PERFORMANCE ANALAYSIS OF POLYMORPHOUS COMPUTING ARCHI-

TECTURES

by

Sumit Lohani

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Master of Science
2001

Advisory Committee:

Dr. Shuvra S. Bhattacharyya, Chair
Dr. Donald Yeung
Dr. Gang Qu

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2001 2. REPORT TYPE 00-00-2001 to 00-00-2001
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Performance Analysis of Polymor phous Computing Architectures £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Maryland,Department of Electrical and Computer REPORT NUMBER
Engineering,Institute for Advanced Computer Studies,College
Park,MD,20742

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 112
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ABSTRACT

Title of Thesis: PERFORMANCE ANALY SIS OF POLY MORPHOUS
COMPUTING ARCHITECTURES

Degree Candidate: ~ Sumit Lohani

Degree and year: Master of Science, 2001

Thesisdirected by: Dr. Shuvra S. Bhattacharyya
Department of Electrical and Computer Engineering, and

Institute of Advanced Computer Studies,
University of Maryland at College Park

In general, polymorphous computing architectures are architectures that can
be dynamically customized to various applications. Thisthesisis concerned with
metrics, formulations, and algorithms for systematically synthesizing architectural
configurations and software for such architectures, particularly in the domain of dig-
ital signal processing (DSP).

In polymorphous system synthesis for DSP, one central aspect is managing
trade-offs between latency and throughput, which are critical metrics for DSP appli-
cations. In Chapters 1-4 of the thesis, we develop amodel for latency that is more
appropriate than conventional models of latency for DSP system synthesis, and that

takes into account central issues related to transient-state time, and we develop pre-

cise relationships between latency and throughput using this framework. Schedule
post-processing strategies based on simulation and retiming that reduce the latency
and transient for a given throughput constraint are then presented, along with an
approach based on graph-theoretic framework to streamline them, and their efficacy
is substantiated with experimental results.

Chapters 5-6 of the thesis then deal with the problem of efficient mapping of
an application with stochastic execution times to a polymorphous computing archi-
tecture in accordance with the time-varying performance requirements for several
metrics, which may include even non-trivial metrics such as the coupled latency/
throughput metrics. A comprehensive model for system synthesisin this context is
devel oped; results are devel oped on the complexity of system synthesis under this
model; and preliminary algorithms that address the synthesis problem are presented,

and evaluated experimentally.

ACKNOWLEDGEMENTS

| thank my advisor, Dr. Shuvra S. Bhattacharyya for all his guidance, enthu-
siasm and motivation throughout my thesis work. | would also like to thank my lab
mates for providing an atmosphere conducive to study, in the lab. This research has
been supported by the US National Science Foundation (9734275), and the Defense
Advanced Research Projects Agency under Contract F30602-01-C-0171 through the

University of Southern California Information Sciences Institute.

TABLE OF CONTENTS

LIST OF TABLES %
LIST OF FIGURES Vi
Chapter 1. Introduction 1
1.1 Definitions and NOtAtIONeeiiiiiiiiiiee e 2
1.2. Latency in lIEEratureoovvvvveeiiiiiii e e e e e e 7
1.3. OVEIVIBW ..ttt ettt e e e e e e e e e e e e e e e e eeeeeebbna e e as 17
Chapter 2. Background 20
Chapter 3. Algorithm and experimental results 23
3.1. PRASE 1 .. 24
3.2. PRASE 2 ... ———————— 24
3.2.1 Transient-reduction SChemecccccuiiiiiiiiiiiiiiinee e 24
3.2.2 Latency-reduction SChEME..........cooiiiiiiiiiiiiiiiiiiee e 33
3.3. SUMIMABIY ettt e e e e et e e e e e e e e e eees 43
Chapter 4. Streamlining latency analysis for
contention-free systems 44
4.1. Notation and analySISuuuuuuiiiiiiiiie e 45
4.2. RESUILS e 48
Chapter 5. Problem formulation and overview of model 50
5.1. Problem formulation ... 52
5.2. MOAEI ...t e e e e e e e e e eeeeareea 57
Chapter 6. Details of the model 58
6.1. EValuation MEASUIEuuuiiiieiiie e e e eeee ettt s e e e e e e e e e e e e e e eeeeennnenes 58
6.2. Configuration StOreccooiiiiiiiiiicee e 60
6.2.1 Terminology and NOLAtIONueuiiiiiiiieieeee e 62
6.2.2 On-line management and use of configurations.......................... 69
6.2.3 Models for problems related to configuration management........ 72
6.3. On-line algorithms ... 84
6.3.1 Simple low-complexity, run-time refinement approach 84
6.3.2 Throughput Optimization.........cccceeviiiieiiiiiiiee e 85

6.3.3
6.3.4

Chapter 7.

References

PoOWer OptiIMIZAtIONuuuvieeiiiiiiiieiiiee e 88
Experimental reSUltS.........ccoooeeiiiiiiiiieeeee e
Conclusion and future work 95
99

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

LIST OF TABLES
Results of the algorithm described in Figure 11 for various benchmarks
with deterministic execution times................. 30
Results for latency-reduction using a method similar to transient-reduc-
tion approach for FFT graphs with non-determin-
IStic execution tiIMes.cceeiiiieneeeeeieeeeeeeiins 35
Results of applyingtencyReductioto non-deterministic graphs.... 39

Speedups for various benchmarks.cccceeeviieiiiieiiin 49

Result of applying algorithm in Figure 27 on various DSP benchmarks....

.. 91
Results of applying power optimization algorithm of Figure 28 to various
DSP benchmarks.ccccccoeiiiiiiiniiiiiiii, 92
Results for on-line framework tracking an applied goal. 95
Results for on-line framework tracking an applied goal. 96

Figure 1.
Figure 2.
Figure 3.

Figure 4.

Figure 5.

Figure 6.
Figure 7.
Figure 8.

Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 16.

Figure 15.

Figure 17.

Figure 18.

LIST OF FIGURES

An example of a dataflow graph. ... 4
An example application graph. ... 5
Self-timed EXECULION.cuiiiiiiiieei e 5

An example of an application graph and an associated self-timed sched-
ule. The numbers on the edges and denote non-
Zer0 delaysS......coeeviiiiiiiiiiiiee e 7

IPC graph constructed from application graph of Figure 4. Numbers
besides communication actors denote communi-

(o= 110 I o0 11 ST 8
lllustration for a system with no output buffer.............cccccoeiciiiennn. 14
lllustration for latency, throughput and output buffer. 15
Pseudocode for transient-reduction post-processing.cooeeeuneeee 27
Pseudocode for function generateSchedule.ccooooeviiiiiiiiiiiiiinnnnnn. 28
Self-timed execution with first-iteration actors denoted by T............... 29
Pseudocode to find minimum-transient schedule for a given 30
Pseudocode for latency-reduction post-processing.........cccceeeeeeeeeeeeeenn. 37
llustration for retiming.ccccoeeiiiii e 38
Pseudocode to solve the TBL problem.cccccociiiiiiiiiiiiiiiiee, 39
PlOt FOFFt2.5.5WIth . ..eeeeiie e 41
Plots of vs. for FFT, QMF, Karp and Meas corresponding to Table 3....

.. 42
OVEBIVIBW. ..ttt et e e e e e e e e e e e e e s bbbt et e e e e e e e e e eeeeeas 55
Graph for EXamPle ..ot 66

Vi

Figure 19.
Figure 20.

Figure 21.

Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.

Figure 29.

INAUCEd Graph... ..o 69
Pseudocode for on-line configuration management.............ccccceeeeeeene.. 71
Pseudo-code for functigmemoteConstraint anddemoteCon-
straint from Figure 20.coooiiiiiiiiiiiiiinnnns 73

lllustration for the dominating set of a graph..........cccoceeeiieeiiiinnnn, 74
[llustration for EXample 12. ... 76
An example goal SPACE.oooeiiiiiiiiiii e 79
lllustration for EXample 13.oovuiiiiiiiiee e 79
lllustration for EXample 14. ... 83
Pseudo-code for throughput optimization.............cccceevveeeeiiiiiiiieiiiiiniens 87
Pseudo-code for power optimization.cccceeeeeiiieeeeeeeeeeeeeceeeeiiias 89
On-line adaptation framework.ccuueeeeiiiiiiiiiiieee e 93

Vil

Chapter 1. Introduction

For an application with actors that have deterministic execution times, and
that is executing in a self-timed manner on a multiprocessor system, the beginning
of execution is some finite transient that settles down to a periodic pattern eventually
[2, 37]. The period of this pattern depends on several factors, including the schedule,
the execution times of computational tasks, and the delays in the critical cycle of the
dataflow graph [23, 30]. This phenomenon has been discussed in many references
(e.g., see [2, 33)).

In many Digital Signal Processing (DSP) applications, for a given periodic
input sequence, only a periodic output sequence is useful, and we can withstand
only a limited delay in generating the periodic output sequence from the arrival of
the input. It is often desirable to have this input-output delay (the time that elapses
between arrival of the first input sample and generation of the first sample in the
periodic output sequence) as small as possible subject to a given sample-rate. If one
has an output buffer where one can store output values and deliver them as needed
(e.g., to maintain periodicity), the problem becomes one of a 3-way relationship
between the throughput of the system, the output bufferBize and the input-output
delay. We will define this “delay” later as the periodic-output latency in this thesis,
and explore the associated 3-variable relationship in greater depth with techniques

for reducing periodic-output latency.

1.1. Definitions and notation

In the area of digital signal processing (DSP), dataflow is widely recognized
as a natural model for specifying DSP applications. In dataflow, a program is repre-
sented as a directed graph, calledbdaflow graphin which vertices, calledctors
represent computations and edges represent FIFO channels, (alsbudédied
These channels queue data values, in the fotakehs which are passed from the
output of one actor to the input of another. When an actor is executed (fired), it con-
sumes a certain number of tokens from its inputs, and produces a certain number of
tokens at its outputs. The token input to an actor at an input edge stays there until the
actor has finished execution and it is only at the end of execution that the actor pro-
duces tokens onto the output edges and consumes tokens from the input edges. The
edges in the dataflow graph may confaitial tokens which we also refer to as
delays Edges with delays can be interpreted as data dependencies across iterations
of the graph. If there is a directed edge from an agtor ~ to anactor in the data-
flow graph, then we say thaf is mmmediate predecessof v,, andv, is an
immediate successof v, . Also, for a directed edge from actor Mo , the actor
v, is called thesourceandv, thesinkof that edge. The source and sink of an edge
e are denoted bgourceg) argink(e) , respectively.

In this thesis, the set of all real numbers is denotedlby [@nhd denotes a
set whose elements are all -dimensional sets of real numbers. The maximum of a
finite setS of real numbers is denotedimaX $. The maximum of the empty set,

max @), is defined to be zero.

Assuming that a spac® has a distance function that defines the distance
between any two points in spa&e triangle inequalityis said to hold inS when the
distance betweenanytwopoirds]1 S amdl S isless than or equal to the sum of
the distance betweesn andanypoirii S and the distance betwveenb and . That

is, in a spac& that satisfies triangle inequality, for any three pagifitscl] S ,

distancéa, b) < distancéa, c) + distancéc, b), (2)

wheredistancé€x, y) represents tltstance functiomthat gives the shortest distance
between any two pointg y[1 S

A space is called metric spacef the distance function is non-negative,
symmetric and satisfies the triangle inequality. That is, a sBace is a metric space if

for any three pointg, b, cJ S

distancéa, b) >0, (2)
disancéa, b) = distancéb, a), and (3)
distancéa, b) < distancéa, c) + distancéc, b), (4)

wheredistancéx, y) represents the distance function that gives the shortest

distance between any two pointsy [S

Example 1:Figure 1 shows an example of a dataflow graph. Numbers beside edges
indicate non-zero delays. There exists a delay or initial token of 1 between actor C
and actor Dm

Dataflow models are a very useful specification mechanism for signal pro-
cessing systems since they capture the intuitive expressivity of block diagrams, flow
charts and signal flow descriptions.

Self-timed execution:

In a self-timed schedule, processor assignment and actor ordering are per-
formed at compile time, but run-time synchronization is used to determine actor fir-
ing times: a self-timed schedule executes by firing each actor invogation as soon
as it can be determined via synchronization that the actor invocations on which s
dependent have all completed execution. Conceptually, the processor sending data
writes data into a FIFO buffer, and blocks when the buffer is full; the receiver on the
other hand blocks when the buffer it reads from is empty. Thus, the flow control is
performed at run-time.

It has been shown that eventually any self-timed execution settles down into

@\
/

Figure 1.An example of a dataflow graph.

a periodic repeating pattern provided that contention of shared resources is resolved
deterministically [4]. This repeating pattern can be exponential in the number of
delays that are present in the critical paths of the schedule [37]. While checking for
periodicity in the execution pattern, we consider the time for which any actor is exe-
cuting on a processor as well as the delay distribution in the application graph at that
time instant. We define theansient-intervabr simply thetransientin the execution

as the time from the beginning of the execution to the first time when a periodic exe-

cution pattern is observed.

Example 2:Figure 2 shows an application graph that has 8 actors and the mapping

of these actors onto five different processors. Figure 3 represents the self-timed exe-

Execution Times

ABF :3
C,H :5
D 6
E 4
G 12
Figure 2. An example application graph.
| |
Proc 1 4 E \| A E A E A E_|
Proc2| B / A | }B/'|‘F B AlLs /[, F
Proc3| L C Gl Jc c| | n C Gl |c
Proc 4 D ’I) ']
Proc 5 H H r H H
k o
18

Figure 3. Self-timed execution.

cution pattern when the application graph in Figure 2 is executed in a self-timed
manner. Two iterations of the schedule are carried out in 18 time units when syn-
chronization costs are ignored, which gives an iteration period of 9. When the shown
self-timed schedule settles down, it spans a period repeating period of 18 time units.
One can notice that at time instant 11, when C finishes execution, the transient ends
as at that instant the whole application has executed one iteration and after that there

is a periodic pattern to followm

The evolution of a self-timed implementation can be modeled by Sriram’s
Inter Processor Communication (IPC) graptodel [36]. Given an application
graph and an associated self-timed schedule, the IPC graph, d€gpted , IS con-
structed by instantiating a vertex for each application graph actor, connecting an
edge from each actor to the actor that succeeds it on the same processor, and adding
an edge that has unit delay from the last actor on each processor to the first actor on
the same processor. Also, for each application graph (edgg that connects
actors that execute on different processorsngar-processor edges instantiated in
Gipc from x toy . A sample application graph and a self-timed schedule are illus-
trated in Figure 4, and the corresponding IPC graph is illustrated in Figure 5.

IPC costs (estimated transmission latencies through the multiprocessor net-
work) can be incorporated into the IPC graph model by explicitly includmgmu-
nication (sendandreceivg actors,and setting the execution times of these actors to
equal the associated IPC costs.

It is well known that in the ideal case of unlimited bus bandwidth [30] and

deterministic execution times, the average iteration period for the As-Soon-As-Pos-
sible (ASAP) execution of an IPC graph is given byrtfaximum cycle mean
(MCM) of Gjp¢, which is defined by

: (5)

0 g exed y[J

MCM(Gy,.) = max He 4
P cycle C inGip] dela O

0 O

whereexed y denotes the execution time of an actor ,deidy(O

denotes the sum of tokens on all the edges of ycle

1.2. Latency in literature

In the engineering community itself, latency is defined in several ways and

Self-Timed Schedule

Proc 1: (1, 2, 3, 4, 6)
Proc 2: (5, 7, 8)

Proc 3: (9)

Figure 4. An example of an application graph and an associated self-timed schedule
The numbers on the edges 8) a68do9) denote nonzero delays.

there is no universally accepted definitions of latency. Even in the embedded system
design community, there are several different definitions of latency and people use
the one that best suits the context. Some of the commonly used definitions of latency
are the following.

» For dataflow graphs and related models, latency has usually been defined
as theresponse timef the system to an input [18, 22, 35, 38]. Response time has

been used in a general sense to refer to the time difference between the arrival time

Proc 3

o) -

Figure 5. IPC graph constructed from application graph of Figure 4. Num
bers besides communication actors denote communication costs.

of an input and the production time of the corresponding output. So, the latency is
the time required for the first invocation of the input to influence the output, and thus
the latency corresponds to the critical path in the dataflow implementation to the
first output invocation that is influenced by the input. This interpretation of the
latency as the critical path is widely used in VLSI signal processing [25, 37]. Hence-
forth, we will refer to this definition of latency essponse-time latency

» Latency according to the previous definition can be variable and data-
dependent. So, latency has also been defined in the literature as the maximum of the
time required for any invocation of the input to influence the output [31].

* In the context of computer networks, latency corresponds to how long it
takes a message to travel from one end of a network to the other [31]. For most con-
nections, a ping time of 100ms or lower is considered “low” latency; 100-500ms
would be considered “moderate” latency; and 500-1000 ms would be “high”
latency.

» Latency has also been defined to be the first time at which the sink vertex
fires for the first time in the schedule, assuming the execution of the schedule started
at time zero. Using this definition of latency, nested-schedules have a lower latency
than flat, “single appearance” schedules [6].

