A Computational Library Using P-adic Arithmetic for Exact Computation with Rational Numbers in Quantum Computing

Final Report (Grant # FA9550-05-1-0363)

Chao Lu
Computer & Information Sciences
Towson University
Nov. 30, 2005
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any such instruction, there is no penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From - To)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>A p-adic Computational Library for fast Computation in Quantum Computing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA9550-05-1-0363</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>6d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chao Lu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6e. TASK NUMBER</th>
<th>6f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towson University</td>
<td></td>
</tr>
<tr>
<td>8000 York Rd.</td>
<td></td>
</tr>
<tr>
<td>Towson, MD 21252</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR'S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Office of Scientific Research</td>
<td>AFOSR</td>
</tr>
<tr>
<td>4015 Wilson Blvd</td>
<td></td>
</tr>
<tr>
<td>Mail Room 713</td>
<td></td>
</tr>
<tr>
<td>Arlington, VA 22203</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR'S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution A; distribution unlimited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many classes of physical problem can be models through the use of sets of linear equations. The solution of the sets of equations is equivalent to calculation of a matrix inverse or generalized inverse, or to the reduction of the matrix to some type of canonical form, including determination of characteristic equation. Conventional machine computation relies on p-ary (for a radix number p such as 2 or 10), or floating-point computation, poor conditioning in connection with round-off error can result in unreliable answers. For scientific computations related to quantum physics, a possible approach is to use techniques of exact linear computation.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>U</td>
<td>U</td>
<td>Chao Lu</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>U</td>
<td>U</td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>U</td>
<td>U</td>
<td>410404-3701</td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8/98)

Prescribed by ANSI Std. 239.18
Table of Contents

1. **Summary and Related Computational Issues**
 1.1 Project Summary
 1.2 Computational Issues

2. **Program Description**
 2.1 Program Interface
 2.2 Program Modules
 2.2.1 Fractional Number to P-adic Sequence Conversion
 2.2.2 P-adic Sequence to Fractional Number Conversion
 2.2.3 Single Number Addition
 2.2.4 Single Number Subtraction
 2.2.5 Single Number Multiplication
 2.2.6 Single Number Division
 2.2.7 Matrix Addition
 2.2.8 Matrix Subtraction
 2.2.9 Matrix Multiplication
 2.2.10 Square Matrix Inverse
 2.2.11 Matrix Addition (I/O with FILE)
 2.2.12 Matrix Subtraction (I/O with FILE)
 2.2.13 Matrix Multiplication (I/O with FILE)
 2.2.14 Square Matrix Inverse (I/O with FILE)
 2.2.15 Detail Description of some Functions
 2.3 Source Code Map

3. **Results Analyses and Comparisons**
 3.1 Some Test Examples and Results
 3.2 Comparison of our Results with Matlab Symbolic Toolbox

4. **Future Work**
1. Summary and Related Computational Issues

1.1 Project Summary
In many scientific fields, physical problems can be modeled by a set of linear equations. Solving the linear equations is equivalent to finding the matrix inverse or generalized inverse, to reducing the matrix to a specified canonical form, or to determining the characteristic equation. If using conventional p-ary or floating-point arithmetic for such computations, the cumulative round off errors may make the results unreliable. For scientific computations related to quantum physics, one is interested in exact linear computation. The computational complexity of the rational arithmetic approach is very expensive and laborious, and it is a very challenging computer science problem to deal with dynamic memory allocation during the computing process. Many researchers have invested a lot of time to develop algorithms. Computational packages have been made available for the scientific research community. NTL written by Victor Shoup [4] is the one we have picked as a computational vehicle to develop a rational matrix computation library. The alternative approach represents all integers and rational numbers in terms of a set of residues with respect to a prime number and its powers, called a p-adic number system. The p-adic arithmetic has many attractive features [1].

