Unsteady Fluid Dynamic Loads

Dr. Paris Genalis
AT&L Chair
Fort Lesley J. McNair
Washington, DC 20319-5066
USA

genalisp@NDU.edu

SYMPOSIA DISCUSSION

REFERENCE AND/OR TITLE OF THE PAPER: Keynote Address #1

DISCUSSOR’S NAME: C. Ciray
AUTHOR’S NAME: P. Genalis

QUESTION:
Can you elaborate on ship based heavy lift aircraft? Should the aircraft carrier be much bigger than the present ones?

AUTHOR’S REPLY:
No – C-120 size aircraft carriers, about 1000 foot deck, but need to eliminate carrier island.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 APR 2005</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsteady Fluid Dynamic Loads</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT&L Chair Fort Lesley J. McNair Washington, DC 20319-5066 USA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>See also ADM201978, Flow-Induced Unsteady Loads and the Impact on Military Applications (Charges instables induites par ecoulement et impact sur les applications militaires)., The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>UU</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>
Unsteady Fluid Dynamic Loads

Dr. Paris Genalis
National Defense University
April 25, 2005
Unsteady Fluid Dynamic Loads

Objective

• To provide a perspective on the overall strength of research, development and design capabilities that currently exist in the U.S. regarding Naval Architecture - and how the impact of the work each of you is doing in unsteady load prediction influences those capabilities
Influencing Factors

• Academic Stream of Input
• Commercial Environment
• Security Environment
Academic Stream of Input

• INFO – NANO – BIO
 – Great emphasis at notable U.S. universities
 – Promise of actively fermenting research
 – Attracts talent (students, faculty researchers) based on excitement, growth, funding, and promise of high salaries

• Little emphasis placed on “MACRO”
Academic Stream of Input

• MACRO
 – Where all “Info – Nano – Bio” find application
 – Defense and commerce still rely on platforms
 • they have shapes, motion, structure of modern materials, operate in an environment that imposes loads
 – Very challenging problems
 • Require all capability developed in these other disciplines, and then some
 • Challenge other disciplines with new problem formulation and ways to look at problems

• Every bit as exciting
Academic Stream of Input

• MACRO
 – BUT WE HAVE NOT DONE A GOOD JOB OF CONVEYING THIS FACT TO PEOPLE OUTSIDE OUR COMMUNITY
 – Guilty of drifting to the abstract and away from the realities of design
 – Decoupling from the customer never pays off.
 – Need to take remedial action
 • Attract talent – takes effort, time
 • Work with customer – develop design tools
The New Commercial Environment

- U.S. shipbuilding business has not been commercially competitive. (Strong in military ship domain)
- International shipbuilding has seen a boom in fast ship designs – ferries with advanced hull shapes.
 - Usually coastal restrictions apply, somewhat easing the demand for advanced load predictions
- Aircraft business enjoys robust international competition (Boeing and Airbus)
 - Loads come from one fluid – no free surface complications
The New Security Environment

- US is increasingly recognizing 4 security constructs
 - Traditional (strategic advantage)
 - Irregular
 - Disruptive
 - Catastrophic
- The latter 3 are NOT “lesser included cases”
New Security Environment

• Defense Science Board studies
 – Carrier of the future
 – Seabasing
 – Mobility
• Mobility Requirements Study
 – QDR 2005
• All identified need for new aircraft and ships
New Security Environment

• Require new kinds of platforms (in addition to traditional ones)
 – More (cheaper), smaller, faster, netted ships
 • Advanced hull forms (similar to commercial, inspired by...,)
 • Steel may be too heavy
 • Need to be open-ocean capable
 • Finite life vs. economic replacement
 • Load prediction is key
 – Ship-based heavy lift aircraft
The Challenge – Staying close to the customer

• Reliable, accurate load estimates needed for design

• Today – accurate probably means many hours of computing (Navier Stokes solvers necessary); potential flow solutions are quick but not up to task for ship life prediction.

• Always – designers need quick turn around of analysis results; many iterations
The Challenge – ONR Response

• National Naval Responsibility – Naval Engineering program
 – Emphasis on design tools of all kinds - broader than just load prediction
 – Level of sophistication of tools can (must?) be transparent to user (also open to other researchers)

• New program on exploring the limits of numerical power of highly parallel machines in load prediction