
AOARD-05-4017 Information-based security protocols for ideal agents - 1 -

Final Report

Title: Information-based security protocols for ideal agents

Contract Number: FA520905P0135

AFOSR/AOARD Reference Number: AOARD-05-4017

AFOSR/AOARD Program Manager: Tae-Woo Park, Ph.D.

Period of Performance: 01 October 2004 – 01 October 2005

Submission Date: 10 February 2006

PI: dr H.P. van Ditmarsch / University of Otago, PO Box 56, Dunedin, New Zealand

CoPI: N/A

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
08 AUG 2006

2. REPORT TYPE
Final Report (Technical)

3. DATES COVERED
 01-10-2004 to 01-10-2005

4. TITLE AND SUBTITLE
Information-based Security Protocols for Ideal Agents

5a. CONTRACT NUMBER
FA520905P0135

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Hans Pieter van Ditmarsch

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Otago,P.O. Box 56,Dunedin 9015,New Zealand,NZ,9015

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
The US Resarch Labolatory, AOARD/AFOSR, Unit 45002, APO, AP,
96337-5002

10. SPONSOR/MONITOR’S ACRONYM(S)
AOARD/AFOSR

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
AOARD-054017

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The objective to model check properties of protocols for card playing agents has been met. Beyond the
objectives we are pleased to report that we have made a state-of-the-art comparison of epistemic model
checkers (see publication [1], below). We have paid some attention to other protocols, namely different
generalizations of card playing protocols (see archival documentation [4]). We applied model checking
tools to a rather different protocol (that has the form of a riddle about natural numbers), published in [2].
We did not get to the promised ’library of protocols’. The reason for that is that the computational
complexity of model checking protocols is far higher than we anticipated. (For example, the most basic
generalization of the ’five-hand’s’ protocol mentioned in [1] takes up to 5 hours to model check - and this
can only be achieved by ’real hacking’, a proper structural programming approach has too high
complexity.) Some theoretical/technical progress would be necessary before further challenges can be
undertaken. We think the project results are appreciated by the academic community. Publications [1] and
[2] have already been quoted in research proposals, other publications or submissions, and have directed
other researchers to use the compared model checkers.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

100

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

AOARD-05-4017 Information-based security protocols for ideal agents - 2 -

 Objectives: The objectives of this research proposal are to build a small library of protocols that have been
described in a model checking formalism and verified in a model checker; to prove or disprove the
conjectured properties of card protocols mentioned above, also for more general setting of distributive
systems with interdependencies among agents. Other types of security protocol that are unrelated to the
protocols for information sharing in card deals will also be described, investigated, and verified. A systematic
search of the literature will therefore be part of the investigation.

 Status of effort: The research has been completed. Most of the work was done in the period March-August

2005. Some publications resulting from this project, and related continuing efforts, will / may appear later.

 Abstract: The objective to model check properties of protocols for card playing agents has been met. Beyond

the objectives we are pleased to report that we have made a state-of-the-art comparison of epistemic model
checkers (see publication [1], below). We have paid some attention to other protocols, namely different
generalizations of card playing protocols (see archival documentation [4]). We applied model checking tools
to a rather different protocol (that has the form of a riddle about natural numbers), published in [2]. We did
not get to the promised 'library of protocols'. The reason for that is that the computational complexity of
model checking protocols is far higher than we anticipated. (For example, the most basic generalization of the
'five-hand's' protocol mentioned in [1] takes up to 5 hours to model check - and this can only be achieved by
'real hacking', a proper structural programming approach has too high complexity.) Some theoretical/technical
progress would be necessary before further challenges can be undertaken.

 We think the project results are appreciated by the academic community. Publications [1] and [2] have
already been quoted in research proposals, other publications or submissions, and have directed other
researchers to use the compared model checkers.

 Personnel Supported:

 (principal investigator) Dr H.P. van Ditmarsch, University of Otago, Dunedin, New Zealand
 (co-investigator) Professor M.D. Atkinson, University of Otago, Dunedin, New Zealand
 (co-investigator) Professor W. van der Hoek, The University of Liverpool, United Kingdom
 (co-investigator) Associate Professor R. van der Meyden, NICTA/UNSW, Sydney, Australia
 (research assistant of principal investigator) Mr J. Ruan, University of Otago, Dunedin, New Zealand

 (student) Ms Sigrid Roehling, University of Otago, Dunedin, New Zealand
 (student) Mr Daniel Wood, University of Otago, Dunedin, New Zealand
 (student) Mr Huifeng Chen, University of Otago, Dunedin, New Zealand

 Publications:

1. H.P van Ditmarsch, W. van der Hoek, R. van der Meyden, J. Ruan, Model Checking Russian Cards.
Electronic Notes in Theoretical Computer Science 149:105-123, 2006.

2. H.P. van Ditmarsch, J. Ruan, L.C. Verbrugge, Model Checking Sum and Product. In: S. Zhang and R.
Jarvis (editors), Proceedings of the 18th Australian Joint Conference on Artificial Intelligence (AI
2005) (LNAI 3809), pages 790-795, Springer Verlag, Berlin, 2005.

3. H.P. van Ditmarsch, The case of the hidden hand. Journal of Applied Non-Classical Logics. To appear.

 Interactions:

(a) Participation/presentations at meetings, conferences, seminars, etc., have been:

 (Hans van Ditmarsch) Math Dept seminar, National University of Singapore, 8 Nov 2004
 (Ron van der Meyden) presentation at Software and Sensor Fusion Workshop, Griffiss Institute, Rome

NY, 15 August 2005
 (Ron van der Meyden) Workshop presentation, MoChArt 2005, 27 August 2005, San Francisco
 (Hans van Ditmarsch) seminar, NICTA (National ICT Australia) Queensland, 31 January 2006

 (b) I do not know of cases where knowledge resulting from this project effort is, or will be, used.

 New:

AOARD-05-4017 Information-based security protocols for ideal agents - 3 -

(a) None.
(b) The completed “DD Form 882, Report of Inventions and Subcontractors” is sent separately by the
University of Otago Research & Enterprise Office. (The legal authority to sign that document.)

 Honors/Awards: None

 Archival Documentation: The following electronic reprints have been attached to this report - with the

exception of items [6] and [7], that we consider of minor interest (but are by all means available on request).

1. (publication 1, above)
2. (publication 2, above)
3. (publication 3, above) (in press, attached is the final version as accepted for publication)
4. Ron van der Meyden, AOARD Trip Report (Software and Sensor Fusion Workshop, Griffiss Institute,

Rome)
5. Sigrid Roehling, Cards Cryptography (University of Otago, 480 project report)
6. Daniel Wood, Cards Cryptography (University of Otago, 480 project report)
7. Huifeng Chen, Model Checking of Knowledge (University of Otago, 480 project report)
8. Hans van Ditmarsch, Ji Ruan, Rineke Verbrugge, Sum and Product in Dynamic Epistemic Logic

(University of Otago, Computer Science, Technical Report OUCS-2006-01)

 Software and/or Hardware (if they are specified in the contract as part of final deliverables):

None

Cards and Cryptography

(COSC 480)

Final Report

Sigrid Roehling

Supervised by Mike Atkinson

University of Otago

submitted in partial fulfilment of the degree of

Master of Science

at the University of Otago, Dunedin,

New Zealand.