We have developed algorithms of matrix operations with rational numbers by representing numerator and denominator with arbitrary length integers; and designed algorithms using modulo arithmetic of the p-adic number system, where all numbers are represented by their p-adic sequence, all arithmetic operations are carried out in the p-adic domain, then the results are converted back to rational numbers. We have built an Exact Scientific Computational Library (ESCL) using both approaches. The first approach serves as the basis for comparison and the main effort has been on the second approach. The algorithms are tested and compared with the MATLAB Symbolic Toolbox for small integers. The ESCL is implemented in C++.

We investigated various ways to improve computation speed. First, selecting an optimal prime number for p-adic expansion. We did experiments on random rational matrices with different prime numbers (P) and record the execution time and tried to get the right prime number by analyzing the experimental results. Second, choose the right length M of the p-adic expansion for the rational numbers in the matrix. The following chart shows that when P gets bigger, M gets smaller (blue curve), while the runtime stays relatively unchanged (red curve).
Prime number range (2,1999).
Matrix size 8 by 8.
Note: M-estimation is the M/100.

Both the experiments and the theory showed that the runtime is related to the length of p-adic sequence (M). A large prime P will need a smaller M, which in turn will cut the computational complexity. The M and P are related as:

\[m = 2 \left\lfloor \log(\delta \lambda^{-1}) / \log p \right\rfloor, \]

where the \(\delta = \prod \lambda_i \) and \(\lambda_i \) is the Euclidean length of the ith column of the matrix.

A few examples are given here for comparison of runtime.

Example 1:
\[\frac{1}{99999999999999999999} + 2/199999999999999999999 \]

<table>
<thead>
<tr>
<th>Prime</th>
<th>M</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>169</td>
<td>20 ms</td>
</tr>
<tr>
<td>8971</td>
<td>46</td>
<td><1 ms</td>
</tr>
</tbody>
</table>

Example 2:
\[\frac{1}{9876543211234567} \times 9876543211234567/2 \]

<table>
<thead>
<tr>
<th>Prime</th>
<th>M</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>100</td>
<td>316 ms</td>
</tr>
<tr>
<td>8707</td>
<td>60</td>
<td>120 ms</td>
</tr>
</tbody>
</table>
Here is the flow chart of getting the right “M” from an estimated “P”, then use equation (1) to find P with the M.

1.2 Computational Issues

By November 2005, we have completed the following functions:
1) Fractional number to p-adic sequence, and its inverse.
2) Single number operations (addition, subtraction, multiplication and division) in the p-adic field.
3) Matrix operations (addition, subtraction, multiplication and inverse) in the p-adic field.
4) Matrix operations (addition, subtraction, multiplication and inverse) in the p-adic field with I/O file support.

For all operations in p-adic field, we need to deal with the offset first. Just like we add two numbers with different exponents, we need to change them to the same format first. (eg. $5\times 10^5 + 2\times 10^3 = 500000 + 2000 = 502000$) We make all the vectors with the offset=0, which is easier to calculate. If the offset is not equal to zero, we need to shift the p-adic sequence. Here is an example.

$[1/3]_{p=5} = [1, 2, 3, 1, 3]$, the offset (first digit) = 1, after the shift, we get $[0, 0, 2, 3, 1]$

Arithmetic Operations:
1) Addition/subtraction
The algorithm for addition aligns the p-adic point of the mantissa, retaining the lower exponent and finds the sum digit s_j and carry digit c_{j+1} from the knowledge a_j, b_j and
Thus \(s_i = (a_i + b_i + c_i) \mod p \)

for \(i = 0, 1, 2, \ldots, (r-1) \)

\[
c_{i+1} = 1, \quad \text{if} \quad a_i + b_i + c_i \geq p
\]

=0, otherwise

\(c_0 = 0 \), and ignore \(c_r \).

Subtraction is realized as the complement of addition.

Let us see this example.

Prime=5;

\[
\frac{1}{3} + 2/9 = [0231313131313131] \\
+ [030124320124320] \\
= [004201243201243] \\
= 5/9
\]

Here is another example whose offset is not zero.

