70.8 70.8 79.2
CVM

97.9 91.7 89.6 89.6

66.7 68.8 66.7 75.0
AD

97.9 95.8 91.7 89.6
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7.3 SINGLE TARGET IN CLUTTER

In this example, a single constant-velocity target travelsin thexy-plane, with non-unity

probability of detectionPD and non-zero probability of false alarmPFA. In particular, aPD

of 0.9 is assumed fixed and known. Furthermore, it is assumed that at each sampling timet,

nc(t) uniformly distributed clutter points are observed in a square coverage region centered at

the true position of the target and with sides of length20r, wherer = 0.075 is thexy-position

measurement standard deviation in each dimension from the previous example. The number

of clutter pointsnc(t) is assumed to be Poisson distributed with meanλcV = 4, whereV

is the volume of the coverage region (in this case1.5 × 1.5 = 2.25), andλc is the clutter

density in this region (λc = 1.78 in this case). Thus, on average, four uniformly distributed

clutter points are expected in a1.5 × 1.5 region about the true target position; the probability

of observing at least one clutter point in this region isProb{nc(t) > 0} = 0.98.

At time t = 0, the target is atxy-position(1, 0) with xy-velocity (0, 2). At each time

t = 1, . . . , 55, at most one measurement of targetxy-position, andnc(t) clutter points (false

measurements) are obtained, each distributed as describedabove. The mean vector for the

prior distribution of the target is taken to be the true position and velocity vector of the target

at timet = 0, so thatη1 = (1, 0, 0, 2). The prior covariance matrix for the target is taken to be

1 × 10−2 times the matrix (7-13), and the process noise covariance matrix is taken to be the

matrix (7-14). The prior distribution for the target state at time t0 is made more informative

(via the multiplicative factor1 × 10−2) in this example to compensate for the well-known

difficulty of initializing a tracker in clutter. There are various other ways to address this

problem, but they are outside the scope of this report.

The PMHT model as described in section 5.2 must be modified to account for false

alarms; that is, a clutter model must be added to account for observations that do not originate

from a target. This is accomplished as described in Gauvrit et al. [9] by adding a uniform den-

sity function to the mixture density function for each observation. The impact of this clutter

model on the update equations and information matrix computations for the linear Gauss-

Markov mixture is primarily confined to the conditional measurement-to-source assignment

probabilities. Additionally, some of the information matrix expressions (5-47) through (5-57)

must change to reflect the addition of the clutter source to the measurement mixture model.

These changes are listed in appendix C. Finally, for consistency with the assumption that

at most one measurement originates from the target, the target mixing proportionπ1 is set

to 0.18, according to expression (C-12), which accounts for the probability of detectionPD

and expected number of false alarmsλcV . The clutter mixing proportion, denotedπ2, is then

1 − π1 = 0.82, and is held fixed for the simulation.
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This simulation was run 100 times for each of the four batch lengthsρ̄ = 25, 10, 5,

and 1. As for the crossing targets example, average NEES values and the K, CVM, and AD

statistics were computed over these runs for these batch lengths using both the posterior com-

plete information matrix and the posterior observed information matrix. The average NEES,

K, CVM, and AD curves are plotted in figures 10 through 13. It is clear from these plots

that, again, the posterior complete information matrixIΘ|X yields inconsistent estimates of

estimation error. On the other hand, the posterior observedinformation matrixIΘ|Y gives

consistent estimates in this example, at least for large enough batch length. These results

are summarized in table 2, which records the percentages of average NEES, K, CVM, and

AD values that fall within their respective 95% acceptance regions. As for the crossing tar-

gets example, the values in the unshaded boxes correspond tothe statistics computed using

the posterior complete information matrix; the values in the shaded boxes correspond to the

statistics computed using the posterior observed information matrix. For the percentages in

this table, only those statistics computed after sampling time t = 5 were counted, since each

of the statistics is initially skewed by the combination of informative prior information and

good initialization. A randomized initialization scheme would perhaps have eliminated this

trend, but the present scheme was deemed sufficient for this demonstration. In any event,

the containment statistics for batch length 25 indicate that I−1
Θ|Y is a consistent estimate of the

error-covariance matrix for this simulation. Again, as forthe crossing targets example, the

