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STRESS CONCENTRATION ABOUT CURVILINEAR HOLES IN *,/lO9
PHYSICALLY NONLINEAR ELASTIC PLATES

/ A.N.Guz?, G.N.Savin, I.A.Tsurpal (Kiev)

An approximate solu method of plane physical nonlinear
problems oj,4tress kyefientration about curvilinear holes
in thin pnes made of a material subject to a nonlinear
law of elastic is given. The solutions are represented
in the form of expansions in the small parameter P and e.
The determination of the stress function F for a physically
nonlinear elastic plate with a hole reduces for each ap-
proximation to the integration of nonlinear differential
equations. Stress concentration about an elliptic hole is
considered in zero, first, and second approximation. The
coefficient of stress concentration k is four on the contour
of the hole, depending nonlinearly on the tejZ!_ forces P,
theellipticity of the hole, and a parameter X characterizing
the mechanical properties of the material. Tables represent
the values of the coefficient of stress concentration for
various values of the parameters P, X, and G

1. The problem considered is that of stress concentrations in the neighbor-
hood of curvilinear orifices without sharp corners in a thin plate consisting
of a material for which the stress - strain ratio is nonlinear even in the
presence of comparatively small strains. Given the deformation magnitude con-
sidered, all geometric relations of elasticity remain linear, i.e., we are deal-
ing with a variant of the physically nonlinear theory of elasticity, with a
specified nonlinear law of elasticity.

A previous study by the author (Bibl.1) examined this problem for the non-
linear law of elasticity* (Bibl.2), using conformal mapping of the region in
question, outside the curvilinear orifice, onto the exterior of a unit circle
and introducing the Kolosov-Muskhelishvili complex potentials. For the sought
stress function, represented in the form of expansions in a small parameter,
differential equations and boundary conditions for successive approximations in
curvilinear coordinates, given by a mapping function, have been derived. How-
ever, in view of the cumbersomeness of the right-hand sides of the equations,
this method has led to extremely complex calculations with respect to orifices
of noncircular shape.

This paper, utilizing the same nonlinear law of elasticity (Bibl.2), pro-

* The stress concentration in the neighborhood of a circular orifice for this
law of elasticity has been investigated elsewhere (Bibl.2, 7, 8, and 9).

,- Numbers in the margin indicate pagination in the original foreign text.



poses another approximate method for the solution of the above problem, which
makes it possible to complete this solution with respect to certain noncircular
orifices. The new approach is based on the approximate method of ,,perturbation
of the boundary form" (Bibl.3), as successfully used by the authors (Bibl.h, 5,
6) in investigating stress concentrations in the neighborhood of analogous curvi-
linear orifices in shells.

2. The approximate method described here requires the representation of all
basic equations in a polar coordinate system; hence we will use, in the form
given elsewhere (Bibl.2), the nonlinear law of elasticity for a generalized
plane stress state:

", = -• k(S)uo +--"(t')(,- ao)o /1010

I, 13K ) -+--g+- aq,-uu), (2.1)

where Cr, Pe,. and Cr p, as well as Cr , OCY, and Trcp correspondingly, are the mean
stress and strain components over the plate thickness in the polar coordinate
system (r, cp); K and G are constant moduli of volume deformation and shear,
respectively, for the physically nonlinear material of the plate in the presence
of vanishingly small deformations; k(so) and g(tg) are the pressure and shear-
stress functions which characterize, respectively, the change in volume and
shape at any point of the body during its deformation. The dimensionless quanti-
ties so and to are expressed in the form of invariants:

So-= 0 = I-(,, + OP,,

To, To = - (a' + a7" -2, ,v,, 31,,). (2.2)
G2 9G2' +

For many materials, volume deformation over a wide range obeys Hooke's law so
that, in eq.(2.1), it may be assumed with a high degree of accuracy that
k(so) - 1. The slight deviations from linear, dependence between stress and
strain in the elasticity relations (2.1) can be, with sufficient accuracy,
mapped by the function g(tg) = 1 + gt•

Hereafter, we will assume that, in the elasticity relations (2.1),

k(so)- 1, g(to)= 1 +gt', (2.3)

where g2 is a dimensionless constant.