Prime=5;

\[
\frac{25}{3} + \frac{1}{7} = [2231313131313131] \\
+ [0330214230214230] \\
= [0002313131313131] \\
+ [0330214230214230] \\
= [0332032412032412] \\
= 178/21
\]

2) Multiplication

This is similar to \(p \)-ary multiplication, except that the product is developed to only lower \(r \) digits (modulo \(p^r \)). The algorithm consists of first forming the cross-products of the mantissa,

\[
P_y = b_i a_j, \quad 0 \leq i \leq (r-1)
\]

where \(j = 0, 1, \ldots, r-1 \), and the partial product \(P_i \) and product \(P \),

\[
P_i = \sum_{j=0}^{r-1} P_y \Delta(j)
\]

\[
P = \sum_{i=0}^{r-1} P_i \Delta(i)
\]

where \(\Delta(X) \) denotes a right shift of \(X \) digits. The offset of the result is offset1+offset2.

Let us see this example. \(2/3 \times 1/6 \), prime=5.

\[
041313131313 \cdots \\
01404040404040 \cdots
\]

00000000000000
3) Multiplicative Inverse and Division

Given that $0 \leq m_{\beta} \leq P^r - 1$ and $GCD \left(p, m_{\beta} \right) = 1$, $m_{\beta}^{-1} \mod p^r$ can be obtained very simply by a recursive solution of the congruence with respect to p.

Let $m_{\beta} = b_0, b_1, \ldots, b_{r-1}$ ($b_0 \neq 0$) and $m_{\beta}^{-1} = q_0, q_1, \ldots, q_{r-1}$. The q_i can be obtained by solving for q_i in

$$m_{\beta} \sum_{i=0}^{r-1} q_i p^i \equiv 1 \mod p^r.$$

Thus, starting with $q_0 = b_0^{-1} \mod p$, q_k ($k \geq 1$) is computed by solving for

$$(q_k p^k + \sum_{i=0}^{k-1} q_i p^i)b \equiv 1 \mod p^{k+1}.$$

This leads to the following deterministic trial-error-free division algorithm, the quotient, digit by digit, proceeding from the lower index to the higher index position.

The following is the algorithm for finding $m_a \cdot m_{\beta}^{-1}$.

Let

- R_0 zero-th partial remainder or initial numerator ($=1$ for finding b^i);
- R_i ith partial remainder;
- R_{ii} ith positional digit of R_i.

Then

$$q_i = R_{ii} b_0^{-1} \mod p$$
for \(i=0, 1, 2, \ldots, (r-1) \) and \(R_{i+1} = R_i - q_i b^\Delta(i) \), where \(\Delta(i) \) is the right shift by \(i \) digits.

Note that this algorithm can be applied for any numerator by setting \(R_0 = 1 \) and all other digits of \(R_j \) to zero, one can obtain the multiplicative inverse of \(m_p \). The offset of the result is \(\text{offset1} - \text{offset2} \).

As an example, we divide \(2/3 \) by \(1/12 \). In this example, we do not include the offset.

We have

\[
\begin{align*}
2/3 &= .4131313 \\
1/12 &= .3424242
\end{align*}
\]

The first digit of the divisor is \(b_0 = 3 \) and its multiplicative inverse modulo 5 is \(b_0^{-1} \pmod{p} = 3^{-1} \pmod{5} = 2 \).

The first digit of the partial remainder (which, in the first step, is the dividend) is \(a_0 = 4 \), which gives

\[
\begin{align*}
3 &= b_0^{-1} d_0 \pmod{p} = 2 \cdot 4 \pmod{5} = 2.
\end{align*}
\]

Thus, we obtain the first digit of the quotient. We then update the partial remainder by subtracting 3 times the divisor from it.

\[
\begin{align*}
.3 &- .3424242 \\
\cdots &.4131313 \\
\cdots &.1111111 \\
\cdots &.0342424 \\
\cdots &.0202020 \\
\cdots &.0000000
\end{align*}
\]

To obtain the second digit, we multiply \(b_0^{-1} \) by the first digit of the partial remainder and reduce the result modulo \(p \).

\[
a_1 = 2 \cdot 3 \pmod{5} = 1.
\]

Thus, the second step of the division procedure gives us

\[
\begin{align*}
.31 &- .3424242 \\
\cdots &.0342424 \\
\cdots &.0202020 \\
\cdots &.0000000
\end{align*}
\]

This procedure produces the partial remainder, which is zero, hence we terminate the expansion. In general, this will not happen and we will have to continue until the period is exhibited.