AD statistic is closest in behavior to the average NEES.
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Figure 10. Average NEES with 95% Acceptance Region for Single Target in Clutter

Example with Batch Lengths 25 and 10, Computed Using Posterior Complete Information

Matrix (crosses) and Posterior Observed Information Matrix (circles)
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Figure 11. Average NEES with 95% Acceptance Region for Single Target in Clutter

Example with Batch Lengths 5 and 1, Computed Using Posterior Complete Information

Matrix (crosses) and Posterior Observed Information Matrix (circles)
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Figure 12. K, CVM, and AD Statistics with 95% Acceptance Region for Single Target in

Clutter Example with Batch Lengths 25 and 10, Computed Using Posterior Complete

Information Matrix (crosses) and Posterior Observed Information Matrix (circles)
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Figure 13. K, CVM, and AD Statistics with 95% Acceptance Region for Single Target in

Clutter Example with Batch Lengths 5 and 1, Computed Using Posterior Complete

Information Matrix (crosses) and Posterior Observed Information Matrix (circles)
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Table 2. Percentage of NEES, K, CVM, and AD Values That Fall Within Their Respective

95% Acceptance Regions for the Single Target in Clutter Example (The first and second

rows for each statistic correspond to use of the posterior complete and posterior observed

information matrices, respectively, to compute the statistic.)

Batch Length
Statistic

25 10 5 1

0.0 0.0 0.0 0.0
NEES

96.0 84.0 46.0 0.0

0.0 2.0 6.0 8.0
K

98.0 88.0 74.0 26.0

0.0 2.0 2.0 6.0
CVM

100.0 92.0 76.0 16.0

0.0 0.0 2.0 4.0
AD

96.0 84.0 66.0 6.0
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8. CONCLUSIONS

8.1 SUMMARY OF FINDINGS

An analytical approach for computing the observed information matrix for an important

class of mixture models, called dynamic mixtures, is developed in this report. Dynamic

mixtures are useful models for data originating from a number of distinct moving sources.

Multiple target tracking is one application of these models; PMHT is the primary example of

a dynamic mixture-based approach to multiple target tracking. In the basic PMHT model, a

Gaussian mixture is used to describe the distribution of themeasurements from each target,

and a linear Gauss-Markov process model is used to describe the target dynamics.

An important finding of this report is the precise statistical interpretation of the error-

covariance matrices for the PMHT track estimates in terms ofthe observed information matrix

computations for these estimates. In particular, it is shown that the error-covariance matri-

ces obtained from the Kalman smoothing filter for each targetstate sequence at the final EM

iteration are the diagonal blocks of the inverse of the posterior complete information matrix

for each sequence. Therefore, these error-covariance matrices provide only part of the infor-

mation required to compute error-covariance matrices for the state estimates. In short, the

error-covariance matrices obtained from the Kalman smoothing filters do not account for the

information lost to the missing data, that is, the missing measurement-to-target assignments.

Another important finding of this report is the impact of measurement-to-source as-

signment uncertainty on estimator consistency. Specifically, for two common target tracking

scenarios (two crossing targets, and a single target in clutter), it is shown that the posterior

complete information matrix yields inconsistent estimates of estimation error when there is

significant assignment uncertainty, while the posterior observed information matrix gives con-

sistent estimates (for sufficient batch length). In each scenario, the standard chi-square test for

the distribution of the average NEES is used to test for estimator consistency. Additionally,

new tests for estimator consistency based on the EDF of the NEES are introduced; these tests

are shown to produce results comparable to those of the standard NEES test.

