

AFRL-IF-RS-TR-2006-263
Final Technical Report
August 2006

A COMPREHENSIVE REASONING FRAMEWORK
FOR INFORMATION SURVIVABILITY (USER
INTENT ENCAPSULATION AND REASONING
ABOUT INTRUSION: IMPLEMENTATION AND
PERFORMANCE ASSESSMENT)

State University of NY at Buffalo

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. Q010/00

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-263 has been reviewed and is approved for publication.

APPROVED: /s/

 KEVIN A. KWIAT
Project Engineer

 FOR THE DIRECTOR: /s/

 WARREN H. DEBANY, Jr.
 Technical Advisor, Information Grid Division

Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

AUG 2006
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Mar 00 – May 06
5a. CONTRACT NUMBER

5b. GRANT NUMBER
F30602-00-1-0507

4. TITLE AND SUBTITLE

A COMPREHENSIVE REASONING FRAMEWORK FOR INFORMATION
SURVIVABILITY (USER INTENT ENCAPSULATION AND REASONING
ABOUT INTRUSION: IMPLEMENTATION AND PERFORMANCE)

5c. PROGRAM ELEMENT NUMBER
62301E

5d. PROJECT NUMBER
2301

5e. TASK NUMBER
04

6. AUTHOR(S)

Shambhu Upadhyaya

5f. WORK UNIT NUMBER
03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
State University of NY at Buffalo Colorado State University
Dept of Computer Science & Engineering Dept of Computer Science & Engineering
201 Bell Hall 601 S. Howe St.
Buffalo NY 14260 Fort Collins CO 80523-1873

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA AFRL/IFGA
3701 N. Fairfax Dr. 525 Brooks Rd
Arlington VA 22203-1714 Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-IF-RS-TR-2006-263

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 06-574

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This effort approaches the problem of user-level intrusion detection by investigating the design and implementation of a practical
online user-level intrusion detection system. The outcome of this research is a Dynamic Reasoning based User Intent Driven
(DRUID) intrusion detection system. It is important to pay attention to deployment-time issues such as usability and evasion,
otherwise it may lead to a situation where the security system is deployed but is either unusable or is deliberately bypassed. A
variation of sequential hypothesis testing is proposed to address these issues. Data plays a very important role in the validation of
any new approaches or models that are proposed. Unfortunately, in the user-level intrusion detection domain, due to concerns of
privacy, there are too few datasets available to the research community. This issue is addressed by devising a data generation
algorithm called RACOON based on a model used to profile users.

15. SUBJECT TERMS

Intrusion Detection, Anomaly Detection, User-level Intrusion Detection, Information Survivability

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON

Kevin A. Kwiat
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

41
19b. TELEPONE NUMBER (Include area code)

 i

Table of Contents

1 Summary.. 1
2 Introduction .. 2
3 Methods, Assumptions and Procedures... 4

3.1 User-Level Anomaly Detection – The DRUID System Development............................4
3.1.1 Intrusion Model and Assumptions .. 4
3.1.2 Basic Principle of User-Level Anomaly Detection ... 5
3.1.3 User Intent Encapsulation .. 6
3.1.4 Implicit Intent Encapsulation.. 7
3.1.5 Explicit Intent Encapsulation.. 7
3.1.6 Summary ... 8

3.2 Scalable Implementation of DRUID..8
3.2.1 Summary ... 9

3.3 Addressing Deployment Time Issues ..10
3.3.1 Using Sequential Hypothesis Testing.. 10
3.3.2 Randomized Sequential Hypothesis Testing ... 11

3.4 Data Generation ...11
3.5 DRUID Extension to GUI Based Systems...13

3.5.1 USim Design ... 13
3.5.2 Real User Behavior Data.. 14
3.5.3 Dataset Structure .. 14
3.5.4 Simulated User Behavior .. 14
3.5.5 User Behavior ... 16
3.5.6 Template Generation .. 16

3.6 Eliciting User Cooperation for Enhanced Security in DRUID......................................17
3.7 Proactive Detection and Early Warning ..18
3.8 Porting DRUID to Windows..19

4 Results and Discussion.. 20
4.1 Preliminary Experiments on DRUID...20

4.1.1 Simulating a University Environment ... 20
4.1.2 Test Cases and Attack Scenarios .. 21
4.1.3 System Overheads and Performance Impact .. 23

4.2 Evaluation of Job-Centric Approach ...23
4.3 RACOON Evaluation ..24

4.3.1 Statistical Similarity Measures ... 24
4.3.2 Information Theoretical Measures ... 26
4.3.3 Anomaly Detection Algorithms ... 26

4.4 Intrusion Detection in GUI Based Systems ...28
4.4.1 Data Collection ... 28
4.4.2 Experimental Results and Discussion ... 29

5 Conclusions ... 31
6 Publications and Patents.. 33
7 Ph.D. Theses Supported by the Project ... 34
References.. 35

 ii

List of Figures

Figure 1: Roles of different types of intrusion detection systems .. 2
Figure 2: Overall goal of this research.. 3
Figure 3: Flow diagram of concurrent intrusion detection system ... 6
Figure 4: Scenarios corresponding to an IDS' decisions and a monitored user's response............. 6
Figure 5: Illustration of effects of implicit and explicit intent encapsulation................................. 7
Figure 6: An implementation overview of our approach.. 8
Figure 7: Overview of RACOON’s data generation process.. 13
Figure 8: Data generation using USim.. 14
Figure 9: USim dataset structure... 15
Figure 10: Run-time monitoring setup.. 21
Figure 11: Evaluation of Flat Text-Based Approach vs. Job-Centric Approach.......................... 24
Figure 12: Statistical similarity tests... 25
Figure 13: Comparison of histograms of user commands for a failed user 26
Figure 14: Entropy values for all 50 users of actual and generated data set................................. 26
Figure 15: True positive & false positive rates 1v49 for both actual and generated data sets...... 27

List of Tables

Table 1: Summary of preliminary simulation results ... 22
Table 2: Detection Rates... 30
Table 3: Calculation of Features for Different Sizes Features.. 30
Table 4: Detection Rates Obtained by Varying the Number of Features for User C 30

 1

1 Summary

Intrusion detection attempts to detect attacker activity should the preventive measures be
inadequate. Several research efforts have proposed schemes to perform user-level intrusion
detection using statistical anomaly detection techniques. However, few practical
implementations of anomaly detection systems are currently known. Major hindrances in this
regard are poor accuracy of detection and false positives. While some of the reasons may be
attributed to theory and technology, a major factor that is overlooked is the user. In this project,
we developed a novel approach that brings the user into the loop by querying him for his session
intent in a proactive manner. The owner intent so encapsulated serves the purpose of a certificate
based on which more accurate intrusion detection decisions can be made. We approach the
problem of user-level intrusion detection in a more holistic manner by investigating the issues
regarding design and implementation of a practical online user-level intrusion detection system.
The outcome of this research is a Dynamic Reasoning based User Intent Driven intrusion
detection system called DRUID.

From the scalability point of view, a novel higher order representation of a user’s profile is
proposed for DRUID, which includes the hierarchical notion of jobs/tasks, followed by the basic
units of functionality which a user requires to accomplish these tasks and then the actual
commands. Such a representation is a significant departure from known techniques and provides
several benefits such as user involvement in the security process, lowered false positive rates and
per-job profiling. While new security approaches are constantly proposed, very few pay attention
to deployment-time issues such as usability and evasion. These are very important which, if not
addressed will lead to a false sense of security; that is, a situation where the security system is
deployed but is either unusable or is deliberately bypassed. A variation of sequential hypothesis
testing is proposed to address these issues.

Data plays a very important role in the validation of any new approaches or models that are
proposed. Unfortunately, in the user-level intrusion detection domain, due to concerns of
privacy, there are only three datasets which are currently available to the research community.
This issue is addressed by devising a data generation algorithm called RACOON based on a
model used to profile users. The overall goal of this project is to address many outstanding issues
concerning user-level intrusion detection and user-level threats, and demonstrate the practicality
of proposed solutions. In this light, we have also addressed two related problems, namely,
eliciting user cooperation with DRUID through a gracefully degradable QoS model and creating
user behavior profiles in GUI based systems for masquerade detection in the Windows
environment. The subcontractor Colorado State University has developed a proactive detection
and recovery scheme based on attack trees to address certain limitations of the DRUID system.

 2

2 Introduction

Intrusion detection systems (IDS) are becoming increasingly popular because they provide an
effective line of defense against attackers who have successfully evaded perimeter defenses such
as firewalls. Considering the astronomical growth of network technologies, there are several
entry points into an organization and securing each one is not humanly possible, hence, one can
expect an occasional unguarded entry point which an attacker has used to gain access. Indeed, if
not for intrusion detection systems, the protection provided to an organization’s computational
infrastructure is very limited.

Intrusion detection systems operate on one or more observables characteristic of a particular
attack class and these may appear at several points inside the computational infrastructure. An
IDS can be thought of as having two distinct components - 1) a sensor, which performs the task
of collecting data, and 2) the decision-making component. If the sensor streams data to be
immediately consumed by the decision-making component, then detection is being performed in
an online manner. This is a desirable feature since it provides proactive protection. On the other
hand, the sensor may output the observed data into a log file to be processed by the decision-
making component at a later time. This type of detection is offline in nature and although the
protection offered is not instantaneous, it is still called intrusion detection.

One of the first significant advances that has been made at detecting external network level
attacks is the development of Snort and Bro, which monitor network traffic. Recently, advances
have been made in identifying other venues of attacks and performing intrusion detection at these
locations. Figure 1 gives a high-level overview.