October 6, 2005

Abstract

From a deck of a + b + c distinct cards agents Alice and Bob receive a

and b cards, respectively, and Cathy, the attacker, receives the remaining c

cards. Methods have been devised for creating announcements that Alice

can make in order to inform Bob about her cards without Cathy learning

any card held by either of them (Albert et al., 2003). This dissertation

extends the problem by requiring that the announcement not give Cathy a

greater than random chance to guess any of Alice’s or Bob’s cards. Precise

conditions for the announcement are given and several announcements are

presented and analyzed.

ii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Previous Work . 1
1.3 New Problem . 2

2 Theory of New Problem 4
2.1 Terminology . 4
2.2 Revisiting CA1, CA2, and CA3 . 4

2.2.1 Combinatorial Axiom 1 (CA1) 4
2.2.2 Combinatorial Axiom 2 (CA2) 5
2.2.3 Combinatorial Axiom 3 (CA3) 5

2.3 New Requirements CA4 and CA5 . 5
2.3.1 Combinatorial Axiom 4 (CA4) 5
2.3.2 Combinatorial Axiom 5 (CA5) 6
2.3.3 Link Between CA4 and CA5 . 6

3 Examples of Announcements 7
3.1 Short Introduction to Designs . 7
3.2 Projective Planes . 7

3.2.1 Properties . 7
3.2.2 Construction . 8
3.2.3 Example . 8

3.3 Binary Designs . 8
3.3.1 Properties . 8
3.3.2 Construction . 9
3.3.3 Example . 9

3.4 Finite Field Designs . 10
3.4.1 Properties . 10
3.4.2 Construction . 10
3.4.3 Example . 11

3.5 Other Announcements . 12
3.5.1 Designs by Yates . 14
3.5.2 Designs by Bose . 14
3.5.3 Extended Designs . 14
3.5.4 Announcements for (3, b, 1) . 14

iii

4 Theoretical Results 15

5 Conclusion and Further Work 19

References 20

A Notation 21

B Fields 22

C Announcements Tested 24

iv

Chapter 1

Introduction

1.1 Background

Public key cryptography bases its security on mathematical problems that are difficult
to solve such as the discrete logarithm problem or factoring the product of two large
primes. Advances in technology and new discoveries in mathematics make it more
feasible to solve these problems, i.e. it becomes more feasible to break the encryption.
One solution is to use larger prime numbers to raise the bar a little higher, but this
also translates to more computation needed to actually use the encryption, making it
more inconvenient for the user. In addition, new mathematical discoveries may sud-
denly provide an easy way to solve these problems and therefore render the complete
algorithm useless for encryption (Wikipedia, 2005). Instead, one might look at cryp-
tographic protocols in which discovering the secret is not only too complex given the
current state of technology but actually impossible. That is, the cryptographic proto-
col must be developed with a computationally unlimited attacker in mind. One such
approach involves the use of a random deck of cards. The general scenario is as follows:
Two agents, Alice and Bob, draw a and b cards from a deck of a + b + c cards, and
Cathy, the attacker, receives the remaining c cards. Alice wishes to communicate her
cards to Bob by making a public announcement without informing Cathy of any of her
cards. The generalized problem has parameters (a, b, c) and was inspired by what van
Ditmarsch (2003) has called the Russian Cards problem, which constitutes the (3, 3, 1)
instance and was presented at the Moscow Mathematical Olympiad in 2000.

1.2 Previous Work

Previous work on the Russian Cards problem involved using epistemic logic to de-
scribe the properties and find several solutions (van Ditmarsch, 2003). The generalized
version has been investigated by Albert, Aldred, Atkinson, van Ditmarsch, and Hand-
ley (2003) with the following results: Alice can structure her announcement in many
different ways, but they all correspond to an announcement of the form “I hold one
of the following hands: . . . ”. The work of Albert et al. on this problem included
devising precise mathematical conditions, called CA1, CA2 and CA3, corresponding
to the requirements above. Using these conditions, methods of constructing “good

1

announcements” have been found.

Example of a Good Announcement

For the (3, 3, 1) instance, suppose Alice holds 034. She could announce that she holds
one of {012, 034, 056, 135, 246}. No matter what Bob holds he can infer Alice’s cards.
For example, if he held 126, then he could eliminate 012, 056, 135 and 246, leaving
only 034, Alice’s actual hand. And no matter what Cathy holds, she cannot infer any
card of Alice or Bob. Say Cathy held card 5, then she could eliminate 056 and 135,
leaving her with 012, 034 and 246 for Alice’s hand and (by considering the remaining
cards) 346, 126 and 013 for Bob’s hand. Tables 1.1 and 1.2 illustrate these properties
given the announcement mentioned above.

Hands of the announcement
012 034 056 135 246

P
os

si
b
le

h
an

d
s

h
el

d
b
y

B
ob

013 X
015 X
024 X
026 X
035 X
046 X
123 X
124 X
125 X
126 X
134 X
135 X
156 X
234 X
246 X
256 X
345 X
346 X
356 X
456 X

Table 1.1: Illustration of Bob’s inference of Alice’s hand. (An X
marks the hand of Alice that Bob will deduce.)

1.3 New Problem

Some of the constructions proposed by Albert et al., while not giving away enough
information for Cathy to determine any card held by Alice or Bob, will result in
situations where Cathy can make an educated guess based on the relative frequency
of the cards. For example, consider again the announcement for (3, 3, 1) given as

2

Hands of the announcement
012 034 056 135 246

P
os

si
b
le

ca
rd

s
h
el

d
b
y

C
at

h
y

0 X X
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X

Table 1.2: Illustration of Cathy’s attempt at inferring Alice’s hand.
(An X marks what Cathy believes to be a possible hand of Alice.)

{012, 034, 056, 135, 246}. Let us assume that Cathy holds card 3. Then she can ex-
clude all but 012, 056 and 246 from the announcement. Since among these card 2
occurs more often than card 1, Cathy knows that Alice is more likely to hold card 2.

This is based on two assumptions: First, the announcements that Alice makes are
closed under relabeling, meaning that we can take one announcement and relabel, say,
card 0 as card 1, card 1 as card 2, . . . , card 6 as card 0 to get a new announcement.
Thus, we can make use of the announcement above even if we do not hold any of the
hands 012, 034, 056, 135 and 246. We simply pick one of these hands and relabel it
so that it matches our actual hand and then apply the same relabeling to the other
hands in the announcement. The second assumption is that Alice will randomly choose
an announcement that fits her actual hand. It is important to note that among all
announcements that Alice can make there are those in which Alice’s cards occur more
frequently than others and those in which her cards occur less frequently or just as
frequently. However, there are more of the first kind than there are of the second
(Michael Albert, personal communication). With Alice choosing an announcement
at random she is more likely to pick one in which her cards occur more frequently.
Therefore, not having any other information, Cathy’s best bet is to assume that when
a card occurs more often, it is more likely to be one of the actual cards.

This dissertation devises additional requirements for the announcement in order
to eliminate the possibility of making educated guesses, examines the constructions
previously proposed, and searches for methods of designing announcements that meet
these requirements.

3

Chapter 2

Theory of New Problem

2.1 Terminology

I will use terminology previously proposed by Albert et al. (2003). In their terminology
cards are commonly referred to as points and labeled with numbers. The set of all cards
is denoted by Ω. An x-set is a set of x cards. A possible holding (or hand) of Alice is
called a line. Thus, an announcement L consists of one or more lines. “Elimination”
refers to Cathy eliminating those lines from the announcements that are impossible
holdings for Alice because they contain one or more cards that Cathy herself is holding.

2.2 Revisiting CA1, CA2, and CA3

Albert et al. proposed three axioms that correspond to the informal requirements given
in the problem description. They are restated and explained below.

2.2.1 Combinatorial Axiom 1 (CA1)

Given the announcement, Bob must be able to infer what Alice is holding.

Combinatorial Axiom 1. For every b-set X there is at most one line in L that avoids
X.

In order for Bob to figure out which line of the announcement is Alice’s holding, he
has to eliminate lines from the announcement based on his knowledge of his own cards.
For example, because cards are distinct, if Bob holds card 4, then he can eliminate all
lines that contain card 4 since those cannot be a possible holding of Alice. Similarly,
Bob can eliminate any other line that contains a card that he himself holds. A line
in the announcement that contains none of the cards held by Bob is said to avoid
Bob’s hand (here denoted by b-set X). If there are two or more such lines in the
announcement, then Bob is left with more than one possibility for Alice’s hand and
cannot state with absolute certainty which is the correct one. Therefore, there can
be at most one line in the announcement that avoids Bob’s hand. (Note: If we are
assuming that the announcement is truthful and that Alice’s hand is among the lines
then there must be exactly one line that avoids Bob’s hand.)

4

2.2.2 Combinatorial Axiom 2 (CA2)

Given the announcement, Cathy must not be able to infer any card held by Alice.

Combinatorial Axiom 2. For every c-set X the lines in L avoiding X have empty
intersection.

Cathy employs the same process of eliminating lines from the announcement as Bob
by looking at her own hand (denoted by c-set X). After elimination, she examines the
remaining lines. If there is one card common to all these lines, then Cathy can conclude
that Alice holds that card. So, there must be no card common to all remaining lines.
In other words, all remaining lines taken together must have empty intersection.