8.2 ALTERNATIVE APPROACHES

While Louis’s approach for computing the observed information matrix when using the

EM method can be applied to any incomplete data problem, there are almost surely problems

for which the required expressions, though based on complete data statistics, are difficult to

derive analytically or compute numerically, or both. For these problems, the supplemented

EM (SEM) method of Meng and Rubin [5] is an attractive alternative. Their method gener-

alizes an observation made by Smith [44] in his discussion ofDempster et al. [1]. Based on
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his analysis of the standard errors of a simple example in their paper, Smith alludes to the

following general relationship between the observed data error-variancevo and the complete

data error-variancevc of the maximum likelihood estimate for the scalar parameterθ:

vo =
1

1 − r
vc, (8-1)

where, using the language of this report,vo is the inverse of the observed information matrix

(a scalar in this case),vc is the inverse of the complete information matrix, andr is the

rate of convergence of the EM method which, for large values of the iteration indexk, is

approximated by

r =
θ(k+1) − θ(k)

θ(k) − θ(k−1)
. (8-2)

Thus, the observed data error-variance is obtained by inflating the complete data error-variance

by the factor1/(1−r). Meng and Rubin rewrite (8-1) in the statistically more appealing form

vo = vc + ∆v, (8-3)

where

∆v =
r

1 − r
vc (8-4)

is interpreted as the increase in error-variance due to the missing data. Among the contribu-

tions of their paper are the analogous matrix version of (8-3), and computations for the matrix

versions ofvc andr. Computation of the rate-of-convergence matrixr involves numerical

differentiation of the implicit mappingM : Ω → Ω from the parameter spaceΩ to itself

defined by the EM method such that

θ(k+1) = M(θ(k)) for k = 0, 1, 2, . . . . (8-5)

However, unlike approaches such as Carlin’s [45] that use numerical differentiation to obtain

the error-covariance matrix directly from the observed data support function, SEM uses only

numerical differentiation to obtain the increase due to themissing data to be added to the

complete data error-covariance matrix. Hence, Meng and Rubin claim that SEM is typically

more stable because the correction obtained by numerical differentiation is added to the com-

plete data error-covariance matrix, which often can be obtained analytically and is usually

the dominant term. Meng and Rubin do not include mixture models among the examples

in their paper, although there is no impediment to using SEM for this problem. The use of

SEM for dynamic mixture models, and a comparison of this approach with Louis’s approach

developed for these models in this report, are left as futurework.
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8.3 FUTURE INVESTIGATIONS

Several topics for future investigation have already been proposed. These include:

1. The application of the SEM method to dynamic mixture models, and a comparison

of this method for computing the error-covariance matrix with Louis’s approach.

2. An examination of the accuracy of the observed information matrix for dynamic

mixtures as a function of sample size, and a comparison of theobserved information matrix

with the Fisher information matrix for these models.

3. The exploration of efficient methods for computing the inverse of the observed infor-

mation matrix for dynamic mixture models, including suboptimal procedures for computing

the error-covariance matrix for large problems.

Additionally, there are at least two more topics worth pursuing.

The other contribution of Louis’s paper [3] is a method for accelerating convergence of

the EM iterations using the observed information and complete information matrices. Specif-

ically, Louis shows that the updated estimate forθ at thekth EM iteration can be refined in

place via the following step:

θ(k)
∗ = θ(k) + I−1

Y (y; θ(k))IX(x; θ(k)) (θ(k) − θ(k−1)). (8-6)

The refinementθ(k)
∗ is an improvement over the updateθ(k) in the sense that the former is

closer toθ̂ = θ(∞) than the latter.∗ Application of this acceleration method to the dynamic

mixture models presented in this report would appear to be straightforward.