Attack over network

Process

Attack on process

Attack at user-level

Network-level IDS

Program-level IDS

User-level IDS

Figure 1: Roles of different types of intrusion detection systems

Network-level IDS. Attackers can target the networking interface of a computer system, either
by attacking the networking implementation itself or services which rely on the network to
communicate. A network-level IDS looks for hints of these types of attacks and raises alarms
when such a pattern is found.

 3

Program-level IDS. The target of an attack can also be a network service through a buffer
overflow vulnerability which causes an unexpected jump in the execution flow. When system
call traces of normal execution are observed, such an arbitrary jump would appear as a violation.
This is the working principle behind a program-level IDS.

User-level IDS. Once an attacker has gained control over a host either through a remote exploit
or by a stolen password, he begins unauthorized usage through execution of commands of his
choice. In several cases, it is possible to detect a user-level intrusion by monitoring the command
trail.

The type of intrusion detection being performed determines wher e the IDS is located. For
example, a network IDS is typically deployed at an organization gateway or a host with a
network interface configured to operate in the promiscuous mode. Similarly, a program-level
IDS is implemented as a host-based system which performs system call interception.

Figure 2 shows the void that this project is trying to fill. Of the three general categories of
intrusion detection systems, network-level IDSes are most mature with several commercial grade
implementations. For the user-level IDSes to reach that stage, significant advances have to be
made. This research identifies several outstanding issues towards the implementation of an
online host-based user-level anomaly detection system, which go beyond just measuring
performance characteristics. A practical online user-level intrusion detection system is possible
only when viewpoints apart from that of an IDS algorithm developer are taken. From the system
administrator point of view, there are deployment issues such as the parameters of the system,
and the time and effort required to tune them. Similarly, from the point of view of the user who
is monitored, it is necessary to keep the annoyances due to false positives to a minimum while
providing the necessary detection performance. Only when all these concerns are addressed, can
there be a viable user-level intrusion detection system.

Network-level
intrusion detection

Program-level
intrusion detection

User-level
intrusion detection

Conception of idea
and seminal research

Research-grade
implementations

Commercial-grade
implementations

Figure 2: Overall goal of this research

Currently known intrusion detection systems, apart from their disparate advantages and
disadvantages, suffer from a high rate of false positives/negatives and typically cause large space
and processing overheads making them less scalable. An ideal intrusion detection system has the
following characteristics:

• Stronger deterrence to cracker's attacks by active/online monitoring

 4

• Low latency of detection by rapid decision-making
• Low false positive/negative rate
• Scalable to large and heterogeneous environments.

A careful scrutiny of the above goals reveals a close inter-dependence between each other. An
intrusion detection system that can process less information is able to respond faster, make fewer
mistakes and scale well due to the lower overheads it generates. However, these are formidable
goals and while many claims have been made to achieve them, few have been successful.
Therefore, a more aggressive and radical approach is necessary in order to realize these goals.
The following stages sum up our effort in this direction:

• A proactive methodology to obtain focused information
• Developing a statistical framework for profiling and a cognitive reasoning support for rapid

decision-making with low false positives
• Addressing scalability issues
• Addressing the human-centered security issue and illustrating it in the current IDS
• Extending the concepts to GUI environment that is more commonly in use
• Implementation, testing and performance assessment.

The outcome of this investigation is a user-level IDS which is a comprehensive security
management system based on user intent encapsulation through an active query. The owner
intent so encapsulated provides the basis for constructing a more focused referenced line to
monitor user's activity. Costs based on resource usage and deviation from the known profiles,
form the basis for quantification and reasoning about intrusions. Some aspects of user level
monitoring do not allow good scalability of the security system and needs attention. Multiple
hosts each running the security system can communicate among themselves in order to make a
network level decision.

The following section discusses the design and implementation of each of the components of our
approach in more detail.

3 Methods, Assumptions and Procedures

3.1 User-Level Anomaly Detection – The DRUID System Development

3.1.1 Intrusion Model and Assumptions
Any activity at the user level is initiated by programs executed on some user's behalf. We
classify malicious user activity into the following categories.

• System abuse and access violations: A user after logging into a system may execute

commands that lower the overall quality of service or attempt to access resources that he is
not authorized to.

• Identity theft attacks: An attacker can assume the identity of a legitimate user through a
password compromise or physically joining an open session left logged on by the user.

 5

In our definition of a distributed system, we include a network of computers that service users on
the basis of an account and a password. Further, we assume that the users on different machines
have the same user-id although the passwords could be distinct. This model precludes the
monitoring of web surfing and anonymous ftp activities. No specific topology is assumed for the
network. All communications between nodes are by message passing and the network is assumed
to be stable. This model makes our intrusion detection approach unique in that all intrusions are
abstracted as happening through well-defined user sessions which are invoked through a user-id
and password submission. The problem of intrusion detection simply transforms into monitoring
these well-defined user sessions. We also assume that a user session on a node is of finite length.
Long periods of inactivity are considered as the end of a session. It is a good security measure to
lock the workstation and require reauthentication before unlocking it again.

3.1.2 Basic Principle of User-Level Anomaly Detection
Our technique of intrusion detection based on owner intent encapsulation and verifiable
assertions is firmly based on the principle of control flow checking in fault tolerance [1]. In
control flow checking, an analysis prior to compilation of the program is done to generate a
control flow graph of the application. Signatures or assertions are embedded into the instruction
stream at compile time to generate a reference graph. At runtime, the execution is monitored and
at designated intervals, the runtime signatures are compared with predetermined signatures of the
reference graph. Any discrepancy between the actual signature and the expected signature
indicates an error. Both instruction level bit errors and control flow errors are detected by this
scheme. Though the control flow checking concept can be extended to intrusion detection,
instruction-level models are not applicable here because instruction-level control flow variations
may not indicate attacks occurring at higher levels. Accordingly, we use a different approach for
the derivation of a reference graph as described below.

In our intrusion detection scheme, the user starts a session on a computer in a standard way, that
is, by logging in. The system then encapsulates his intent as a session-scope. This is an
approximate summary of his intended system usage. Once the scope-file is submitted, the user is
allowed to continue with his session. Meanwhile the system translates the scope-file into a set of
verifiable statements. When no ordering of events is considered on the activities of the user, the
set is simply a table of verifiable statements. It has no control flow information as such.

The verifiable statements give a mechanism for monitoring the user behavior. These statements
are generated automatically by reading the scope-file and interpreting the user inputs properly.
An important component of our verifiable statements is the subject field. The subject field is
generated from the user-id and other unique identifications such as the IP address of the
workstation, tty number of the terminal being used etc. All such information will be coded into
the subject field. For instance, a user may wish to open multiple login sessions. As long as such
intent is expressed in the scope-file, a more general subject coding can be done for this user in
order to allow him to work from different terminals or set up multiple login sessions. There is
only one monitor process per user even though multiple sessions are opened.

 6

When the user is in session, his operational commands are checked to see if they are the ones he
originally intended to execute. Any significant deviation from the plan is an indication of
potential intrusive activity.

The flow diagram of Figure 3 represents the basic principle of our new approach and by itself
has limited usage. While extensions are easily conceivable for improved performance [2], we
retain our basic framework here for ease of presentation of the scheme. Some of the techniques
used to minimize false alarms and to build robustness to this basic monitoring scheme are
discussed in [2].

Figure 3: Flow diagram of concurrent intrusion detection system

3.1.3 User Intent Encapsulation
Actively querying a user for computational intent may initially appear as a departure from
traditional techniques and an avoidable annoyance, but there are some definite benefits. When an
online IDS is installed on a computer system, it makes decisions regarding the current user
activity, which may or may not be contested by a user. Figure 4 illustrates the various scenarios.

Does the user agree?
User consent:

Is the current user activity intrusive?
IDS decision:

No

Yes

NoYes

True Positive

False Positive

True Negative

False Negative

Figure 4: Scenarios corresponding to an IDS' decisions and a monitored user's response

The four regions, shaded and non-shaded, represent the “hits”' and “misses”' of an IDS' detection
mechanism. Perfect intrusion detection is achieved if all the decisions of the IDS lie in the
shaded regions without exception. However, that is seldom the case. Misuse detection techniques
are generally accurate in detecting known attacks, but they are not complete. On the other hand,

 7

although anomaly detection approaches claim to be complete, they are not very accurate on the
account of statistical methods being used. Even when the IDS is very accurate, a decision can be
wrong simply because the user being monitored contests it. This problem cannot be solved
merely by technology or math alone. Instead, we propose to bring the user into the loop. When a
user, whether a legitimate user or an intruder, is queried for intent at the beginning of a session,
this expressed intent becomes a certificate of normal user activity. Some obvious concerns may
arise at this point. This technique can only be practical if the process of intent encapsulation is
not very intrusive by nature. Also, it becomes important to do it in a way that captures maximum
information with minimum effort.

Let us assume that the entire superset of operations is O as shown in Figure 5. This is the entire
set of operations supported on a computer system that any user can attempt to execute.

O

O

O

d

u

Figure 5: Illustration of effects of implicit and explicit intent encapsulation

3.1.4 Implicit Intent Encapsulation
Observing that certain intents can be inferred directly from the context, we define a default
bracket of privileges corresponding to a user's user-id and his role (based on the RBAC
methodology [3]). For example, a teller in a bank may have a different job description than that
of a manager, therefore requiring a different set of privileges. This bracket Od can be considered
as the hard coded intent of the user. This technique has been widely used in commercial
databases and has been successful. RBAC works well when the transactions and the ways in
which they are accomplished are few and clearly defined.