2.2.3 Combinatorial Axiom 3 (CA3)

Given the announcement, Cathy must not be able to infer any card held by Bob.

Combinatorial Axiom 3. For every c-set X the lines in L avoiding X have union
consisting of all cards except those of X.

After elimination Cathy also examines the remaining lines for information about
Bob’s cards. For example, if there is a card that does not occur among these lines then
it is not held by Alice. It is also not held by Cathy because she has eliminated all lines
containing any of her cards. Thus, it must be a card held by Bob. If, however, the
remaining lines cover all possible cards, except for Cathy’s, then Cathy cannot draw
such conclusions about Bob’s cards. In other words, the union of the remaining lines
must be the set of all cards minus the set X of Cathy’s cards.

2.3 New Requirements CA4 and CA5

2.3.1 Combinatorial Axiom 4 (CA4)

Given the announcement, Cathy must not have a greater than random chance of guess-
ing any card held by Alice.

Combinatorial Axiom 4. For every c-set X, let DX = {L ∈ L | L ∩ X = ∅}. The
number of lines nX in DX that contain a particular card y /∈ X must be independent
of y.

DX is the subset of the announcement that does not intersect with X, i.e. it
contains the lines that Cathy cannot eliminate by looking at her own hand. If among
these lines any card occurs more often than another, then that card is more likely to
be a holding of Alice. This gives Cathy a better than random chance of guessing one of
Alice’s cards correctly. In order to prevent this, all cards (except Cathy’s) must occur
equally often in DX . (Note that by elimination Cathy’s cards do not occur in DX at
all.)

5

2.3.2 Combinatorial Axiom 5 (CA5)

Given the announcement, Cathy must not have a greater than random chance of guess-
ing any card held by Bob.

Combinatorial Axiom 5. For every c-set X, let DX be the same as in CA4 and let
EX = {Ω−X−L | L ∈ DX}. The number of sets in EX that contain a particular card
y /∈ X must be independent of y.

Given the remaining lines in DX , Cathy can construct all possible holdings for Bob
by taking the complements of the lines with respect to the set of cards held by Alice and
Bob (Ω−X). This produces EX , the set of possible holdings of Bob. Similarly to CA4,
all cards (except Cathy’s) have to occur equally often in EX in order to prevent Cathy
from having a better than random chance of guessing one of Bob’s cards correctly.

2.3.3 Link Between CA4 and CA5

Because EX used in CA5 is constructed from DX used in CA4, they seem to be closely
related. In fact, CA4 implies CA5, and vice versa. For a proof see Chapter 4.

6

Chapter 3

Examples of Announcements

3.1 Short Introduction to Designs

The mathematical theory of designs which deals with collections of special subsets of
a given set provides a convenient framework for studying the conditions CA1, CA2,
CA3, CA4 and CA5.

“Informally, one may define a combinatorial design to be a way of selecting
subsets from a finite set in such a way that some specified conditions are
satisfied.” (Wallis, 1988)

For example, the set of subsets {{0, 1}, {2, 3, 4}} over the finite set {0, 1, 2, 3, 4} satisfies
the condition that every member of the finite set occurs in exactly one subset. The
special subsets will be called lines for the remainder of this dissertation. Designs
with different properties have been studied extensively, but for our purposes a short
introduction to t-designs will suffice. In general, t-designs have the property that any
combination of t distinct cards occurs in the same number of lines. This number is
referred to as the covalency λ of the design. Thus, in 2-designs (also known as balanced
incomplete block designs) any pair of distinct cards occurs in the same number of lines.
Similarly, in 3-designs any 3-tuple of distinct cards occurs in the same number of lines.
Generally, t-designs have a feature akin to backwards compatibility in that every t-
design is also a 1-design, 2-design, . . . , (t − 1)-design (Hughes, 1962). The following
first three designs represent some of the announcements I have found to date that
satisfy CA4 and CA5. They all appear to be 2-designs. In fact, projective planes
are 2-designs by definition and binary designs are 3-designs as shown in Chapter 4.
For finite field designs I merely have experimental evidence in that all the ones tested
have been 2-designs. (Satisfaction of t-design properties has been evaluated using a
computer program. See Appendix C for more details.) Following these is a short list
of other announcements I have come across that have been analyzed in less detail.

3.2 Projective Planes

3.2.1 Properties

Projective planes have the following properties:

7

• All lines contain the same number of points.

• Any pair of points occurs in exactly one line.

• Any pair of lines intersects in exactly one point.

Note that the second property makes projective planes 2-designs (with λ = 1).

3.2.2 Construction

Projective planes can be constructed using fields (see Appendix B). The number of
points is of the form 1+ q + q2. However, projective planes do not exist for all values of
q. All planes known to date are associated with a q that is a power of a prime and it is
known that there exists a plane with q = p2 for every odd prime p (Assmus and Key,
1992). No plane has been found yet with q not a prime power but the nonexistence of
these has not been proven either.

3.2.3 Example

An example of a projective plane is the 7-line announcement for (3, 3, 1) shown in
Figure 3.1. The nodes of the graph represent the points, and the edges (including the
circle) represent the lines. Representing each line {x, y, z} as xyz, the corresponding
announcement is {012, 034, 056, 135, 146, 236, 245}. Table 3.1 illustrates how this design
satisfies CA4. Note that nX = 2 for all possible X, i.e. it is independent of X. This is
not an explicit requirement of CA4, but may be a consequence. Theorem 4 in Chapter 4
explores this in more detail. As shown in Chapter 4, CA4 implies CA5, thus projective
planes also satisfy CA5.

Figure 3.1: The 7-point projective plane.

3.3 Binary Designs

3.3.1 Properties

Binary designs give solutions for a = 2n−1, b = a − 1, c = 1, n ≥ 3. Here, n is the
number of bits used in the construction. These designs are special because the same n

8

Announcement : {012, 034, 056, 135, 146, 236, 245}

Occurrences
X DX 0 1 2 3 4 5 6 nX

0 {135, 146, 236, 245} 2 2 2 2 2 2 2
1 {034, 056, 236, 245} 2 2 2 2 2 2 2
2 {034, 056, 135, 146} 2 2 2 2 2 2 2
3 {012, 056, 146, 245} 2 2 2 2 2 2 2
4 {012, 056, 135, 236} 2 2 2 2 2 2 2
5 {012, 034, 146, 236} 2 2 2 2 2 2 2
6 {012, 034, 135, 245} 2 2 2 2 2 2 2

Table 3.1: Illustration of CA4 for the 7-point projective plane for
(3, 3, 1).

is associated with more than one instance of the (a, b, c) problem. For example, (8, 7, 1)
and (8, 6, 2) have the same solution given by a binary design with n = 4. Binary designs
are not only 2-designs, but also 3-designs as has been proven in Chapter 4. Whether
this has anything to do with their special nature has yet to be investigated.

3.3.2 Construction

Choose the number of bits n ≥ 3. For all 2n − 1 n-bit vectors (b1, b2, ..., bn) (except all
zeros) solve the equation

x1b1 + x2b2 + ... + xnbn = 0

where xy = 0, 1. Note that we are working in binary, so everything is taken modulo
2. There will be 2n−1 solutions to each equation, each x1x2...xn representing a point
in binary. All points gained from an equation constitute a line. This produces 2n − 1
lines (one per equation). For each line, compute the complement by taking all binary
points that are not present in the line; these complements are also taken as lines. Now
we have a total of 2(2n − 1) lines which constitute the announcement. To generate the
final announcement, replace every point in binary with its decimal representation.

3.3.3 Example

Construct a binary design with n = 3. Each line consists of 2n−1 = 4 points. The
2n − 1 = 7 non-zero 3-bit vectors are

001, 010, 011, 100, 101, 110, 111.

9

The corresponding lines are

{000, 010, 100, 110},
{000, 001, 100, 101},
{000, 011, 100, 111},
{000, 001, 010, 011},
{000, 010, 101, 111},
{000, 001, 110, 111},
{000, 011, 101, 110}.

together with their complements (respectively)

{001, 011, 101, 111},
{010, 011, 110, 111},
{001, 010, 101, 110},
{100, 101, 110, 111},
{001, 011, 100, 110},
{010, 011, 100, 101},
{001, 010, 100, 111}.