At such a choice of the nonlinear law of elasticity (2.1) under the condi-
tions (2.3), the problem of the stressed state of a thin plate reduces to find-
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ing the stress function F(r, yp) from the fourth-order nonlinear differential
equation (Bibl.2, 8):

- ,A T - FTi, + -Fq,)T, ( FrT., + FrrTt) - }I A(TLF)] = 0)

in the presence of corresponding boundary conditions over the orifice contour
and at "tinfinitytt. If the function F(r, w) is known, the stress components ar,
ay, and Try may be directly found with the aid of F(r, p) from the formulas

1 r 1 .
_•I ~ ~ j _ F aF [-L F, + •Fp],

YL Wr] 7 -_ A'- = - 1r

, IrIFIF " (2.5)o.= I = 1[1F- F,

In eqs.(2.4) and (2.5), r is a dimensionless coordinate referring to the /1011
quantity R which characterizes the absolute dimensions of the orifice; A is the
laplace operator which, in dimensionless coordinates, has the form

1 +1 p+Frr. (2.6)
r rs9

The material constant X and the function T(r, (p) have the form

Kg, .(27)
(3K+ UG'2

where - is a small dimensionless quantity

K g~s a 9 _, ,

fi =(3K + G)G T2 t

where -t is given by the expression (2.2) and the components r s ay., and T r( are
associated with the stress function F(r, cp) by the relations (2.5). The small
parameter X, which characterizes the deviation of the nonlinear law of elastici-
ty from Hookers law, has the dimension 1/barý and a magnitude of the order of
l0- to lO 6, while the dimensionless constant g&, for certain nonferrous metals
and their alloys, is of the order of lC to 106 (Bibl.2).

The components of the displacements u(r, cp) and v(r, cp) for the nonlinear
law of elasticity (2.1) under the conditions (2.3) are determined from the sys-
tem of equations
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l,-F+F + 1 (F 1I~

+ +,F,, + - F,,),, + 3F, )

r r 9KR r 6 r 1

+ 24(FF,, - 3F9FO) + - (F, + 3Fv)](2F,-- 1F -

Thus, the solution of the problem reduces to an integration of the complex
fourth-order nonlinear equation (2.4) or of the system of' nonlinear equations
(2.8) under definite boundary conditions over the orifice contour as well as
under conditions of the behavior of these functions 'tat infinity" (Bibl.1).

3. Consider orifices of a shape such that the function

Z*--- R[¢-+ef(O]1, (z* --- r'e1 ; r* =Rr; z = re* ee') (3.1)

realizes the conformal mapping of an infinite plane with a circular orifice of
unit radius onto an infinite plane with an orifice having the shape considered.
In the function (3.1), R is the true constant characterizing the dimensions of
the orifice; the function f(•) depends on the shape of the orifice; e is a small
parameter; the true quantity satisfying the condition c • 1 and the roots ofthe equation 1 +ff' (•) = 0 should lie within the unit circle in the plane x.
We will present the solution of eq.(2.4) and of the system of equations (2.8) in
the form of expansions in the small parameters • and e (2.7):

'(r,',p•; /,; e) --Ho •' Z' ,•,j•")(,',,); (3.2)
k-OJ,-O

Z* = [C~c(r), (z; t=; re) vr = R; z = relu ");r eP)

k-O J.O (3.3)

k.-OJ-,O

where Hter is selected from the condition r<2/Ra = 1. Hence,

, T p; e Ho I A k) 3.2



H o R _= GRI 3I G
P g2T ý TV (3i.0

The stress and strain components in the coordinate system (p, e) also will be
presented in the form of series in p and 9:

00 00 00 00

22i~kEjO,(k~j), If
k-OJ-O k-OJ-O (3.5)

00 00

22.= Pki.z(c.iJ);
k-OJ-O

0 00 00 C. 0

U, = I •.'4t . f 1 ,4,ke,, (3.6)
k-OJ-O k-OJ-O

Substituting the function F(r, p; p.; s) of eq.(3.2) into the fundamental equa-
tion (2.4) and equating to zero the coefficients in the presence of identical
exponents of 0., e•, will yield the equation for determining the function F(k4

in the form of

AAFk',F(r, y) = ,A,,( (0° , ... , F,,,..-,))o (3.7)

We will present explicit expressions for the right-hand sides of eq.(3.7), for
certain values of k and j.

For k = 0, j = 0, 1, ...