Finally, it is proposed that the observed information matrix computations developed

here be extended to dynamic mixture models for grouped and truncated data. In practice, data

are often grouped into a finite number of observation cells either intentionally (for example,

to simplify data collection) or unintentionally, perhaps due to limitations of the data collec-

tion process. Additionally, if the number of observations in an observations cell cannot be

reported for any reason, the grouped data are said to be truncated. In any event, grouping and

truncating samples introduces additional missing data into the estimation problem, namely,

the sample locations within the observed cells, and the numbers of samples and their locations

in the truncated cells. Consequently, the EM method is a natural approach to maximum like-

lihood estimation for these problems. This approach is treated by several authors, including

Dempster et al. [1] and McLachlan and Jones [46]. The latter authors explicitly treat finite

mixture models for grouped and truncated data.
∗There is a transposition error between the matricesIX andI−1

Y
in this expression in Louis’s paper [3, expression (5.3)]. The error is

corrected by Meilijson in [35, expression (11)].
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Recent work has been done on estimation for stochastic dynamic mixture models for

grouped and truncated data. In particular, Luginbuhl [47] and Luginbuhl and Willett [48, 49]

apply the PMHT model to a histogram representation of discrete time Fourier transform data

to estimate the parameters of general frequency modulated signals in noise. Of particular

interest to this discussion is a derivation in [47] of the Fisher information matrix for the

parameters in a univariate Gaussian mixture approximationto a one-dimensional histogram.

This result is important to this work, as it indicates the potential existence of a closed-form

Craḿer-Rao lower bound on estimation error for the stochastic dynamic mixture model, and

the PMHT model in particular, for grouped and truncated data. Hence, this result should

provide an opportunity to compare, in the spirit of Efron andHinkley [4], the relative accuracy

of the observed information matrix versus the Fisher information matrix for dynamic mixture

models and, by extension, for multiple target tracking.
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APPENDIX A

APPROXIMATION TO THE OBSERVED INFORMATION MATRIX

Use of the empirical Fisher information matrix (3-21) as an approximation to the ob-

served information matrix for independent and identicallydistributed data is justified in the

following sense. (The argument presented here is a detailedversion of the argument in

McLachlan and Krishnan [50]). Consider the information matrix (3-5) for independent and

identically distributed observations:

IY (y; θ) = −
n
∑

i=1

∂2λYi
(yi; θ)

∂θ ∂θT
, (A-1)

where the support functionsλYi
in this case are all the same function. Recalling thatλYi

(yi; θ) =

log fYi
(yi; θ) and manipulating the derivatives on the right-hand side of (A-1) yields

−
n
∑

i=1

∂2λYi
(yi; θ)

∂θ ∂θT
= −

n
∑

i=1

∂

∂θ

[

1

fYi
(yi; θ)

∂fYi
(yi; θ)

∂θT

]

=
n
∑

i=1

[

1

f 2
Yi

(yi; θ)

∂fYi
(yi; θ)

∂θ

∂fYi
(yi; θ)

∂θT
−

1

fYi
(yi; θ)

∂2fYi
(yi; θ)

∂θ ∂θT

]

=
n
∑

i=1

∂λYi
(yi; θ)

∂θ

∂λYi
(yi; θ)

∂θT
−

n
∑

i=1

1

fYi
(yi; θ)

∂2fYi
(yi; θ)

∂θ ∂θT
. (A-2)

Now, the expected value ofIY (y; θ) evaluated atθ∗, the true value ofθ, is the Fisher infor-

mation matrixI(θ∗). But the second term in the previous expression has zero expectation.

Indeed,

E

[

n
∑

i=1

1

fYi
(Yi; θ)

∂2fYi
(Yi; θ)

∂θ ∂θT

]

=
n
∑

i=1

∫

Yi

∂2fYi
(yi; θ)

∂θ ∂θT
dyi

=
n
∑

i=1

d2

dθ dθT

∫

Yi

fYi
(yi; θ) dyi

= 0, (A-3)

where interchangeability of derivatives and integrals hasbeen assumed. Therefore, insofar as

θ̂ → θ∗ andIY (y; θ̂) → I(θ∗) asn→ ∞, it follows that for large sample sizes

IY (y; θ̂) = −

n
∑

i=1

∂2λYi
(yi; θ)