2. Program Description

2.1 Program Interface
The user inputs the operation number first and then follows the instructions to do the operation.

2.2 Program Modules
In this section, we will give the detail description of each operation module. Note that the function with the star mark "*" means that you can find the detail description in that part of the program.

2.2.1 Fractional Number to P-adic Sequence Conversion
Input: fractional number;
Output: The smallest prime number selected by the program, the minimal number of digits for p-adic sequence, the p-adic sequence and the runtime.
Input Operation
Number “1”

singleInput() *

Get 1) the numerator and denominator vector
2) prime number
3) m(the minimal number of digits which ensure
the unique of the padic sequence transform)

Timer starts

matrix2padic() *

Get the padic sequence.

Timer stops

Output the padic
sequence and the runtime

Here is an example of this operation.

Please enter the operation number (such as 1 or 2): 1
Please enter the Fractional number: 1/333333
The prime number is: 5
The minimal digits number of padic sequence is: 27
The P-adic sequence for this fractional number is:
[10 2 4 4 4 4 2 1 2 3 4 4 1 2 3 1 0 1 2 3 2 3 1 3 1 0 1]
The computation time is 3 Second(s).

2.2.2 P-adic Sequence to Fractional Number Conversion
Input: P-adic sequence, prime number;
Output: The fractional number and the runtime.
Here is an example of this operation.

Please enter the operation number(such as 1 or 2): 2
Please enter the p-adic sequence(such as [0 1 2 3 4]): [0 2 3 1 5]
Please enter the prime number for this p-adic sequence: 7
The result fractional number is: 9/43
The computation time is 0 Second(s).

2.2.3 Single Number Addition
Input: Two fractional numbers that need to be added;
Output: The smallest prime number selected by program, the minimal number of digits for p-adic sequence, the p-adic sequence of the addition result, the result converted back in fraction number and the runtime.
Input Operation
Number “3”

numbersInput() *

Get 1) p-adic sequence for the two numbers
2) prime number
3) m (the minimal number of digits which ensure the unique of the p-adic sequence transform)

Timer starts

vectorAdd() *

Get the p-adic sequence for result.

R.frac()

Get the fraction for the result

Timer stops

Output the fraction and the runtime

2.2.4 Single Number Subtraction
Input: Minuend and subtrahend.
Output: The smallest prime number selected by program, the minimal number of digits for p-adic sequence, the p-adic sequence for the subtraction result, the result converted back in fraction number
and the runtime.

The only difference with Single Number Addition (2.2.3) is that we use \texttt{vectorSub()} instead of \texttt{vectorAdd()} to do the subtraction.

2.2.5 Single Number Multiplication
Input: Two numbers.
Output: The smallest prime number selected by program, the minimal number of digits for p-adic sequence, the p-adic sequence of the multiplication result, the result converted back in fraction number and the runtime.

The only difference with Single Number Addition (2.2.3) is we use \texttt{vectorMul()} instead of \texttt{vectorAdd()} to do the multiplication.

2.2.6 Single Number Division
Input: Two numbers.
Output: The smallest prime number selected by program, the minimal number of digits for p-adic sequence, the p-adic sequence of the division result, the result converted back in fraction number and the runtime.

The only difference with Single Number Addition (2.2.3) is we use \texttt{padicDivision()} instead of \texttt{vectorAdd()} to do the division.