3.1.5 Explicit Intent Encapsulation
RBAC based technique suffers from the limitation that these bracket of privileges are static and
pre-defined. This results in a very general profile for the users and leads to poor performance.

By explicitly querying the user for intent, it is possible to define a smaller and personalized
bracket of privileges or jobs for each user. Let the set of operations that a user defines to be his
session-scope be Ou. If this set is bounded only by O, then this technique is not very different
from the known statistical techniques for detecting insiders and masqueraders. However, by
bounding Ou by Od instead of O, the user can express intent up to the set defined by his user-id.
Such a controlled intent extraction occludes questions such as “What if the user lies?” because
the user is allowed to choose only from what he is given. This subset of jobs that are chosen
forms the baseline for monitoring through the various sessions. Since this reference line is very

 8

focused and small, it becomes feasible to perform online and real-time monitoring which results
in a low latency of detection and also lower false positives.

Variations of this technique included querying the user at the beginning of every session. This
has the advantage that it can accommodate drastic changes from one session to the other. Its
shortcoming is that it is very intrusive by nature. A slightly passive technique involves querying
the user only at the beginning of his first session and then invalidating this intent only when
some event occurs that warrants another query. For example, a student's activity involving the
use of tools for his courses remain unchanged till the end of the current semester. This is less
intrusive by nature and is perhaps adequate for most environmental settings.

3.1.6 Summary
The major advantage of intent encapsulation is that it can be done very specific to the
environment making anomaly detection very effective. Also, by making the profiles very
personalized, it becomes easier to establish the user's identity by way of differences in the choice
of jobs and the choice of operations henceforth. More details are found in [4].

3.2 Scalable Implementation of DRUID
Our research prototype DRUID along with an overview of the implementation is shown in
Figure 6. This implementation is on the Linux platform with the bulk of the code written using
the C programming language. There is a significant emphasis on the user interface and we have
both the XFree86 and gtk 2.0 opensource graphics libraries.

Job Database

 System
Administrators

Default
 query

Command
Trail

 Declared
session-scope

one-time

Command Monitor

Object Monitor

Per-Job Monitor DRUID

Figure 6: An implementation overview of our approach

The entire process can be divided into two stages - 1) a setup phase, and 2) the actual IDS
monitoring phase. In the setup phase, a system administrator determines the relevant set of jobs
for a particular user. When the user opens a login session for the very first time, a query
containing this default set of jobs, and the constituent meta-commands and commands is
displayed. The user is urged to carefully specify the scope of his session. This query is reset and
repeated only when there is a reason to believe that the session scope can change drastically. For
example, if the role of a user changes, then it might be reasonable to reset the earlier specified

 9

session scope and display a new query. The current implementation of this query uses a tabbed
window with several checkboxes under every job corresponding to the meta-commands and
commands. A job is deemed chosen only when at least one checkbox is selected.

Once the user has completed the session scope specification, he is presented with his user session
which has the same appearance as a normal user session would, except that now there are hooks
to monitor the user’s command usage. There are three main modules within the DRUID IDS,
which are:

Command Monitor. This is the main monitoring component which tracks each
command executed by the user and the accompanying objects. The current
implementation uses ptrace(2) and through system call interception, can monitor and
control the execution of every process. It is responsible for ensuring conformance with
the specified session scope. Commands which are not specified by the session scope are
not allowed and terminated immediately. A process may spawn other processes and these
child processes are tracked by following the fork(2) and exec family of system calls.

Object Monitor. Objects used in the context of command execution are important for
several reasons. Although the jobs, meta-commands and commands are explicitly stated
in the session scope, during monitoring this relationship is not very obvious, because all
that is seen is a stream of user commands. When a particular command cannot uniquely
identify with a job, we defer assigning the command to a job until another command is
seen which can unambiguously identify with a job and shares an object with this
command. Another important task performed by the object monitor is that it updates the
session scope with new commands or executables which are created by the user, for
example, as a result of the software development. The object monitor notifies the
command monitor that such commands can be allowed except that they are not allowed
to maliciously invoke any system calls.

Per-Job Monitor. The per-job monitor is responsible for statistical profiling for each job.
The command monitor reports commands which have been allowed to execute vis-a-vis
the session scope to the per-job monitor with the appropriate job context. However, in
cases where it is not able to do so, this task is delegated to the object monitor which waits
for several commands before ascertaining the appropriate command-job relationship and
reports it to the per-job monitor. Each job is pre-specified with the relevant model and the
per-job monitor builds statistics based on this model. When a preset threshold of data is
reached, then the detection capability is switched on and any further incoming data is
compared with constructed profile.

3.2.1 Summary
The overall detection methodology requires the cooperation of the user. When the user is certain
that the current session is the very first one but there has been no query, then it is a cause for
serious concern since someone else has already accessed the account and responded to the
session scope query. If the very first session is attended to by a legitimate user, any session
accesses from the adversary are likely to cause the IDS to raise an alarm very rapidly since the
adversary is not aware of what the legitimate user has specified in his session scope. Also, owing

 10

to the session scope query, there is very little room for ambiguity, which an attacker can take
advantage of.

3.3 Addressing Deployment Time Issues

Addressing the deployment time issues of an IDS requires a comprehensive solution which goes
beyond just performance enhancements. Towards this overall goal, a technique known in the
statistics domain called sequential hypothesis testing (SHT) [5], [6] is leveraged. This technique
was originally proposed to take the sequential arrival of data into account, making decisions as
the data arrives, with the possibility of determining very early whether the currently observed
data conforms to the expected data model, while maintaining the same performance
specifications. SHT has found successful applications in other areas of computer systems
security such as worm detection [7]. Although the basic form of SHT can address our first two
goals, viz., online detection and usability, it is still susceptible to mimicry attacks, and we have
addressed this problem through modifications to SHT.

3.3.1 Using Sequential Hypothesis Testing
As mentioned earlier, SHT can solve two very important problems towards an online host-based
intrusion detection system. First, since decision-making is performed sequentially as the data
arrives, it makes for a natural online algorithm. Secondly, SHT guarantees the user-specified
bounds α and β on false positive and detection rates. We now briefly discuss the 1-step Markov
Model [8] and show how it fits in the SHT framework.

1-step Markov Model [8]: In the 1-step Markov Model, statistical inferences are performed
using a Bayesian analysis, which is a fairly involved process, and hence, we include only the
required details here. There are two competing models, one which assumes a Markov Model and
that observed transition probabilities are consistent with the historical transition matrix, and the
second which assumes that they are generated from a Dirichlet distribution. The null and
alternative hypothesis are formulated as follows:

null hypothesis H0 : P(Xt = k|Xt−1 = j) = pjk

alternative hypothesis H1 : P(Xt = k|Xt−1 = j) = Qk

s.t. (Q1,Q2, . . . ,Qk) ~ Dirichlet(α1,α2, . . . ,αk)

where pjk = P(next command = k| previous command= j), and all αi are estimated by fitting
marginal frequencies to a Dirichlet distribution as explained in [8].

The Bayes Factor (BF) is calculated over a block of data X as:

which is simply the likelihood ratio Λ. When BF is very large, then there is greater evidence
supporting the rejection of the null hypothesis, or in other words, the current user activity does
not correspond to the legitimate user’s historical profile, and an alert can be raised.

 11

1-step Markov Model (SHT version): When implementing the above technique using SHT, the
two hypotheses are kept unchanged. However, an additional region of uncertainty H? is added.

null hypothesis H0 : P(Xt = k|Xt−1 = j) = pjk

region of uncertainty H? : need more data

alternative hypothesis H1 : P(Xt = k|Xt−1 = j) = Qk

s.t. (Q1,Q2, . . . ,Qk) ~ Dirichlet(α1,α2, . . . ,αk)

Let α and β be the user-specified bounds of false positive and detection rates. Assume that
events X1, X2, . . . , Xt have arrived so far. Then, using the likelihood ratios, statistical inference
proceeds as follows.

In the usual SHT setting, the experiment stops as soon as the likelihood ratio moves into one of
either H0 or H1. However, for an intrusion (masquerade) detection system, the experiment has to
be restarted if the likelihood ratio converges to H0, because more data may become available as a
result of the user executing commands.

3.3.2 Randomized Sequential Hypothesis Testing
Since SHT performs statistical inference with each arriving data event, attacks against data
aggregation are unlikely to succeed. However, SHT is still a statistical methodology and is
vulnerable to other types of mimicry attacks; in particular, an attacker can indefinitely hide
within the region of uncertainty. How an attacker can launch such an attack and elude detection
is described in detail in [9].

Revisions to SHT have also been proposed in [9] by including randomizations such that not only
do the operational characteristics of the masquerade detection system appear random, but also
the region of uncertainty collapses, leaving no room for attacker to hide.

3.4 Data Generation

User level intrusion detection deals with user command data, which is closely tied to user
behaviors. The process of collecting or generating data suffers from similar issues as network
level data if not worse. Obtaining a representative data set for each user takes months or some
times years. Lane [10] reported that their data collection process took nearly two years for only

 12

eight users. Not all of this data could be used because of errors and requirement of
anonymization. As a result, the data set had to be sanitized. In general, the data collection
process involves setting up a command monitoring tool on the user’s computer and this could be
looked upon as being intrusive to the user. Also, it doesn’t guarantee good data because the
user’s behavior may alter if he is aware of the fact that his commands are being monitored.
Though there are simulation tools available in the networking domain such as OPNET and ns2
and data generation tools such as LARIAT of MIT Lincoln Laboratory to aid researchers, and
none are available for user command data. In view of these issues, a user command data
generation tool called RACOON is proposed to expedite the process of development and
evaluation of user-level intrusion detection. The two main aspects of our approach are:

Job-centric Approach. RACOON works on the assumption that a user’s computational
behavior is a causal process indicated by the commands he uses to accomplish a job or task.
Notable works such as that by Lane and Brodley [11] have used this assumption as the basis of
most of their work; it is just restated here. There could be different classes of users such as
programmers, scientists and system administrators, each with different job preferences and
peculiarities in user command usage. In our approach, the notion of jobs is used as a second
order description of user behavior; the first order being the commands itself. First, this model to
capture user behavior is described and then shown that data generated using this model is very
similar to an actual user command data set.