The 2(2n − 1) = 14 lines in decimal are (respectively)

{0, 2, 4, 6}, {0, 1, 4, 5}, {0, 3, 4, 7}, {0, 1, 2, 3}, {0, 2, 5, 7}, {0, 1, 6, 7}, {0, 3, 5, 6},
{1, 3, 5, 7}, {2, 3, 6, 7}, {1, 2, 5, 6}, {4, 5, 6, 7}, {1, 3, 4, 6}, {2, 3, 4, 5}, {1, 2, 4, 7}.

Table 3.2 illustrates how this announcement satisfies CA4 for the (4,3,1) instance.

3.4 Finite Field Designs

3.4.1 Properties

These designs make use of the properties of finite fields. For the mathematically in-
clined, we construct a finite field of size p2 and take the quadratic residues, the quadratic
non-residues, and their translates to be the lines. The construction below is written
for those with less detailed knowledge of mathematics, but an introduction to fields
can be found in Appendix B. These designs give solutions for a = p2−1

2
, where p ≥ 3 is

prime, and b = a, c = 1.

3.4.2 Construction

Choose a prime p ≥ 3. Let T = {a + bx | a, b = 0, 1, 2, ..., p− 1}. Arithmetic is modulo
p. Find some pair of values of a and b in f(x) = x2 +ax+b where a, b = 0, 1, 2, ..., p−1

10

Announcement : {0123, 0145, 0167, 0246, 0257, 0347, 0356,

4567, 2367, 2345, 1357, 1346, 1256, 1247}

Occurrences
X DX 0 1 2 3 4 5 6 7 nX

0 {4567, 2367, 2345, 1357, 1346, 1256, 1247} 4 4 4 4 4 4 4 4
1 {0246, 0257, 0347, 0356, 4567, 2367, 2345} 4 4 4 4 4 4 4 4
2 {0145, 0167, 0347, 0356, 4567, 1357, 1346} 4 4 4 4 4 4 4 4
3 {0145, 0167, 0246, 0257, 4567, 1256, 1247} 4 4 4 4 4 4 4 4
4 {0123, 0167, 0257, 0356, 2367, 1357, 1256} 4 4 4 4 4 4 4 4
5 {0123, 0167, 0246, 0347, 2367, 1346, 1247} 4 4 4 4 4 4 4 4
6 {0123, 0145, 0257, 0347, 2345, 1357, 1247} 4 4 4 4 4 4 4 4
7 {0123, 0145, 0246, 0356, 2345, 1346, 1256} 4 4 4 4 4 4 4 4

Table 3.2: Illustration of CA4 for the binary design with n = 3 for
(4, 3, 1).

such that f(x) 6= 0 for all x = 0, 1, 2, ..., p− 1. Formally solve f(x) = 0 for x2, i.e. note
that x2 = −ax − b. This is the multiplication rule, i.e. whenever we encounter x2 we
will replace it by the righthand side of the rule.
Now, find t ∈ T such that t, t2, ..., tp

2−1 are all different from 1. The set of all even
powers of t (including t0) form line L0. The set of all odd powers of t form line L1. The
lines of the announcement are constructed as follows: For every s ∈ T add s to every
member of L0 and L1 to generate two lines. For convenience, assign a distinct number
to each polynomial in T and replace the polynomials in the lines by the respective
number.

3.4.3 Example

Constructing a finite field design with p = 3.

T = {a + bx | a, b = 0, 1, 2}.

Arithmetic is modulo 3. The multiplication rule is x2 = x + 1 since f(x) = x2 + 2x + 2
is never zero for x = 0, 1, 2, i.e. f(0) = 2 mod 3 = 2, f(1) = 5 mod 3 = 2, and
f(2) = 10 mod 3 = 1. Note that in modulo-3 arithmetic x2 = −2x − 2 = x + 1.
t = 1 + 2x gives L0 = {1, 2 + 2x, 2, 1 + x} and L1 = {1 + 2x, x, 2 + x, 2x}.

11

The lines of the announcement are (from L0)

{ 1 , 2 + 2x , 2 , 1 + x },
{ 1 + x , 2 , 2 + x , 1 + 2x },
{ 1 + 2x , 2 + x , 2 + 2x , 1 },
{ 2 , 2x , 0 , 2 + x },
{ 2 + x , 0 , x , 2 + 2x },
{ 2 + 2x , x , 2x , 2 },
{ 0 , 1 + 2x , 1 , x },
{ x , 1 , 1 + x , 2x },
{ 2x , 1 + x , 1 + 2x , 0 },

(and from L1)

{ 1 + 2x , x , 2 + x , 2x },
{ 1 , 2x , 2 + 2x , 0 },
{ 1 + x , 0 , 2 , x },
{ 2 + 2x , 1 + x , x , 1 + 2x },
{ 2 , 1 + 2x , 2x , 1 },
{ 2 + x , 1 , 0 , 1 + x },
{ 2x , 2 + x , 1 + x , 2 + 2x },
{ 0 , 2 + 2x , 1 + 2x , 2 },
{ x , 2 , 1 , 2 + x }.

Using f(a + bx) = ap + b = 3a + b as a labeling function we obtain the announcement
in numbers as follows (note that numbers have been arranged in increasing order):

{3, 4, 6, 8}, {4, 5, 6, 7}, {3, 5, 7, 8},
{0, 2, 6, 7}, {0, 1, 7, 8}, {1, 2, 6, 8},
{0, 1, 3, 5}, {1, 2, 3, 4}, {0, 2, 4, 5},
{1, 2, 5, 7}, {0, 2, 3, 8}, {0, 1, 4, 6},
{1, 4, 5, 8}, {2, 3, 5, 6}, {0, 3, 4, 7},
{2, 4, 7, 8}, {0, 5, 6, 8}, {1, 3, 6, 7}.

Table 3.3 illustrates how this announcement satisfies CA4 for the (4,4,1) instance.

3.5 Other Announcements

Other announcements relevant to this dissertation were found in the literature. Most
of them, however, were not designed with the combinatorial axioms in mind, so their

12

A
n
n
ou

n
ce

m
en

t
:
{3

46
8,

45
67

,3
57

8,
02

67
,0

17
8,

12
68

,0
13

5,
12

34
,0

24
5,

12
57

,0
23

8,
01

46
,1

45
8,

23
56

,0
34

7,
24

78
,0

56
8,

13
67
}

O
cc

u
rr

en
ce

s
X

D
X

0
1

2
3

4
5

6
7

8
n

X

0
{3

46
8,

45
67

,
35

78
,
12

68
,
12

34
,
12

57
,
14

58
,
23

56
,
24

78
,
13

67
}

5
5

5
5

5
5

5
5

5
1

{3
46

8,
45

67
,
35

78
,
02

67
,
02

45
,
02

38
,
23

56
,
03

47
,
24

78
,
05

68
}

5
5

5
5

5
5

5
5

5
2

{3
46

8,
45

67
,
35

78
,
01

78
,
01

35
,
01

46
,
14

58
,
03

47
,
05

68
,
13

67
}

5
5

5
5

5
5

5
5

5
3

{4
56

7,
02

67
,
01

78
,
12

68
,
02

45
,
12

57
,
01

46
,
14

58
,
24

78
,
05

68
}

5
5

5
5

5
5

5
5

5
4

{3
57

8,
02

67
,
01

78
,
12

68
,
01

35
,
12

57
,
02

38
,
23

56
,
05

68
,
13

67
}

5
5

5
5

5
5

5
5

5
5

{3
46

8,
02

67
,
01

78
,
12

68
,
12

34
,
02

38
,
01

46
,
03

47
,
24

78
,
13

67
}

5
5

5
5

5
5

5
5

5
6

{3
57

8,
01

78
,
01

35
,
12

34
,
02

45
,
12

57
,
02

38
,
14

58
,
03

47
,
24

78
}

5
5

5
5

5
5

5
5

5
7

{3
46

8,
12

68
,
01

35
,
12

34
,
02

45
,
02

38
,
01

46
,
14

58
,
23

56
,
05

68
}

5
5

5
5

5
5

5
5

5
8

{4
56

7,
02

67
,
01

35
,
12

34
,
02

45
,
12

57
,
01

46
,
23

56
,
03

47
,
13

67
}

5
5

5
5

5
5

5
5

5

T
ab

le
3.