2.2.7 Matrix Addition
Input: Two matrixes.
Output: The smallest prime number selected by program, the minimal number of digits for p-adic sequence, the p-adic sequence of the matrix addition result, the result converted back in fractional matrix and the runtime.
Input Operation
Number “7”

Get 1) padic sequence for the two matrixes
2) prime number
3) m(the minimal number of digits which ensure the unique of the padic sequence transform)

Timer starts

matrixAdd() *

Get the padic sequence for result matrix.

matrix2frac() *

Get the fraction matrix for the result

Timer stops

Output the fraction matrix and the runtime
Here is an example of this operation.

2.2.8 Matrix Subtraction
Input: Minuend matrix and subtrahend matrix.
Output: The smallest prime number selected by program, the minimal number of digits for \(p \)-adic sequence, the \(p \)-adic sequence matrix for subtraction result, the result in fraction matrix and the runtime.

The only difference with Matrix Addition (2.2.7) is we use matrixSub() instead of matrixAdd() to do the subtraction.

2.2.9 Matrix Multiplication
Input: Two numbers.
Output: The smallest prime number selected by program, the minimal number of digits for \(p \)-adic sequence, the \(p \)-adic sequence matrix of the multiplication result, the result converted back in fractional matrix and the runtime.
The only difference with Matrix Addition (2.2.7) is we use matrixM() instead of matrixAdd() to do the multiplication.

2.2.10 Matrix Inverse
Input: One square matrix.
Output: The smallest prime number selected by program, the minimal number of digits for p-adic sequence, the p-adic sequence matrix of the inverse result, the result converted back in fraction matrix and the runtime.

The only difference with Matrix Addition (2.2.7) is we use Determinant(), Transpose(), padicDivision() and cofactor() instead of matrixAdd() to do the inverse calculation. The logic in this part is the same as the normal matrix inverse.

2.2.11 Matrix Addition (I/O with FILE)
Input: No need to input the specific number. The input can be founded in file “Input.txt”.
Output:
1) On the screen:
The smallest prime number selected by program, the minimal number of digits for p-adic sequence, the p-adic sequence matrix of the addition result, and the result converted back in fraction matrix with the runtime.
2) In the file: You can find the final result--fraction matrix in the file.
Input Operation Number “11”

matrixInputFile() *

Get 1) padic sequence for the two matrixes
2) prime number
3) m (the minimal number of digits which ensure the unique of the padic sequence transform)

Timer starts

matrixAdd() *

Get the padic sequence for result matrix.

matrix2frac() *

Get the fraction matrix for the result

Timer stops

Output the fraction matrix and the runtime

“Out.txt”.

Here is the example of this operation.
Please enter the operation number (such as 1 or 2): 11
The proper prime number for them is: 3
The minimal number digit of p-adic sequence is: 27

The Padic Matrix for the Result is:

\[
\begin{bmatrix}
1 & 2 & 0 \\
2 & 0 \\
1 & 1 & 0 \\
2 & 1 & 0 \\
0 & 0 & 2 & 0 \\
1 & 2 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix},
\]

The Fractional Matrix is:

\[
\begin{bmatrix}
2/1, 3/1, 4/1, 5/1 \\
6/1, 7/1, 8/1, 9/1 \\
\end{bmatrix}
\]

The computation time is 0 Second(s).

2.2.12 Matrix Subtraction (I/O with FILE)
Input: Input.txt
Output: The smallest prime number selected by program, the minimal number of digits for p-adic sequence, the p-adic sequence matrix of the subtraction result, the result converted back in fraction matrix and the runtime.

The only difference with Matrix Addition (2.2.11) is we use matrixSub() instead of matrixAdd() to do the subtraction.

2.2.13 Matrix Multiplication (I/O with FILE)
Input: Input.txt
Output: The smallest prime number selected by program, the minimal number of digits for p-adic sequence, the p-adic sequence matrix for multiplication result, the result in fraction matrix and the
The only difference with Matrix Addition (2.2.11) is we use matrixM() instead of matrixAdd() to do the multiplication.