» Latency is also defined as the time required to process a single data-set
[11]. Note that this definition is different from the first definition because there may
be synthetic delays present in the system.

» People have also proposed variants of latency as more suitable perfor-

mance indices for specific classes of applications. One example is the concept of
control latencyas proposed in [21] for task assignment and scheduling problems of
multiprocessor real-time control systems. This control latency is defined as a
weighted sum of feedback, command and monitoring latencies, which are defined as
follows in [21]. Feedback latency is the time required for a sensor activation, control
computation, and corresponding actuator manipulation. The time from the receipt of
the command from the operator or host computer to the corresponding actuation is
defined agommand latencWonitoring latencyis the time required to pre-process
the sensed data and then report it to host computer.

In all the above cases, irrespective of the exact definition of latency, a “low”
value of latency is desirable and in many cases a “low” value of latency is critical.

For synchronous DSP system implementation, the notion of input-output
timing present in the response-time latency is often adequate. However, for self-
timed multiprocessor systems with DSP applications, which are becoming increas-
ingly important due to problems with global clock distribution and other scaling
issues and also due to increasing levels of dynamics in DSP applications, equating
latency with response time is not as meaningful as a metric of latency that explicitly
takes the periodicity of the output pattern into account. A more appropriate defini-
tion of latency for a periodic input signal could be stated intuitively as “The time dif-
ference between the appearance of the first periodic valid output instance and the
application of the first input instance assuming an output buffer of given size”.

Mathematically, this can be explained in the following way. Suppose that a given

10

system is to satisfy a minimum throughput requirentep , . Suppose also that the
associated iteration period is represented by wiiere 1/(tr ;) ; the output
buffer is represented lyy ; and the sizggof is represent®& by . By defipition,
must satisfy the following three conditions.

1. The buffer3 can hold at moBt output samples at any time.

2. Once stored in the buffer, an output sample can be delivered at will.

3. An output sample can not be stored in the buffer before it is generated.

Let x;, X5, ..., X, ... be an infinite sequence representing the arrival times
ofinput samples 1, 2,.n ... ang yo, ..., Y, --- be the production times of the
corresponding output samples. Defiantaingt, n) to be a binary-valued function
that returns 1 if buffep holds the value of output sample at time indtant ,and 0
otherwise.

Also, for a given iteration periofl and buffer sBe , we define a valid out-

put remapping (VOR) to be a sequentgy's,, ..., Yy - that satisfies the follow-

ing four conditions.

y'n2Yy, foralln. (6)
if y,st<y'
If y', #y,, thencontaingt, n) = El Yn Yn (7)

0 0 otherwise

Foralln suchthay ,>L ,wehaus',.,—-Y,) =T . (8)

11

Forallt=0, ;contain:{t, k) <B,whereS = {n|y.t} and
ke

n={12 3..}.Thatis, at every time instant, the buffer population is bounded

by B. 9)

The minimum value of. over all valid output mappingg' .} is defined as
the periodic-output latency of the system. One can check if some given value of
satisfies all the above listed conditions [(6), (7), (8), (9)] and hence check if a VOR
associated with that value bf exists, in one pass over all output samples. So, to
compute the minimum value &f , one can start with the valle of as zero and
check for its feasibility. This value @f can be incremented until it becomes feasi-
ble i.e. there exists a VOR associated with that valde of . Thus, The VOR that
gives minimumL can be found with reasonable complexity using this approach.
This approach is aoff-line method forperiodic-output latency computati@md is
described in detail later in this section. This approach for computing minimum
can be streamlined using a binary search on the range of all possible values of . In
the streamlined approach that uses binary search, the range of the possible minimum
L values is halved repetitively on the basis of the feasibility of the average value
in the range of possible minimulm values. This streamlined approach computes
minimum L value more efficiently than the earlier approach, which computes mini-
mumL value by checking the feasibility &f values in an incremental fashion. The
problem addressed in this thesis is finding a schedule for an application, for a given

B, such that the periodic-output latency is minimum, and the throughput is no

12

lessthanl/ T , when the application is executed in a self-timed manner according to
that schedule on the given multiprocessor system. Henceforth, we will address this
asTBL problemNote that the individual processors in the multiprocessing environ-
ment can be arbitrary processing components, such as DSP processors, FPGAs or
microcontrollers.

When defined in this way, periodic-output latency depends upon the output
buffer sizeB and requires the production times of output data to eventually become
periodic. Until now, however we have not considered the fact that there may be ini-
tial tokens present in a schedule (e.g., due to retiming and related transformations),
for the given application. For a more general framework that includes initial tokens,
we have to distinguish between output values that are dependent on the input sam-
ples to the application and the ones that are completely independent of the input
samples (i.e., the ones that are dependent only on initial tokens). We define the input
samples to the application to wa&lid input valuesAlso, the output of an actor is a
valid output valuef and only if at least one of the input values to that actor is valid.
Due to the presence of the initial tokens, some number of initial output samples may
be invalid output values. So, in case there are initial tokens present in the schedule,
the definition of periodic-output latency needs to be modified such that only valid
output samples are considered.

The formulation stated above also implies that an increase in the number of
initial tokens can lead to an increase in the above defined periodic-output latency.

This introduces one more parameter in the relationship between periodic-output

13

latencyL , buffer sizd8 , and iteration peridd , but we will mainly concentrate on
the relationship betwedn T, aml |, since we are assuming that the schedule, and
hence the delay distribution, is given a-priori. From now on, in this thesis, the word
“latency” has been used to describe the periodic-output latency, unless otherwise
stated. Figure 6 illustrates a system with no output buffer. Figure 7 illustrates the
same system when an output buffer of appropriate size is present and helps under-
stand the relationship between periodic-output latency, buffering and through-
put(=1/T) of the system. One can observe that the buffer helps achieve lower
periodic-output latency by storing the output samples temporarily and delivering
them such that the associated VOR has a lower periodic-output latency.

Since a period of the execution pattern may contain more than one cycle of
dataflow graph, in general, samples of the output sequence need not be equidistant.
Jitter is a measure of unequal distances in the output sequence. In the literature, jit-
ter has been defined in several ways [28, 39]. This is one attribute whose relation-

ship with the other parameters described above can be monitored to get more insight

Input sequence

Output sequence

A
Y

Transient-interval
Figure 6. lllustration for a system with no output buffer.

14

into the concepts introduced above, but is out of the scope of this thesis. One may
define jitter as the difference between the mean distance between output samples
and distance between two consecutive output samples. We are designing for zero jit-
ter, which is a reasonable goal if the jitter tolerance of an application is unknown or
not specified to the designer/compiler. Exploring trade-offs associated with non-zero
jitter allowance would be a useful direction for future work.

Intuitively, throughput would increase as periodic-output latency increases
for a fixed buffer size, as larger periodic-output latency gives us more leeway in
choosing the time instants when we can output values, which may correspond to
improved throughput. An increase in buffer size leads to equal or improved achiev-
able throughput. Also, for a fixed throughput value, an increase in buffer size may
compensate for decrease in periodic-output latency in some cases. Note that even for
a fixed output buffer one can find a set of (periodic-output latency, throughput) value
pairs, as the execution can be done only for finite length of time. We are assuming

that one has execution time estimates or a trace of the execution of the application.

Input sequence

T

(——buffering)
e — Output sequence

Latency

Figure 7. lllustration for latency, throughput and output buffer.

15

The relationship between buffer size, periodic-output latency and throughput can be
calculated using aaoff-line throughput-latency computati@eheme, which after fix-

ing the throughput and buffer size, gives the periodic-output latency for the system
from the execution record of the graph. This off-line throughput-latency computa-
tion scheme is as follows.

The data for off-line computation are the time instances of the output data
samples for the periodic input. For a given buffer size and throughput, one can deter-
mine the periodic-output latency using the off-line method, which can be imple-
mented by first starting with the lowest periodic-output latency value possible and
seeing if that periodic-output latency is satisfiable using the given buffer size and
throughput. If not, the periodic-output latency value is increased and checked for
satisfiability again, until we find a periodic-output latency value that is satisfiable.
We call this an off-line method since we have already simulated the execution of the
system or have obtained a trace from an actual execution and are computing the
minimum satisfiable periodic-output latency only after we have all of the relevant
data.

One can observe that in the case of deterministic execution times, for a
buffer size of zero, the periodic-output latency is approximately equal to the time
taken for execution to settle to a periodic pattern, if the output at that instant is valid.
Therefore it is helpful to have a schedule post-processing strategy to redu@nthe
sientin the execution. One should note that the transient in a self-timed execution is

not same as the periodic-output latency as illustrated in Figure 6 and Figure 7. Peri-

16

odic-output latency is defined for a given output buffer unlike the case of the tran-

sient, where there is no output buffer.

1.3. Overview

This thesis presents two schedule post-processing strategies, the first one of
which is to reduce the transient in execution pattern. The other schedule post-pro-
cessing scheme, based on retiming, can be used to reduce latency for a given
throughput constraint, that is, it gives us an approach to solve the TBL problem. The
schemes proposed are discussed in conjunction with an initial scheduling scheme in
the later sections of this thesis to give a complete approach to throughput-con-
strained latency minimization or throughput-constrained transient minimization.

This approach is divided into two phases. The first phase consists of scheduling the
graph using some known throughput-constrained or throughput minimizing sched-
uling technique such that the schedule satisfies the throughput constraint. One of the
proposed schedule post-processing techniques constitutes the second phase. So one
can use the appropriate schedule post-processing technique in phase 2 of the algo-
rithm depending on whether the aim is to reduce the transient interval or to reduce
the periodic-output latency i.e., the TBL problem. This thesis also explores the rela-
tionship between the output buffer size and the periodic-output latency to a limited
extent. At the end, a new approach is suggested that leads to much faster execution
of the proposed schedule post-processing techniques. This approach utilizes a
known result relating the starting timemf th invocation of an actor to the longest

m-delay path to that actor and finds out the starting time of any invocation of an

17

actor using an efficient graph-theoretic framework.

The next chapter briefly describes the work done in the areas related to this
thesis. Chapter 3 describes our two-phased approach consisting of a standard sched-
uling scheme for phase 1 and the proposed schedule post-processing schemes for
phase 2. Experimental results for the schedule post-processing strategies are
reported. Chapter 4 presents our streamlined approach to optimizing periodic-output
latency for deterministic contention-free systems. This is a graph-theoretic approach
that does not require event-based simulation and is based on mathematical proper-
ties of graphs and Petri-net theory [30], which leads to faster execution of the simu-
lation-based, two-phased approach described in Chapter 3.

Polymorphicis defined as having, taking, or passing through many different
forms or stages. In generalpalymorphous computing architectui@CA) refers to
any computing hardware that is modifiable. Commonly used polymorphous comput-
ing architectures, such as the Raw architecture [40], implement only a minimal set
of mechanisms in hardware so as to allow the compiler to customize the hardware to
different applications. Various high-level attributes of these architectures can be var-
ied, such as inter-processor message routing, caching policies, scheduling policies,
processor voltages, resource allocation to computing units, and architectural support
for synchronization during inter-processor communication. This reconfigurability of
PCA may help satisfy varying performance requirements that might not be possible
if the architecture is fixed. This thesis also deals with the problem of mapping an

application with stochastic execution times onto a polymorphous computing archi-

18

tecture in accordance with dynamically-varying performance requirements. In such
a scenario, the performance requirements may change while the application is still
executing. This problem is commonly encountered in various defense related appli-
cations. One example of this is a missile system which operates under varying per-
formance requirements. A comprehensive model is suggested using which one
would be able to deal with the problem of finding efficient mappings for continu-
ously changing performance requirements. The motivation is to provide a model that
is able to handle performance requirements of even non-trivial metrics such as peri-
odic-output latency as defined in the thesis. The approach suggested in the thesis is
quite general in nature and can handle diverse applications for a variety of metrics.
The PCA software synthesis problem described above is formulated and the
motivation for our model to solve the problem and an introduction to it is given in
Chapter 5. Chapter 6 describes the model in detail. Chapter 7 summarizes the results

and discusses the efficacy of the proposed techniques and the model.

19

Chapter 2. Background

Many scheduling techniques can be found in the literature to reduce the
schedule makespan for a dataflow graph or to maximize the throughput of an itera-
tive dataflow graph [5, 7, 41, 10]. Bokhari’s algorithm [7] is an optimal algorithm
for mapping a chain structured task graph onto a linear chain of processors. On the
other hand, the throughput maximization scheme by Banerjee et al. [5] tries to com-
pute a schedule for best throughput by identifying the problem as a combination of
optimal task/processor assignment to pipeline stages as well as a scheduling prob-
lem. The scheduling problem was solved by them in two phases. In the first phase, a
trade-off between clustering and parallelism was found using iterative scheduling
techniques, and in the next phase the coarse solution was optimized through iterative
refinement techniques.

Alternative scheduling problems, such as finding a schedule that satisfies a
throughput constraint and has minimum response time and vice-versa, have also
been studied [13, 19, 3]. Choudhry et al. [13] have solved this problem in a rela-
tively constrained framework, where the “execution signature” or “response time
function” for each node of the dataflow graph, is given. The execution signature is
defined as the performance speedup as a function of the number of processors
employed. Their approach is to decompose any serial-parallel graph into a series of

serial and parallel components and then find the optimal assignment of processors to

20

different tasks in the task graph so that the response time is minimum for a given
throughput constraint and vice-versa. Aiken and Nicolau [1] find “pattern” in the
execution history to find a schedule that maximizes throughput for a loop. Their
“pattern” in the execution history can be related to the periodicity in self-timed exe-
cution.

Solving the TBL problem is different from the earlier work in the sense that
this periodic-output latency relates to the settling time of the pattern, which is cru-
cial in many DSP applications. For the transient-reduction problem, it is computa-
tionally intensive to find the settling time of a given schedule and hence a minimum
transient schedule. There are not many known properties of a graph that can be
directly related to a reduced transient.

The TBL problem is reduced to two separate problems, one to satisfy the
throughput criterion and other to reduce periodic-output latency. We provide a solu-
tion to the TBL problem by first finding a schedule that satisfies the throughput con-
straint and then processing the schedule thus obtained using the proposed post-
processing technique to obtain the final schedule. The latency-reduction post-pro-
cessing strategy involves generating schedules by retiming the schedule obtained
after phase 1 and choosing the one with minimum periodic-output latency. Retiming
techniques have been used to solve a variety of problems such as cycle-time minimi-
zation and area minimization [24, 27]. One contribution of this thesis is to show that
retiming also plays an important role in reducing transient and periodic-output

latency and to develop efficient retiming techniques that achieve these goals.

21

If one wants to reduce the transient-interval instead of periodic-output
latency after phase 1, one can apply schedule-post processing technique for transient
reduction in phase 2. In this thesis, the approach to reduce the transient is to take
feedback from the execution pattern of a schedule obtained from a dataflow graph
and refine it. In our proposed technique, the way we extract a schedule from the self-
timed execution of an application ensures that in the final schedule the assignment
of actors onto the processors would be same, and the order of execution of actors on
the processors would be just a shifted version (phase difference) of the order of
actors in the schedule at the end of phase 1. Also, the distribution of delays in the
final schedule is the same as some retimed version of the schedule obtained by phase
1. One should also note that this schedule post-processing technique is essentially
retiming the initial schedule and re-ordering the execution of actors on their respec-

tive processors.

22

Chapter 3. Algorithm and experimental results

In this section, we explain our algorithm for solving the TBL problem or for
reducing the transient for a given throughput constraint. This algorithm shows how
the schedule post-processing technique for latency-reduction can be used with a
known throughput constrained scheduling technique to solve the TBL problem.

The TBL problem has been addressed in two phases. In the first phase, a
schedule that satisfies the throughput constraint is found using an approach
described in [19]. Any algorithm for throughput-constrained or throughput-mini-
mized scheduling can be used in the first phase. For prototyping purposes, we chose
the technique of [19] since it is a particularly well-documented one. In the second
phase, we try to minimize periodic-output latency as described in the last section.
Specifically, Hoang [19] describes a scheduling technique to schedule a dataflow
graph such that the throughput is greater than or equal to a given minimum. This
technique has been used as a “subroutine” in our proposed algorithm to solve the
TBL and transient-reduction problems. As mentioned above, any other scheduling
technique that gives a schedule that satisfies a pre-specified throughput constraint
can be used in place of Hoang’s technique. Hoang’s technique has been used just as
an example to explain and experiment with the proposed algorithm that can be used
to solve the problem of transient-reduction with a throughput constraint as well as

the TBL problem. Thus, our schedule post-processing techniques are quite general

23

in nature and can be applied to schedules to generate modified schedules with

smaller transient or periodic-output latency.

3.1. Phase 1

To compute a schedule that satisfies the minimum throughput requirement,
Hoang's algorithm as described in [19] is used. As we have discussed above, one
may use any other suitable technique here for obtaining the initial schedule that sat-

isfies the given throughput constraint.

