An Exercise in Vehicle Detection
Michael Del Rose, Jack Reed, William Jackson, and Daniel Hicks
U.S. Army TACOM Research and Development Center

Abstract
In this paper, methods of detecting a vehicle in an image are explored. Digital images are taken from a monocular camera. Image processing techniques are then applied to the resulting single frames in order to create the feature vector. Finally the resulting features are used to classify whether there is a car in the image, or not using support vector machines. These results are compared to those obtained using a neural network. A discussion on techniques to enhance the feature vector and the results from both types of learning machines will be included.

Keywords: support vector machines, neural networks, image processing, pattern recognition, computer vision

1. Introduction
An obvious component of vehicle intelligence is having the ability to determine whether or not there is a car in front of you or not. This paper describes one algorithm to do that. There are other algorithms developed to do this, but in a multi-stage process to create the feature vector is used and then support vector machines to classify it.

Support vector machines (SVM) are wide margin classifiers that solve a quadratic programming problem of maximum separation between two classes. Developed by V. Vapnik, SVM most common uses are classification and regression problems with sparse data sets. In our project, an SVM classifier algorithm is applied to a feature vector. The feature vector was processed from an image set of occupied and empty highway lanes. The images were compiled from a monocular digital camera mounted on the dash of a car. The set is representative of common driving and weather conditions. The results from the SVM are then compared to those from a standard neural network.

Section two describes what support vector machines are and gives a very brief overview of how they work. Section three describes the image processing techniques used to create our feature vector and the SVM pattern recognition procedure to get the feature vector. Section four discusses the architecture of the neural network pattern recognition procedure. The results of both classifiers are given in section five, and section six offers the conclusion.

2. Support Vector Machine Overview

2.1 Introduction
Support vector machine (SVM) theory is a learning machine theory developed by V. Vapnik. It is most commonly used for classification and regression problems using small data sets. Like other learning machines, the distribution of the population does not need to be known. It is sufficient only to know that a distribution exists.

The idea behind many classification problems is to find separating surfaces to divide each data class. SVM classifiers divide data between two classes. Generally, one of the class outputs is represented by 1 and the other by -1.

2.2 Support vector machine process
Figure 2.1 shows a linear separable set of data between two classes. Assume class 1 is represented by the set of data points in the upper right of the graph (the *s). Class -1 will be the data points in the lower left corner of the graph (the Xs).
The goal of the SVM process for classification is to maximize the distance between the separating line and each data set. Figure 2.2 gives a graphical representation of what the SVM algorithm is doing.
The steps of figure 2.2 are as follows:

1.) Draw a convex hull around each data set.
2.) Calculate the distance between each point in one class and each side of the convex hull in the opposing class.
3.) Choose the line, which makes up the smallest distance in part 2. This line will be called the 'Minimum Distance Line' or MDL.
4.) Calculate a line that intersects the midpoint of the MDL and is parallel to the side of the hull used for calculating the MDL. This line is the separating line.

Notice that there are three points (in this case) that determine the separating line: One from class 1 and two from class -1. These three points are considered the support vectors.

The solution to this problem becomes an optimization exercise. For the non-separable case it can be shown that changing the upper limit to the Lagrange multipliers will produce the desired results.

For a more analytical description of support vector machines, please consult the references.

3. Image processing and pattern recognition of the data set

3.1 Introduction
A monocular camera was mounted to the center of the dashboard in a car. Digital images were retrieved of various driving and weather conditions. Pictures of occupied and empty lanes were taken. Examples of typical pictures taken are shown in figures 3.1 and 3.2. Many different image-processing techniques were applied to the images. The following section gives a synopsis of the best pre-processing technique to determine the presence or absence of a vehicle.
3.2 Image pre-processing techniques
Many techniques exist to determine the presence of a car, a road, etc., in an image. Each technique is beneficial in warning a driver of possible hazardous situations. The following pre-processing technique makes use of the assumption that cars produce a great number of horizontal lines compared to naturally occurring objects. In this technique, many parameters were varied. This paper only describes the best method we found.