Customizable Templates. One of the important aspects of any data generation tool is the
support for “tunability” of data. Data of varying quality not otherwise seen in the wild can be
generated, and used to evaluate and expose the blind spots of an IDS. A template in RACOON
represents a particular user profile. It contains the parameters used to replicate user behavior.
Since these parameters are user-controlled, it is possible to customize each template to reflect a
particular user profile. Subsequently, one can generate data which is pertinent to a particular
computational environment and with required noise levels.

Figure 7 shows the overview of RACOON. There are two paths for generating user command
data. In the first path, a user specified template is created and provided as input to the data
generation module. Manual specification can be a onerous process and a front-end to assist the
user is being implemented. In the second path, an available data set can be processed to create
the template, which then follows the first path. Several user-controlled parameters such as data
size allow the generation of data of desired size and quality. In order to evaluate our tool, data
sets resembling Schonlau’s data set [12] consisting of 750,000 commands were generated in a
matter of a few seconds, and statistical similarity tests were performed between the two data sets
- generated data and Schonlau’s data. Finally, some well-known anomaly detection algorithms
were duplicated and the two data sets benchmarked against them.

We will provide the results of evaluation of RACOON in Section 4. Technical details of
RACOON are found in [13].

 13

RACOON
Template

RACOON
data

generator

Generated
data

RACOON

processor
data

Front−end
specification

processor

Available
data

specification
User Path 1: Data generation from user specified templates

Path 2: Data generation from available data
Figure 7: Overview of RACOON’s data generation process

3.5 DRUID Extension to GUI Based Systems
Due to the use of GUI-based platforms in target environments like military and industrial
organizations, a need has arisen to port DRUID to the Windows Platform. This requirement has
brought about new challenges in generating profiles for users in the graphical environment.
Therefore, we have developed a new framework called USim for data generation, training and
testing of DRUID in a GUI environment. In this framework, we automate the generation of user
data by parameterizing user behavior in terms of user intention (malicious/normal), user skill
level, set of applications installed on a machine, mouse movement and keyboard activity. The
user behavior parameters are used to generate templates, which can be further customized.
Similar to RACOON, the framework achieves rapid generation of user behavior data based on
these templates on GUI based systems. The data thus generated can be utilized for rapidly
training and testing intrusion detection systems (IDSes) and improving their detection precision.
This framework can also benefit research where user behavior data is utilized to improve
usability and quality of software products. One such application is in the Human-Computer
Interaction (HCI) domain, where the proposed technique can provide better testing capabilities.

3.5.1 USim Design
USim is a specialized tool designed for generating user behavior data. USim generates this data
based on provided customizable templates. There are two ways a template can be created in
USim. First, the proposed framework can take an existing real user behavior data and extract
parameters from this data for creating templates. Secondly, USim can also be fed precise values
of the parameters of a simulated user for creating templates. Figure 8 shows these two paths of
the USim framework and data generation methodology. This methodology can be used to rapidly
generate large volumes of user behavior data. This data is needed for thorough training and
testing of intrusion detection systems.

When USim is supplied with the real user behavior dataset (see PATH 1 in Figure 8), it extracts
the simulation parameters from this dataset. These parameters are passed to the USim template
generation module (TGM). These parameters could consist of, but are not limited to, user
behavior (normal/malicious), user session scope (type of applications being used), user role
(admin/developer) etc. Each parameter is specified with a probability and modeled as appropriate
for the required user behavior. TGM module generates USim understandable template and sends
them to the data generation module of USim (DGM). USim uses XML for representing
templates due to its wide popularity and cross-platform compatibility. Once DGM receives the

 14

templates, it generates appropriate data based on the provided parameters. The second branch of
USim (see PATH 2 in Figure 8), deals with the parameters directly passed for creating templates.
These parameters are expected to be as precise as possible and represent a type of users (like a
group of developers or graphics designer). The created template can be tuned later on, depending
on the type of user being simulated.

Figure 8: Data generation using USim

3.5.2 Real User Behavior Data
Data collected during a user's activities on a system in real-time is called real user behavior data.
This dataset describes a user's behavior according to his/her job assignment. The real user
behavior data is utilized by the USim framework for extracting features and creating templates
for generating similar data. The generated data in this case should closely resemble the real data.

3.5.3 Dataset Structure
Structure of the data generated using USim framework is shown in Figure 9. As can be seen from
the figure, the dataset contains details about user behavior such as executed commands, mouse
and keyboard activities, currently running background processes etc. The mannerism of user
behavior provides information about deviation from normal behavior and is a useful feature for
improving detection accuracy.

3.5.4 Simulated User Behavior
Another approach taken by USim is generating user behavior data based on specifications
provided to the framework. The specifications are converted to templates, which are
customizable and can be tuned for a specific purpose. These templates contain information such
as user's job function, type of user, mannerisms of keystrokes and mouse movements etc. The
data thus generated is said to be for a simulated user.

 15

Modeling user behavior anomaly detection mechanisms rely heavily on the understanding of
user's behavior for detecting malicious activity effectively. User behavior is a complex process
and to be able to efficiently model it, we identified some key features from the Human factors
domain such as nervousness while using the computer, keyboard and mouse activity, typing
speed etc. [14]. These features help explain USim framework and put our work in perspective.

Figure 9: USim dataset structure

Command: The most basic entity to achieve a certain goal on a computer is called command. A
command is the most prominent feature in the user behavior dataset. It describes the goal and
hence user intention. Example of a command is ls and vi on Unix.

Meta-command: The category of a command is called Meta-command. Commands related to
the same goal are collectively categorized as one meta command. For example vi and emacs
belong to editor meta-command.

Session-scope: The set of meta-commands to achieve a set of goals pertaining to a user’s role is
called his/her session-scope. For example, a sample session-scope of a user, whose role is
developer, would be meta-commands: editor, compiler, linker, debugger. It should be noted that
the above three features are referred from our previous work in [13].

User role: A user's role represents the scope of his/her responsibility. User's role also dictates
his/her session-scope.

Key-time: Usual time difference between keystrokes for a particular user's normal profile is
called Key-time. It should be noted that this is a very useful feature and in limited logging
scenarios may be used for separating masqueraders from normal users.

Mouse-graph: The movement of mouse based on a user's level of nervousness. A high mouse-
graph may either mean high nervousness of an insider or high anxiety level for a masquerader.

 16

Posture and body language: The way a user is sitting while working also plays an important
role in determining his level of comfort while working. Again a masquerader won't be too much
concerned about his posture or body language but a normal user would first try to seat himself
properly and then start working. This particular feature although very useful in determining a
malicious user physically, is out of scope of this type of framework and hence will not be
considered in our model. It is provided here for the sake of completeness of the model.

3.5.5 User Behavior
User behavior in cyber domain can be described as the way a user performs his activities on a
computer system. This includes the applications and resources utilized, the temporal
relationships between the various activities performed on the system (time between various
commands, keystrokes etc.), the movement of mouse (a nervous/malicious user might move the
mouse more rapidly than a normal user). USim aims to simulate this user behavior (also called
the user behavior profile) and provide realistic datasets representing this behavior. The
advantages of such datasets are many-fold. They can help in determining the efficacy of the
systems algorithms, the response of the system to such users and the performance of the system.
User behavior can be defined with the help of two classes of parameters. First, the system
settings such as mouse movement speed setup, left handed or right handed mouse, individual
application being used and screen resolution. Secondly, the environmental/technical factors like
knowledge of the peripheral device being used, user's comfort level with the system and
expertise with the particular application being used. A good example of behavioral differences in
two people is a secretary in an organization versus a graphics designer. While the secretary
would be utilizing the keyboard more for typing the documents and memos, the graphics
designer would be involved in heavy mouse movement activities due to the nature of his work.
The overall approach of USim framework is to provide customizable templates to capture this
user behavior and help in generating datasets to represent the behavior.

3.5.6 Template Generation
We consider a particular template that satisfies the requirements of most of the anomaly
detection algorithms available today. Consider a desktop system with a user working on it to
fulfill a given job requirement. We consider a Microsoft Windows environment for illustration
purposes, although the template can easily be modified to suit any operating system. Most of the
anomaly detection schemes require a series of commands that have been executed by the user. At
least, till date, the data that has been fed into such algorithms have been that way, i.e., a list of
commands. Such lists, while adequately representative of a UNIX system of the past decade, are
no longer meaningfully representative of the systems today. Graphical user interfaces (GUIs)
have become the norm for most of the computer systems today. Hence user characteristics are
better represented by datasets that are more expansive and take into account the user's operation
on a GUI system rather than just the command list. Simulating such behavior has unique
challenges and is an issue that has never been addressed before. A typical Microsoft system has
user-run processes and system-run background processes. The load on the system, which
includes both these processes, also varies according to the users’ command execution. While we
say command execution, we include the applications run by the user such as MS Word and
Internet Explorer in addition to the usual command prompt tools/utilities. Furthermore, two
additional user characteristics are included, which are the mouse movement and the keyboard
typing speed. These characteristics have largely been ignored by the simulation tools so far,

 17

which is surprising since they are the closest we can get to the user characteristics apart from the
commands they execute. Below we describe in further detail the template for generating dataset
encompassing such characteristics:

• The first manner in which we can generate simulated data is from a set of real data. Real data

for various reasons, privacy being the foremost, are hard to come by for a system. However,
in cases when they are available, USim can take two inputs viz. the real data and a template
that effectively describes the dataset and an expected distribution of the dataset features. With
sufficient amount of real data, we do not require the expected distribution of the dataset
features. This methodology of generation is similar to our prior work in [13].