3.2. Phase 2

For use in phase 2, we will describe two different schedule post-processing
techniques, a transient-reduction technique and a latency-reduction technique.
Reducing transient is beneficial for self-timed iterative systems. Settling of the exe-
cution pattern fully exposes parallelization in the periodic pattern. Reducing the
transient would help one exploit hitherto underutilized parallelism in the application
much sooner. To solve the TBL problem, our latency-reduction technique should be
applied for phase 2. If the aim is to find a schedule with minimum transient for a
given throughput constraint, then one should use our transient-reduction technique
for phase 2. In this subsection, first we explain the transient-reduction technique and

then the latency-reduction post processing scheme.

3.2.1 Transient-reduction scheme
A heuristic based on feedback from simulation is used to reduce the transient

in the following way.

24

The schedule is simulated to execute in a self timed manner and the pattern
is observed when it becomes periodic. Since we know that the throughput of the sys-
tem is greater than or equal to the given throughput constraint, a schedule formed by
extracting the order of execution of actors in a given period of the periodic pattern
would satisfy the throughput constraint, as a self timed execution can be represented
by a Markov process. A Markoff process is a stochastic process whose past has no
influence on the future if its present is specified [29]. Since in a self-timed execution
also, only the present state influences all the future states in the execution pattern,
self-timed execution can be considered a Markoff process. The state at some time
instant during self-timed execution is comprised of all the information of the data-
flow graph that is pertinent for future execution, such as delay distribution at the
edges of the dataflow graph, execution status of every actor of the dataflow graph,
etc. So if we start with the schedule derived from the order of execution, at the start
of the period of the throughput-constrained schedule, the new schedule also would
result in a throughput that is no less than the throughput constraint. The state of the
system at the instant when the transient ends, combined with the order of execution
of actors during that periodic pattern, is output as the new schedule.

The rationale for this heuristic can be further explained in the following way.

A self-timed execution can be represented as a Markoff process. That is, the future
execution of the system depends only on the present state of the system. Supposing
that time is managed in discrete steps, given the present state, there could be a few

states that the system can never reach. This introduces the natistante

25

between two states in a self-timed execution. One can define distance from a state
S, to another stat&, as the time taken for the system to reach thg,state ~ from
stateS; . Note that the distance®f frdBp may be different than distan8e of
from S, . So, it could be helpful to know the state of the system when the pattern has
become periodic as starting from a stdtserto this state, that is, starting from a
state that is at a lesser distance from this state, could take us to a periodic pattern
faster than starting from some arbitrary state. Hence, the state of the system is
recorded at the time instant when the pattern has become periodic and a new sched-
ule is formed based on that. Also, minimization of delays in the dataflow graph (e.g.,
through retiming) may give us smaller transient, as more delays would lead to
longer time in generating valid outputs.

One can transform a multiple output node graph into an equivalent single
output node graph by introducing an edge between every output node and a new
synthetic output node with zero execution time. We assume that an output sample is
generated when all output nodes have executed during a particular iteration. So the
execution of the output node symbolizes the generation of all output samples for that
iteration. A data source, such as a digitized microphone output, that generates sam-
ples periodically, is modelled by adding an input actor with edges to all the start
actors in the dataflow graph and a self-loop edge with one token and with execution
time equal to the input period. A pseudocode for our transient-reduction scheme is
shown in Figure 8.

In this algorithmcalculatePeriods a function that takes the execution sta-

26

tistics as input and calculates the time when the transient of the execution pattern
ends.StatgS) represents the execution statistics of sche@ukEexecution statistics

for any schedule can be found by simulating the execution of that schedule and is
composed of the token distribution around the edges of the dataflow graph and the
information about execution of every actor in the dataflow graph at any time instant.
The functiongenerateSchedulakes a time instarit and execution statistics as
inputs and outputs a schedule in the required format using the state information at
timet . It finds the order of execution of various actors on processors starting from
time t and the distribution of tokens on all inter-processor communication (IPC)
edges at that instant. This order of execution of actors on different processors is the
order of execution that is followed in the output schedule. In case an actor is execut-
ing on some processor at time instant , the order of execution includes that actor as
the first one to execute on that processor. The algorithgefarateScheduis

described in Figure 9. Note that the final schedule does not alter the assignment of

Function transientReduction
Input Schedule S
Output Improved schedule S

execute () S

L = calculatePeriod(Stats()) S

S = generateSchedule(, Stats()) S
Output S

Figure 8. Pseudocode for transient-reduction post-processing.

27

actors to processors. It only changes the numbers of tokens on IPC edges and the
order of execution of these actors on processors.

One way to improve this heuristic is to introduce a few tempofiasy-itera-
tion actorson the processors where some aator is in the middle of execution at
time instantt . On those processors for every actor in the middle of execution at
time t, we can introduce a first-iteration actor — effectively, a NOP (no-operation)
— that executes for the time interval betweéen and the time when thahactor fin-
ishes execution, and does not execute in any of the later iterations. This way, the
execution of this new schedule will begin with the state the system was in at the end
of the transient. This would reduce the periodic-output latency significantly but the
schedule can not be called strictly self-timed as first-iteration actors should be exe-

cuted only once, whereas all actors in self-timed schedule are executed iteratively.

Function generateSchedule
Input Time instant , Stats() of theSnput schedule S

Output Final schedule S

1. Record the token distribution on all IPC edges at t

2.for each processor{
Record the order of execution of actors starting from

t

}
3. Output the schedule fi§m the information gathered in

steps 1 and 2.

Figure 9. Pseudocode for functiganerateSchedule.

28

Example 3:Figure 10 shows the self-timed execution pattern when first-iteration
actors are used for the application graph shown in Figure 2. In the self-timed execu-
tion shown in Figure 3, to start with the state at 7 time units (ihen finishes exe-
cuting its first invocation), we introduce first-iteration actors in the schedule as
shown in Figure 10m

For the results reported in the later part of the thgsisgrateSchedulas
described in Figure 9, was used, which does not introduce first-iteration actors.

Figure 11 shows the pseudocode to compute a minimum transient schedule
that satisfies a throughput constralitT PhaselAlgas a function that represents
the algorithm used in phase 1. It takes (inverse of throughput constraint)
and an application graph as inputs and outputs a schedule.

The multiprocessor architecture that we consider is a bus-based architecture
in which a group of processors communicate by means of a single shared bus.
Table 1 shows the result for several schedules for four applicaiBisQMF,

Karp andMeas.These represent, respectively, a fast Fourier transform, a quadra-

| |
Proc 1 T E AR E \| A l E
Proc 2 TIs /[, FLB{ FL/' B /||, F
Proc 3 1° c G| \ t C Gl c
Proc 4 D 1 [5 lb /I
Proc5 LT I H 1' H ’ H
k)
18

Figure 10. Self-timed execution with first-iteration actors denoted by T.

29

ture-mirror filter bank, a music synthesis application based on Karplus-Strong tech-
nique, and a measurement application. FFT applications are of three types based on
examples given in [26]fft1, fft2 andfft3; and each of these value represents an FFT
application with a particular set of execution times for actors. In this thesis, an FFT
is application represented ffix.y.z,wherex, yandz are integers. The symbol

takes values 1, 2 and 3 and each of this value represents one of the FFT applications
out offftl, fft2andfft3. They value represents the inter-processor communication
(IPC) cost among actors when the application executesz Vdlae represents how
many processors are employed to run the application. Titius,2represents an

fft1 application with IPC cost of 1 to be scheduled on 2 processors.

Application T Roid Rhew M,
fft1.1.2 200 157 150 .044
fft1.2.5 200 319 298 .066

Table 1. Results of the algorithm described in Figure 11 for various benchmarks

with deterministic execution times.

Input T, Application graph G
Output Final schedule S

S =PhaselAlgo(,G) T
S =transientReduction() S
Output S

Figure 11. Pseudocode to find minimum-transient schedule for aGiven

30

Application T Roig Rhew M,
fft1.1.5 180 912 739 .189
fft1.1.10 70 57 56 .017
fft1.1.10 70 57 78 -.368
fft1.5.5 200 364 163 .552
fft1.5.10 150 1182 1064 .099
fft1.10.10 200 4463 4454 .002
fft1.10.5 150 4220 3830 .092
fft2.1.2 225 1500 1400 .066
fft2.1.10 125 11641 11079 .048
fft2.5.10 150 4885 4500 .0788
fft2.10.10 210 3710 2910 215
fft2.5.5 300 1200 1070 .108
fft3.1.2 300 500 500 0
fft3.1.10 100 226 225 .004
fft3.2.2 300 500 400 2
fft3.5.5 300 1000 710 .29
fft3.5.8 225 1655 125 .924
fft3.10.5 300 2020 1960 .029
fft3.10.12 180 6370 5770 .094
qmf2 150 400 350 0.125
gmf3 150 518 483 .0675
qmf4 150 612 468 0.2353

Table 1. Results of the algorithm described in Figure 11 for various benchmarks

with deterministic execution times.

31

Application T Roid Rhew M,
karp2 450 800 700 0.125
karp3 450 800 800 0

karp4 450 900 800 0.1111
meas?2 250 700 650 0.0714

Table 1. Results of the algorithm described in Figure 11 for various benchmarks

with deterministic execution times.

Similarly, QMF, Karp and Meas applications are representgchés karpx
andmeasxwherex is an integer that represents the number of processors the appli-
cations needs to be scheduled on. For exargpi&, karp3andmeas2epresent
QMF application on 2 processors, a Karp application on 3 processors, and a Meas
application on 2 processors, respectively.

The figure of meriy,, for the transient-reduction scheme is defined as

My = (Rold_Rnew)/Rold’ (10)

whereR, 4 is the time instant when the transient ends in the execution of the sched-
ule input to transient-reduction post-processing. The syiRhg| represents the
corresponding time for the final schedule, i.e., the schedule outprainsyentRe-
duction The symbolT denotes the inverse of the minimum throughput requirement,
e, T = 1/(tr,;, - Itcan be seen from results tabulated in Table 1 that for systems
with deterministic execution times, there is a reduction in the transient in most of the

cases. Since our transient-reduction scheme does not use first-iteration actors, as

32

explained earlier, and may inject more initial tokens, it may happen that the schedule
generated by the transient-reduction scheme has a worse transient than the original
schedule. In one case, the transient increased by 21 time units beyond an already
small transient of 57 time units. One can see that out of 28 experiments tabulated in
Table 1, there was an improvement of more than 5% in 19 cases, of more than 10%
in 11 cases and of more than 20% in 6 cases.

In the case of non-deterministic execution times, the execution does not set-
tle to a periodic pattern unlike systems with deterministic execution times. The
notion of a transient has not been defined by us for non-deterministic execution.
Though phase 1 of the algorithm can be applied to this case to get a schedule to meet
the throughput criterion, it is not meaningful to use phase 2 to reduce the transient in
case of non-deterministic execution times because in non-deterministic execution,

the execution pattern does not, in general, becomes periodic.

3.2.2 Latency-reduction scheme

Unlike the case of the transient, periodic-output latency, as defined in this
thesis, can be calculated both for deterministic and non-deterministic systems.
Using the off-line method, which has been described in detail in Section 1.1, given a
periodic-output latency. and an output buffer d&ze for a system, the throughput
of the system can be calculated and wieesa. The results of scheduling with an
aim to reduce periodic-output latency, using a technique that is conceptually very
similar to the transient-reduction technique, are tabulated in Table 2. Here, after get-

ting an initial schedule after phase 1, the average iteration period of the execution

33

patternis chosen a6 arid is found for tAat in phase 2. The state of the system
at the end o is used to find out the final schedule in the same way as is done in
transient-reduction scheme. We introduce a few definitions that are useful in
explaining the experimental results. In case of non-deterministic execution times in
an application, execution times for various actors may vary from one execution iter-
ation to the other because of data-dependency of execution times, cache misses,
interrupts, etc. The number of possible execution times taken by an actor is
denoted byn, . We denote the setf possible execution times taken by am actor

as {tj;, t;» ..., t;, }. The probability of occurrence of a possible execution tigne

in;
for actori , is denoted bp,, ,forak = 1,...,n, . Tihaegree of non-determinacy
A is ameasure of overall amount of non-determinacy in the application, specifically,

in the actor execution times, and is defined as

n;

O 2.
> 0> {Ptik =t mean } J
A = L tk=n _ , (11)
Z{ ti,mear\}
|
wheret; .o, denotes the mean execution time of actor and is defined as

o
ti,mean = a(z tik%/ni' (12)

The figure of meriyy, for latency-reduction is defined as

34

M = (Lojg— Lnew” Loid: (13)

wherel, 4 and.., are the periodic-output latencies of the schedule input to
latency-reduction post-processing and the final output schedule respectively, for a
givenT andB .

One can see from Table 2, that in case of non-deterministic execution times,
in about half of the cases, this approach does not lead to a low-latency schedule.
This is expected, as in our approach we are trying to reduce latency by starting from
a state that is expected to be closer to the statg at , but, because the execution
times are non-deterministic, this approach of starting from some better state fails.
We present a new latency-reduction post processing strategy that can be applied in
phase 2 to solve TBL problem. The pseudocode for this improved latency-reduction

post-processing approach is shown in Figure 12.

Here, we try to find the best possible retiming of the schedule obtained after

Application| A T B Lorg Lnew Hy
fft1.5.2 .058 201 5 325 419 -.289
.146 212 5 277 308 -111
.264 212 5 549 846 -.541
fft1.5.5 .058 179 5 375 648 -0.728
.146 178 5 997 821 0.176
.264 174 5 3147 3147 0
fft1.5.10 .058 106 5 182 288 -0.582
.146 105 5 425 385 0.094
.264 103 5 337 604 -0.792

Table 2. Results for latency-reduction using a method similar to transient-reduc-

tion approach for FFT graphs with non-deterministic execution times.

35

phase 1, from the point of view of reducing latency. We do this by choosing the actor
whose retiming reduces the latency most, which is found by simulating the retimed
schedule. By doing this repetitively, until there is no improvement, we end up with a
schedule that is a retimed version of the original schedule, but with lower latency.

With respect to the pseudocode given in Figure Jidsitive retiming step
[12] for an actor is defined as “removing one delay from each of the edges to succes-
sor actors and adding one delay to each edge from the predecessor actors.” Simi-
larly, anegative retiming stejs “removing a delay from each of the incoming edges
to the actor and adding one delay to each of the outgoing edges from the actor.” A
positive or negative retiming step is calletegal retiming stepf no edge has a neg-
ative delay on it after retiming.
Example 4:Figure 13 illustrates these concepts. Figure 13(a) shows an example
dataflow graph. The values alongside the edges represent the numbers of tokens on
them. Figure 13(b) shows the distribution of delays on the edges after a legal posi-
tive retiming step on actor D of the dataflow graph. The result of a legal negative
retiming step on actor D of the dataflow graph is shown in Figure 13(c). A negative
retiming step on actor B of the data flow graph is shown to be illegal in Figure 13(d)
as it leaves a negative delay on one of the dataflow graph edges.

Using the off-line latency-computation method, which has been described in
detail in Section 1.1, given a throughput and output buffer Bize for the system, the
periodic-output latency of the system can be calculated ane@isa. Function

findLis a function that outputs the periodic-output latency for sche8ule for a given

36

T andB using the off-line latency-computation method.
Pseudocode that gives our approach to solving the TBL problem is shown in
Figure 14. Experiments were conducted to test the efficacy of this approach in solv-

ing the TBL problem. The results are tabulated in Table 3. From the results for

Function latencyReduction
Input Schedule S , T B
Output Final schedule St

presentL=find(S, T, B
I-min = 0;
while (L.,;,< preseniL
R= set of schedules obtained after applying any
legal retiming stepon . S
for each Sbelonging to { R
if S satisfies throughput constraint {
L, = findL(S;, T, B);

}
}
Linin = minimum of all L;s;
Sin is the schedule correspondingto . L;
if (L < presentl
S=S;
presentL = L
}
}
S; =S

Output presentand S

Figure 12. Pseudocode for latency-reduction post-processing.

37

benchmarksft1.5.5, gmf4andkarpl0andmeas2n Table 3, one can see that the

heuristic works well and there is a significant improvement in periodic-output

O 1

CWoLC

0

(a) A dataflow graph

o2
OWrO5:C
O\ACC)/?

(b) A legal positive retiming step on actor D

0
O
@/

(c) A legal negative retiming step on actor D

Ol
O\A@/T
(d) An illegal retiming step on actor B

Figure 13. lllustration for retiming.

latency.

Application A Loig Lhew M
fftl 0 180 185 185 0

fftl .0586 181 382 189 5052
fftl A171 179 614 180 .7068
fftl 2347 173 885 741 1627
fftl .3656 158 771 647 .1608
fftl .3594 176 971 971 0

fftl 5245 191 1022 797 2201
fftl .6059 167 3197 904 7172
gmf 0 124 125 125 0

gmf .0123 123 685 419 .3883
gmf .0844 123 575 575 0
gmf .1453 125 778 778 0

gmf .2561 113 4112 3099 .2463
gmf .318 129 2260 1026 5456
gmf .3928 122 3699 1777 5201

Table 3. Results of applyingtencyReductioto non-deterministic graphs.