LO,j (_•o,o), M, 0•,J')•o (3.8)

For k = 1, j = 0

L4, 0( P°'°)) -- O(F (°'° ' (3 .9)

The developed form of the operator Lo(T(OP)) was given by Tsurpal (Bibl.8).

For k = 2, j = 0

L2.0(PoF
0 ), PIo*) =-_1 (P.

0,0), P.o). (3.10)

The developed form of the operator L, (F('°) , F(1P)) was given in another report
(Bibl.9).

For k = 1, j = 1, the developed form of the operator L1,1 will be
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L1 ',~OO Po 1) - t 70 O)( r r)+ + Trro'1  440)?~ + ±PFlo.0))

2 2A (T(O.L,.7A OO) + VOo[A P(O.S))(

where

r~~ O)3..PO)OO3(0-0.))9] (3.12)410= (Fo,o*))' _•o-o)Po,o,) + rli[(F,(o-0))2 - .rr-olo)vo0) + 3 (F,,°°)v(.2

+7' - ,) P4,0 0) - 3[F 0)o 0)) + 4 0 )) + 3(F•oO),1;
r r 2 (3-3)

(F,0. 0)F,0 o1  a F ~ o.o~~0 ), ± (2lo~o),4o. 3 13

- F(O-O) -(,0) - Pr,(,)•(,,O) + 6F/*'#(voo)Fr(vo-*1  2..2 (F,,(oo0) F(o1) + F,(o,-1) F;(o0 o)

- ,(O.O) F -(O,) - 3"F(0,1)F•F(0.0 0)) + - (2F(,O0) Fq(, 1) + 6 F,p(.0 0) ,.)).

Proceeding analogously, we can write explicit expressions for the operators Lk,.
at any (k > 1, j > 1) values of k and j. The solution of eq.(3.7) is sought in
the form of a Fourier series

00

.(r, 99) = Z (f("](r)cosmp + g ").(r) sin m }p (3. ol4)
M-0

To find the stress components a ao, and Tpe and the displacement components
up and u6 in the curvilinear orthogonal coordinate system* (0, e) given by the
function (3.1), we utilize, by analogy with another paper (Bibl.6), the corre-
sponding formulas for conversion from the polar coordinates (r, (P) to the curvi-
linear orthogonal coordinate system (p, e).

Expanding the obtained expressions for the stress components ar, ae, and
Tpe and for the displacement components UP and uO in series in t and e and /1014
taking into account the form of the function (3.1), we have

H + FOI')(e' 0) + HO +' a

* The linear coordinate P 1 coincides with the contour of the orifice under
study.
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H iF_.)(O I) a I a[s a, I'
002 e Oe e2 a,. z--aeao e ,-(,)

J-1
as-m L as /1•M

r- 0

OI •0a, all - '*(e); (3.15)
-11

,r Ij) -HO P.-- )(, 0) - Hf (i-O ) - 2LI'-=)) 02 o49LO 00 L- O -0o aQ ao-e

+ •- I L-' I a+ I ao, - s .")0,o;

•.J- I

-,,j u(k.j) + ~'[L(ýJ-m)U(k,.) + 14J-n)V(km)],

, o1- (3.16)
up-) vO'J) + [LVI-m)V(k.m) - Ljj-m)u(h.M) I

Substituting the functions F(r, cp; p; e) [eq.(3.2)] and u(r, cp), v(r, cp)
[eq.(3.3)] into eq.(2.8) and equating to zero the coefficients in the presence
of identical exponents of p k, j, we will find the system of equations for de-
termining u (k J) (r, p), v("'J) (r, cp) which enter into eq. (3.16).

The functions F("'') (0, e) entering into eq.(3.15) are solutions of eqs.(3.7)
F(,) (r, cp) in the form of eq.(3.l1), in which the variables r and T are re-
placed by p apd e, respectively. Then, the arbitrary constants entering into
41) (r) and o•) (r). [eq.(3.14)] are determined from the corresponding boundary
conditions for' F• a (p, e); these conditions are derived from the expansions
analogous to eqs.(3.2) and (3.3), for the orifice contour under study, on the
basis of an expansion in a double series in p and e.

The stress and strain coefficients over the contour of the orifice in
question are found from eqs.(3.4), (3.5), and (3.15) at p = 1.