First, images of various driving conditions were collected. The pictures were grayed and reduced to 400x400 using nearest neighbor so that all images would be of the same size. Since only the middle portion of the picture was needed to determine whether or not the image contains a car, the pictures were trimmed to 250x250. This was done by cutting seventy-five pixels off the top, bottom, and each side. This removed most non-targeted cars (and noise).

The next step was to try to highlight the car if present. A horizontal edge mask was used to get the horizontal edges from the image. Every line six pixels or greater was kept. The rest were regarded as noise and discarded. An image representation of this can be seen in figure 3.3.

We assumed that cars give off lots of horizontal lines, so the set of lines that represent a car should be close together. So, we removed any line that was not within 20 pixels of another line. This reduced a lot of the noise and highlighted the car from the rest of the environment.

The last step was to group the lines into lengths. The reason for this was to reduce the feature vector. A histogram was made to encompass the following line pixel length groups: <1, 11-13, 14-16, 17-19, 20-22, 22>. One final feature of the total number of lines left was added to the feature vector. The feature vector consisted of seven elements per image.
3.3 Pattern recognition using support vector machines

A support vector machine was used to train and test the feature vector. 267 images were used. Of these images, a random sample of twenty percent of car and no car situations were used to train the SVM. The remaining images were used to test the SVM classifier. A quadratic polynomial kernel was used for the SVM. The SVM code used was from Steve Gunn's Matlab toolbox. The results are found in section five.
4. Neural Network Approach

A standard neural network was used to test the results from the support vector machine classifier. The same test data and training data was used. The neural network classifier used a multi-layer architecture with a unipolar sigmoid activation function for each of its neurons. The hidden layer had five neurons and the outer layer had one neuron (since the output is binary). A diagram of the neural network architecture is shown in figure 4.1.

5. Results

The support vector machine classifier accurately classified 100 percent of the images using the above criteria for the feature vector. The neural network only classified about 89 percent with 98 percent correctly classifying car images and only 81 percent correctly classifying no car images. When the feature vectors changed, such as the minimum line pixel length changed, the SVM did not do as well, but it still outperformed the neural network.

6. Conclusion

It was expected that the support vector machine would out perform the neural network since we are working with a small data set. Although we tried to capture many driving and weather conditions, we could not get them all. Adding more data into the system may prove that neural network classifiers will outperform SVM classifiers. Future work should include a much larger data set. Also, the SVM classifier algorithm discussed should be compared against other, more accepted, algorithms.

7. Acknowledgement

We would like to thank the National Automotive Center (NAC) for providing funds to continue the research on this project. We would also like to thank Dr. Dave Gorsich for his guidance on this project.

8. References

OPSEC REVIEW CERTIFICATION
(AR 530-1, Operations Security)

I am aware that there is foreign intelligence interest in open source publications. I have sufficient technical expertise in the subject matter of this paper to make a determination that the net benefit of this public release outweighs any potential damage.

Reviewer: Jack G. Parks
Title: ASSOCIATE DIRECTOR
Grade: GS-15
Date: 23 July '01

Description of Information Reviewed:

Title: AN EXERCISE IN VEHICLE DETECTION

Author/Originator(s): JACK REED, MICHAEL DEL ROSE, WILLIAM JACKSON, DANIEL HICKS

Publication/Presentation/Release Date: AUGUST 7, 2001

Purpose of Release: FOR THE 2001 6TH IUC

A bstract, summary, or copy of the information reviewed is available for review.

Reviewer's Determination (check one)

1. Unclassified Unlimited.
2. Unclassified Limited, Dissemination Restrictions

3. Classified. Cannot be released, and requires classification and control at the level of

Security Office (AMSTA-CM-XS):
Concur/Nonconcur: Signature: 25 Jul 01

Public Affairs Office (AMSTA-CM-PI):
Concur/Nonconcur: Signature: 27 Jul 01