Input T, Application graph G
Output Final schedule S

S =PhaselAlgo(,G) T

S =latencyReduction(, $) B

Output

Figure 14. Pseudocode to solve the TBL problem.

SI

39

Application A T Loig Lhew M
gmf 4748 123 2962 2082 2971
gmf .5684 121 4779 4779 0

gmf 72 120 5226 3773 .2780
karp 0 400 643 643 0

karp .0380 400 721 605 1609
karp 1364 386 2411 1231 .4894
karp 2139 394 1826 1289 2941
karp .3096 394 1663 1329 .2008
karp 4572 400 4398 899 .7956
karp .5356 400 3140 565 .8200
karp .6080 371 3302 1803 4539
meas 0 182 217 217 0
meas .0537 192 1353 773 4286
meas 1022 181 3241 2294 2922
meas .2208 174 5964 5676 .0483
meas 3111 189 5572 5343 0411
meas 4240 181 7789 7700 .0114
meas .5681 173 9531 9510 .0022
meas .6066 171 10348 10348 0

Table 3. Results of applyirigtencyReductioto non-deterministic graphs.

Figure 15 shows plots @f, vA&. corresponding to Table 3 for these bench-
marks. It can be seen that the improvement does not follow a monotonic trend,

which is understandable as the algorithm finds out the best retiming after taking

40

feedback from simulation and is not affected by the degree of non-determinacy in

some specific way.

To study the relationship between buffer siBe (), througbpuT) and

periodic-output latencyl() using the off-line method for latency-computation, we

generated a schedule fft2.5.5with A = 0.326 by usingPhaselAlgand a

throughput constraint af/ 265 . The value Bbf
then varied around 265 for several value8of
line method. Figure 16 shows the relationship between Tand

L is minimum for aT value close to 265 for almostRill

in the off-line computation was

,land was computed using the off-
. It can be seen that

values, and as the devia-

tion of T from 265 increased, also starts increasing. One can also observe that for

anincrease i |. deceases for the same valle of

L-T ralaiian for H2.5

1 B0

18000

14000 TilTATT T

1 2000 LY

10000
]
B0
4000
2000 .-

240 250 280

Figure 16.L —T plot fofft2.5.5with A = 0.326.

41

—3
270

-1

280

, as explained in Section 1.1.

EJE[IIIII'

Figura of ment
=]

oL . . . - ; ; .
o LR] [(SR R [EE] [N 1] 07

Pl -cleslar rminacy

it

Figure: off mel
)

o [[=5-] (R] on nm

Plor-cla tarmiracsy

(105

[
[

[
X
LI

Figure of merd

{1 o1 L ok nAa oo LR .

Pl - chabarrnirmas y

Figure of merd
i

L=} w1 LR (L] (- | L =) (LAY .

P 1 - i L b ey

Figure 15. Plots ofy; vs\ for FFT, QMF, Karp and Meas corresponding to
Table 3.

42

3.3. Summary

Schedule post-processing strategies for transient-reduction and latency-
reduction are described in this chapter. An algorithm to solve TBL problem that uses
one of the schedule post-processing strategies is also presented. Experimental

results are presented that show the efficacy of the proposed strategies.

43

Chapter 4. Streamlining latency analysis for

contention-free systems

In this chapter, we present a new approach to implement the proposed sched-
ule post-processing techniques using a graph-theoretic framework, unlike the usual
approach of event-driven simulation. In practical multiprocessor systems, there is
contention for shared communication resources. One example of this is a shared
bus. A processor must gain access to the shared bus before it can execute an IPC
operation. The analysis we present here applies only to contention-free multiproces-
sors such as a fully-connected multiprocessor system. In mesh architectures, such as
the Raw architecture [40], processors are connected directly to their immediate
neighbors in a mesh-design and hence the system does not in general have as much
contention as a shared-bus system. So mesh architecture-based multiprocessors
often result in a contention-free systems. We first introduce a few relevant defini-
tions and then present recurrence relations that can be used to find starting times of
actors for different invocations during execution and hence simulation using an
event-driven simulator is not needed. The following analysis applies only to applica-
tions with deterministic execution times on contention-free systems. We define a
deterministic, contention-free self-timed system (DGISS) system where there is
no contention for communication resources, the application actors have determinis-

tic execution times, and the execution of the application is carried out in a self-timed

44

manner. We model the application in a DCFS as an IPC graph, which is described in
Section 1.1. We model periodic excitation (input) by modeling the sourcewiode as
having an execution time equal to the sample pefipd , and adding a self-loop edge
(Vs V) with unit delay to the IPC grapﬁipc for the application. Also the sample
period T, is equal to the maximum cycle mean of the graph (a reasonable assump-
tion because otherwise, there will be data loss or unbounded accumulation on the
system input buffers). In a DCFS, the communication actors in the IPC graph of the
application can execute simultaneously as there is no contention for communication
resources in a DCFS.

This approach reduces the execution time of the presented schedule post-

processing techniques considerably for a DCFS.

4.1. Notation and analysis

Let the execution time of an acter be denotedy) . We define a path as
an alternating sequence of edges and nodes in a directed graph, such that the node
following an edge in the sequence is its sink vertex, and the sequence starts on an
edge and ends on a node. The last node in the sequence is caleidnadlef the
path. For example, for an integer € (v, €, Vo, ...,V,_1, €, V,) representsa
path, whereg,, k = 1,...,n , denote a set of edges in the directed graph, and
Vi, k= 1,...,n denote a set of vertices in the directed graph such that
v = sink(g,), k = 1, ...,n. Nodev,, is the end node of the path in this example.

Suppose a path consists of a sequence of edges and nodes represented by

(€1, Vi, € Vs, ...,V _1, €4, V,,)- Definen(p) = delayf;) . 1fn = 0, then the path

45

has O delay. Fon >0 ,path iskdelay pathfor some integek> 0 if it satisfies

the following two conditions.

1) Forn = 1, Z delay(g) = k ; (14)
i=1
2) Forn>1, z {delay(e)} 2k= z {delay(e)} —(n-1) . (15)
i=1 i=1

Furthermore, if a path isla -delay path, then delay of the path can be
called equal tk , i.edelay(p) =k . This implies that the delay of path may be
multi-valued ifn > 1 . This is to account for the fact thatj{p) >1 , then the delay
of pathp can be chosen as any number fr%mdelay(ei) to

% {delay(e,)} —(n—1) as now one can é;;ose number of tokens in the range of
i1:t(l) n one, ,tobeincludedin path .Hence the delay of path may be multiple-
valued.

The execution time of the pagh denotedﬂagth(p) , is defined as the sum
of the execution times of the nodes on the path minus the execution time of the end
node. That istpath(p) = T(vq) +T(Vp) + o +T(V,) -

Let (v, k) denote the length of a longest (maximum execution tkne) -

delay path directed te . More precisely,
(v, k) = max{ tpath(p)|((p is a directed path t@) and(delayp)=k)) }). (16)

Note that from the definition of thenax operaté(v, k) = 0 ifthereisno

46

k-delay path directed to

Suppose that in a DCFS, the starting time of khe th invocation of an actor

is denoted by, (a) .

Lemmal: The starting time of thé&k th invocation [32](a) ofanackr ina
DCFS, is equal to the length of the longkst -delay path direct®d to , assuming

actor invocations are numbered starting at 1. That is,

t(v) = 8(v, k) fork = 1,2 3 ... (17)

Proof. This results follows naturally from developments in [32]. The evolution of
the network can be described by the following equations ((19), (20), (21)). Here

IN(s) represents the set containing all the immediate predecessors f actor and

(a, b) denotes the edge directed from an aetor to an actor . (18)

t (v) = 0 for (k<1), for all actorsv; (29)

t;(s) = 0, wheres is an actor that satisfies either of the following two condi-

tions. (20)

1.IN(s) = o, or

2. for all ueIN(s), delay(u, s)=1;

andt,(v) = ma&slN(v){lk(u, v)} for all actory (21)

47

andd = delay(u, v) .
It is easy to see that for every actort;(v) = 6(v, 1)
Assume fork>1 , (17) holds for an acter
Now divide the setN(v) into setdN,(v) ahbl,(v) such that for all
uelN;(v), k+ 1> delayu, v) and for allueIN,(v), k+ 1< delayu, v) . Now,
using (21),
ter1(V) = MaX%erin,) + N, LW V- Since
maX,e n, ol (U V)} = 0, we have that
tew (V) = ma)i,gml(v){ ter 1 _g(u) +T(U)}
Oty 1(v) = maxey w{6(u k+1-06)+1(u)}
O teeq(v) = 6(v, k+1)

So, by induction, (21) is true for dl>1 . Q.E.D.

4.2. Results

The approach to use the recurrence relations (19), (20), (21) to find the start-
ing times of all invocation for the output actor gives us a much faster way to imple-
ment the “simulation” needed in the proposed schedule post-processing techniques.
Table 4 tabulates the speedups observed by “simulation” using this approach com-
pared to usual even-driven simulation approach. One can see that significant speed-

ups are achieved for various DSP benchmarks, when (19), (20), (21) are to calculate

48

the generation of output samples during execution instead of using event-driven sim-

ulation.

Application Speedup
fftl 34
fft2 48
fft3 52
gmf 25
karp 42

Table 4. Speedups for various benchmarks.

49

Chapter 5. Problem formulation and overview of model

In polymorphous computing architectures (PCA), various attributes of the
architecture can be varied, such as inter-processor message routing, caching poli-
cies, scheduling policies, processor voltages, resource allocation to computing units,
and architectural support for synchronization during inter-processor communica-
tion. A polymorphous computing architecture can be a particularly useful platform
for developing a computing system where applications and the performance require-
ments keep changing as one can adaptively configure the PCA to suit the dynamic
constraints and objectives. In this chapter, we first define a problem that deals with
execution of an application on a polymorphous computing architecture such that the
specified performance requirements are satisfied, where performance requirements
may vary over time and the application may have tasks with stochastic execution
times. Then we present a general model as a solution to the problem and this model
is shown to be efficient and powerful enough to be able to handle diverse applica-
tions, through analysis and experiments.

The actors in the application are assumed to have stochastic execution times
with distributions that may vary slowly over time. The computing unit is a reconfig-
urable architecture, and we have to find a mapping of the actors in the application
onto the processors in the reconfigurable architecture and the configuration that the

architecture should assume, such that all performance-related constraints (e.g., con-

50

straints on power, resource usage or throughput) are satisfied and objectives (e.g.,
maximizing throughput or minimizing latency) are optimized. Henceforth, we will
refer to this problem as thmlymorphous computing architecture mapping (PCA
mapping) problemMoreover, performance requirements (i.e., sets of objectives and
constraints), can also change during the execution. As can be seen, the PCA map-
ping problem is quite general in nature and even very restricted special cases can be
proved to be NP-complete.

The approach suggested in this thesis, is also very general in nature and can
handle diverse applications and different performance requirements. It is based upon
taking feedback from the execution of the application and/or using mappings com-
puted during earlier executions and modifying the mappings adaptively. It is to be
noted that one can not apply relatively sophisticated mapping strategies during the
execution of the application as those techniques will take away excessive computa-
tional resources away from the application itself. To address this trade-off (thor-
oughness of dynamic optimization vs. resources drained from the application), our
model of the PCA mapping problem also accounts for the time spent in computing
efficient adaptations of mappings at run-time on the basis of feedback obtained from
execution and identification of bottlenecks, and hence always tries to move towards
optimal solution. All the reported experiments were done on an abstraction of the
Raw architecture [40].

The Raw microprocessor is a set of interconnected tiles, each of which con-

tains instruction and data memories, an arithmetic logic unit, registers, configurable

51

logic, and a programmable switch that supports both dynamic and compiler-orches-
trated static routing [40]. The tiles are connected with programmable, tightly inte-
grated interconnects. Each tile supports multigranular (bit-, byte- and word-level)
operations and programmers can use the configurable logic in each tile to construct
operations uniquely suited to a particular application. This high degree of config-
urabilty in the Raw processor system makes it a good choice for PCA in our prob-
lem.

In this thesis, to experiment on our model for the PCA mapping problem, we
used an abstraction of the Raw architecture that incorporates salient features of the
Raw architecture such as the programmability of interconnects between processors.
For experiments, the self-timed execution of applications on this abstracted Raw
architecture was simulated. This self-timed execution on the Raw architecture was

simulated using the IPC graph model as described in Section 1.1.

5.1. Problem formulation

A set of relevant metrics, such as {latency, throughput, average power, peak
power, number of resources,...}, is denotedvby . If a certain metric appears as a
constraint with aonstraint valudgo be satisfied when the application executes, then
this metric is referred to as@nstraint metriand the value as a constraint value for
that particular metric. A constraint value belongs to the set of real numbers. A pair
of constraint metric and constraint value is calledastraint pair For example,

(m, ¢) denotes a constraint pair, where is a constraint metricand is the corre-

sponding constraint value. A sequence of constraint pairs is referred toms a

52

straint vectorand is denoted by = [(my, ¢;), (M,, C5), ..., (M, Ck)] , where

my, m,, ..., M representaniK metricsM ,aogc,, ...,c, represent the cor-
responding constraint values, ide{ 0, 1, ..., N} , whé&te s the number of all
constraint pairs. This sequence of constraint pairs in a constraint vector is prioritized
such thatg&m;, ¢;) is a higher priority constraint pair than a constraint(m}ircj)

if i<j,fori,jO{0,1,...,N} ina constraint vector

V = [(my, cp), (M,, Cy), ..., (M, Ck)]. (23)

That is, a constraint pair that appears earlier in the sequence of constraint pairs in a
constraint vector has higher priority than the one that appears later. Note that accord-
ing to this definition, the same metric may appear in many constraint pairs within a
given constraint vector. A metrim; that is to be optimized after all constraints
have been satisfied is calledesidual objectiveA goal g is an ordered pair

(V, mg) whereV is the constraint vector ang, is a residual objective. If there is
no residual objective, then the goal is composed of only a constraint vector and can
be represented by, [1) . Heré represents the absence of a residual objective.
Also, without loss of generality, the metrics are such that the associated optimization
problems are taninimizethe metric (i.e., a lower value of a metric is always better
than a higher value). Thus for any metricxify are values of the metric, xtep
denotes that value is no worse than vajue for the metric. Metrics for which a
higher value is more desirable can be transformed into some other metric for which

lower value is the better one. For example, the throughput (average rate of comple-

53

tion of application iterations) can be re-cast asttration period which is the

reciprocal of the throughput.

Example 5:Consider a set of relevant metrigs = {L, P, T} , where is the
latency,P isthe average power consumption, &and s the iteration period. Consider
the goalg = [(L, 50), (P, 100), (L, 40), (P, 70), T] . Ing , the constraint pair

(L, 50) has higher priority than the constraint p#; 100) , Which in turn has
higher priority than the constraint pdit, 40) . The meffic s the residual objec-

tive. m

Mapping an application to a reconfigurable architecture includes defining a
task-to-processor mapping along with defining the configuration of the reconfig-
urable architecture. In this thesis, the scope of the word “configuration” is expanded
to include also the mapping of the application onto the reconfigurable architecture.
Therefore, @onfigurationconsists of two components 1) task-to-processor mapping
and 2) configuration of the architecture. Henceforth, the word “configuration” is
used in the above sense, unless stated otherwise. A given application, goal, and
resource set define amstanceof the PCA mapping problem. Input to the model is
an instance that may change with time. We defineléisegn spacas the set of all
feasible combinations of an instance and a configurationsdlb@on spacdor a
feasible instance is the set of all feasible configurations for that instance. Latency,
throughput, average power and peak power are some of the commonly encountered
metrics. With many metrics of simultaneous relevance, the goal space is too vast to

be fully explored before run-time. The overall high-level view of a model is illus-

54

trated in Figure 17. The main components of the model aifthine refinement
part, theconfiguration storeand theon-line refinement part

For a given instance, not every configuration is suitable as some configura-
tions may violate constraints or may not fully achieve the optimal objectives. As the
goal changes for a given application, one needs to have a suitable configuration
specifying the task-to-processor mapping and the architecture. This problem could
be undecidable, in general. Also, reconfigurability of the architecture and the sto-
chastic variance of execution times make the solution space consisting of all possi-

Application
T _-- OFF-LINE REFINEMENT PART

Off—line Algorithms\ e
STATS

Cs

= A1

On-line algorithms A2

%An

ObjectiIe vector (O)

Mapping
/Configuration

Identify
bottlenecks

- "iv": ---- ON-LINE REFINEMENT PART

Figure 17. Overview.

55

ble configurations for the input of a goal and a given application much more large.
Since computing a suitable configuration is performed during the execution of the
applications, it adds to run-time. Hence, exhaustive search strategies are ruled out
during run-time. In contrast, one needs low-complexity algorithms for finding these
configurations as the goal changes. This is taken care of by the on-line refinement
part of the model. It consists of algorithms that find configurations for a given
instance. It also consists of feedback units showaémytify bottleneckblock in

Figure 17, that takes feedback from the execution of the configurations and modify
the configurations so as to better suit the goal, at regular intervals of time.