Consider the problem in which the stresses

agt- Ir=VI(r, P; #)I Te r = V2 (r, 9; P) (3.17)

are specified over the orifice contour. For the sake of universality, let us
assume that, in eq.(3.17), the quantities *1 and *2 depend on P. The equation
of the orifice contour in parametric form is determined by the function (3.1) /1015
and may be written as

r = r., 0), q, = (e' 7) (3.18)



for p = 1.

Having utilized eqs.(3.1) and (3.18), we will present the right-hand sides
of eq.(3.17) as double series in p and e

00 ooý c 00

OeIFr= jfPYUIN"'J(0), ;el1r= 1V'&eivraJ)(O). (3.19)
k-OJ-O k-OJ-O

Substituting expressions (3.4) into eq.(3.19), assuming that p = 1, and compar-
ing the coefficients with identical exponents, we obtain the relations

e Ir =?,J)(o), *- IrVP n 'J(o). (3.20)

From eq.(3.15), taking eq.(3.20) into account, we obtain the boundary conditions
for determining the (k, j)th function F(kJ) (r, cp) in the form of

e e 5-2 1e. le1-a) a,- -Lj- -Ia Ia

[Aj__) ~ ~ We es a')(as e e _ý
i-0

p £rj 8'k.J)(J- I)m) - 2LV~m)) ' 0
""0 0o eJF".J(r-J.(3.21)

J-O
a s .e I (Pa)(e, 0),- -- 1 PkJ)O a- (L[J-m) -- 2LJJ-If)) a s I3

the b d p lem fo ac ircula 1 r 1oice I as e

"a 1 02 as Pk /J' 0=)

In accordance with eq.(3.2), the solution obtained to the nth approximation will
be construed as the function

k+J=M-I
F.(r, 9,; #•; H to ,f /ksJF(k'J)(r,9,). (3.22)

kJ-O

From eqs.(3.15) and (3.21) we can see that, for each function F (k'•) , we obtain

the boundary problem for a circular orifice. This also explains why all the
basic equations and the relations (2.1)2 (2.4), (2.6), and (2.8) were written
in polar coordinates.

In eqs.(3.15) and (3.16)., L•Jl) .. ,L'MR) are differential operators
whose form depends on the function f(C),[eq.(3.l1). The series expressions for

these operators for the zeroth, first, and second approximations are given by
Savin and Guz? (Bibl.6).
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4. Consider by way of an example the most elementary case, namely, /1016
the case of omnilateral uniform tension produced by stresses P applied to an in-
finite physically nonlinear isotropic plate with an elliptical orifice (Fig.l)
obeying the elasticity law (2.1) under the conditions (2.3).

p p

p p

Fig.1

The function (3.1) which maps the exterior of the elliptical orifice onto
the exterior of a circle of unit radius for this case, as is known (Bibl.l0),
has the form

Z* = IC +-L],(4.1)

where

a+b a-b
R=--,2 a-b C = ee"' z* =Rref" (4.2)

and where a and b are the semiaxes of the ellipse (Fig.l). Obviously, the
function* f(C) in eq.(3.1) will, in this case, be f(C) = l/C.

The approximate solution of this problem, taking into account the three
approximations, reduces to the successive integration of eq.(3.7) allowing for
the form of the operators (3.8) - (3.13).

The stress functions with the zeroth F(o°) , first F(1'0) , and second F(2p)

approximations for the mentioned omnilaterally stressed physically nonlinear
elastic plate, with a circular orifice, are known (Bibl.9) and have the form

F(°,°) = - (r'- 21nr), (4.3)

* For an orifice with rounded angles, the function f(C) will be (Bibl.lO), for a
square orifice, f(C) =/ le; for a triangular orifice, f(•) = 1/C., etc.

9



/1017

, H L-\ + + inr]l (4.4)
H '3 2 \]

P[13 % +1 ( 1__I 1±+71 51 (45"':> O = 5 T ,:? 3 T? 36 rG -W- ?)•/ (4,,.5)

The stress function for a linearly elastic plate with an elliptic orifice has
the form (Bibl.5):

97 P~ I o27

F(0 ")(rf) {P 3 1 1cos49 - Inr (4.6)
FHOn(r• = 2 r' r2

Substituting the function (4.3) into eq.(3.12), we find the functions T(°o) (r,

cp) in the form of

p00) 1- + (4.7)

Knowing the functions (4.3) and (4.6) we find from eq.(3.13) the function
T(°,) (r, yp):

p2/
1f- 3 --- 9Y rco2 94 (4.8)

Substituting the functions (4.3), (4.6), (4.7), (4.8) and their derivatives
into eq.(3.11), we find the series expression for the operator L1 .