• Secondly, we describe a customizable template that can be used to generate user data taking

into account the GUI characteristics of the system. As mentioned before, mouse movements
and keyboard typing characteristics are the two features that come very close to representing
the user (almost in a biometric manner, similar to signatures and thumb-prints). This template
can be used for training and testing any intrusion detection system. The template also
specifies the roles of the user and can provide precise behavior profiles accordingly. The
template for a graphics designer will have more graphics applications as compared to an
administrator. Hence USim can generate the mouse movements and command streams
accordingly (adhering to profile, exploratory user or malicious user). In addition, the system
background processes and the load on the system also change correspondingly. A complicated
graphics rendering engine might take a huge amount of load (processing overhead). A system
utility may also generate a huge load. However when a system utility is executed, background
processes with the system credentials (as opposed to the administrator’s credentials) will be
fired up. The template specifies these criteria also and USim generates the command stream
appropriately. This section thus illustrates how flexible template generation is through the
USim architecture.

An algorithm called USim-TEMPLATE-GEN, which can generate templates suitable for USim
framework for generating user behavior datasets has been developed. More details can be found
in [15]).

3.6 Eliciting User Cooperation for Enhanced Security in DRUID
We have investigated an interesting and very relevant problem in DRUID in relation to its core
concept viz., a user stated session-scope. Given that the human factor is the weakest link in most
security systems, we found that DRUID was vulnerable since it relied on the user to provide an
accurate session-scope, which is essential for effective intrusion detection. To elicit user
cooperation, we investigated certain psychological factors of humans (cognitive aspects of
reasoning) and proposed a model that varies the application level QoS experienced by the user
based on the accuracy of his session-scope. The lowered QoS in the face of an inaccurate session
scope (too broad or too narrow), we argue, will encourage users to provide an accurate session
scope and thus maintain the security level of the system.

During the last few months of this contract, we extended our ideas in two directions. In addition
to reducing application level QoS, we are building a notion of ‘interruptive interfaces’ where a

 18

non-cooperative user is frequently interrupted to encourage him to perform the expected action
by the security subsystem. Additionally, we have introduced the notion of learning the
distribution of unknown factors to reduce the risk level from the weak human factor. This
concept basically attempts to learn about the threat models in a system that are initially unknown,
but have the common feature of exploiting the weak human factor. This work is a prelude to two
other very fundamental works: (a) building an abstract risk assessment model for the weak
human factor and (b) attempting to generate concrete situational awareness through a practical
implementation of counter-example guided controls.

This is an exploratory research with significant potential to address the weak human factor in the
security equation. This concept will be further developed as future work.

3.7 Proactive Detection and Early Warning
Colorado State University (subcontractor) has addressed a significant concern by observing that
most IDSes including DRUID generate alerts only after they are able to see the misuse signatures
or some deviations from what is normally expected. A malicious activity may result from a
sequence of perfectly innocuous activities. Intrusion detection systems do not report on these
activities mostly to prevent information overload for the system administrator. Thus an intrusion
detection system generates an alarm only after the cause for alarm has occurred. In many
situations however, this may already be too late.

We propose a new approach that can be used to predict attacks arising from an insider’s
activities. This work uses the user-intent analysis approach of DRUID which ensures that during
a particular session a user remains reasonably within the scope of a previously declared set of
activities. Any digression beyond this reasonable limit constitutes a misuse of system and steps
are taken to protect against such digressions. However, this approach fails to account for the fact
that a user may remain completely within the scope of a previously declared set of activities and
still be able to launch attacks. This is where this extension work contributes.

We begin by assuming that it is possible to enumerate the different attacks that a user can launch
against a given system. This assumption is not unreasonable for known attacks. Almost all
network vulnerability scanners provide such information. We then determine all the possible
actions by which a user can launch an attack against the system. We map these actions against a
user’s session-scope to identify which sequences of these actions can potentially lead to system
compromise. Next we monitor each user’s activities to see if and how they match against these
sequences. Depending on the match we propose an estimator of attack probability. Our approach
is different from classical intrusion detection systems. It works as an early warning system. We
continuously provide the system administrator an estimator of attack probability. Thus we cannot
associate a rate of false positives or negatives with our technique. Our objective is to ensure that
the system enters an alert mode once the probability of an attack is determined to be sufficiently
strong. The notion of “sufficiently strong” is based on perceived risks. In the alert state, the
following actions are undertaken to ensure the survivability of information in case of an actual
attack.

 19

• Allocate additional resources to assist in data collection by logging system wide activities
more aggressively, saving system states more frequently and initiating recovery
contingency plans by coordinating with other monitors.

• Re-distribute essential services to other safer portions of the network.
• Introduce mechanisms to handle possible attacks including ways to contain the attack.

All these activities are continued until either an intrusion is actually signaled by accompanying
intrusion detection system or no further signs of attack are identified. The advantage of this
approach is that it is a flexible and resource efficient technique for security management. At the
same time it is a guarded approach. If an attack succeeds (which is determined by techniques
other than ours), it allows the system to be in a fully prepared mode for subsequent recovery.

The formal definitions, algorithms and some theoretical results regarding proactive detection and
recovery can be found in [16].

3.8 Porting DRUID to Windows
In order to enhance the application value of DRUID, it has been ported to the Windows platform.
We have broken the DRUID implementation down to the following components:

Role Specification Module: This module is invoked at the start of the deployment of
DRUID. The administrator uses this tool to specify the applications that a user of a given
role can choose. The Role specification module takes as input a jobs database that has a
comprehensive list of jobs for all possible roles in an organization. It outputs a session
scope query (XML) file that lists the choices that will be presented to a user.

Session Scope Specification: The session scope specification module is presented to the
user at the start of his session. This is a one time module that queries the user of his intent
during the session. It takes as input the session scope query file (output by the role
specification module) and presents the user with an appropriate interface.

System Logger: The system logger & QoS monitoring engine constitutes the core of our
model implementation on DRUID. It is a Windows service that is run when the machine
starts up. It is run with the local system’s credentials. The system logger monitors the
system and receives a notification every time a Win32 process starts up and shuts down.
It acts on this notification and writes relevant details about the process in a log file.

QoS monitoring Engine: This module is based on the concept of eliciting user
cooperation for enhanced security. The QoS monitoring engine receives notifications
from the system logger and compares the process information history with the stated
session scope. The application level QoS rendered by the system is modified according
to the result of the comparison.

At the time of completion of this project, we were working on the following features for DRUID:

 20

• A plug-in type architecture so that future developers can add extensions to DRUID if they
so wish.

• Tighter integration between the components and a singe installer for testing purposes.

Latest information on the prototype status and corresponding downloads can be found at
http://www.cse.buffalo.edu/caeiae/projects/DRUID.
The next section gives details of evaluation of DRUID and its various components.

4 Results and Discussion

We have tested the various components of DRUID through elaborate simulations and the results
of our performance study are presented in this section.

4.1 Preliminary Experiments on DRUID
We chose a student/faculty user academic environment for the purposes of testing the DRUID
framework. This environment has fewer security controls in place and allows greater freedom for
the users and hence makes a good testbed to study the efficacy of our technique. We could have
also considered a regulated system such as web-enabled banking to estimate the feasibility and
impact on a more general and commercial setting.

4.1.1 Simulating a University Environment
The basic architecture is client-server based. Such a setup allows us to derive some test cases
from the published descriptions of well known attacks and in developing site-specific test cases
based on the security policy. It also helps us to consider both sequential and concurrent
intrusions. In a sequential intrusion, a single person issues a single sequence of commands from
a single terminal or a workstation window. In concurrent intrusion, one or more intruders issue
sequences of commands from several terminals, computers or windows. The command
sequences work cooperatively to carry out an attack. For example an intruder can open multiple
windows on a workstation and connect to a target computer from each window and try to
distribute his intrusive activities among them. The platform allows us to simulate basic sessions
such as telnet, ftp etc. Synchronization can be achieved which lets us specify a fixed execution
order of events.

When the student/faculty user logs in with a user-id/password submission, password verification
is done first. If the user is authenticated to login he will be provided with a series of GUI
windows to specify the scope of the session. The user selects the application he is going to work
on. If, say, the user selects Research as the application, the user is provided with a pre-selected
input list containing various categories such as simulators, design tools, operating systems,
programming languages, scripts, documentation and miscellaneous items such as ftp, rlogin etc.

The user just needs to check the tasks he intends to perform. Once this is done the watchdog
queries the user if he intends to perform any other activities that are not present in the
predetermined list. The user is also queried if he intends to open multiple sessions.

 21

The various components of the session scope are combined together by a formatter to obtain the
intent in the final form. Figure 10 shows a run-time monitoring setup for a 1-user, 2-hosts system
on a single server and is explained below.