2.2.14 Matrix Inverse (I/O with FILE)
Input: Input.txt
Output:
1) On the screen:
The smallest prime number selected by program, the minimal number of digits for p-adic sequence, the p-adic sequence matrix for addition result, the result in fraction matrix and the runtime.
2) In the file: Out.txt.

2.2.15 Detail description of some functions

matrix2padic: Convert to the p-adic sequence matrix.

matrix2frac: Convert to the fraction matrix.

singleInput: Deal with the input process for the translation from single fraction to p-adic sequence.

numbersInput: Deal with the input process for the single numbers’ operation.

matrixInput: Deal with the input process for the matrix’s operation.

matrixInputFile: Deal with the input process for the matrix’s operation with file.

matrixInputFileSingle: Deal with the input process for the matrix’s inverse operation with file.

matrixOutputFile: Deal with the output process for the matrix’s operation with file.

matrixAdd: Input two padic matrix, give out the addition result also in the format of p-adic matrix.

matrixSub: refer to MatrixAdd

matrixM: refer to MatrixAdd

matrixEleM: Input one padic matrix and one fraction, give out the addition result in the format of padic matrix.

vectorAdd: Input two padic sequence, give out the addition result also in the format of padic sequence.

vectorSub: refer to vectorAdd

vectorMul: refer to vectorAdd

vectorWoutOffAdd: The only difference with vectorAdd is that the two padic sequence has no offset.

vectorShift: Shift the given vector to right n digits, n is also a given number. Use zero to fill in the blank digits.

vectorShiftwOff: Shift the given vector(exclude the first digit) to right n digits, n is the offset of the vector which is the first digit in the vector. Use zero to fill in the blank digits.
padicDivision: Single p-adic vector division.

Determinant: Calculate the determinant of the matrix. If the determinant matrix is zero, we exit the program. Otherwise, continue the calculation.

Cofactor: Calculate the matrix with elements that are the cofactors, term-by-term, of a given square matrix.

Transpose: Transpose the cofactor matrix to get the inverse of the original matrix.

1) matrix2padic

Input the vecNum, vecDen, numdig, prime

Get the “i”th element of vecNum and vecDen.
Assign them to frac_padic R.

R.padicExpand()

Assign the padic sequence to one row of padic matrix.
2) matrixInput

Prompt the user to input the First Matrix elements.

Get the vecNum1, vecDen1, row1 and col1.

Prompt the user to input the Second Matrix elements.

Get the vecNum2, vecDen2, row2 and col2.

Check the row number and column number of both matrixes. Meet the row number and column number requirement for the two matrixes?

Yes

Merge vecDen1 and vecDen2. Get the vecTden.

selectP(vecTden);

Get the minimal proper prime according to vecTden.

mEstimate()

According to (vecNum1,vecDen1,prime,row1, col1) and (vecNum2,vecDen2,prime,row2, col2), get two m (m1,m2) through mEstimate().

Choose the smaller one from m1 and m2 as m (the minimal number digit of padic sequence).

matrix2padic()

Use matrix2padic() to translate two matrixes to two padic matrixes separately.
2.3 Source code map