A configuration store is used to store points in design space that have been
explored, so that one can use them later as need be. In [9], Budenske et al. use a sim-
ilar concept to store relevant data. The off-line refinement part of Figure 17 consists
of high-complexity algorithms that yield better solutions. It is acceptable for them to
be of high-complexity as they are used off-line and do not compete for resources
with the application. In Figure 17, tIBTATunit stores statistics about application
(e.g., distributions of execution times for different actors, frequencies of occurrence
of some patrticular regions of goal space, etc.). Off-line algorithms use these statis-
tics for exploring the solution space for input instances.

As soon as the goal or application changes, a search for a suitable configura-
tion in the configuration store is performed. In case this search is “unsuccessful” (all
constraints in the goal vector are not satisfied or the residual objective is not fully

optimized), on-line algorithms generate a configuration to start with and dynami-

56

cally refine this initial objective. If a suitable configuration exists in the configura-
tion store, then it is used as a configuration to start with. On-line algorithms keep
improving the configuration that is being executed, using feedback from execution.
In the meantime, off-line algorithms keep exploring areas of design space and merge
the relevant information into the configuration store. They are high-complexity algo-
rithms that use histories of profiling information and generate better configurations
for an instance and store them in configuration store, so that they can be picked up
directly from configuration store in case the same instance, or a similar one is
applied later. Th&tatsunit in the on-line refinement part of the model stores short-

term statistics that can be used by on-line algorithms.

5.2. Model

The overview of the model shows that it is very adaptive in nature and hence
is suitable for applications with stochastic execution times and time-varying goals.
For a practical and robust implementation of the model, a detailed formulation of the
model is needed. There are still many issues to the model, such as finding out a good
measure to evaluate configurations for a given instance, choosing the instances
whose configurations should be stored in configuration store, good low-complexity
algorithms that can be used at run-time to find configurations, etc.

These issues are discussed in the next chapter in a general sense and related

problems are formulated in terms of some of well-studied mathematical problems.

57

Chapter 6. Details of the model

This chapter deals with the detailed description and algorithms for manage-
ment of various components of our model for the PCA mapping problem. We have
developed a configuration management framework that is the core to the online
refinement part of the model of Figure 17, and demonstrated this framework using
simple, low-complexity online algorithms for optimization of various metrics. We
have showed the efficacy of our model by experimentation on several benchmarks
for various goals. We have also analyzed the complexity of various problems related

to configuration management by modeling them as some well-studied problems.

6.1. Evaluation measure

We need to define some measure of how well a given configuration executes
for a particular instance. This evaluation measure should allow unambiguous com-
parison between the qualities of two configurations based on the current goal.

Suppose we are given agapkE [V, mR , where

V = [(my, ¢p), (My, Cy), ..., (M, C,)] - (24)

We define thguality of a system configuratiof as the ordered pair
Q(C) = (k,v), wherek+1 is the index of first unsatisfied constraint in the con-
straint vector of that instance, and is the value obtained for the mgtric f

configurationC satisfies all constraints in the constraint vector then

58

Q(C) = (n+1,vR), wherevg is the value obtained for the residual objectiye
if mg#0Oor vg = -« if mg = [. In the following discussion, we assume that the
individual metrics over which goals are defined are totally ordered relations
(Definition 4 in Section 6.2).

In summary, the quality of a configuration is a measure of evaluation of the
configuration with respect to a given instance, and given an instance and two config-
urationsC, andC, with qualitie®(C,) = (ky,v;) ar@(C,) = (k, v,) for

that instance, respectively, has higher quality ban if
(kg >k,) or((ky = ky) and {1, <v,)) . (25)

Q(Cy > Q(Cz)|I represents that configurati€@y is of higher quality than
configurationC, for instance .
Example 6: Consider an application with the relevant metrics being latdncy (),
average powerH), and the average iteration period of the output samples (). Let
goalg; =[(L, 50), @ 90),T], and goalg, =[(, 70), @ 100),T]. Let I, denote an
instance of the problem, which is composed of the given application, the resource
set associated with the PCA, and the ggal . Similarlyl jet ~ denote an instance of
the problem that is composed of the given application, the resource set associated
withthe PCA, andthe goa, .L&; ar@, be two configurations, each of which
denotes a combination of a specific configuration of the architecture and a specific
schedule according to which application should be executed on that configuration of

the architecture. Suppose further that the attributeS,of Lare #£60, =100, and

59

T =40; and the attributesdf, ate =98, =100,ahd =45. Qualities of these

configurations for instancds ahg are as follows.
Q(C1)|| = (1, 60) andQ(C2)|I = (2,100
Q(Cl)|I = (3, 40 andQ(C1)|I = (3,45

Therefore,Q(C2)>Q(C1)|I an<3Q(C2)<Q(C1)|I n
6.2. Configuration store

A configuration store serves as a repository of configurations for distinct
instances. The allocation of memory in a configuration store to configurations of
instances is a fundamental problem in the management of configuration stores. In
this section, we develop models to solve this problem.

A configuration store can be divided into several sub-stores (sub-CSs), one
for each application. One can define a weight for each application depending upon
how often that application is executed and the size of the configurations correspond-
ing to that application. The size of the sub-CS for an application can be directly pro-
portional to the weight of that application. Each sub-CS has some configurations
stored in it, one for a specific combination of goal and resource set. In the later part
of this section, we assume that we are dealing with a fixed application and a fixed
resource set, unless stated otherwise. This does not detract from the generality of the
ideas developed later as they can be generalized to include various applications and
resource sets using the hierarchical model of configuration store explained above.
Using this hierarchical model, a sub-CS would store configurations for various goals

for a particular application and resource set. Assuming a fixed resource set, the

60

problem of finding a minimum size configuration store and the goals whose configu-
rations should be stored can be decomposed into several problems, one for each
application, of finding a minimum size sub-CS for each application. The minimum
size of a configuration store can be found by adding all the minimum size sub-CSs
thus found. So, the solution to the problem of finding a minimum size configuration
store is based on the solution to the following problem.

For a particular application and resource set, find the minimum size of sub-
CS required for that application and the configurations to be stored in it.

To address this problem, we consider issues related to storing configurations
in a configuration store corresponding to different goals for a fixed application and
resource set.

It is beneficial to have a configuration stored in a configuration store appro-
priate to the present instance as in this case it can be picked up directly from the con-
figuration store. If no appropriate configuration is found in the configuration store
then the most suitable of the ones that are present can be picked and on-line algo-
rithms can be employed to compute a more appropriate configuration for the applied
instance. Assuming a fixed application and resource set, selecting the goals whose
corresponding configurations should be stored in the configuration store depends on
various factors such as the size of the configuration store; optimality of stored con-
figuration; computational resources drained from the application; the expected or
observed frequency of specific goals, etc. To make the analysis more precise, we

first define a few terms and formulate problems related to storage of configurations

61

in a configuration store. These problems relate to various aspects of configuration
management such as size; choice of configurations to store; and choice of initial
configuration in the configuration store for a given goal. These problems and our
models to solve them provide fundamental analysis of the complexity of configura-

tion management and provide feasible, low-complexity solutions to this problem.

6.2.1 Terminology and notation

Definition 1: Given two goalgy; and, ,we say tlgt aceptabldor g, ,
denotedg, - g, , if a configuration that satisfaggs is an acceptable implementa-
tion for g, . If g; — g,, we can also say thgy coversg,. Given asef’ of goals

and a specific goa , trepaceof g overl (or simply, thespaceof g, if I" is
understood) ifg' U I'|g - g'} . Thus, the space of aggal is the set of goals that
are acceptably implemented by any configuration that satgfies . The space of a

goalg is represented lgpacé §

This notion ofacceptabilityandcoveremerge very naturally from the PCA
mapping problem and guide the construction and adaptation of the configuration
store in our model. In this section, we will also explain how these concepts help us
model configuration management and how various results from the analysis of these
concepts are useful to the configuration management process.

If one observes that goals from a particular region of the goal space occur
more often, one may want to have more configurations stored that satisfy goals in

that region of goal space. For some metrics related to aggoal , the relevant accept-

62

ability criteria might not allow much leeway compared to other metrics relatgd to
(e.g., it may happen that some goals with throughput values as different as 10 units
from throughput values ig are in the spacgof , whereas none of the goal with
latency values as different as 5 units from latency valugs in are within the space of
g). Therefore, in general, the spacegof can be of arbitrary shape. To further
develop the notion of configuration acceptability, it is useful to review concepts

relating to relations and partial orders [16].

Definition 2: A relationR on two setsA an@ is a subset of the Cartesian product
Ax B. ArelationR Ax A isreflexiveif aRafor all all A The relatiorR is
symmetridf aRbimpliesbRaforall g bl AThe relationR isanti-symmetrigf
aRbandbRaimply a = b for alla, b0 A. The relatiorR isransitiveif

aRbandbRcimply aRcforall g h dI A

Definition 3: A relation that is reflexive, anti-symmetric and transitive paial
order, and we call a set on which a partial order is defineartally ordered set
[16]. For example, the relation “is a descendant of” is a partial order on the set of all
people, if we view individuals as being their own descendants. As another example,

the subset relatioh " on all subsets of the set of integers is a partial order.

Definition 4: A partial orderR onaseA istatal orderif for all a, beA, we have
aRbor bRa- that is, if every pairing of elementsAf can be relateR by . For

example the relatioh<" is a total order on the natural numbers [16].

63

In general, for a finite sét of relevant goals, and a given acceptability rela-
tion, finding a minimal set of goalsg,, 9,, ..., 9,,} such th spacg @) = I IS
tractable and we will prove this in Section 6.2.3.1. The fcl)ll_otving result shows that
the acceptability of configurations is a particularly well-behaved relation if it is a
partial order.

Theorem 1: If we have a finite sdi of relevant goals, and the acceptability rela-

tion is a partial order, then there exists a unique, minimal set of goals

{91, 9, ..., gy} such that

[l spacé g = T, (26)

i=1

and this set of goals can be computed in polynomial timé&jn , the number of rele-
vant goals.

Proof: Suppose there are two different minimal s&s, &ud , of goals that satisfy
(26). Letg; beagoalsuchthgt0S, agdls, andjlet be a goal such that
9,0S, andg,dS, .Letg0 S, suchthay — g; .Thegaall S, si8g isa
minimal set. Thus, there exists aggal suchghat S; cand g . Since the
acceptability relation is a partial ordef, is acceptablgfor gles g f

g' #d,, then it contradicts our assumption tiat is a minimal set. On the other
hand, ifg’ = g, ,theny’ - g - g; wouldimplyg’ = g = g, asthe acceptability
relation is a partial order, which would contradict the assumptiorgiHats,

Hence there is a unique minimal set that satisfies (26). Q.E.D.

If the acceptability relation is a partial order, the minimal set of goals is com-

64

posed of only those goals that are not covered by any other gbalin . Therefore, this
set of goals can be computed in polynomial time, using, for example, the following
simple algorithm.

Construct a grapler such that each godlin - corresponds to a ndéle in
All the nodes that correspond to goals in the space of eggoal , where are
connected by directed edges from the node corresponding tg goal . For all the
nodes, mark their immediate successors. The goals corresponding to the unmarked
nodes constitute the above mentioned minimal set of goals. This set of unmarked

nodes can be determined by a simple travers@rof

Example 7: For a given application and the resource setMet {L, P, T} be the
set of relevant metrics, whete denotes lateRcy, denotes the average power, and
T denotes the average iteration period in the execution of the application. Consider
the goalsy; =, 50), @ 100),T], g, = [(L, 60), {, 110),T], g5 =[(L, 40), &,

110),T)], andg, =[(, 30), @, 110),T]. The graphGr formed by nodes corre-
sponding to these goals is shown in Figure 18, and each edge of the graph denotes
that the goal corresponding to the source vertex is acceptable for the goal corre-
sponding to the sink vertex. One can easily verify that in this case, the acceptability
relation is a partial order, and the minimal set of goals that is needed to cover all four

goals is {94, 9, }, which is unique. This is in accordance with Theorem 1.

Definition 5: Dominance relationA point pe0" dominates a poified" if
p,<p;, foralli =1,..,n,wherep, ang, denote th componentpof and

respectively.

65

Example 8: Transitive acceptability relation.

One can see that the dominance relation is a transitive relation. Also, the
dominance relation is reflexive and anti-symmetric, which makes it a partial order.
We can have an acceptability relation between goals based on the dominance rela-
tion where a goad, is acceptable foraggal if and only if the constraint vector of
the goalg; dominates the constraint vector of the goal , and the residual objec-
tives for both the goals are identical.

For a given application and resource setMet {L, P, T} be the set of
relevant metrics, where denotes the lateRcy, denotes the average power, and

denotes the average iteration period in the execution of the application. Consider the

Figure 18. Graplsr for Example 7.

66

goalsg; =[(,5), (P, 40),T], g, =[(L, 10), ¢, 50),T], andg; = [(, 10), P, 60),

T]. Using the acceptability condition based on the dominance relation defined
above, we canseethgdy - 9, 0, -~ 03 agd- g3 which verifies that the
above relation is transitive. One can also verify that this acceptability condition is

also reflexive and anti-symmetrm.

Definition 6: A point psDn is aPareto pointfor a mappingg: 0" . 0™ ifthere
exists no other poin;TJeDn such that

P <ap), i=1...m, (27)
where not all of the above inequalities are equalities [8]. The va|(p} and

@ (p) denote theé th components@fp) ap(h) , respectively. We can define
Pareto dominance of agagy overagpal as the case when satisfying all con-
straints ofg, leads to satisfying all constraintsggf . It can be seen that if the resid-
ual objectives are same, the Pareto dominance relation is similar to acceptability
based on the dominance relation, as defined earlier. One can observe that since
Pareto dominance is a transitive relation, if the acceptability is based on Pareto dom-
inance, then the acceptability relation also becomes a transitive relation and hence a

partial order.
Example 9:Non-transitive acceptability relation.

Suppose that we have a single constraint metric, which is the average itera-
tion periodT of the system. Thus, the constraint associated with ggoal can be

expressed as the desired average iteration p&iigh . Suppose that in a particular

67

implementation context, the acceptability relatgpn- g, is defined by
T(9,) —T(9,) <AT for some positive real numb&fT . Thus, a configuration for

g, can be worse than what is desired urgler , and still acceptalgg for , as long

as the deviation does not exceed the thresAdld . Assume that theggogys and
g5 have desired average iteration period valueb(gf) = 5 T(g,) = S—SATT

andT(gz) = 5—3—2—1—_ .Onecanseethgy -~ g, aml-g; byt isnot

acceptable fog, . Therefore, this acceptability relation is not transitive.
To make the example more elaborate, assume that there is also a constraint
associated with latendy , in additionTo . Let the acceptability relatjon g,

now be defined by
T(g9;) —-T(9y) <AT andL(g,) —L(g,) <AL. (28)

Furthermore, let the desired average iteration period valu€$de = 5 :
3AT 3AT

T(g9y) = 5—-—4—, T(g;) = S_T , and let the desired latency values be
L(g;) = 2, L(9,) = 2—% andL(gg) = 2—% . Once agaig; - g, and

g, — 03 butg, is not acceptable fg; . Also, the graph induced by gpats,
andg; is non-transitive (the graph is not identical to its transitive closure) and is
shown in Figure 19, where vertices A, B and C represent gealy, , gzand
respectivelym
Example 10:Transitive and symmetric acceptability relation.

A clusterof sized is a maximal s& of goals such that for every element

g O S, there exists at least one elemghi] S , such that none of the constraint val-

68

uesing’ is different by more thah units from the corresponding constraint value
in g. Suppose that in a particular implementation context, the acceptability relation
between two goals is defined in the following way.

Two goals are acceptable for each other if and only if the constraint vectors of the
two goals belong to the same cluster [37] of size 5 in the constraint vector Epace.
can be seen that this acceptability relation is transitive,gs-if g, gandg, ,
then all ofg,, g, andg,; belong to the same cluster, and heyce g, . One can
also observe that this acceptability relation is also symmetric becayse ify, ,

theng, - g, .=

6.2.2 On-line management and use of configurations

If we have an acceptability relation between goals based on the dominance
relation, then results related to partial orders can be applied to the management of
goals in an associated configuration store. This leads to valuable properties such as
that exposed by Theorem 1. Also, the dominance relation is a very natural candidate
for an acceptability relation among goals, as a configuration corresponding to the
dominating goal can be used in place of a configuration corresponding to the domi-

nated goal without violating any constraints. This all motivates our use of the domi-

Figure 19. Induced graph.

69

nance relation in managing configuration stores. The following is a framework for
on-line management of goals and configurations, where if a suitable configuration
for the applied goal is not found in the configuration store then a configuration suit-
able for aweakergoal (one that is dominated by the applied goal) is looked for to be
used, and so on, until one finds a suitable configuration. The following meta-algo-
rithm forms the core of the on-line refinement block in Figure 17. This core compo-
nent deals with the management of goals and configurations. This is a meta-
algorithm because specific details of the architecture, the application, and the on-
line adaptation algorithms are left unspecified, and can be customized based on the
relevant classes of applications and architectures.

This meta-algorithm consists of the following steps.

* Initialize the variableurrentObjectiveo be the residual objective.