3:
Il
lu

st
ra

ti
on

of
C

A
4

fo
r

th
e

fi
n
it

e
fi
el

d
d
es

ig
n

w
it

h
p

=
3

fo
r

(4
,4

,1
).

13

constructions were not examined in detail. They are included here so as to provide
more experimental evidence in order to uncover patterns that could be useful in further
research.

3.5.1 Designs by Yates

Five 2-designs were taken from an article by Yates (1936). They satisfy all five com-
binatorial axioms and thus agree with the theorems linking CA4 and 2-designs in the
following chapter. It should be noted here that the 7-line announcement for (3, 3, 1)
and the 13-line announcement for (4, 8, 1) seem to be isomorphic to the projective plane
designs mentioned earlier. Thus, only three of the announcements were unknown be-
fore.

3.5.2 Designs by Bose

Two designs were found in an article by Bose (1939), one 2-design and one 3-design.
Both satisfy all five combinatorial axioms. The 3-design is a 14-line announcement for
(4, 3, 1) and seems to be isomorphic to the corresponding binary design. The 2-design
provides us with a solution for the (7, 7, 1) instance which was previously not covered.

3.5.3 Extended Designs

Several of the designs that satisfy all five combinatorial axioms can be extended to
produce new announcements for different instances by using the construction suggested
by Alltop (1975). The 7-line projective plane for (3, 3, 1) has been extended giving a
14-line announcement for (4, 3, 1) which is probably isomorphic to the binary design for
that case. Similarly, Bose’s (7, 7, 1) announcement extends to give a solution for (8, 7, 1)
for which we already have a binary design. The finite field solution for (4, 4, 1) has been
extended to give a new announcement for (5, 4, 1) which satisfies all axioms except CA1.
It should also be noted here that the number of lines in this announcement is equal
to the upper bound for an announcement satisfying CA1, CA2, and CA3 as proposed
in (Albert et al., 2003). The other three finite field announcements in Table C.1 have
also been extended and they satisfy CA2 through CA5. Yates’ (5, 5, 1) announcement
has been extended giving a previously unknown solution for (6, 5, 1).

3.5.4 Announcements for (3, b, 1)

Albert et al. proposed a method for constructing good announcements for these in-
stances. Following their method five announcements have been constructed, none of
which satisfy CA4 or CA5. Interestingly, some do not even satisfy CA1 as claimed in
the construction. Also, none of them are 2-designs which reinforces the validity of the
upcoming theorems linking CA4 and 2-designs for c = 1.

14

Chapter 4

Theoretical Results

Theorem 1. CA4 holds if and only if CA5 holds.

Proof. CA5 implies CA4. Assume CA5 holds. Let X be any set of c points. Let the
number of sets in EX that contain a particular card y be denoted by mX . Note that
for every line L in DX there is a set Ω − X − L in EX , and all sets in EX have this
form. That is, |EX | = |DX |. Also note that by construction the lines in DX and sets
in EX have empty intersection with X. The line L and set Ω−X−L are complements
over the set Ω−X, i.e. if a card y /∈ X is not in L then it must be in Ω−X − L and
vice versa. We now pick an arbitrary card y ∈ Ω − X which (by CA5) occurs in mX

sets in EX . That means, that y does not occur in |DX | − mX sets in EX . Because of
the complementary property, this means that y occurs in |DX |−mX lines in DX . And
since both |DX | and mX are independent of y, we now set nX = |DX | −mX and have
shown that the number of lines in DX that contain card y is also independent of y and
therefore CA4 must hold as well.
CA4 implies CA5. The proof follows a similar argument as above.

Theorem 2. For all instances where c = 1, if CA4 holds and L is a 1-design, then L
is a 2-design.

Proof. Assume L is a 1-design. Then ry = |{L ∈ L | y ∈ L}| is independent of y. Also
assume CA4 holds so that every DX is a 1-design. Note that the lines in DX are given
by {L ∈ L | x /∈ L} and that the size of this set is independent of x, since L being a
1-design implies that the number of lines that do not contain card x is independent of
x. The number of lines in DX containing card y is sxy = |{L ∈ L | x /∈ L, y ∈ L}|,
which is independent of x and by CA4 independent of y. Now, let txy = |{L ∈ L |
x, y ∈ L}| be the number of lines in L that contain both cards x and y. Note that,
{L ∈ L | y ∈ L} = {L ∈ L | x, y ∈ L} ∪ {L ∈ L | x /∈ L, y ∈ L} and since the last two
sets do not intersect we have ry = txy + sxy. Since ry and sxy are independent of x and
y, so is txy. Thus, L is a 2-design.

Since CA4 and CA5 imply each other by Theorem 1, we may arrive at a new theorem
by simply replacing CA4 with CA5 in the above statement. The next theorem is a
converse of Theorem 2.

Theorem 3. For all instances where c = 1, if L is a 2-design then CA4 holds.

15

Proof. Assume L is a 2-design, i.e. |{L ∈ L | x, y ∈ L}| = λ2 is independent of x
and y. We want to show that |{LD ∈ DX | z ∈ LD}| = nX is independent of z.
Let X = {x} be any holding of Cathy. Note that when she eliminates lines from L
that contain x, she reduces the number of lines containing any y /∈ X by λ2. Let
λ1 = |{L ∈ L | y ∈ L}|, which is independent of y because L is also a 1-design. Before
elimination λ1 lines contained y. After elimination, λ1−λ2 lines contain y. This is the
number of lines nX in DX that contain y. Since it is independent of y, CA4 holds.

Note that CA4 implies CA5 by Theorem 1 and thus we can also draw conclusions
about CA5 from the above theorem.

Theorem 4. If CA4 holds then nX = a|DX |
a+b

.

Proof. Count the total number of cards occurring in DX in two ways. Assuming CA4
holds there are a + b distinct cards and each of them occurs nX times. There are |DX |
lines and each of them contains a cards. Thus (a + b)nX = a|DX |.

Theorem 5. For all instances where c = 1, if CA4 holds then nX is independent of
X.

Proof. Assume c = 1 and CA4 holds. Take two arbitrary distinct X1 = x1 and X2 = x2.
Consider DX1 = {L ∈ L | x1 /∈ L}. It contains no lines that contain card x1 and nX1

lines that contain card x2. It must therefore contain |DX1| − nX1 lines that contain
neither card x1 nor card x2. And due to construction of the set, this is the exact
number of lines in L that contain neither card. Now consider DX2 = {L ∈ L | x2 /∈ L}.
It contains no lines that contain card x2 and nX2 lines that contain card x1. It must
therefore contain |DX2| − nX2 lines that contain neither card x1 nor card x2. And due
to construction of the set, this is the exact number of lines in L that contain neither
card. Thus, we get the following equation

|DX1 | − nX1 = |DX2| − nX2

nX1

a + b

a
− nX1 = nX2

a + b

a
− nX2

nX1

(
a + b

a
− 1

)
= nX2

(
a + b

a
− 1

)
nX1

(
b

a

)
= nX2

(
b

a

)
nX1 = nX2

Because x1 and x2 were chosen arbitrarily we conclude that nX is independent of X.

Since nX and |DX | are related by Theorem 4 we may conclude from the above that
if CA4 holds, then |DX | is independent of X. And remembering that |DX | = |EX |
from the proof of Theorem 1 we may further deduce that if CA4 holds, then |EX | is
also independent of X. The same holds when CA5 holds. Furthermore, combining this
theorem with Theorem 3 we see that if c = 1 and L is a 2-design then nX , |DX | and
|EX | are independent of X.

16

Looking more closely at what Theorem 5 entails, we can see that if nX is independent
of X, then so is |DX |. Note here, that because c = 1, |DX | is equal to the number of
lines in L that do not contain the card in X. Thus, we conclude that the number of
lines in L that do not contain a particular card y is independent of y. This implies
that the number of lines in L that do contain a particular card y is also independent
of y, therefore L is a 1-design. Now Theorem 2 applies and we see that L must be a
2-design. To summarize, if c = 1 and CA4 holds then L is a 2-design.

Theorem 6. All binary designs are 3-designs.