<table>
<thead>
<tr>
<th>File Name</th>
<th>Main Function</th>
<th>Include</th>
</tr>
</thead>
<tbody>
<tr>
<td>PadicComputation.cpp</td>
<td>1) Main() of the program 2) I/O process</td>
<td>SingleInput()</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NumbersInput()</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MatrixInput()</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MatrixInputFile()</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MatrixOutputFile()</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MatrixInputFileSingle()</td>
</tr>
<tr>
<td>RationalNumber.cpp</td>
<td>The data structure and operation for RationalNumber.</td>
<td></td>
</tr>
<tr>
<td>Frac_padic.cpp</td>
<td>Frac2padic, padic2frac.</td>
<td></td>
</tr>
<tr>
<td>MatrixASM.cpp</td>
<td>Calculate the matrix addition, subtraction and multiplication.</td>
<td></td>
</tr>
<tr>
<td>MatrixInv.cpp</td>
<td>Calculate the matrix inverse.</td>
<td></td>
</tr>
<tr>
<td>MatrixCal.cpp</td>
<td>Transform the matrix between fraction and Padic sequence.</td>
<td></td>
</tr>
<tr>
<td>Division.cpp</td>
<td>Calculate the padic sequence division.</td>
<td></td>
</tr>
<tr>
<td>SelectP.cpp</td>
<td>Select the proper prime. (Old version)</td>
<td></td>
</tr>
<tr>
<td>PredictM.cpp</td>
<td>Select the minimal number digit of padic sequence.</td>
<td>mEstimate()</td>
</tr>
<tr>
<td></td>
<td>Estimate the prime number based on the assumption of m=1.</td>
<td>mEstimate2()</td>
</tr>
<tr>
<td>Zztools.cpp</td>
<td>Transform the input into numerator/denominator vectors.</td>
<td></td>
</tr>
</tbody>
</table>

3. Results Analyses and Comparisons

3.1 Some Testing examples and Results
Note: In the following examples, we use “p” as the prime number selected by the program and “m” as the digit number of p-adic sequence.

1) frac2padic

<table>
<thead>
<tr>
<th>Fraction</th>
<th>p</th>
<th>m</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/1</td>
<td>3</td>
<td>11</td>
<td>[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]</td>
</tr>
<tr>
<td>1/0</td>
<td>7</td>
<td>17</td>
<td>The denominator CAN NOT be zero. Please try again.</td>
</tr>
<tr>
<td>-23/15</td>
<td>7</td>
<td>17</td>
<td>[0 5 0 5 3 6 0 5 3 6 0 5 3 6 0 5 3]</td>
</tr>
<tr>
<td>1/1000000</td>
<td>3</td>
<td>37</td>
<td>[0 1 0 0 1 2 0 0 0 0 1 1 1 0 1 0 1 1 2 0 1 2 1 1 0 1 1 1 2 0 0 0 0 0 1 2 1]</td>
</tr>
</tbody>
</table>

2) padic2frac
<table>
<thead>
<tr>
<th>Padic sequence</th>
<th>p</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>[7 2 3 1]</td>
<td>5</td>
<td>78125/3</td>
</tr>
<tr>
<td>[0 1 2 1 3 15 6 9 21]</td>
<td>23</td>
<td>-6910333/3444</td>
</tr>
<tr>
<td>[0 199 233 123]</td>
<td>241</td>
<td>55647/35</td>
</tr>
<tr>
<td>[0 2 3 1 3]</td>
<td>5</td>
<td>1/3</td>
</tr>
</tbody>
</table>

3) Single number addition
100000 + 2000000000 = 2001000000/1
1/233 + 4/67 = 999/15611
-1799/3 + 200/7 = -11993/21

4) Single number subtraction
100000000000 - 1 = 99999999999
1/7777777777 - 2/3 = -518518517/7777777777

5) Single number multiplication
0 * 1/3 = 0/1
-1/333 * 900 = -100/37
100000000000 * 56 = 560000000000

6) Single number division
0/233 = 0/1
6/2 = 3/1
100000000000 / (1/56) = 560000000000

7) Matrix addition
\[
\begin{bmatrix}
0,100 & [199999999999,1/33] & [199999999999/1,3301/33] \\
2,99999 & [199999999999,1/33] & [-199999999999/1,3299/33] \\
\end{bmatrix}
\]

8) Matrix subtraction
\[
\begin{bmatrix}
0,100 & [199999999999,1/33] & [-199999999999/1,3299/33] \\
2,99999 & [199999999999,1/33] & [199999999999/1,3301/33] \\
\end{bmatrix}
\]

9) Matrix multiplication
\[
\begin{bmatrix}
10000,22/3 & [900,33/7] & [8999846/1, 330462/7] \\
-100000/3,3 & [-21, 9] & = -30000063/1, -1099811/7 \\
\end{bmatrix}
\]