* If there exist one or more configurations in the configuration store whose
constraints dominate the constraints of the given goal , then select the one that best
addresses the current objective, and continue optimizing the current objective
throughon-line adaptatior{while g is in effect).

» Otherwise, discard the current objective, demote the lowest priority con-
straint to be the new current objective (call thdeanoted constraint objective,
abbreviatedMC), and repeat Step 1.

* During on-line adaptation, if we are working on improving a DMC, and we
achieve a configuration that satisfies the associated constraint (without violating any

higher-priority constraints), then promote the DMC back to being a (regular) con-

70

straint, and (if applicable) move to the next (lower priority) constraint (which must
be a discarded DMC), and promote this to be the current objective. If there are no
more constraints, then set the current objective to be the residual objective.

The detailed pseudocode for the above algorithm framework is shown in

Figure 20. This meta-algorithm maintains@arent objectivet all times, where the

Global variables goal ,g ,g. ; $tack ; glob@l clock time
t: time timelimit
Function onLineManagement

9. = [(my, cq), (My, Cy), ..., (Mg, C), Mg] /*Current goal */
9=0 =9

Instantiate a stack . Initiafize to an empty Sack.
objective = mg

constraint, = null

while there does not exist a Ce Configuration, staoh that
constraints of dor@inate the constraints of { g

(g constraint objective= demoteConstraint(,) g S
}
Find all Ce Configuration steoeh that constraints of C
dominate the constraints of . Select the one that
addresses the objectib@st and store it in canfiguration,

while ((t<timelimit) & (g, = = g X
while constraint, is not satisfied {
onLineAdaptation(, g objective configuration

}
(g constraint objectivg= promoteConstraint(,) g S

Figure 20. Pseudocode for on-line configuration management.

71

goal is always to improve the current objective without violating any of the previ-
ously satisfied constraints. This current objective is changed to improving the metric
associated with the next unsatisfied constraint once the constraint associated with
the current objective is satisfied. The functmmLineAdaptatioriakes a goal, objec-

tive metric, and configuration as inputs, and keeps refining the configuration in an
effort to continually improve its quality (as defined by (25)). The vaglue repre-
sents the goal that has been applied to the system. In the pseudocode, it is assumed
thatg, will change to the new goal vector when the goal vector applied to the sys-
tem changes. Pseudocode for the related functions is given in Figure 21. The on-line
refinement part of this configuration management framework, which continually
refines a configuration after it is picked from the configuration store, has been
implemented and some experimental results pertaining to it are discussed in

Section 6.3.

6.2.3 Models for problems related to configuration management

Here we study some fundamental versions of the problems related to the
configuration management, improve our understanding of their complexity, and
relate aspects of them to well-studied problems. For these purposes, it is helpful to
define a notion of “distance” (e.g., Euclidean distance in goal space) between two
goals. If the distance between agogl and anothergoal s less than the distance
between a third goaj, and the ggal , then one may say thatggoatloseésto
goalg,; thang, . One would like to have configurations in the configuration store

such that whole of range of goals is covered, which means that for anggoal , there

72

is atleastone goa)’ and its configurati@n in the configuration store such that the
space ofg’ includeg . There are two related problems regarding the size of the
configuration store.

P1. Find the minimum size configuration store and the goals that should be
stored in it such that all the relevant goals are covered and,

P2.given a fixed size configuration store, find the goals whose configura-
tions should be stored such that the sum of the distances of those goals that are not
present in configuration store, from the closest goal present in configuration store, is

Function promoteConstraint

Input goal g = [(my, cq), (M, Cy), ..., (M _1, Ck _1), M,]Stack S
Output goal ¢’

constraint value v = Spop()

metric m = Spop()

constraint value x = Spop()

S.push)

Instantiate g = [(my, cp), (My, Cy), ..., (Mg g, C _y), (M, V), M|

Output{ g , X) m

Function demoteConstraint

Input goal g = [(my, ¢q), (My, Cy), ..., (Mg, Ck), Mg] , StackS
Output goal @'

S.pushng)

S.pushgy)
Instantiate a new goal

g9 = [(my, cy), (My, Cy), ooy (M _ 1, Ck _ 1), Mi] .

Output(g" .k My

Figure 21. Pseudo-code for functiom®moteConstraint anddemoteCon-
straint ~ from Figure 20.

73

minimum. For this, one needs to have a well-defined measure of distance between
goals.

We explain these problems in detail and reduce these to some well-studied
problems.
6.2.3.1 Analysis of the configuration management problem P1

The concept of a dominating set is useful in understanding P1.

Definition 7: For a directed grapls(V, E) ,asubdget \Of id@minating seif

for all veV , eitherveD or there existiseD , such titat v)eE

Definition 8: Minimum dominating set probler@iven a directed graph, find a

minimum dominating set of the graph.

Example 11:For the graph given in Figure 22, the dominating sets are (A,B), (A,C),
(B,C) and (A,B,C). Minimum dominating sets for the graph are (A,B), (A,C) and
(B,C).m

We can model problem P1 as one of the graph problems in the following

Al 2

Figure 22. lllustration for the dominating set of a graph.

74

way. Construct a directed gra@(V, E) inthe following manner. Initialize to be

a set of vertices such that each verte¥ in corresponds to g gdal Jwhere
denotes the set of relevant goals. For each of the venieés , Where corresponds
to some goaf) , construct directed ed@esu) belongifg to such that belongs

to the set of vertices corresponding to the spaag of . Find the minimum dominating
set [16] of the grapls . This problem is NP-complete, but polynomial time 2-
approximation algorithms exist [17]. The set of vertices thus obtained would corre-
spond to the set of goals whose configurations need to be stored.

To reduce P1 from the minimum dominating set problem, for every vertex in
the dominating set problem, instantiate a goal; and for every edge, instantiate a con-
dition that the goal corresponding to the source vertex is acceptable for the goal cor-
responding to the sink vertex. The problem P1 related to this set of goals and
acceptability relation among goals is equivalent to the given minimum dominating
set problem instance. The vertices in the given minimum dominating set problem
instance, corresponding to the goals that should be stored in the configuration store,
found by solving P1, constitute a minimum dominating set for the given minimum
dominating set problem instance. This proves that the problem P1 is NP-hard. Prob-
lem P1 can be posed as a decision problem in the following manner.

Is a configuration store of size and a §et of goals stored in it sufficient
for covering all the goals?

A solution to this problem can be verified by checking if theSet of goals covers all

the relevant goals, and checking if the Set can be stored in a configuration store of

75

sizex . It can be done in polynomial time in terms of the number of goals by check-
ing for each goal if that goal or any goal that covers itis in theSset . So, problem P1

is NP-complete.

Example 12:The instance of Problem P1 that is obtained by reduction from the
minimum dominating set instance of Example 11 has three instantiatedgjoals
andgs; corresponding to verticds B, a@d , respectively. The diagram in Figure
23 shows the instantiated goals. We haye, 9, 9, » 053 ahd g, . The
smallest sets of goals that cover all the three goald ayeg,} {9, 93} , and
{93, 9:} , which is in accordance with the minimum dominating sets (A,B), (A,C)
and (B,C), in Example 1=

If the acceptability relation is a partial order, then the minimum dominating
set can be found in polynomial time by picking up all the vertices with no incoming
edges in the dominating set. This is in accordance with Theorem 1. The goals corre-
sponding to these vertices would give the minimal set of goals that covers all rele-

vant goals.

Figure 23. lllustration for Example 12.

76

The above formulation does not differentiate between cases when the goals
that are being covered are at closer distances from the goals covering them than
cases where they are at larger distances unless the size of the solution found is not

same.

6.2.3.2 Analysis of configuration management problem P2

We can model problem P2 as a well-defined graph-theoretic problem in the
following way. Given a fixed size configuration store, there is a fixed number of con-
figurations that can be stored in it. Let this numbek be . Consider the problem of
computing goals whose configurations should be stored such that the sum of the dis-
tances of those goals that are not present in the configuration store from the closest
goal present in the configuration store is minimum. This problem can be directly
related to one of the well-studied problem, cakkechedian problenf20]. We
assume that there is a pre-defined way of computing distance between any two goals
and we are given the distances between any two goals in the goal space. Also, we are
assuming that our goal space is a metric space, which has been defined in

Section 1.1.

Definition 9: k-median problemin thek-median problem, we are given a set of
potential facility locations= . Any open facility can provide an unlimited amount of
a certain commodity. There is a set of clients or demand @oints that require ser-
vice; clientjeD has a positive demand of commodigy that must be shipped from
one of the open facilities. If a facility at locatiogF is used to satisfy the demand

of client jeD , the service or transportation cost incurred is proportional to the dis-

77

tancec;; fromi tg . This distance functi@an is non-negative, symmetric and satis-
fies the triangle inequality. The goal is to deternkine potential facility locations at
which to open facilities and an assignment of clients to these facilities so as to mini-

mize the overall service cost.

Problem P2 can be modeled as a -median problem in the following way.
For every goal present in the goal space, instantiate a location in -dimensional
space whera is the dimension of goal space. The distance between any two instan-
tiated locations in thi;m -dimensional space is equal to the distance between the cor-
responding goals in the goal space. Instantiate a set of possible facility locations and
initialize it to the set of all instantiated locations in the -dimensional space. Instan-
tiate a set of all client locations and initialize it to the set of all instantiated locations
in then -dimensional space.

The n -dimensional space, the set of possible facility locations, the set of all
client locations and the distances between any two locations m the -dimensional
space constitute an instance of the -median problem. Problem P2 can be solved by
modeling it as & -median problem, as described above, and then solvikkg that -
median problem. The goals corresponding to the set of locations at which facilities
should be opened, found by solving the associ&ted -median problem, would be the
answer to the problem P2.

For the simple case of two-dimensional space, polynomial-time approxima-

tion algorithm with a 3-approximation factors exist [12] kor -median problem.

78

Example 13:Consider a goal space composed of three gpalg, , gand ,as
shown in Figure 24. The numbers beside the edges connecting the goals represent
the distances between the goals. One can see that the triangle inequality holds. Let
the size of the fixed size configuration store be 1 unit (i.e., the configuration store
can store information for one goal). Problem P2 for this specific case is
Find one goal, outofj; @, and,; ,thatshould be stored in the configuration store
such that the sum of its distances from the other two goals is minimum.

The corresponding -median problem obtained after modeling this problem

based on the concepts above is shown in Figure 25. Locations A, B and C corre-

9 5 0,

I

Figure 24. An example goal space.

B 5 C

A

Figure 25. lllustration for Example 13.

79

spond to goalg;, g, and; ,respectively. The set of possible facility locations is
{A,B,C}, and the set of all client locations is also {A,B,C}. The distances between
all locations are represented by numbers beside the edges in the figure. Solving the
k-median problem fok = 1 would give A as the location where the facility should
be opened. This would correspond to storing gpal in the configuration store as an
answer to problem Pi.

There can be several other variants of problem P2. For example, one of the
variants is to find the goals whose configurations should be stored such that least

number of goals in the goal space are left uncovered.

6.2.3.3 Exploring trade-offs

Configuration management problems P1 and P2 can be viewed as extreme in
the sense that in one of them we want to cover all feasible goals without considering
how large the minimum size configuration store would be (P1), and in the other
case, we have a fixed size configuration store and we are trying to find out the maxi-
mum number of goals that can be covered using that configuration store even though
that number could be much less than the total number of relevant goals (P2). A more
elaborate formulation would be one in which we have to pay extra cost for increas-
ing the size of configuration store, but we would be gaining some additional service
by that (e.g., now some goals that are not present in the configuration store are closer
to the goals that are present in the configuration store). This way we can explore var-
ious trade-offs between the size of the configuration store vs. the number of goals

stored in a well-defined way. Understanding the so-called facility location problem

80

would be useful in this regard.

Definition 10: Facility location problen{15]: In the facility location problem, we

are given a set of potential facility locatiofRs ; building a facility at locaitgén

has an associated nonnegative fixed ¢pst , and any open facility can provide an
unlimited amount of certain commodity. There is a set of clients or demand ints
that require service; cliefeD has a positive demand of commdgity that must
be shipped from one of the open facilities. If a facility at locatieR is used to sat-
isfy the demand of clienteD , the service or transportation cost incurred is propor-
tional to the distanceij froin fo . The distance function is non-negative,
symmetric and satisfies the triangle inequality. The goal is to determine a subset of

the set of potential facility locations at which to open facilities and an assignment of

clients to these facilities so as to minimize the overall total cost.

We define a new problem P3 so that the trade-offs between the size of the
configuration store vs. the number of goals stored can be explored by modeling P3
as a facility location problem. We assume that there is a defined way of computing
distance between any two goals and we are given the distances between any two
goals in the goal space. Also, we are assuming that our goal space is a metric space,
which is defined in Section 1.1.

Problem P3 Find the size of the configuration store and the goals that
should be stored in it such that the overall cost is minimum. The overall cost is equal

to the sum of the distances of the goals that are not stored in the configuration store,

81

from the closest goal that is stored in the configuration store plus the cost associated
with storing goals in the configuration store.

Problem P3 can be modeled as a facility location problem in the following
way. Letw; be the cost associated with storing a configuration-goal pair associated
with goalg; in the configuration store. For every goal present in the goal space,
instantiate a location in -dimensional space where is the dimension of goal
space. The distance between any two instantiated locations m this -dimensional
space is equal to the distance between the corresponding goals in the goal space.
Instantiate a set of possible facility locations and initialize it to the set of all instanti-
ated locations inthe -dimensional space. Instantiate a set of all client locations and
initialize it to the set of all instantiated locations in the -dimensional space.

The n -dimensional space, the set of possible facility locations, the set of all
client locations, the cost, associated with storing any goal in the configuration
store, and the distances between any two locations im the -dimensional space con-
stitutes an instance of the facility location problem. Problem P3 can be solved by
modeling it as a facility location problem, as described above, and then solving that
facility location problem. The goals corresponding to the set of locations at which
facilities should be opened and the size of the configuration store corresponding to
the cost of building those facilities, found by solving the associated facility location

problem, would solve an associated instance of problem P3.

Example 14:Consider the same goal space we used in Example 13, which was

composed of three goals g, agg and is shown in Figure 24. The numbers

82

beside the edges connecting the goals represent the distances between the goals.
One can see that the triangle inequality holds. Let the cost of storing a goal in the
configuration store be the same for all the goals and be equal to 3 units. Problem P3

for this specific case is

Find the subset dfg, , g,, 95} that should be stored in the configuration store such
that the overall cost is minimum. This overall cost is equal to the sum of the dis-
tances of the goals that are not stored in configuration store from the closest goals
present in the configuration store plus the total cost of storing the goals that are
present in the configuration store.

The corresponding facility location instance obtained after modeling this P3
instance as a facility location problem is shown in Figure 26. Locations A, B and C
correspond to goalg; g, amgd |, respectively. The set of possible facility loca-
tions is {A,B,C}, and the set of all client locations is also {A,B,C}. The distances
between all locations are represented by numbers beside the edges in the figure.

Solving the facility location problem would give {A, C} or {B, C} be the set of loca-

B3) 5 C(3)

2 4
A(3)

Figure 26. Illustration for Example 14.

83

tions where the facilities should be opened. The cost associated with any of the
above answers is 8 units and is the minimum cost for this example. This corresponds
to the optimum solution of a configuration store of size 2 andggetd; , $or{ .,
g5} to be the set of goals that are stored in the configuration store.

Polynomial-time algorithms with an approximation guarantee of 1.74 exist
for the facility location problem [15].

When the acceptability relation is a partial order, the formulations in
Section 6.2.3.2 and Section 6.2.3.3 have no known polynomial-time solutions unlike
formulation in Section 6.2.3.1. However, these formulations are nevertheless impor-

tant as they isolate specific concerns in the design of configuration store.

6.3. On-line algorithms

In this section, we will discuss low-complexity online refinement algorithms
that are represented by functionLineAdaptationn Figure 20. These online algo-
rithms are responsible for the refinement of a configuration that is picked from the
configuration store so that it better matches the applied goal. This is performed

according to the configuration management framework discussed in Section 6.2.2.

6.3.1 Simple low-complexity, run-time refinement approach

Here we develop low-complexity, on-line strategies based on heuristics for
throughput and power optimization. Since these algorithms are employed during
run-time, they must be of low-complexity. Also, the algorithms developed should be
able to handle stochastic application behavior, and must be dynamic in structure.

Our configuration management framework provides us with an initial configuration,

84

which is refined by these on-line strategies for the objective specified by the config-
uration management framework as shown in Figure 20. In this framework in Figure
20, these on-line strategies are represented by furarnioneAdaptationThese

strategies are applied while the application executes as otherwise they will take
away too much computational resources away from the application itself. Also, it is
necessary to apply these on-line strategies as the application executes because exe-
cution of the application is necessary to generate statistics about the application,
which in turn are useful in driving the reconfiguration process.

The approach of taking feedback from the execution of the application
makes these on-line methods able to handle even applications with stochastic
attributes that havelowly-varyingdistributions, in addition to applications with
fixed execution times, and applications with stochastic attributes that have stationary
distributions. In general, the online refinement problem can thus be viewed as a
problem of tracking the dynamics of the goal and the characteristics of the applica-

tion.