The differential equation (3.7) for the function F(,1I) (r, cP) will be

AAFO)'" + 64 P I-s-+ 36 1cos29 9 = 0. (4.9)

The specific integral of eq.(4.9) becomes

PI 1 6 1F.,"2"(r, ,•,) = - -• \.- +3- cos2p. (4.10)

The general integral of the homogeneous equation (4.9) will be taken as

F,(, = (C.3-)+' +C.,-')os . (4.11)

m'-2
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The integration constants C3s and C.4 in eq. (4.11)are determined from the
boundary conditions (3.21):

1 I L, -- )F(1 , )(e'O) ,+ R[cos20 0 F
1"Q. , 0) =0,

0' 1 F. (8' l81j1 (4l12)-0- 1 F(1 *)(Q' 0) -- R[2sin2O •~ Fjl'O)(0 ~= 0.aQ0011.0)( 0

Omitting the intermediary calculations, we will present the final expressions
for the function F 1,1) (r, c). /101

1 p)_ 32 - 731j- + 51 + 36 cos29. (4.13)
F'(• = 30 Hr r2--

Let us consider the second approximation in greater detail. The stress
function F2 (r, y; p; e) [eq.(3.22)] will be

F2(r, q); p; e) = Ho(F(.0') + pF(I-0) + juIPF-0) + &F-1) + e2F(O.2) + PEF(,1'). (. .1-4)

From pqs.(3.5), taking into account the values of the component G kJ) , k,()

and TPO of eq.(3.15) as well as the values of the functions F ' (k =0I, 1, 2,
j = 0, 1, 2) in eqs.(4.3) - (4.7), (4.13), and (4.14), we will determine the
stress state in a physically nonlinear thin plate, weakened by an elliptical
orifice, to a second approximation. Over the orifice contour, the coefficient
of stress concentration k 2) = as/P will be*

02) = 2[1 -1. 500Ap'+ 10. 605A2p4 +2s os2(
+ 2F2 cos4 -- 10, 660Aep2 cos20]. (4.15)

5. It can be seen from eq.(4.15) that, if allowance is made for the physi-
cal nonlinearity of the materials satisfying the elasticity relations (2.1)
under the conditions (2.3), the coefficient of stress concentration will non-
linearly depend not only on the magnitude of the tensile stresses P (Fig.l) and
on the parameter X (characterizing the strength properties of the plate materi-'
al) but also on the ellipticity of the orifice, characterized by the parameter e
[eq.(4.2)]. Setting e = 0 in eq.(4.15), we obtain the values of k for the case
of a circular orifice (Bibl.9). Setting X = 0 in eq.(4.15), we obtain the
values of k found by Guz' (Bibl.5) when using the mentioned approximate method
for the case of an elliptical orifice where the plate material obeys Hooke's
law. For this last case, there exists an exact solution (Bibl.lO) of the prob-
lem. A comparison of the corresponding values of k given by the exact solution
(Bibl.lO) with the approximate k (Bibl.5) will yield a clear idea on the rate

* The superscript of the coefficient of concentration in eq.(4.15) gives the
number of the approximation.

11



TABLE 1 /1019

a/b 1.00 1.05 1.10 1.20 1.30 1.50 1.60

Linear Exact 2 2.101 2.212 2.444 2.616 3.000 3.200Theory Solution 2 1.90-904 1.818 1.666 1-.538 1.333 1.250

Approximate 2 2.097 2.198 2.435 2.587 2.960 3.136
Am 0 Solution 2 f 1.90-4 1.818 1.669 1.546 1.360 1.289

P In the linear theory, k is independent of P

1.920 2.002 2.084 2.248 2.412 2.730 2.709
Theory _ _1.920 1.843 1.775 1,658 1.565 1.431i 1.557

1.904 1.980 2.055 2,208 2.361 2.660 2.568
70 1.904 1.834 1.772 1.667 1.584 1.469 1,667