10) Matrix inverse
\[
x=[1,2,4,6; \
\ -2,3,7,9, \
\ 1,2,3,6, \
\ 2,3,5,-9];
\]
\[
x^-1=[5/7,-2/7,-2/7,0 \
\ -2/1,1/6,2/1,1/6 \
\ 1/1,0,-1/1,0 \
\ 1/21,-1/126,1/21,-1/18]
\]
3.2 Comparison of our program’s results and Matlab symbolic results

In this part, we will compare the two programs in the following three ways.

1) When the data sizes are small.

When the data sizes are small, the results are the same.
\[
x = \begin{bmatrix} 5/7 & 9/3 & 0 \\ -9/8 & 0 & 3/8 \\ -2/3 & 2/3 & 3/4 \\ 5/6 & -7/8 & 0 \end{bmatrix}; \quad y = \begin{bmatrix} 5/7 & 2/3 & 0 & 2/3 \\ 7/8 & 0 & 5/3 & 6/5 \\ 2/3 & 2/5 & 3/4 & 7/8 \end{bmatrix};
\]

Our Program Result for \(x \times y \) =
\[
\begin{bmatrix} 1229/392, & 10/21, & 5, & 428/105 \\
-31/56, & -3/5, & 9/32, & -27/64 \\
17/28, & -13/90, & 241/144, & 1457/1440 \\
-229/1344, & 5/9, & -35/24, & -89/180 \end{bmatrix}
\]

Matlab symbolic \(x \times y = \)
\[
\begin{bmatrix} 1229/392, & 10/21, & 5, & 428/105 \\
-31/56, & -3/5, & 9/32, & -27/64 \\
17/28, & -13/90, & 241/144, & 1457/1440 \\
-229/1344, & 5/9, & -35/24, & -89/180 \end{bmatrix}
\]

2) When the data sizes are large

When the data sizes are large, the results are different. The special data set chosen can easily show that our result is correct, while the Symbolic Toolbox is not.

Here is an example.
\[
x = \begin{bmatrix} 123456789987654321/77777777777777777777 & 88888888888888888888/33 \\
-123456789987654321 & 88888888888888888888/33 \end{bmatrix};
\]
\[
y = [77777777777777777777/123456789987654321, 1 \\
33/88888888888888888888, 0];
\]

Our Program Result for \(x \times y \) =
\[
\begin{bmatrix} 2 & 111111111/700000000007 \\
-77777777777777777777 & -123456789987654321 \end{bmatrix}
\]

Matlab symbolic \(x \times y = \)
\[
\begin{bmatrix} 81129638414606679562133097328419/40564819207303340847894502572032 \end{bmatrix}
\]
3) Runtime comparison
We have tested many examples, the results show that our programs run faster than Matlab codes for large matrix sizes, while Matlab still give the correct results, but slower than that of Matlab symbolic result when the matrix size is small. When the rational numbers have more than 20 digits, Matlab Symbolic toolbox does not give the right results, the timing is meaningless. The ESCL library is using ARBITRARY length integer type \(\mathbb{Z}/p\mathbb{Z} \), and all the calculation is carried out in the \(p \)-adic field. The runtime in our program highly depends on several factors. First of all, it requires an appropriate number \(M \), “the minimal number of digits for \(p \)-adic sequence”. This number can be given as the smallest number only when deal with single number.

4. Future Work
Improve the EstimateMo(). Currently, the \(m \) estimation cannot always work well. In some situation, they cannot give the sufficient number of digits for \(p \)-adic sequence for exact computation. To avoid this kind of error, we have increased its size to plus 30 and more. We will continue to work on this problem.

We will investigate specific applications of ESCL on \(p \)-adic cyclic coding theory and quantum computational Weyl-Heisenberg representations.

References

[4] Shoup, V \textit{NTL library} at: \url{http://shoup.net/ntl/}