6.3.2 Throughput optimization

Load balancing algorithms are generally designed to equally spread the load
on processors and maximize their utilization while minimizing the total task execu-
tion time [42]. A dynamic load balancing mechanism has to allocate tasks to the
processors dynamically as they arrive. As redistribution of tasks has to take place
during run-time, dynamic load balancing mechanisms are usually harder to imple-

ment. To demonstrate the ability of our online configuration management frame-

85

work, of Figure 20, we used a simple heuristic based on load balancing to optimize
throughput, which is as follows.

Maximally and minimally loaded processors are identified on the basis of
past execution statistics. Then a task is chosen randomly from a maximally loaded
processor and scheduled at the earliest available place on a minimally loaded pro-
cessor. This method helps balance loads over processors. If the new schedule thus
formed performs better then the older schedule, then it becomes the schedule with
which the system continues, and is further refined in the same way to yield better
schedules. If this new schedule performs worse than the older schedule then in the
older schedule, some other task is moved from the maximum loaded processor to
minimum loaded processor and the performance of the schedule is observed in the
same way as above. This way, we keep refining the schedule so as to optimize
throughput. Pseudocode for this heuristic is represented by fuociiome Adapta-
tionTr and is given in Figure 27. In the pseudocoa@yveTaskTis, n) is a function
that chooses -tasks from the maximum loaded processor in a schedule randomly,
moves them to appropriate locations on the minimum loaded processor, and returns
the modified schedule. Randomization in choosing tasks from the maximum loaded
processor provides a low-complexity approach to increase the explored region of the
design space. The functiexecuteT(s, 1) is a function that executes the applica-
tion according to schedulke for an interval of time length and returns the through-
put of the application during that interval. The valué of to use, depends on non-

determinacy of the application (11). Generally, the more non-deterministic the

86

application is, the longer it needs to be executed, so that more accurate value of

average throughput can be calculated.
The functiononLineAdaptationTreturns a schedule that it deems most
appropriate for throughput maximization. Note that if moving any single tasks from

the maximum loaded processor to the minimum loaded processor does not improve

Function: onLineAdaptationTr
Input: Schedule ,$me timeliinnigs [

Output: Schedule S

t, g = executeTrs, |)
Sold = S
n=1
while (clock < timelimit) {
s = moveTaskTr§, 4)
if (exhausted all -tasks movements and still no

improvement){
n=n+l
s = moveTaskTr§, 4, n)
}
t = executeTr(s, |)
if (t=t,{
Sold = S
tog = 1
n=1
}

clock = clock+ |

}

return Sold

Figure 27. Pseudo-code for throughput optimization.

87

performance then the heuristic chooses a pair of tasks to be moved to other proces-
sor. This approach of progressively increasing the number of tasks to be moved con-
tinues whenever all combinations for a particular number of tasks have been
exhausted. This approach thus attempts to make small low-complexity changes first
and if that does not improve performance, the approach gradually reaches towards
higher-complexity changes. This approach of starting off with lower complexity
changes is followed all through the algorithm whenever a change in the schedule is
needed. The higher complexity changes are larger in number than small low-com-

plexity changes, and help the system in escaping from local minima.

6.3.3 Power optimization

There are several factors that affect the power consumption in the class of
architectures under investigation. These factors include inter processor communica-
tion (IPC), the assignment of supply voltage levels to processors (if voltage scaling
is an option), etc. To find a configuration that reduces the power consumption, we
use an approach very similar to the one developed for throughput optimization in
Section 6.3.2. While minimizing power consumption, we try to minimize IPC cost,
as IPC typically consumes significantly more power than normal task execution.
This is achieved by selectively moving tasks from the maximally loaded processor
to the minimally loaded one, and by choosing the tasks to be moved on the basis of
the IPC associated with them. The higher the IPC associated with a task, the higher
its chances are of being transferred to another processor. Pseudocode for such on-

line, power-optimized scheduling is shown in Figure 28. The funcinumeAdap-

88

tationPowerreturns a schedule that it deems most appropriate for power minimiza-
tion. In the pseudocodmoveTaskPowés, n) is a function that choosas -tasks

from the maximally loaded processor in schedslle on the basis of the net IPC asso-
ciated with them, and moves them to the minimally loaded processor, and returns
the modified schedule. This net IPC for an actor is calculated by adding all the IPC

costs in the system in which the actor is either a source actor or a sink actor. The

Function: onLineAdaptationPower
Input: Schedule ,$me timeliinnig I

Output: Schedule S

Poig = executePowes |)
Sold = S
n=1

while (clock < timelimit) {
s = moveTaskPowes 4, n)
if (exhausted all -tasks movements and still no

improvement){
n=n+1l
s = moveTaskPoweg 4, n)
}
P = executePowe(§, 1)
if (P<Pygi
Sold = S
Poig = P
n=1
}

clock = clock+ |
}

return Syq

Figure 28. Pseudo-code for power optimization.

89

functionexecutePowés, |) is a function that executes the application according to
the given schedule for an interval of time lendth and returns the power consump-
tion during that interval. Again a progressive approach similar to the on-line
throughput optimization algorithm is followed that tries out small changes first and
moves on to larger changes only when there is no further improvement.

One major difference is that the tasks to be moved are chosen from the max-
imally loaded processor on the basis of the IPC associated with them unlike the case
with throughput optimization, where tasks are chosen randomly from the maximum

loaded processor.

6.3.4 Experimental results

Table 5 shows the results of applying the on-line throughput-optimization
algorithm, described in Figure 27 in conjunction with the general online configura-
tion management framework of Figure 20, to various DSP benchmarks. For a non-
negative integek T, represents the average iteration period of the best schedule
found by the throughput-optimization algorithm afker schedules have been exe-
cuted for a fixed amount of time each, in order to assess the throughput associated
with them. By the same tokeii,; represents the average iteration period associated
with the starting schedule, which is found by using standaitdtal path scheduling
[37]. The critical path length is computed in terms of average execution times of
actors. It is observed that irrespective of the degree of non-determinacy of the
application, this approach finds a schedule during run-time that outperforms a

schedule generated using critical path scheduling.

90

Similarly, Table 6 shows the results of applying the power-optimization
algorithm, described in Figure 28, to various DSP benchmarks. For a non-negative
integerk ,P, represents the average power consumed per iteration of the best
schedule found by power optimization algorithm aker schedules have been exe-
cuted for a fixed amount of time each in order to assess the power consumption
associated with them. The starting schedule is found, as with the throughput optimi-
zation experiments, by using the standard critical path scheduling algorithm. Inter-
processor communication (IPC) per time unit during the execution is taken as an

estimate for power consumption. Since IPC consumes significant amounts of power,

Appli
cation A To T1o Tao T30 Tao Tso
fitl | O 273 273 269 269 268 243

fitl | 276 276 276 276 270 269 256
fftl || .359 306 280 280 280 280 280
gmf || O 145 145 145 142 140 140
gmf || .256 156 145 145 142 142 142
gmf || .568 151 151 151 131 131 131
karp || O 395 376 375 375 375 375
karp || .309 421 389 389 362 341 277
karp || .608 475 411 411 408 405 403
meas| O 220 187 187 187 187 185
meas | .207 232 206 188 188 188 188
meas| .405 247 202 196 196 196 196

Table 5. Result of applying algorithm in Figure 27 on various DSP benchmarks.

91

and all processors are assumed to be homogeneous, and accordingly, are approxi-
mated as consuming equal amounts of power, to a first degree of approximation, the
overall level of power consumption can be estimated as IPC per unit time. It is
observed that the power-optimization algorithm also is able to find schedules with
better performance than the schedules generated by standard critical path schedul-
ing.

The on-line adaptation framework for refining a given goal is shown in Fig-

ure 29 and it is a part of the on-line configuration management framework shown in

Appli
cation| Po P10 P2o P39 P40 Pso
fftl 0 274 245 201 172 .168 151

fitl || .117 .268 .200 179 179 179 179
fitl | .359 257 173 173 173 173 173
gmf || O 133 | .111 | .105 | .099| .060| .060
gmf || .256 123 115 103 .080 .073 .068
gmf || .568 128 120.| .076 .076 .076 .074
karp || O 131 131 .073 .073 .061 .061
karp || .309 122 122 .075 .072 .065 .06
karp || .608 | .132 | .131| .098| .096| .095 .08€
meas| O .054 .050 .026 .026 .026 .024
meas | .207 .054 .054 .054 .018 018 .009
meas || .405 .059 .059 .055 .040 .021 .00y

Table 6. Results of applying power optimization algorithm of Figure 28 to various
DSP benchmarks.

92

Figure 20. In the on-line adaptation framework shown in Figure 29, depending upon
objective, one of the available on-line functions, suclvakineAdaptationTor
onLineAdaptationPowervould be chosen, for on-line adaptation of the given con-
figuration for the applied goal. Other details of on-line adaptation are explained in
Section 6.2.

Table 7 shows the performance of our on-line adaptation framework,
together with th@nLineAdaptationTandonLineAdaptationPowefiunctions, for
various goals applied to several DSP benchmarks. The starting schedule that is
refined is found, as with the other experiments in this section, by using the standard
critical path scheduling algorithm. The set of relevant melWics for our experi-
mentsisM = {T, P} ,wherd denotes the average iteration period of the execu-
tion andP denotes the average power consumption. Experiments are reported for

the following eight goals.

Input objective,, constraint, configuration timelimit , g , g,

%
Output A refined schedule

while ((t<timelimit) & (g, = = g X
while constraing is not satisfied {
onLineAdaptation(, g objective configuration,

}
(g constraint objective= promoteConstraint(,) g S

}

Figure 29. On-line adaptation framework.

93

g, ={(P, 0.270), (T, 265), (P, 0.250), (T, 0.255), P}

g, ={(T, 260), (P, 0.240), T}

g; ={P, 0.125), (T, 180), P}

g, ={(T, 165), (P, 0.110), (T, 160), P}

g5 = {(T, 360), (P, 0.160), (T, 355), (P, 0.155), (T, 350) P}

96 = {(T, 345), P}

g, ={(T, 215), (P, 0.040) T}

gg = {(P, 0.053), (T, 215), (P, 0.050), (T, 210), P}

In Table 7, the column titled “Goal” represents the goal that is applied to the
application. Also, for a non-negative integer , colupn denotes the value of a
metric of the best schedule found by the on-line adaptation frameworkk after
schedules have been assessed by executing them for some time. For the same exper-
iments, which are reported in Table 7, Table 8 shows the times at which different
constraints associated with the applied goals, are satisfied. For a given goal that is
applied on an application, for non-negative integers ang , denotes the number
of schedules that have been executed in order to assess them beifore the th con-
straint in the applied goal is satisfied. One can see that our on-line framework is able
to meet the constraints specified in the goal within a reasonable number of sched-
ules. This is in accordance with the effectiveness of our on-line algorithms as dem-

onstrated in experimental results earlier in this section.

94

Chapter 7. Conclusion and future work

In this thesis, we have defined a new measure of latency, called periodic-out-
put latency, which is more appropriate than conventional measures, for self-timed

DSP systems. We have developed of several techniques to reduce the transient and

?apti%lln A | Goal I\/:gtr Vo | Vio | V20 | V3o | Vao | Vso | Veo
fftl 0 01 T 278 | 278 | 278| 278 256 254 254
P 273 269 .269 .269 .204 .26 .226
ffti | .359| 0, T 309 | 256| 251 251 251 252 259
P 242 282 278 .278 278 .27 221
gmf 0 (o T 145 | 242 198, 19§ 186 170 170
P 33| 117 .09§ .098 .088 .096 .096
gmf | .256| g, T 142 164| 162 162 158 153 153
P 36| .12/ .11 .110 .11p .110 .110
kap | O | g | T | 395 353 346] 342 342 34p 342
P 131 .158| .15 14§ .148 .148 .148
karp | .309| gg T 450 352 30Q 342 34 346 346
P 15| 155 159 .151 150 .148 .148
meas 0| oy T 220 212 201 184 184 184 184
P .054| .075 .059 .021 .021 .041 .021
meas | .405 gg T 185 218§ 212 21 212 210 1P6
P .064| .018 .037 .037 .03 .019 .040

Table 7. Results for on-line framework tracking an applied goal.

95

periodic-output latency in self-timed systems. We have also proposed a way of
streamlining our scheduling strategies for deterministic, contention -free self-timed
systems using a graph-theoretic framework.

It is observed that, in general, there is an improvement in the transient by
using the transient-reduction scheme for self-timed systems with deterministic exe-
cution times. Also, the latency-reduction scheme reduces latency significantly for
both deterministic and non-deterministic systems. For the algorithm to solve the
TBL problem, there is some scope for improvement by using a more appropriate
algorithm in the first stage. This has been discussed in the following paragraphs.

Hoang's algorithm is greedy in nature. It tries to exploit the parallelism in a
particular stage to the fullest by assigning actors to different processors if it

improves throughput. In this process, it may run out of processors and will not be

?aﬁﬁ)“n A Goal n, n, N, n, N
fftl 0 0, 1 37 39 42 -
fftl | .359 | g, 7 56 - - -
gmf 0 O3 8 48 - - -
gmf | 256 | g, 0 13 36 - -
karp 0 O 4 7 9 28 28
karp | .309 | gg 16 - - - -
meas 0 g, 8 28 - - -
meas | .405| gg 3 17 17 48 -

Table 8. Results for on-line framework tracking an applied goal.

96

able to provide any schedule that meets the throughput requirement even though one
may exist. The constraint of not allowing any pipeline stage morelthan time to
execute, is more than necessary for the case of self-timed execution as one may have
pipeline stages such that the time taken to execute a pipeline stage is greafer than
but still the throughput of the system is greater than the throughput con$tf@int

when executed in a self-timed manner. This would be the case when the maximum
cycle mean of the associated IPC graph is lessihan . Also, the increase in the num-
ber of pipeline stages increases the number of delays in the system, which can be
related to an increase in latency. Scheduling algorithms for Phase 1 that take these
factors into account are expected to produce better results under self-timed execu-
tion.

The graph-theoretic framework that streamlines our scheduling strategies for
deterministic, contention-free self-timed systems, is shown to be promising when it
is applicable. The approach to “simulate” using graph-theoretic length computations
executes much faster than usual event-driven simulation, and is therefore very useful
for implementation aspects of schedule post-processing strategies described in the
thesis.

In the later part of the thesis, the problem of how to change the configuration
of a system where an application is executing on a polymorphous computing archi-
tecture, in accordance with a given set of performance requirements, is modeled and
an approach to handle the PCA mapping problem for multiple applications and

diverse performance requirements is presented. We have developed a simulation of

97

this framework in conjunction with two simple, low-complexity approaches for

power and performance estimation of a polymorphous embedded multiprocessing

platform. The results demonstrate the ability of the framework to systematically

adapt system configurations towards progressively better solutions for a variety of

goals, even in the presence of significant uncertainties in application behavior.
Directions for future work in the PCA mapping problem include developing

a model that can handle non-trivial metrics, such as the periodic-output latency met-

ric defined in the initial part of the thesis, in a more natural way. Other approaches

that can exploit the reconfigurability of the computing architecture in more flexible

ways, such as by exploiting programmable message routing between processors, or

by application of voltage scaling, would also be very useful.

98

References

[1] A. Aiken and A. Nicolau. Optimal loop parallelization. FProceedings of the
ACM Conference on Programming language Design and Implementh€88,

[2] F. Baccelli, G. Cohen, G. J. Olsder, and J. Quaddghchronization and linear-
ity. John Wiley & Sons, Inc., 1992.

[3] S. Bakshi and D. D. Gajski, A scheduling and pipelining algorithm for Hard-
ware/Software SystemBroceedings of the 10th International Symposium on Sys-
tems Synthesis (ISSS ‘97).

[4] N. K. Bambha and S. S. Bhattacharyya, “A joint power/performance optimiza-
tion technique for multiprocessor systems using a period graph constPuateed-
ings of the International Symposium on Systems SynthEsmies 91-97, Madrid,
Spain, September 2000.

[5] S. Banerjee et al. Macro pipelining based scheduling on high performance heter-
ogeneous multiprocessor systerttiSEE transactions on signal processinfyyne
1995.

[6] S. S. Bhattacharyya, P. K. Murthy, and E. A. Leeft®are Synthesis from Data-
flow Graphs Kluwer Academic Publishers, 1996.

[7] S. H. Bokhari, Partitioning problems in parallel, pipelined, and distributed com-
puting.lIEEE Transactions on Computedan. 1988.

[8] R. K. Brayton and R. Spenc&ensitivity and OptimizatigrElsevier Scientific
Publishing Company, 1980.

[9] J. R. Budenske, R. S. Ramanujan, and H. J. Siegel, “On-Line Use of Off-Line
Derived Mappings for Iterative Automatic Target Recognition Tasks and a Particular
Class of Hardware Platforms8th Heterogeneous Computing Workshop (HCW’97),
co-sponsors: IEEE Computer Society and Office of Naval Research, pp. 96-110,
Geneva, Switzerland, Apr. 1997.