Proof. By construction binary designs are based on 2n points and 2(2n − 1) lines of
size 2n−1. We now show that any three points p1, p2, p3 occur in exactly 2n−2 − 1 lines.
The lines of the design contain points of the form x1x2 . . . xn, that is a point is repre-
sented by an n-vector x. For any n-vector b 6= 0 there are two lines:

{x | b · x = 0} which we call zb

{x | b · x = 1} which we call wb

Let the n-vectors u,v,w be three distinct points. A line containing these comes from
a vector b with either

b · u = 0 b · v = 0 b ·w = 0 (zb) or (4.1)

b · u = 1 b · v = 1 b ·w = 1 (wb) (4.2)

We have two cases:

1. One of u,v,w is the sum of the other two.
Then u,v,w form a subspace U of the vector space V of dimension n over the
field of 2 elements. The subspace U has dimension 2. Note that the zb’s come
from U⊥ = {b | b ·t = 0 for all t ∈ U} and that dim U +dim U⊥ = n. Therefore,
the dimension of U⊥ is n−2 and the number of zb’s is 2n−2−1 (excluding b = 0).
The number of wb’s is 0 because Equation 4.2 cannot hold.

2. The vectors u,v,w are linearly independent. Then u,v,w form a subspace of
dimension 3 and by the same argument as above the number of zb’s is 2n−3 − 1.
The number of wb’s is 2n−3 because we just find one b0 for which Equation 4.2
holds and then add all the zb’s.

In both cases the number of lines that contain the three points is 2n−2 − 1 in total.
Thus, binary designs are 3-designs.

Remember that 3-designs are also 2-designs. If we combine the above theorem with
Theorem 3 we can conclude that a binary design will satisfy CA4 (and CA5) for c = 1.

Combinatorial Axiom 6. Let DX = {L ∈ L | L ∩ X = ∅} as in CA4. For all X,
DX is a 2-design, i.e. the number of lines in DX containing any pair {a, b} where
a, b ∈ Ω−X is independent of a and b.

Note that by the properties of t-designs CA6 implies CA4 since if DX is a 2-design
it must also be a 1-design.

17

Theorem 7. For all instances where c = 1, CA6 holds and L is a 1-design if and only
if L is a 3-design.

Proof. Assume c = 1 and L is a 3-design. Then the number of lines in L containing
any triple {a, b, x} ⊆ Ω is independent of a, b and x. Let this number be denoted by
tabx = |{L ∈ L | a, b, x ∈ L}|. Let sabx = |{L ∈ L | a, b ∈ L, x /∈ L}| be the number
of lines in L containing a and b but not x. Note that this is the number of lines in
DX that contain a and b. The number of lines in L containing a and b is given by
rab = |{L ∈ L | a, b ∈ L}| = sabx + tabx. Because L is a 3-design, tabx is independent
of a, b and x. Note that L is also a 2-design, therefore rab is independent of a and b
(and x). Thus, sabx must be independent of a, b and x, i.e. DX is a 2-design and CA6
holds.
Assume c = 1, CA6 holds and L is a 1-design. Then the number of lines in DX

containing a and b is independent of a, b and x and is given by sabx = |{L ∈ L |
a, b ∈ L, x /∈ L}|. Note that if DX is a 2-design it is also a 1-design, therefore, CA4
holds as well. Since CA4 holds and L is a 1-design, it is also a 2-design. Thus, rabx =
|{L ∈ L | a, b ∈ L}| is independent of a, b and x. Let tabx = |{L ∈ L | a, b, x ∈ L}|.
Since rab = sabx + tabx, tabx must also be independent of a, b and x. Therefore, L is a
3-design.

From this and Theorem 6 we conclude that binary designs satisfy CA6 for c = 1.

18

Chapter 5

Conclusion and Further Work

This dissertation outlined the need for stricter requirements for cryptographic protocols
inspired by the Russian cards problem. The previous requirements CA1, CA2, CA3,
and the new requirements CA4 and CA5 were formally stated and informally explained.
Three constructions that meet all the requirements were explained in detail. These are
projective planes, finite field designs, and binary designs. Satisfaction of CA4 has been
illustrated for an example of each category. Some other announcements were analyzed
briefly. Several theorems relating to the new requirements and designs were proved.

CA4 and 2-Designs

All announcements found to satisfy CA4 so far have been 2-designs. For the c = 1
scenario it has been proved that if the announcement is a 2-design then CA4 is satisfied.
It has also been shown that the converse is true. Further work might focus on whether
these theorems hold for c > 1.

Binary Designs and 3-Designs

We have shown that all binary designs are 3-designs. They are also the only designs
in Table C.1 that work for more than one instance of the (a, b, c) problem. It would be
interesting to investigate whether there is a relationship between these two facts.

nX’s Independence of X

This dissertation has shown that, given CA4, nX is independent of X when c = 1.
Further research might investigate whether this holds for c > 1 as well.

Satisfaction of CA4 when c > t

It can be seen from Table C.1 that all announcements satisfying CA4 have c ≤ t.
Therefore, it is possible that CA4 cannot hold when c > t. Further research might look
into this. Note that the converse, CA4 must hold when c ≤ t, is not true, i.e. some
announcements satisfy CA4 for c ≤ t and some do not.

19

References

Albert, M., Aldred, R., Atkinson, M., van Ditmarsch, H., and Handley, C. (2003).
Safe communication for card players by combinatorial designs for two-step protocols.
Otago University Technical Reports .

Alltop, W. O. (1975). Extending t-designs. Journal of Combinatorial Theory A, 18,
177–186.

Assmus, Jr, E. F. and Key, J. D. (1992). Designs and Their Codes. New York, NY,
USA: Cambridge University Press.

Bose, R. C. (1939). On the construction of balanced incomplete block designs. Annals
of Eugenics , 9, 353–399.

Hughes, D. (1962). t-designs and permutation groups. In Proceedings of Symposia in
Pure Mathematics, 39–41. American Mathematical Society.

van Ditmarsch, H. (2003). The Russian cards problem. Studia Logica, 75, 31–62.

Wallis, W. (1988). Combinatorial Designs. New York: M. Dekker.

Wikipedia (2005). Public-key cryptography. http://en.wikipedia.org/wiki/

Public-key_cryptography. Accessed on 14. September 2005.

Yates, F. (1936). Incomplete randomized blocks. Annals of Eugenics , 7, 121–140.

20

Appendix A

Notation

a, b, c are the number of cards held by Alice, Bob, and Cathy, respectively.

L is the set of lines contained in the announcement.

X is the set of cards held by Cathy.

DX = {L ∈ L | L ∩ X = ∅} is the set of all lines in the announcement that have
zero intersection with X. That is, it contains those lines from the announcement
that Cathy cannot exclude and that are thus possible hands of Alice.

nX is the number of lines in DX that contain a particular card y.

Ω is the set of all cards.

EX = {Ω − L − X | L ∈ DX} is the set of all lines produced by taking all cards
except those that are in X and those that are in a particular line in DX . That
is, it holds possible hands of Bob.

21

Appendix B

Fields

Introduction

A field consists of a set of elements with addition (+) and multiplication (∗) opera-
tions. Addition and multiplication are commutative and associative. There exist a zero
element (0) and a one element (1). Every member x of the set has an additive inverse
(−x) so that x + (−x) = 0. Every member x of the set (except 0) has a multiplicative
inverse (x−1) such that x ∗ x−1 = 1. Examples of fields are R (the set of real numbers)
and Q (the set of rational numbers), both of which are infinite. There are also finite
fields as discussed in more detail below.

Finite Fields

In finite fields not all numbers of the form 1+1+1+ . . . are distinct. There exist m and
n such that 1 + 1 + 1 + . . .︸ ︷︷ ︸

m times

= 1 + 1 + 1 + . . .︸ ︷︷ ︸
n times

for m 6= n and thus 0 = 1 + 1 + 1 + . . .︸ ︷︷ ︸
n−m

assuming m < n. The characteristic of the finite field is the smallest number p > 0
with 1 + 1 + 1 + . . .︸ ︷︷ ︸

p

= 0. An example of a finite field of size p is Zp which consists

of the numbers 0, 1, 2, . . . , p− 1 added and multiplied discarding multiples of p. Some
facts about finite fields are:

• The characteristic p of a finite field is always a prime number.

• Every finite field has size pk for k ∈ Z+.