The plan (called sprint-plan) generated for the user is stored at a secure location on the server. As
soon as the user logs in to a host, the watchdog checks to see if there is a sprint-plan already
existing for the user, if there is none, it generates a new one. If a sprint-plan already exists, the
user is allowed to proceed with his normal activity. The watchdog continuously monitors the
user and compares it with the sprint-plan.

Host 2

File Watchdog

User Activity

Check with
server if Sprint
Plan exists for

User 1

Yes

Watchdog 2
on Host2 for

Compare with
Sprint PlanUser 1

User Activity

Sprint plan stored
at a secure place

Server

Sprint plan

Counter

on Host 1 for
Watchdog 1

User 1

Sprint Plan Conversion

Sprint plan conversion

Host 1

Intrusion signal to Master Watchdog

Exception Generator

No

Yes

User 1
Plan exists for
server if Sprint

Check with

To User 1 Dialog Initiator

Analyzer
and

Sprint Plan

No

User 1

 User Login to Host 2

User Login to Host 1
Legend :

Figure 10: Run-time monitoring setup

4.1.2 Test Cases and Attack Scenarios
The test data is based on user activity collected over a period of two months. We required the test
data to be confined within the same semester. We used this data to derive the verifiable
assertions and then test the strength of the scheme by subjecting it to a few test cases and attacks.

There is usually no simple procedure to identify appropriate test cases for an intrusion detection
system. A variety of intrusion scenarios are considered based on some common practices of
system usage. These scenarios are grouped into four categories, viz., one-user without multiple
logins, one-user with multiple logins, multiple users without multiple logins and multiple users

 22

with multiple logins. Two set of experiments are performed in each of these categories, first with
the worst case, where a user selects all the entities provided in the session-scope GUI by the
watchdog and the second where a user selects only a few entities. The tests are performed by
treating the logins as four different cases, with up to two users at a given time. The first case is
where both logins are legitimate. In the second case, the first login is from a legitimate user and
the second login is from an intruder. In the third case, the first login is from the intruder and the
second login is from the user and finally the fourth case where both logins are from intruders.

We performed a total of 32 attacks and they were of two types. One category represented very
obvious and apparent attacks such as transferring the /etc/passwd file from one host to another,
password-cracking by comparing the entries in the /etc/passwd file to entries in another file,
using a dictionary file for the same, and exploiting the vulnerabilities such as rdist, perl 5.0.1,
etc. The system is able to detect all the intrusive activities and terminate the connection for the
logins of intrusive users. The second category involved more subtle attacks similar to mimicry
attacks [17]. Even in such cases, since we monitor both the operations and the file system
accesses, we are able to restrict the damage caused by the intruder. The intruder is only able to
cause damage within the user's login and home directory. In the worst case scenarios of one-user
with multiple logins and multiple users with multiple logins, a relatively larger number of
intrusive activities was not detected. The system has also generated a few false positives,
flagging an intrusion when normal user activity is taking place. This happens when the user
selects only a few entities from the session-scope. The results are summarized in Table 1 where
detection latency is reported in terms of average number of user operations. The metrics shown
in the table seem to be consistent with intuitive predictions.

Table 1: Summary of preliminary simulation results

Sessions Metrics 1 User,
No Multiple

Logins

1 User,
Multiple
Logins

2 Users,
No Multiple

Logins

2 Users,
Multiple
Logins

User
And
User

Detection
Latency

False Positives
False Negatives

-
-
-
-

78.6%
35

21.4%
0%

74.9%
36.1

25.1%
0%

91.9%
29

8.1%
0%

User
And

Intruder

Detection
Latency

False Positives
False Negatives

98%
0

0%
2%

89.0%
11
0%
11%

100.0%
0

0%
0%

94.7%
9.6%
0%

5.3%
Intruder

And
User

Detection
Latency

False Positives
False Negatives

99%
0.4
0%

1.4%

100%
0.7
0%
0%

98.2%
0.6
0%

1.8%

100%
0.5
0%
0%

Intruder
And

Intruder

Detection
Latency

False Positives
False Negatives

58%
15.9
0%
44%

81.3%
14.8
0%

18.7%

77.4%
17
0%

22.6%

91.5%
27
0%

8.5%

 23

4.1.3 System Overheads and Performance Impact
Since Java is used for implementation, moderate impact on system performance is expected.
When new connections are made or more users login, the system load increases. However, this
increase is only marginal because there is no need to maintain any large data structures for each
user or connection. The main server on which our intrusion detection system is running is a Sun
Ultra Enterprise 450 Model 4400 and the clients are Sun Ultra 5's running Solaris 2.7.

A normal user in a university environment is assumed to have about six to eight processes
running on the system at a given time. There is one watchdog dedicated for each user which
makes it one more process per user on the system. This watchdog process does not use many
run-time resources and hence may not become an overhead to the system. However, when
several users are logged in and are being monitored, the system may see some performance loss.
In order to study this overhead, we eliminated all unrelated activities in the test environment,
started the intrusion detection system and allowed the users to log in. We analyzed the average
load per minute (no. of jobs in the run queue on Unix) and the storage overhead in kB against the
number of users on the system. In our preliminary implementation without much optimization,
the operation is very stable for about 15 users. The load on the system tends to increase as the
number of monitored users increases beyond 15. The storage overhead (325 kB for a single user)
increases at a constant rate with the number of users. When the session-scope is large, the
watchdog maps it to a huge sprint-plan. The storage used by the IDS in our study corresponds to
the worst case scenario where a user selects all the entities from the session-scope provided by
the watchdog in a GUI.

4.2 Evaluation of Job-Centric Approach
Most of the currently known approaches to anomaly detection have been benchmarked against
Schonlau’s dataset. The dataset consists of user command trails from 50 users, each 15,000
commands in size. The standard experimental setup involves dividing each the command set of
each user into two parts - one of 5,000 commands for the purposes of training, and the other of
10,000 commands. The second part is polluted with blocks from other users. The main idea of
the experiment is to determine how many of these blocks are detected by the IDS and provide an
estimate of the detection and false positive rates. In the context of our approach, the knowledge
of jobs is very important. However, Schonlau’s dataset is job-agnostic and has no job-related
information whatsoever. Another dataset was not used since the known techniques have been
benchmarked against this dataset. This pitfall was overcome by manually inspecting the dataset
and inferring potential jobs based on the commands. Also, since the commands were collected on
an old UNIX variant, some of the commands do not have modern equivalents, and finding their
purpose was difficult; in some cases, inferences had to be drawn from the names of these
commands. We have evaluated the job-centric approach using both frequency-based (Naive
Bayes Classifier) and sequence-based (One Step Markov Model) approaches. Figure 11 shows
the detection and false positive rates of both these approaches. Notably, the false positive rate in
both these approaches is significantly lower. Moreover, the detection rates are also comparable,
although slightly lower in some cases. The latter can be explained by the fact that dividing the
data into jobs, effectively reduced the amount of data per job but increased the number of test
cases. Both these factors affected the detection rate. For example, the flat text-based approach
may have a detection rate of 60% (2/3), while our approach has only 50% (15/30), but the test
cases are far more. This can be construed more as a limitation of the dataset rather than our

 24

approach. In fact, we believe that our approach would have outperformed a flat text-based
interpretation, had the dataset been in a job-aware format.

 (a) Markov Model - True Positive Rate (b) Markov Model - False Positive Rate

 (c) Naive Bayes Model - True Positive Rate (d) Naive Bayes Model - False Positive Rate

Figure 11: Evaluation of Flat Text-Based Approach vs. Job-Centric Approach

4.3 RACOON Evaluation
Ideally, it is desired to evaluate both data generation paths of RACOON. However, since there is
no mechanism through which open-ended data sets can be benchmarked, only Path II is
evaluated using Schonlau’s data set. For the evaluation process, various metrics were used, and
the results obtained provided good insight into the quality of data generated by RACOON.

4.3.1 Statistical Similarity Measures
Commonly used statistical similarity measures take two samples and verify whether they came
from the same population. The underlying hypothesis testing framework requires that for strong
similarity, both samples should lie in the 99% (or more) confidence interval, or in other words
display a high degree of overlap. The results of four statistical measures are shown, viz., 2
sample t-test, F-test, Levene’s test and Mann-Whitney test.

 25

Figure 12 shows the p-values (indicated by the vertical bars) obtained for both actual and
generated data sets for each test. A very high confidence level of 99% was used for the statistical
tests and a p-value of at least 0.05 indicates good evidence that both data sets are statistically
similar. In a typical run on which the tests were conducted, 7 users failed the 2 sample t-test, 14
users failed the F-test, 13 users failed the Levene’s test and only 2 users failed the Mann-
Whitney test. In order to understand the reason for these failures, the histogram plots of failed
users was visually inspected. Figure 13 shows the comparison of actual data set and generated
data set of one such user. The two histograms are identical except for an outlier spike (circled)
which effectively shifted the moments towards it and outside the 99% confidence interval. This
spike can be traced to RACOON’s data generation routine which on occasion repeatedly
generates the same command, although it didn’t occur with high frequency in the actual data set.

 (a) p-value for 2 sample t-test (b) p-value for F-test

 (c) p-value for Levene’s test (d) p-value for Mann-Whitney test

Figure 12: Statistical similarity tests

 Plot of p-value for each pair of users from actual and generated data set (a) 2 sample t-test, (b)
F-test, (c) Levene’s test, and (d) Mann Whitney test

 26

 (a) Actual data (b) Generated data

Figure 13: Comparison of histograms of user commands for a failed user

4.3.2 Information Theoretical Measures
Researchers have shown that information theoretical measures such as entropy and relative
entropy can be used for anomaly detection. The main idea is that two similar data sets will have
the same amount of randomness. We have separately computed the entropy values of both actual
and generated data sets for all 50 users in a typical run and this is shown in Figure 14 (adjacent
100 vertical bars). It can be seen that both the data sets have very similar entropy values,
differing only by 1.5 to 2.0 for almost all users.