∂θ ∂θT

∣

∣

∣

∣

∣

θ=θ̂

≈

n
∑

i=1

∂λYi
(yi; θ)

∂θ

∂λYi
(yi; θ)

∂θT

∣

∣

∣

∣

∣

θ=θ̂

= Ie(y; θ̂). (A-4)

See McLachlan and Krishnan for examples of this approximation, and Redner and Walker

[34] and Meilijson [35] for uses of the empirical observed information matrix to accelerate

convergence of the EM method.
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APPENDIX B

INVERSE OF THE GAUSS-MARKOV PRIOR COVARIANCE MATRIX

The equality of the matrixI(prior), given by expression (5-44), and the inverse of the

Gauss-Markov prior covariance matrixP , given by expression (5-65) and recursions (5-67)

and (5-68), is established by the following theorem:

Theorem. Let

Q̃k =







−Γ, k = 0,

Qk−1, k = 1, . . . , t,

whereΓ, Q0, Q1, . . . , Qt−1 are positive-definite matrices, let

Γk =







Γ, k = 0,

Fk,k−1Γk−1F
T

k,k−1 +Qk−1, k = 1, . . . , t,

and let

Υk = FT

k+1,kQ̃
−1
k+1Fk+1,k, k = 0, . . . , t− 1.

Furthermore, let

P =



















Γ0 Γ0F
T

10 Γ0F
T

10F
T

21 · · · Γ0F
T

10 · · ·F
T

t,t−1

F10Γ0 Γ1 Γ1F
T

21 · · · Γ1F
T

21 · · ·F
T

t,t−1

F21F10Γ0 F21Γ1 Γ2 · · · Γ2F
T

32 · · ·F
T

t,t−1
...

...
...

.. .
...

Ft,t−1 · · ·F10Γ0 Ft,t−1 · · ·F21Γ1 Ft,t−1 · · ·F32Γ2 · · · Γt



















,

and let

J =



















−Q̃−1
0 + Υ0 −FT

10Q̃
−1
1 0 · · · 0

−Q̃−1
1 F10 Q̃−1

1 + Υ1 −FT

21Q̃
−1
2

. . .
...

0
.. . . .. . . . 0

...
.. . −Q̃−1

t−1Ft−1,t−2 Q̃−1
t−1 + Υt−1 −FT

t,t−1Q̃
−1
t

0 · · · 0 −Q̃−1
t Ft,t−1 Q̃−1

t



















.

Then, for each positive integert, the matrix equalityP−1 = J holds.

Proof. For a given positive integert, use the Gauss-Jordan method to reduce the concate-

nated matrix[P, I] to the matrix[I, P−1], whereI is the compatibly sized identity matrix. In

particular, letG(l) denote the result of row reduction after thelth step, so thatG(0) ≡ [P, I]

andG(L) ≡ [I, P−1] for someL > 0. Moreover, letr(l)
k denote thekth row ofG(l). Then, the
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reduction of the rectangular matrix[P, I] to the matrix[I, P−1] terminates in three steps, as

given by the following row recursions:

r
(1)
k =







r
(0)
k , k = 0,

Fk,k−1r
(0)
k−1 − r

(0)
k , k = 1, . . . , t,

r
(2)
k =







r
(1)
k − Q̃kF

T

k+1,kQ̃
−1
k+1r

(1)
k+1, k = 0, . . . , t− 1,

r
(1)
k , k = 1,

r
(3)
k = −Q̃−1

k r
(2)
k , k = 0, . . . , t.

The recursionsr(1)
k andr(2)

k produce all zeros below and above the diagonals of the left-half

partitions ofG(1) andG(2), respectively; finally, the recursionsr(3)
k produce ones along the

diagonal of the left-half partition ofG(3), leavingG(3) = [I, P−1]. Inspection of the right-half

partition of this matrix reveals the identityP−1 = J .
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APPENDIX C

ADDING A CLUTTER MODEL TO PMHT

The changes required to add a clutter distribution to the PMHT model discussed in

section 5.2 are presented in this appendix.