Construction

The elements of a field are polynomials of degree less than k with coefficients from
the prime field Zp. These elements can be added as usual by adding the polynomials
but taking the coefficients modulo p. Multiplication is a little more tricky because we
might end up with polynomials of degree greater than k. To avoid this, we choose
a polynomial of degree k that cannot be factored and call it f(x). Such polynomials

22

exist for all degrees. Then after multiplying two polynomials we remainder by dividing
by f(x) which will give us a polynomial with degree less than k again. There are pk

distinct polynomials because we have k coefficients and each coefficient can take values
from 0 up to p−1. Thus, there are pk elements in the field. The field Zp itself is a field
of size p with k = 1. Its elements are polynomials of order 0, i.e. just the coefficients of
which there are p, namely the numbers from 0 to p−1. Another important fact is that
every field has an element t(x) such that the powers of t(x) give all nonzero elements
in the field.

23

Appendix C

Announcements Tested

Table C.1 gives a detailed list of the designs tested, their parameters, and results for
CA1–5. The names assigned refer to the type of the design or the origin as follows:

Proj. Plane (Projective Plane) Designs as described in Section 3.2. The actual
announcements were obtained in personal communication with Mike Atkinson.

Finite Field, Binary These designs refer to the constructions as they are described
in Section 3.4 and Section 3.3, respectively. Note that binary designs have only
been tested for instances with b > c as this is a necessary requirement for the
satisfaction of CA1 and CA2 (Albert et al., 2003).

Yates Taken from Incomplete randomized blocks by Yates (1936).

Bose Taken from On the construction of balanced incomplete block designs by Bose
(1939).

Ext. (Extended) Produced by extending existing designs as outlined in Extending
t-designs by Alltop (1975).

(3, b, 1) These follow the construction as described in (Albert et al., 2003).

Remember that a t-design is also a 1-design, 2-design, . . . , (t−1)-design. The value of t
noted here is the maximum and the value for λ is the one pertaining to that maximum
t-design.
Satisfaction of the combinatorial axioms (CAs) and t-design properties have been tested
with the help of several computer programs. The C++ source code can be requested
from the author. Note that due to the large number of combinations that have to
be generated in some instances not all announcements have been tested completely.
Two programs have been written to generate binary designs with given parameter n
and finite field designs with given parameter p. They implement the constructions
explained in Sections 3.3.2 and 3.4.2. The announcements themselves as well as the
construction programs are also available for further research.

24

Design (a,b,c) # of t λ CA1 CA2 CA3 CA4 CA5
Instance lines

Proj. Plane (3,3,1) 7 2 1 YES YES YES YES YES
Proj. Plane (4,8,1) 13 2 1 YES YES YES YES YES

Finite Field (4,4,1) 18 2 3 YES YES YES YES YES
Finite Field (12,12,1) 50 2 11 YES YES YES YES
Finite Field (24,24,1) 98 2 23 YES YES YES YES
Finite Field (60,60,1) 242 2 59 YES YES YES YES

Binary (4,3,1) 14 3 1 YES YES YES YES YES
Binary (8,7,1) 30 3 3 YES YES YES YES YES
Binary (8,6,2) 30 3 3 YES YES YES YES YES
Binary (8,5,3) 30 3 3 YES YES NO NO NO
Binary (16,15,1) 62 3 7 YES YES YES YES
Binary (16,14,2) 62 3 7 YES YES YES YES
Binary (16,13,3) 62 3 7 YES YES YES YES
Binary (16,12,4) 62 3 7 YES NO NO NO
Binary (16,11,5) 62 3 7 NO NO NO NO
Binary (16,10,6) 62 3 7 NO NO NO NO
Binary (16,9,7) 62 3 7 NO NO NO NO
Binary (32,31,1) 126 3 15 YES YES YES YES
Binary (32,30,2) 126 3 15 YES YES YES YES
Binary (32,29,3) 126 3 15 YES NO NO NO
Binary (32,28,4) 126 3 15 YES NO NO NO
Binary (32,27,5) 126 3 15 YES NO NO NO

Yates (3,3,1) 7 2 1 YES YES YES YES YES
Yates (4,8,1) 13 2 1 YES YES YES YES YES
Yates (5,5,1) 11 2 2 YES YES YES YES YES
Yates (5,15,1) 21 2 1 YES YES YES YES YES
Yates (6,9,1) 16 2 2 YES YES YES YES YES

Bose (4,3,1) 14 3 1 YES YES YES YES YES
Bose (7,7,1) 15 2 3 YES YES YES YES YES

Ext. (3,3,1) (4,3,1) 14 3 1 YES YES YES YES YES
Ext. (4,4,1) (5,4,1) 36 3 3 NO YES YES YES YES
Ext. (5,5,1) (6,5,1) 22 3 2 YES YES YES YES YES
Ext. (7,7,1) (8,7,1) 30 3 3 YES YES YES YES YES

Ext. (12,12,1) (13,12,1) 100 3 11 YES YES YES YES
Ext. (24,24,1) (25,24,1) 196 3 23 YES YES YES YES
Ext. (60,60,1) (61,60,1) 484 3 59 YES YES YES YES

(3,b,1) (3,3,1) 5 0 YES YES YES NO NO
(3,b,1) (3,4,1) 6 0 NO YES YES NO NO
(3,b,1) (3,5,1) 6 1 2 YES YES YES NO NO
(3,b,1) (3,7,1) 8 0 NO YES YES NO NO
(3,b,1) (3,8,1) 8 1 2 YES YES YES NO NO

Table C.1: Satisfaction of CA1–5 for all announcements tested.

25

The case of the hidden hand

Hans P. van Ditmarsch

Department of Computer Science
University of Otago
PO Box 56
Dunedin
New Zealand

hans@cs.otago.ac.nz

ABSTRACT.In unconditionally secure protocols, a sender and receiverare able to communicate
their secrets to each other without the eavesdropper(s) being able to learn the secret,even
when the eavesdropper intercepts the entire communication. We investigate such protocols for
the special case of deals of cards over players, where two players aim to communicate to each
other their hand of cards without the remaining player(s) learning a single card from either
hand. In this contribution we show that a particular protocol of length strictly larger than two
(i.e., consisting of more thanjustone announcement by one player, and one other announcement
by the other player) is after all not acceptable, and therefore doesnotconstitute a new solution.
The demonstration requires a detailed case-based analysis. The result may bring a general
approach to arbitrary finite-length protocols closer.

KEYWORDS:cryptography, epistemic logic, epistemic action, secure protocols.

1. Introduction

Assume we are given a group of agents. Will two of those agentsbe able to
communicate a secret to each other?Unconditionally secure protocolsguarantee
that secrets are kept even under worst-case-scenario conditions whereall commu-
nications are intercepted by an eavesdropper who also has computationallyunlimited
powers. Information-based methods to describe and verify protocols have been in-
vestigated in [BUR 90, RAM 01], and our work attempts to contribute to that tradi-
tion. We investigate particular instances of unconditionally secure protocols, namely
where the agents are players, and the secrets correspond to aspects of card deals.
The logical and combinatorial aspects of such protocols have been investigated in
[FIS 96, DIT 03, MIZ 02, ALB 05, OTT 04], and for the automated verification of
such protocols in epistemic model checkers we refer to [DIT 05b].

Journal of Applied Non-Classical Logics.Volume 15 – No. 4/2005

2 Journal of Applied Non-Classical Logics. Volume 15 – No. 4/2005

One particular setting concerns three players and seven cards. The analysis in dy-
namic epistemic logic in [DIT 03] shows that all announcements towards the exchange
of secrets can, for each agent, be seen as (announcements of)a set of alternative local
states. It also enumerates the protocols of length two for that case, and analyzes by
logical means various unsatisfactory protocols. We think that these analyses are not
trivial: the meaning of some sequence of announcements thatconstitutes a protocol
may be rather unclear, because the interpretation of an announcement that is made
towards a solution of the problem (i.e., towards the exchange of secrets), also depends
on the commonly known intentions of rational agents executing a protocol resulting
in such an announcement. These intentions, standardly delegated to thepragmaticsof
communication, can be drawn into thesemanticsof utterances in our dynamic epis-
temic analyses. In plain words: what you mean, is more than what you say.

