AFRL-SN-WP-TP-2006-119

RADAR DIRECTION-FINDING
TECHNIQUE USING SPIRAL
ANTENNAS
AFRL's New Technique Will Significantly Aid
Airborne Operations

Joshua Radcliffe
Dr. Krishna Pasala

JULY 2006

Approved for public release; distribution is unlimited.

STINFO COPY

This is a work of the United States Government and is not subject to copyright protection
in the United States.

SENSORS DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, collecting the needed data, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. **REPORT DATE (DD-MM-YY)**
 July 2006

2. **REPORT TYPE**
 Journal Article Postprint

3. **DATES COVERED (From - To)**
 05/01/2004 – 05/01/2006

4. **TITLE AND SUBTITLE**
 RADAR DIRECTION-FINDING TECHNIQUE USING SPIRAL ANTENNAS
 AFRL's New Technique Will Significantly Aid Airborne Operations

5a. **CONTRACT NUMBER**
 In-house

5b. **GRANT NUMBER**
 N/A

5c. **PROGRAM ELEMENT NUMBER**
 N/A

5d. **PROJECT NUMBER**
 7622

5e. **TASK NUMBER**
 11

5f. **WORK UNIT NUMBER**
 0D

6. **AUTHOR(S)**
 Joshua Radcliffe
 Dr. Krishna Pasala

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 RF and EO Subsystems Branch (AFRL/SNDR)
 Aerospace Components & Subsystems Technology Division
 Sensors Directorate
 Air Force Research Laboratory, Air Force Materiel Command
 Wright-Patterson Air Force Base, OH 45433-7320

8. **PERFORMING ORGANIZATION REPORT NUMBER**
 AFRL-SN-WP-TP-2006-119

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
 Sensors Directorate
 Air Force Research Laboratory
 Air Force Materiel Command
 Wright-Patterson Air Force Base, OH 45433-7320

10. **SPONSORING/MONITORING AGENCY ACRONYM(S)**
 AFRL-SN-WP

11. **SPONSORING/MONITORING AGENCY REPORT NUMBER(S)**
 AFRL-SN-WP-TP-2006-119

12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 Approved for public release; distribution is unlimited.

13. **SUPPLEMENTARY NOTES**
 PAO Case Number: AFRL/WS 05-2308, 05 Oct 2005.
 This is a work of the United States Government and is not subject to copyright protection in the United States.
 Published in AFRL Technology Horizons, April 2006, SN-H-05-04.

14. **ABSTRACT**
 AFRL scientists demonstrated a new radar direction-finding (DF) technique that uses a four-arm spiral antenna. To validate the technique, they used the actual wideband measurements of a four-arm spiral antenna and its associated modeformer to assess and verify the antenna’s azimuth angle estimation capability.

15. **SUBJECT TERMS**

16. **SECURITY CLASSIFICATION OF:**
 | a. REPORT | Unclassified |
 | b. ABSTRACT | Unclassified |
 | c. THIS PAGE | Unclassified |

17. **LIMITATION OF ABSTRACT:**
 SAR

18. **NUMBER OF PAGES**
 10

19a. **NAME OF RESPONSIBLE PERSON** (Monitor)
 Joshua Radcliffe

19b. **TELEPHONE NUMBER** (Include Area Code)
 N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18
Radar Direction-Finding Technique Using Spiral Antennas

AFRL's new technique will significantly aid airborne operations.

AFRL scientists demonstrated a new radar direction-finding (DF) technique that uses a four-arm spiral antenna. To validate the technique, they used the actual wideband measurements of a four-arm spiral antenna and its associated modeformer to assess and verify the antenna's azimuth angle estimation capability.1

The frequency-independent characteristics of spiral antennas make them an attractive solution for deriving angle-of-arrival (AoA) estimates. Their weight, size, power requirements, and field-of-vision properties further enhance their appeal—especially for airborne DF.2 In using these antennas, scientists combine the terminal outputs of the multiple arms into a Butler matrix modeformer and then derive the angle information from the outputs of the modeformer. Comparison of the signal's phases at the modeformer outputs produces an estimate of the incoming signal's azimuth angle, while comparison of the signal's magnitudes at the modeformer outputs produces an estimate of the incoming signal's elevation angle. Figure 1 illustrates the geometry of a spiral antenna and an incoming signal, where "ϕ" indicates azimuth and "θ" is elevation.

Using this comparison-based DF technique with a four-arm spiral antenna and corresponding mode—former hardware provides AoA estimates as accurate as those obtained using two single-mode antennas separated by a half-wave (one-half wavelength) interferometer. Further, the use of a four-arm spiral antenna—as opposed to a half-wave interferometer—enables the bandwidth of AoA estimates to remain constant over the entire range of frequencies for which the spiral antenna is devised.
Researchers performed all measurements for this effort in AFRL’s Radiation and Scattering Compact Antenna Laboratory (RASCAL), which comprises a compact far-field range for measuring smaller-sized antenna aperture patterns. In order to obtain accurate data from each spiral antenna, researchers used a phase-stationary test body for all four-arm spiral measurements (see Figure 2 on previous page). The phase-stationary test body is a requirement for closing the distance between a conformal antenna host surface and the designer’s infinite ground plane model. The almond-shaped test body employed for this experiment is a documented, proven, and patented device for obtaining high-performance antenna measurements.

After performing phase compensation to accurately calibrate modal phase outputs, researchers proceeded to azimuth angle estimation, conducting multiple Monte Carlo experiments using the actual azimuth measurement data collected in the RASCAL compact range. Signal-to-noise ratio, frequency, and elevation angle represented the three independent variables considered for these experiments. The results revealed consistency in the mean of 360° azimuth estimates (see Figure 3 on previous page) over numerous experiment iterations and demonstrated the broadband capabilities of the multimode spiral antenna for azimuth angle estimation.

Mr. Joshua Radcliffe and Dr. Krishna Pasala (University of Dayton), of the Air Force Research Laboratory’s Sensors Directorate, wrote this article. For more information, contact TECH CONNECT at (800) 203-6451 or place a request at http://www.afrl.af.mil/techconnect_index.asp. Reference document SN-H-05-04.
References

2 Schneider, S. W., et al. "New Ways to Locate a Threat." Aircraft Survivability (Fall 03): 31-35.