Figure 14: Entropy values for all 50 users of actual and generated data set

4.3.3 Anomaly Detection Algorithms
In our experiments, both the statistical and information theoretical measures were generally in
favor of strong similarity. However, both these classes of tests are dependent on command

 27

frequencies and the first few moments. Therefore, for a true evaluation, the generated data was
also compared against actual data using algorithms which have been shown to perform good
masquerade detection; in particular, Uniqueness by Schonlau et al. [8] and Naive Bayes
Classifier by Maxion et al. [18]. Both these algorithms reportedly perform very well on
Schonlau’s data set with high detection rates or low false positive rates or both. We considered
these two anomaly detection algorithms and ran their implementations on the actual and
generated data sets. Figure 15 shows the true and false positive rates obtained when a user is
masqueraded with the remaining 49 users. We have chosen a user who is a representative of both
the best case and worst case scenario for the RACOON generated data set. In general, the true
positive and false positive rates for the actual and generated data set follow each other closely.
However, there are cases where drastic gaps can be seen. This is mainly because RACOON’s
data generation parameters do not dynamically adapt to the actual data; some users are extremely
noisy, while others are not. Since RACOON uses the same procedure for all users, these cases
stand out. This shows that RACOON is not perfect and we are looking at ways to enable
RACOON to handle diverse cases differently. Note that in the figures, connected lines have been
used because it is a convenient way to show the gap between the results obtained in the two data
sets, and they are not meant to indicate any correlation behavior.

Figure 15: True positive & false positive rates 1v49 for both actual and generated data sets
(a) Uniqueness true positive rate, (b) Uniqueness false positive rate, (c) Naive Bayes Classifier
true positive rate, (d) Naive Bayes Classifier false positive rate

 28

4.4 Intrusion Detection in GUI Based Systems
We present a new framework for creating a unique feature set for user behavior on GUI based
systems. We have collected real user behavior data from live systems and extracted parameters
to construct these feature vectors. These vectors contain user information such as mouse speed,
distance, angles and amount of clicks during a user session. We model our technique of user
identification and masquerade detection as a binary classification problem and use a Support
Vector Machine (SVM) to learn and classify these feature vectors. We show that our technique
can provide detection rates of up to 96% with few false positives based on these feature vectors.
We have tested our technique with various feature vector parameters and conclude that these
feature vectors can provide unique and comprehensive user behavior information and are
powerful enough to detect masqueraders.

We now elaborate on our experimental methodology which includes data collection, parameter
extraction and feature vector construction.

4.4.1 Data Collection
We collected real user behavior data for multiple users and extracted unique parameters to be
able to construct the feature vectors. For this purpose, we developed an active system logger
using Microsoft .NET framework and C# language on the Windows XP system. We chose to use
.NET framework due to its ease of use and ability to interact with various Windows components
seamlessly. This logger is designed such that it is able to collect system events due to all possible
user activities on the system in real-time. The logger collects events such as keyboard activity,
mouse movement coordinates and mouse clicks, system background processes and user-run
commands. The logger collects the timestamp information along with the events, such as mouse
coordinates, mouse clicks, process information and keyboard statistics. Because of the fine
granularity of the CPU ticks and the fact that we are logging the mouse coordinates, the data
collected through the logger can be huge and thus in the next two subsections we show how we
extract useful information from this data and construct feature vectors for use with SVM. We
sanitized the logged data to remove any personally identifiable information and retained only the
behavioral information such as mouse activities.

Feature Extraction. After collecting the real user data, we need to find useful parameters of the
user behavior to be able to construct a unique feature vector for training and testing with SVM.
We developed a feature extraction engine to parse the logged data. We extracted the following
features:

• Mouse clicks (lc and rc): the average number of left and right mouse clicks per user session
as well as activity for each 10 minute window during the session.

• Distance (d): the average distance traveled by mouse per event. Examples of such events
are closure of a window, start of a process and process termination.

• Mouse speed (s): the average speed of movement for the entire session as well as for
events.

• Mouse movement angle per event (θ values): the angles of mouse movement relative to the
x-axis for each event.

 29

We calculated the angles θsi and θtj for starting position of mouse for an event and the end
position or a click respectively. Due to the fact that these events can be reached at from either
left or right directions, there is a total of 4 angles (2 each for left and right), namely θsl, θtl, θsr
and θtr. We now compute the total number of features to construct the feature vector.

Calculation of Features. We constructed 16 features after extracting parameters as described in
previous sections. These are:

• Mouse clicks: (lc + rc) = 2
• Distance: d = 1
• Mouse Speed: s = 1
• Angles: (θsl + θtl + θsr + θtr) = 4

The total of these raw features is 8. Additionally, we calculated the mean m and standard
deviation sd for all the raw features above. This gives a total of 16 unique features represented
as:
(lc; rc; d; s; θsl; θtl; θsr; θtr) * (m; sd)

Although we limited our experiments to these 16 basic features, one could consider more unique
features which may give a better classification. This will be part of the future work. For our
experiments, we calculated the mouse clicks (lc and rc) per 10 minutes of activity for a sliding
window starting from the first instance as follows:

If the session starting time t = 31, then we calculate the clicks for 10 minute period
following 31 (first period would be [31-41] and second will be [41-51] and so on). After
finishing this iteration, we slide the window to time t = 32 and calculate the clicks for the
following period such that the first period would be the range [32-42], second will be [42-
52] and so on. We calculate the values for 10 iterations, after that the pattern repeats
itself. We take this approach to generate the features because of the use of the support
vector machine algorithm for learning and classifying behavior features.

4.4.2 Experimental Results and Discussion
We collected GUI based datasets in our lab from 3 users. This data was fed to the parsing engine
to obtain 16 features. These features were used to create tuples for feeding to the SVM. The
methodology to train and test the system was as follows:

• Datasets were obtained for three distinct users A (27 sessions), B (9 sessions) and C (50
sessions).

• The obtained data set was split for training and testing as follows:

 30

• Used the window function as described in previous section and create 160 tuples from the
16 features.

• Used training and testing sets for SVMs as described above and calculated the detection
rates and false positives.

In order to run our data tuples we used SVMlight [19] software, which implements Vapnik's
Support Vector Machine [20]. We calculated classification results and detection rates for three
users. The results from this test are shown in Table 2.

Table 2: Detection Rates
Users A, B and C with 600 Training and 260 Testing Samples for 16 Features; C = correctly

classified, IC = incorrectly classified

We also obtained classification results by varying the number of features from 16 down to 14, 12
and 8 and determining the change in the detection rates. This helps us in determining the optimal
number of features for best detection rates. We tabulate the features corresponding to each set in
Table 3.

Table 3: Calculation of Features for Different Sizes Features

Table 4: Detection Rates Obtained by Varying the Number of Features for User C

As can be seen from Table 4, the detection rate goes down as we decrease the number of features
from our set. Although some earlier approaches used more features to profile the user [21], we
can observe from our results that 16 is a good number of features to make a distinction between
multiple users. Also, incorporating more features in the set, such as keystroke dynamics and
process information, will only marginally improve the results. The amount of effort for logging

 31

additional data, parsing it to extract feature information will subdue the marginal improvement in
detection rate. We would like to point out the fact that the results presented are preliminary and
based on a small set of users (three). It is possible to construct feature vectors for more users and
test the system for its accuracy.

5 Conclusions

In this project, the focus of investigation has been user-level intrusion detection. Key issues have
been studied and important problems plaguing user-level intrusion detection have been
identified. The primary goal has been to address these immediate problems and lay the basic
foundation for further studies and improvements. The main results of this dissertation are
summarized as follows.

Job-Centric Model. Although it is well-known that user command behavior has a cause-
effect relationship, that is, a user executes commands to complete a particular task, there
has been no known effort which tries to capture this aspect well. A job-centric model has
been proposed and validated wherein it is argued that users have a high-level task in mind
and require one or more functionalities to accomplish this task. In our model, this high-
level goal is called a job, the functionalities are called meta-commands and actual
instantiations are called commands. User profile is a combination of all these factors and
not merely a first-order statistical inference from user command trails.

Rule-Based Learning. Anomaly detection by nature is a decision-making process under
partial or incomplete information. Therefore, the nature and amount of information that is
captured is a critical factor. By involving the user in the security process, we gain on
several grounds. First, the user is conscious of the security system in place and legitimate
users tend to cooperate with the IDS. Second, the IDS learns based on the rules specified
by the user during the session-scope query. This greatly reduces the need to make guesses
about the same information and hence, the corresponding errors reduce significantly. At
the same time, an intruder who is not aware of the user’s profile is more likely to commit
errors which appear as substantial deviations from the legitimate user’s profile.

Sequential Hypothesis Testing. Intrusion detection can either be after-the-fact or
proactive. The latter goal is more desirable but it also entails an online detection
mechanism. Online algorithms for user-level intrusion detection are already known but
they are cumbersome to use mainly because thresholds for detection have to constantly
tweaked to obtain near-optimal detection performance. Sequential hypothesis testing is
used because it solves both these issues simultaneously.