1.895 1.962 2,301 2.170 2.310 2.587 2.414
A1  80 1895 1 ,83-2 1.777 1.686 1,616 1.522 1.802

g 1.868 1.954 2.014 2.138 2.264 2.517 2.250
90j 1868 1.-84 1.794 1.718 1g662 1.593• 1.966

TABLE 2

a/b 100 1,05 1.10 1.20 1.30 1.50 1.60

Linear Exact 2.0000 2.1010 2.2120 2.4440 2.6160 3,0000 3,2006
Theory Solutiop 2-0000 1.9047 1.8182 1.6667 1f5387 1.3333 1,2509

Approximated 2.0000 2.0970 2.1980 2.4350 2,5870 2,9600 3,1360
Solution foo Y 1.9048 1g-818 1,6696 1.5460 13600 "1,2896

P In the linear theory, k is independent of k

1.9606 2.0406 2.1308 2.3102 2.4874 2.8298 2.8987
A, E966 1.8654 1.7886 1,6570 1.5500 1.3914 1.4278

600
1,9682 2.0622 2.1562 2.3424 2.5260 2.8790 2.9909

A 1.9682 1,8790 1.7984 1.6600 1.5466 1,3774 1.3712

1A1.9226 2b0050 2.0878 2,2534 2.4196 2.7380 2.7248

A, 9-22-6- 1.8450 "17756 T,1578 Y.5616 1.4272 1,5460

Nonlinear A, 1.9474 2.0368 2.1262 2.3044 2.4914 2.8200 2.8810
Theory 1.9474 1M8628 1.7868 1.6564 1.5504 1.3948 1.4386

1.9006 1.9730 2.0466 2.1944 2.3430 2,6346 2.5150
A, 1-- Y6 1.08336 1.7730 1'.6-728 1.5944 1F4866 1.7118

1000

1.9258 2.0092 2.0930 2.2604 2.4266 2.7494 2.7468
A, 1.9258 1,8472 T.7768 T1.6572 156-12 1.4222 1,5302

1.8946 1.9550 2.0168 2.1432 2.2722 2.5292 2.2279
S1.8946 1.8390 1.7906 1.7120 1.6532 1.5800 1.93531200

A 1.9068 1,9828 2.0596 2.2142 2.3684 2.6704 2.5892

A, 1.9068 1,8356 1,7722 1.6654 1.5814 1.4632 1.6496

12



of convergence of the approximate solution of the problems of stress concentra-
tion about curvilinear orifices for which exact solutions are lacking, as pro-
posed above. Such a comparison is presented in the first two rows of Tables 1
and 2. The values of k in these Tables indicate that even for the greatly ex-
tended ellipse a/b = 1.6, the third approximation [eq.(4.15)] gives for k a
very good agreement with the exact value (the difference does not exceed
2.5 - 3.0%). Tables 1 and 2 present values of k [eq.(4.15)] calculated for two
points A and B on the orifice contour (see Fig.I). The values of k at the
point A(e = 0) are substituted into the numerator and at the point B(e = rr/2),
into the denominator, for different values of a/b, P, and X. The values of X

were taken from another report (Bibl.7): Xi = 1.02 x 10-5 (copper); X2

= 0.055 x 10@- b 1 (aluminum bronze); X3 = 0.033 x 107' 1 (open- /1020
bar2  bar2

hearth steel). The numerical data presented in Tables 1 and 2 indicate that:
a) the ellipticity of the orifice - as in the classical case, i.e., when the
plate material obeys Hooke's law - greatly affects the coefficient k of stress
concentration; b) as the applied tensile stresses P (Fig.l) are increased, k
will decrease at the point A and will increase at the point B. It follows that,
as the numerical values of the parameters P and X increase, a consideration of
the physical nonlinearity generally yields a more uniform stress distribution
over the orifice contour. The approximate method for the solution of the prob-
lems, formulated in Point 1 above, was based on a formal expansion of the re-
quired functions in double series over the small parameters P and 9, without
evaluating at all the convergence of the series. An idea as to the rapidity of
convergence of the proposed method in the general case (Bibl.5, 9) can be ob-
tained by calculating the concentration coefficients k -2) , k e- k() from
formulas analogous to eq.(4.15) and corresponding to the stress functions F,- 2 ,
F,-1, F, for the preceding approximations.
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