[10] G. C. Buttazza and M. Caccamo, Minimizing aperiodic response times in a

Firm Real-time EnvironmentEEE Transactions on Software Engineerivg] 25,
No 1, Jan/Feb 1999, pp. 22-32.

99

[11] K. C. Cain, J. A. Torres, and R. T. WilliamRT_STAP: Real-time space-time-
adaptive processing benchmarkechnical Report MTR 96B0000021, The
MITRECorporation, February 1997.

[12] M. Charikar and S. Guha. improved combinatorial algorithms for facility loca-
tion and k-median problemPBroc. 40th Annual Symposium on Foundations of Com-
puter Science378-388, 1999.

[13] A. Choudhry et al. Optimal processor assignment for a class of pipelined com-
putationsJEEE transactions on parallel and distributed systefysil 1994.

[14] A. Choudhry et al. Optimal processor assignment for a class of pipelined com-
putations]EEE Transactions on parallel and distributed systefysil 1994.

[15] F. Chudak, “Improved approximation algorithms for uncapaciateted facility
location”, In R. E. Bixby, E. A. Boyd and R. Z. Rios-Mercado, edsteger Pro-
gramming and Combinatorial Optimizatip®pringer LNCS Vol. 1412, 180-194,
1998.

[16] T. Cormen et alntroduction to AlgorithmsMcGraw Hill, 2000.

[17] M. R. Garey and D. S. Johnso@omputers and Intractability: A Guide to the
Theory of NP-Completened¥, H. Freeman and company, 1999.

[18] S. GoddardDn the management of latency in the synthesis of Real-time Signal
processing systems from processing graptsD. Dissertation, University of North
Carolina at Chapel Hill, Department of Computer Science, 1998.

[19] P. HoangCompiling real time digital signal processing applications onto mul-
tiprocessor system®h.D. thesis.University of California at berkeley, June 1992.

[20] K. Jain and V. V. Vazirani, “Approximation algorithms for metric Facility loca-
tion and k-median problems using the primal-dual scheme and Lagrangian relax-
ation”, Proc. Foundations of Computer Science, 1999.

[21] B. K. Kim, Control latency for task assignment and scheduling of multiproces-
sor real-time control systemiternational Journal of Systems Scieneel. 30, no.
1, pp. 123-130, Jan. 1999.

[22] K. Konstantinides et al., Task allocation and Scheduling Models for Multipro-

cessor Digital Signal Processing,EE transactions on Acoustics, Speech, and Sig-
nal ProcessingVol 38, No.12, Dec 1990, pp. 2151-2161.

100

[23] E. A. Lee, “Consistency in dataflow graphdEEE Transactions on Parallel
and Distributed SystemApril, 1991.

[24] C. Leiserson and J. Saxe, Retiming synchronous circuMgorithmica,6:5-
35, 1991.

[25] V. Madisetti,VLSI Digital Signal ProcessortEEE Press, 1995.

[26] C. L. McCreary, A. A. Kahn, J. J. Thompson and M. E. McArdle, “A Compari-
son of Heuristics for Scheduling DAGS on Multiprocessotsternational Parallel
Processing Symposiyrh994.

[27] G. D. Micheli, Synthesis and Optimization of Digital CircuitdlcGraw-Hill,
1994.

[28] M. D Natale, J. A. Stankovic, “Scheduling distributed real-time tasks with min-
imum jitter”, IEEE Transactions on Computergolume 49, Issue: 4, April 2000,
pp. 303 -316.

[29] A. Papoulis, Probability, Random variables, and Stochastic processes
McGraw-Hill, 1991.

[30] J. L. PetersonPetri Net Theory and Modeling of Syster®sentice-Hall Inc.,
Englewoods Cliffs, New Jersey, 1981.

[31] L. L. Peterson and B. S. Davi€omputer networks: A Systems Appraddboy-
gan Kaufmann, 1996.

[32] S. Rajsbaum, M. Sidi, On the Performance of Synchronized Programs in Dis-
tributed Networks with Random Processing Times and Transmission DS,
Trans. on Parallel and Distributed Systerws|. 5, No. 9, Sept. 1994, pp. 939-950.

[33] R. Reiter, Scheduling parallel computatiodsurnal of the association for
computing machineryOctober 1968.

[34] D. B. Shmoys, E. Tardos, and K. I. Aardal. Approximation algorithms for facil-
ity location problemsProc. 29th ACM Symp. on Theory of Computigg§5-274,
1997.

[35] G. N. Srinivasa Prasanna, Compilation of Parallel Multimedia Computation-

Extending Retiming Theory and Amdahl’s LadCM SIGPLAN Symposium on
Principles & Practice of Parallel Programming 997, pp 180-192.

101

[36] S. Sriram, “Minimizing Communication and Synchronization Overhead in
Multiprocessors for Digital Signal Processing,” Ph.D. Thesis, Department of Elec-
trical Engineering and Computer Sciences, University of California at Berkeley,
1995.

[37] S. Sriram and Shuvra S. Bhattacharygambedded Multiprocessors:Scheduling
and Synchronizatioriiarcel Dekker, 2000.

[38] J. Subhlok and G. Vondron, Optimal latency-throughput trade-offs for data par-
allel pipelinesProceedings of SPAA’ 96une 96.

[39] F. M. Tsou et al., “Design and simulation of an efficient real-time traffic sched-
uler with jitter and delay guaranteesEEE Transactions on Multimedid/olume 2
Issue 4, Dec. 2000, pp. 255-266.

[40] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M.
Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe and A. Agarwal, “Baring it all to
Software: Raw MachinesTEEE ComputerSeptember 1997, pp. 86-93.

[41] Ti-Yen and Wayne Wolf, Performance estimation for Real-Time distributed
embedded systemi;EE Transactions on parallel and distributed systext, 9,
No.11, Nov1998, pp.1125-1136.

[42] A. Y. Zomaya, “Parallel and Distributed Computing: The Scene, the Props, the

Players,’Parallel and Distributed Computing Handbook,Y. Zomaya, ed., pp. 5-
23, New York: McGraw-Hill, 1996.

102

	Abstract
	PERFORMANCE ANALAYSIS OF POLYMORPHOUS COMPUTING ARCHITECTURES
	by
	Sumit Lohani
	Thesis submitted to the Faculty of the Graduate School of the
	University of Maryland, College Park in partial fulfillment
	of the requirements for the degree of
	Master of Science
	2001

	combine.pdf
	acknowledgementS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES

	Chapter 1. Introduction
	1.1. Definitions and notation
	, (1)
	, (2)
	, and (3)
	, (4)
	Example 1: Figure 1 shows an example of a dataflow graph. Numbers beside edges indicate non-zero ...
	Figure 1. An example of a dataflow graph.

	Self-timed execution:
	Example 2: Figure 2 shows an application graph that has 8 actors and the mapping of these actors ...
	Figure 2. An example application graph.
	Figure 3. Self-timed execution.
	Figure 4. An example of an application graph and an associated self-timed schedule. The numbers o...
	Figure 5. IPC graph constructed from application graph of Figure 4. Numbers besides communication...

	, (5)

	1.2. Latency in literature
	for all . (6)
	If , then . (7)
	For all such that , we have . (8)
	For all , , where and . That is, at every time instant, the buffer population is bounded by . (9)
	Figure 6. Illustration for a system with no output buffer.
	Figure 7. Illustration for latency, throughput and output buffer.

	1.3. Overview

	Chapter 2. Background
	Chapter 3. Algorithm and experimental results
	3.1. Phase 1
	3.2. Phase 2
	3.2.1 Transient-reduction scheme
	Figure 8. Pseudocode for transient-reduction post-processing.
	Figure 9. Pseudocode for function generateSchedule.
	Example 3: Figure 10 shows the self-timed execution pattern when first-iteration actors are used ...
	Figure 10. Self-timed execution with first-iteration actors denoted by T.
	Figure 11. Pseudocode to find minimum-transient schedule for a given .
	Table 1. Results of the algorithm described in Figure 11 for various benchmarks with deterministi...

	, (10)

	3.2.2 Latency-reduction scheme
	, (11)
	. (12)
	, (13)
	Table 2. Results for latency-reduction using a method similar to transient-reduction approach for...
	Figure 12. Pseudocode for latency-reduction post-processing.

	Example 4: Figure 13 illustrates these concepts. Figure 13(a) shows an example dataflow graph. Th...
	Figure 13. Illustration for retiming.
	Figure 14. Pseudocode to solve the TBL problem.
	Table 3. Results of applying latencyReduction to non-deterministic graphs.
	Figure 15. Plots of vs. for FFT, QMF, Karp and Meas corresponding to Table�3.
	Figure 16. plot for fft2.5.5 with .

	3.3. Summary

	Chapter 4. Streamlining latency analysis for contention-free systems
	4.1. Notation and analysis
	1) For , ; (14)
	2) For , . (15)
	. (16)
	Lemma 1: The starting time of the th invocation [32], of an actor in a DCFS, is equal to the leng...

	(17)
	Proof: This results follows naturally from developments in [32]. The evolution of the network can...
	; (19)
	, where is an actor that satisfies either of the following two conditions. (20)
	and for all actors , (21)
	where (22)

	4.2. Results
	Table 4. Speedups for various benchmarks.

	Chapter 5. Problem formulation and overview of model
	5.1. Problem formulation
	. (23)
	Example 5: Consider a set of relevant metrics , where is the latency, is the average power consum...
	Figure 17. Overview.

	5.2. Model

	Chapter 6. Details of the model
	6.1. Evaluation measure
	. (24)
	or . (25)
	Example 6: Consider an application with the relevant metrics being latency (), average power (), ...

	6.2. Configuration store
	6.2.1 Terminology and notation
	Definition 1: Given two goals and , we say that is acceptable for , denoted , if a configuration ...
	Definition 2: A relation on two sets and is a subset of the Cartesian product . A relation is ref...
	Definition 3: A relation that is reflexive, anti-symmetric and transitive is a partial order, and...
	Definition 4: A partial order on a set is a total order if for all , we have or - that is, if eve...
	Theorem 1: If we have a finite set of relevant goals, and the acceptability relation is a partial...
	, (26)
	Example 7: For a given application and the resource set, let be the set of relevant metrics, wher...
	Figure 18. Graph for Example 7.
	Definition 5: Dominance relation: A point dominates a point if , where and denote th components o...

	Example 8: Transitive acceptability relation.
	Definition 6: A point is a Pareto point for a mapping if there exists no other point such that

	, (27)
	Example 9: Non-transitive acceptability relation.
	. (28)
	Figure 19. Induced graph.

	Example 10: Transitive and symmetric acceptability relation.

	6.2.2 On-line management and use of configurations
	Figure 20. Pseudocode for on-line configuration management.
	Figure 21. Pseudo-code for functions promoteConstraint and demoteConstraint from Figure 20.

	6.2.3 Models for problems related to configuration management
	P1. Find the minimum size configuration store and the goals that should be stored in it such that...
	P2. given a fixed size configuration store, find the goals whose configurations should be stored ...
	6.2.3.1 Analysis of the configuration management problem P1
	Definition 7: For a directed graph , a subset of is a dominating set if for all , either or there...
	Definition 8: Minimum dominating set problem: Given a directed graph, find a minimum dominating s...
	Example 11: For the graph given in Figure 22, the dominating sets are (A,B), (A,C), (B,C) and (A,...
	Figure 22. Illustration for the dominating set of a graph.

	Example 12: The instance of Problem P1� that is obtained by reduction from the minimum dominating...
	Figure 23. Illustration for Example 12.

	6.2.3.2 Analysis of configuration management problem P2
	Definition 9: k-median problem: In the k-median problem, we are given a set of potential facility...
	Example 13: Consider a goal space composed of three goals , and , as shown in Figure 24. The numb...
	Figure 24. An example goal space.
	Figure 25. Illustration for Example 13.

	6.2.3.3 Exploring trade-offs
	Definition 10: Facility location problem [15]: In the facility location problem, we are given a s...
	Example 14: Consider the same goal space we used in Example 13, which was composed of three goals...
	Figure 26. Illustration for Example 14.

	6.3. On-line algorithms
	6.3.1 Simple low-complexity, run-time refinement approach
	6.3.2 Throughput optimization
	Figure 27. Pseudo-code for throughput optimization.

	6.3.3 Power optimization
	Figure 28. Pseudo-code for power optimization.

	6.3.4 Experimental results
	Table 5. Result of applying algorithm in Figure 27 on various DSP benchmarks.
	Table 6. Results of applying power optimization algorithm of Figure 28 to various DSP benchmarks.
	Figure 29. On-line adaptation framework.

	Table 7. Results for on-line framework tracking an applied goal.
	Table 8. Results for on-line framework tracking an applied goal.

	Chapter 7. Conclusion and future work
	References
	[1] A. Aiken and A. Nicolau. Optimal loop parallelization. In Proceedings of the ACM Conference o...
	[2] F. Baccelli, G. Cohen, G. J. Olsder, and J. Quadrat. Synchronization and linearity. John Wile...
	[3] S. Bakshi and D. D. Gajski, A scheduling and pipelining algorithm for Hardware/Software Syste...
	[4] N. K. Bambha and S. S. Bhattacharyya, “A joint power/performance optimization technique for m...
	[5] S. Banerjee et al. Macro pipelining based scheduling on high performance heterogeneous multip...
	[6] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow Graphs, Kl...
	[7] S. H. Bokhari, Partitioning problems in parallel, pipelined, and distributed computing. IEEE ...
	[8] R. K. Brayton and R. Spence, Sensitivity and Optimization, Elsevier Scientific Publishing Com...
	[9] J. R. Budenske, R. S. Ramanujan, and H. J. Siegel, “On-Line Use of Off-Line Derived Mappings ...
	[10] G. C. Buttazza and M. Caccamo, Minimizing aperiodic response times in a Firm Real-time Envir...
	[11] K. C. Cain, J. A. Torres, and R. T. Williams. RT_STAP: Real-time space-timeadaptive processi...
	[12] M. Charikar and S. Guha. improved combinatorial algorithms for facility location and k-media...
	[13] A. Choudhry et al. Optimal processor assignment for a class of pipelined computations, IEEE ...
	[14] A. Choudhry et al. Optimal processor assignment for a class of pipelined computations, IEEE ...
	[15] F. Chudak, “Improved approximation algorithms for uncapaciateted facility location”, In R. E...
	[16] T. Cormen et al. Introduction to Algorithms, McGraw Hill, 2000.
	[17] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Com...
	[18] S. Goddard, On the management of latency in the synthesis of Real-time Signal processing sys...
	[19] P. Hoang, Compiling real time digital signal processing applications onto multiprocessor sys...
	[20] K. Jain and V. V. Vazirani, “Approximation algorithms for metric Facility location and k-med...
	[21] B. K. Kim, Control latency for task assignment and scheduling of multiprocessor real-time co...
	[22] K. Konstantinides et al., Task allocation and Scheduling Models for Multiprocessor Digital S...
	[23] E. A. Lee, “Consistency in dataflow graphs”, IEEE Transactions on Parallel and Distributed S...
	[24] C. Leiserson and J. Saxe, Retiming synchronous circuitry. Algorithmica, 6:5- 35, 1991.
	[25] V. Madisetti, VLSI Digital Signal Processors. IEEE Press, 1995.
	[26] C. L. McCreary, A. A. Kahn, J. J. Thompson and M. E. McArdle, “A Comparison of Heuristics fo...
	[27] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.
	[28] M. D Natale, J. A. Stankovic, “Scheduling distributed real-time tasks with minimum jitter”, ...
	[29] A. Papoulis, “Probability, Random variables, and Stochastic processes”, McGraw-Hill, 1991.
	[30] J. L. Peterson, Petri Net Theory and Modeling of Systems, Prentice-Hall Inc., Englewoods Cli...
	[31] L. L. Peterson and B. S. Davie, Computer networks: A Systems Appraoch, Morgan Kaufmann, 1996.
	[32] S. Rajsbaum, M. Sidi, On the Performance of Synchronized Programs in Distributed Networks wi...
	[33] R. Reiter, Scheduling parallel computations. Journal of the association for computing machin...
	[34] D. B. Shmoys, E. Tardos, and K. I. Aardal. Approximation algorithms for facility location pr...
	[35] G. N. Srinivasa Prasanna, Compilation of Parallel Multimedia Computation- Extending Retiming...
	[36] S. Sriram, “Minimizing Communication and Synchronization Overhead in Multiprocessors for Dig...
	[37] S. Sriram and Shuvra S. Bhattacharyya, Embedded Multiprocessors:Scheduling and Synchronizati...
	[38] J. Subhlok and G. Vondron, Optimal latency-throughput trade-offs for data parallel pipelines...
	[39] F. M. Tsou et al., “Design and simulation of an efficient real-time traffic scheduler with j...
	[40] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch...
	[41] Ti-Yen and Wayne Wolf, Performance estimation for Real-Time distributed embedded systems, IE...
	[42] A. Y. Zomaya, “Parallel and Distributed Computing: The Scene, the Props, the Players,” Paral...