Data Collection and Generation. Collection of user command trails is a highly
debatable issue with arguments for and against it. Data is required to train the IDS, but at
the same time there are concerns regarding user privacy. This is a very difficult problem
to solve and therefore, user-level IDS algorithms continue to use existing datasets which
are known to be flawed. A user command data generation mechanism is proposed by
leveraging our job-centric approach and show that realistic data can be generated. This
solves an important problem facing user-level IDS evaluation.

 32

Implementation. Based on the ideas which have been proposed, we have implemented a
preliminary prototype called DRUID over Linux and FreeBSD using ptrace(2) for the
online user command monitor. GUI related modules have been implemented through a
combination of X and gtk libraries. The entire implementation is written using the C
programming language. The code runs exclusively in user-space, hence, becomes highly
portable and requiring no changes to the underlying kernel. This implementation is still
research-grade and there are several known bugs which have to be fixed.

At the later stages of the project, we attempted to port DRUID to a Windows platform. We have
developed a modeling and simulation framework to address multistage attacks in GUI systems
and presented some preliminary results on masquerade detection using GUI feature sets.

Two novel concepts, namely, proactive detection and recovery using attack trees and QoS
throttling to elicit user cooperation for enhanced security have been developed to make DRUID
robust and useful in the field. This part of the research will be an ongoing effort beyond the
duration of this project.

 33

6 Publications and Patents

Publications under this grant include:

1. Upadhyaya S.J., and K. Kwiat, “A distributed concurrent intrusion detection scheme based

on Assertions”, 1999 SCS Symposium on Performance Evaluation of Computer and
Telecommunication Systems, Chicago, IL, pp. 369-376, July 1999.

2. Upadhyaya S., “Attack recognition in distributed systems by assertion checking”, poster

presentation, Information Institute-SAB reception, Air Force Research Laboratory,
Information Directorate, Rome, NY, Dec. 6, 1999.

3. Mantha K., R. Chinchani, S.J. Upadhyaya and K. Kwiat, “Simulation of intrusion detection

in distributed systems”, SCS Summer Simulation Conference, Vancouver, Canada, July 2000.

4. Upadhyaya S., R. Chinchani and K. Kwiat, “A comprehensive reasoning framework for

information survivability”, 2nd Annual IEEE Systems, Man, and Cybernetics Information
Assurance Workshop, West Point, NY, pp. 148-155, June 2001.

5. Upadhyaya S., R. Chinchani and K. Kwiat, “An analytical framework for reasoning about

intrusions”, IEEE Symposium on Reliable Distributed Systems, New Orleans, LA, pp. 99-
108, October 2001.

6. Upadhyaya S., “Attack recognition and shielding in distributed information systems”, poster

presentation, Information Institute-SAB reception, Air Force Research Laboratory,
Information Directorate, Rome, NY, Nov. 5, 2001.

7. Chinchani R., S. Upadhyaya and K. Kwiat, “Towards the scalable implementation of a user

level anomaly detection system”, IEEE MILCOM 2002, Anaheim, CA, October 2002.

8. Upadhyaya S., “A Tamper-Resistant Framework for Unambiguous Detection of Attacks in

User Space Using Process Monitors”, 1st New York State Cyber Security Conference, Utica,
NY, Feb. 2003 (poster).

9. Chinchani R., S. Upadhyaya and K. Kwiat, “A Tamper-Resistant Framework for

Unambiguous Detection of Attacks in User Space Using Process Monitors”, IEEE
International Workshop on Information Assurance, Darmstadt, Germany, pp. 25-34, March
2003.

10. Upadhyaya S., R. Chinchani and K. Kwiat, “New methods for attack detection”, AFRL

Information Institute Workshop, Rome, NY, June 2003 (poster).

 34

11. Garg, A. Shambhu Upadhyaya, Ramkumar Chinchani, Kevin Kwiat, SIMS: A Modeling and
Simulation Platform for Intrusion Monitoring/Detection Systems”, Summer Computer
Simulation Conference 2003, Montreal, Canada, July 2003.

12. Chinchani R., A. Muthukrishnan, M. Chandrasekaran and S. Upadhyaya, “RACOON:

Rapidly Generating User Command Data for Anomaly Detection from Customizable
Templates”, 20th Annual Computer Security Applications Conference, Tucson, AZ,
December 6-10, 2004.

13. Upadhyaya S., K. Kwiat, R. Chinchani and K. Mantha, “Encapsulation of Owner's Intent –

A New Proactive Intrusion Assessment Paradigm”, in Vipin Kumar, Jaideep Srivastava and
Aleksandar Lazarevic, Eds., Managing Cyber Threats: Issues, Approaches and Challenges,
Springer, pp. 221-245, 2005.

14. Ray, Indrajit and Nayot Poolsappasit, “Using Attack Trees to Identify Malicious Attacks

from Authorized Insiders”, Proceedings of the 10th European Symposium on Research in
Computer Security (ESORICS 2005), September 2005.

15. Garg A., V. Sankaranarayanan, S. Upadhyaya and K. Kwiat, “USim: A User Behavior

Simulation Framework for Training and Testing IDSes in GUI Based Systems”, 39th Annual
Simulation Symposium, Huntsville, AL, April 2006.

16. Sankaranarayanan V. and S. Upadhyaya, “A Trust Assignment Model based on Alternate

Actions Payoff”, 4th International Conference on Trust Management, Pisa, Italy, May 2006.

17. Garg A., Ragini Rahalkar, Shambhu Upadhyaya and Kevin Kwiat, “Profiling Users in GUI

Based Systems Masquerade Detection”, to appear in 7th IEEE Information Assurance
Workshop, West point, NY, June 2006.

No patents were filed under this project.

We have benefited from fruitful discussions with Program Manager Kevin Kwiat who visited
Buffalo several times during the course of this project.

7 Ph.D. Theses Supported by the Project

 Ramkumar Chinchani, 2005
 Ashish Garg (to defend in August 2006)
 Vidyaraman Sankaranarayanan (to defend in 2007)

 35

References

[1] M. Namjoo, “Techniques for Concurrent Testing of VLSI Processor Operation”, Proc.
 International Test Conference, 1982, pp. 461-468.

[2] S. Upadhyaya, R. Chinchani and K. Kwiat, “An analytical framework for reasoning about
 intrusions", 20th IEEE Symposium on Reliable Distributed Systems, 2001, pp. 99-108.

[3] D. Ferraiolo and R. Kuhn, “Role Based Access Control”, 15th National Computer
 Security Conference, 1992.

[4] S. Upadhyaya, K. Kwiat, R. Chinchani and K. Mantha, “Encapsulation of
 Owner's Intent – A New Proactive Intrusion Assessment Paradigm”, in Vipin Kumar,
 Jaideep Srivastava and Aleksandar Lazarevic, Eds., Managing Cyber Threats: Issues,
 Approaches and Challenges, Springer, pp. 221-245, 2005.

[5] A. Wald, Sequential analysis, J. Wiley and Sons, New York, 1947.

[6] D. Johnson. Sequential hypothesis testing,
 http://cnx.rice.edu/content/m11242/latest/?format=pdf, 2003.

[7] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast portscan detection using
 sequential hypothesis testing”, IEEE Symposium on Security and Privacy, May 2004.

[8] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M. Theus, and Y. Vardi, “Computer
 intrusion: detecting masquerades”, Statistical Science, 16(1):58–74, 2000.

[9] Ramkumar Chinchani, “A Job-Centric Approach To User-Level Intrusion Detection”,
 Ph.D. Dissertation, Dept. of Computer Science and Eng., University at Buffalo, 2005.

[10] T. Lane, “Purdue UNIX User Data”, http://www.cs.unm.edu/
 terran/research/data/Purdue_UNIX_user_data.tar.gz, 1999.

[11] T. Lane and C. E. Brodley, “Sequence matching and learning in anomaly detection for

computer security”, Proceedings of AAAI-97 Workshop on AI Approaches to Fraud
Detection and Risk Management, pages 43–49, 1997.

[12] M. Schonlau, “Masquerading User Data”, http://www.schonlau.net/intrusion.html, 1998.

[13] Ramkumar Chinchani, A. Muthukrishnan, M. Chandrasekharan and Shambhu
 Upadhyaya, "RACOON: Rapidly Generating User Command Data For Anomaly
 Detection From Customizable Templates", Annual Computer Security Applications
 Conference (ACSAC), 2004.

 36

[14] S. J. Bates., “User Behavior in An Interactive Computer System”, IBM Systems Journal,
 13:1.18, 1974.

[15] Garg A., V. Sankaranarayanan, S. Upadhyaya and K. Kwiat, “USim: A User Behavior
 Simulation Framework for Training and Testing IDSes in GUI Based Systems”, 39th
 Annual Simulation Symposium, Huntsville, AL, April 2006.

[16] Indrajit Ray and Nayot Poolsappasit, “Using Attack Trees to Identify Malicious Attacks

from Authorized Insiders”, Proceedings of the 10th European Symposium on Research in
Computer Security (ESORICS 2005), September 2005.

[17] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection systems”,

ACM CCS, 2002.

[18] R. A. Maxion and T. N. Townsend, “Masquerade detection using truncated command

lines”, International Conference on Dependable Systems and Networks (DSN’02), pages
219–228, June 2002.

[19] T. Joachims, “SVM light: Support Vector Machine," 2004,

http://www.cs.cornell.edu/People/tj/svm light/index.html.

[20] V. N. Vapnik, “The Nature of Statistical Learning Theory”, Springer, 1995.

[21] M. Pusara and C. E. Brodley, “User re-authentication via mouse movements”,

VizSEC/DMSEC '04: Proceedings of the 2004 ACM workshop on Visualization and data
mining for computer security, (Washington DC, USA), pp. 1-8, 2004.