LetDt denote the sensor coverage region at sampling timet, and letV (Dt) denote the

volume of this region. In the example of section 7.3, the coverage regionDt is the square

centered at the true position of the target at timet and with sides of length20r, wherer is the

xy-position measurement standard deviation, so thatV (Dt) = 400r2. Let u(s;G) denote the

uniform density function with supportG, so that

u(s;G) =







1
V (G)

, if s ∈ G,

0, otherwise,
(C-1)

and letπm+1 denote the mixing proportion associated with the clutter source. Then, with

the inclusion of this clutter model, the observed data likelihood function (5-36) for the linear

Gauss-Markov dynamic mixture becomes

fY |Θ(y|θ) =
T
∏

t=1

nt
∏

i=1

m+1
∑

j=1

πj fj(yti|θ), (C-2)

where

fj(yti|θ) =







φ(yti|Mjtµjt, Rjt), j = 1, . . . ,m,

u(yti;Dt), j = m+ 1.
(C-3)

Also, the constraint (4-13) must be expanded to include the mixing proportionπm+1. The im-

pact of this clutter model on the update equations and information matrix computations for the

linear Gauss-Markov mixture is for the most part confined to the conditional measurement-

to-source probabilities (5-39). These probabilities become, at thekth EM iteration,

w
(k)
jti =

π
(k)
j fj(yti|θ

(k))
∑m+1

l=1 π
(k)
l fl(yti|θ(k))

, (C-4)

for j = 1, . . . ,m + 1. Additionally, some of the information matrix computations (5-47)

through (5-57) must change to reflect the addition of the clutter source to the mixture model

for the measurements. These changes are as follows: expression (5-47) becomes

〈Sti〉πj
= wjti/πj − wm+1,ti/πm+1, j = 1, . . . ,m; (C-5)

expressions (5-49) and (5-51) become

〈Bti〉πjπl
=







wjti/π
2
j + wm+1,ti/π

2
m+1, j = l,

wm+1,ti/π
2
m+1, j 6= l,

j, l = 1 . . . ,m, (C-6)
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and

〈Bti〉πjµl
= 0, j, l = 1 . . . ,m, (C-7)

respectively; expressions (5-52) and (5-54) become, respectively,

〈StiS
T

ti〉πjπl
=







wjti/π
2
j + wm+1,ti/π

2
m+1, j = l,

wm+1,ti/π
2
m+1, j 6= l,

j, l = 1, . . . ,m, (C-8)

and

〈StiS
T

ti〉πjµl
= e◦t ⊗

wjti

πj

(yti −Mjtµjt)
TR−1

jt Mjt, j, l = 1, . . . ,m; (C-9)

finally, expressions (5-55) and (5-57) become,

−∇πj
{∇πl

λΘ(θ)}T = 0, j, l = 1, . . . ,m, (C-10)

−∇πj
{∇µl

λΘ(θ)}T = 0, j, l = 1, . . . ,m. (C-11)

To be consistent with the standard tracking assumption thatat most one observation

at each sampling time is associated with each target, the following heuristic is used to set

the target mixing proportions given fixed probability of detectionPD, clutter densityλc, and

sensor coverage region volumeV (assumed here to be constant):

πj =
PD

m+ λcV
, j = 1, . . . ,m. (C-12)

The clutter mixing proportion is thenπm+1 = 1 − π1 − · · · − πm. This heuristic is slightly

different than the one proposed by Rago et al. [38] and Willettet al. [39]. In particular, the

denominator in their expression is a function of the numbernt of observations at timet. In

either case, experience indicates that PMHT algorithm performance is relatively insensitive

to precise values of the mixing proportions, and that rough approximations such as (C-12) are

usually adequate.
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