There remain some open questions related to the dynamics of such card protocols
that have not been answered in the cited publications. It remained unclear whether for
the specific case investigated in [DIT 03] there were other solutions than those listed
there, and even what ‘other’ means in this context. The postcondition that the secret
has been exchanged need not be publicly known (i.e., including the eavesdropper),
but it may be sufficient that it is only commonly known betweensender and receiver.
Can, subject to some notion of combinatorial equivalence, all protocols to communi-
cate a given secret be enumerated? Can secrets always be exchanged by length-two
protocols, or do some require strictly greater length? Thiscontribution investigates
the last question, for the specific case of three players and seven cards. We show that
a particular protocol of length strictly larger than two, that was previously thought to
be a promising candidate for a ‘new solution’, is after all not acceptable as a protocol.
Note that the protocols in [FIS 96, MIZ 02] are also of greaterlength, but that no claim
of minimality is made, and that (we confirmed that at least) some of their protocols
can be reduced to length-two protocols.

A definite answer to this question is relevant for the systematic verification of
such protocols when using model checkers, but also for the combinatorial design of
protocols. In case it can be proved that all card protocols are essentially of length
two, this would greatly constrain search when enumerating all protocols, for example
by means of a model checker. In case it can be proved that longer protocols can be
really different, scenarios are conceivable wherein a sender and receiver have achieved
common knowledge of a secret, but where the eavesdropper is uncertain whether this
has been achieved and still considers it possible that the protocol has not been finished
– thus having to waste resources by keeping an eye on the communicating agents,
waiting for possible further communications to intercept.As already said, we do not
provide this definite answer, but hope that our contributionwill bring one closer.

Section 2 introduces the three players and seven cards setting, and the problem
that will be solved in this contribution: the protocol with the extra hand – figuratively
called the ‘hidden hand’. Section 3 defines public announcement logic and specifies
protocol requirements in this logic. We then continue in Section 4 with the in-depth
analysis of the specific protocol with one more hand in the initial announcement. Sec-

The case of the hidden hand 3

tion 5 presents a formula formalizing our result. It expresses the conditions for a
secure announcement in a length-four protocol. We also suggest further lines of re-
search for arbitrary finite protocols.

2. The case of the hidden hand

From a pack of seven known cards two players each draw three cards and
a third player gets the remaining card. How can the players with three
cards openly inform each other about their cards, without the third player
learning from any of their cards who holds it?

This ‘Russian Cards’ problem originated at the Moscow Math Olympiad 2000.
Call the players Anne, Bill and Cath, and the cards0, ..., 6, and suppose Anne holds
{0, 1, 2}, Bill {3, 4, 5}, and Cath card 6. For the hand of cards{0, 1, 2}, write 012
instead, for the card deal, write 012.345.6, etc. All announcements must be public and
truthful. There are not many things Anne can safely say. Obviously, she cannot say “I
have 0 or 6,” because then Cath learns that Anne has 0. But Annecan also not say “I
have 0 or 3,” because Anne does not know if Cath has 3 or anothercard, andif Cath
had card 3, she would have learnt that Anne has card 0. But Annecan also not say “I
have 0 or 1.” Even though Anne holds both 0 and 1, so that she does not appear to risk
that Cath eliminates either card and thus gains knowledge about single card ownership
(weaker knowledge, about alternatives, is allowed), Cath knows that Anne will not say
anything from which Cath may learn her cards. And thus Cath can conclude that Anne
will only say “I have 0 or 1” if she actually holds both 0 and 1. And in that way Cath
learns two cards at once! The apparent contradiction between Cath not knowing and
Cath knowing is not really there, because these observations are about different infor-
mation states: it is merely the case that announcements may induce further updates
that contain yet other information. There are various solutions that consist of first
Anne and then Bill making an announcement, but – just to challenge the reader – all
of the following are no solutions and run into trouble of the aforementioned kind (for
details, see [DIT 03]):Anne says that either she or Bill holds 012, after which Bill
says that either he or Anne holds 345, and alsoAnne says that she does not hold card
6, after which Bill says that he does not hold card 6 either, and alsoAnne says that
she either holds 012 or not any of those cards, after which Bill says that Cath holds
card 6. In all those cases, it turns out that, already after Anne’s announcement, it
is (at least) not common knowledge that Cath is ignorant of any of Anne’s or Bill’s
cards, and that this is informative to Cath. Indeed, the solution requirement should
be that Cath’s ignorance remains common knowledge after anyannouncement. Such
announcements are calledsafe. Further, one can prove that all informative announce-
ments are equivalent to one of the form “my hand of cards is oneof the following
alternatives,” so that all solutions consist of alternating statements of the players in
that form. A combinatorial equivalent for a safe announcement consisting of hands, is
(restricted to the set of cards that are not publicly known tobe held by Cath): for each
card, in the set of hands not containing that card, all other cards occur in at least one
hand and are absent in at least one hand. A solution to the Russian Cards problem is a

4 Journal of Applied Non-Classical Logics. Volume 15 – No. 4/2005

sequence of safe announcements after which it is commonly known to Anne and Bill
that Anne knows Bill’s hand and Bill knows Anne’s hand. The following is a solution:

Anne says “My hand of cards is one of 012, 034, 056, 135, 246,” after
which Bill says “Cath has card 6.”

Note that Bill’s announcement is equivalent to “My hand of cards is one of 345,
125, 024.” After Anne’s announcement, Bill knows Anne’s hand because one of his
cards 3, 4, and 5 occurs in all hands except 012. After Bill’s announcement, Anne
knows Bill’s hand as well, as 3, 4, and 5 are the remaining cards not held by Cath. Af-
ter both Anne’s and Bill’s announcement, it is common knowledge that Cath does not
know any of their cards. This can be proven by checking the combinatorial require-
ments. For example, after Anne’s announcement, if Cath holds 0, the remaining hands
are 135 and 246. Each of the cards1, 2, ..., 6 both occurs in at least one of 135 and 246
and is absent in at least one of those: 1 occurs in 135 and is absent in 246, 2 occurs in
246 and is absent in 135, etc. If Cath holds card 1, etc. After Bill’s announcement this
check is even easier. So both announcements are safe. Also, after both announcements
it is common knowledge to Anne and Bill (and even public knowledge, i.e., common
knowledge to Anne, Bill and Cath) that Anne knows Bill’s hand, and vice versa.

If we remove a single handfrom Anne’s announcement, it can easily be seen that
Cath will learn one or more of Anne’s cards. For example, let us remove 246. Cath
can now reason as follows: “Suppose Anne does not have 0. ThenAnne can imagine
that I have 0, in which case I could have eliminated all but 135and learnt her cards. So
if she does not have 0, she would never have said that. But she just did. So she must
have 0. So I learnt one of her cards after all!” Similarly, Cath can now conclude that
Anne holds 1, and so learns Anne’s entire hand. If one removesanother hand instead,
a similar argument follows.

Now consider what happens if weadd a single handto Anne’s announcement, a
‘hidden hand’ so to speak, as without it, her announcement already served its purpose;
it therefore appears to be unrelated to the protocol underlying the previous announce-
ment. For example, we add 245:

Anne says “My hand of cards is one of 012, 034, 056, 135,245, 246,”
after which Bill says “Cath has card 6.”

As Anne’s announcement is now slightly weaker, it is tempting to conclude that it
is therefore less informative than her previous announcement. But is this really so?

First, let us assume that it is common knowledge to all players that after both
announcements ‘the problem will be solved’, or, in other words, that the underlying
protocol is of length two. On this assumption Cath actually learns some of Anne’s
cards: If Anne holds 245 or 246, then Anne can imagine (does not know not) that Bill
has not learnt her hand, namely if Bill holds 013. Therefore,if the solution is known
in advance to be of length two, Anne does not hold 245 or 246, but one of 012 034
056 135. Cath knows all of that too. But that is precisely the four hand announcement

The case of the hidden hand 5

just discussed. That was proven unsafe: Cath learnt Anne’s entire hand of cards!
So she will now, again. We see that instead of beingless informative, Anne’s six
hand announcement is actuallymore informative than her five hand announcement.
This is because Cath can assume that Anne’s six hand announcement must have been
informative enough for Billalwaysto learn her cards.

Next, suppose that we do not assume that the underlying protocol is of length
two. Even though Anne knows that Bill knows her hand of cards,Cath can imagine
(does not know not) that Anne does not know that: Cath, who holds 6, can imagine
that Anne holds 245 and Bill 013, in which case Bill would not have learnt Anne’s
hand, so that a fortiori Cath can imagine that Anne can imagine that Bill has not learnt
Anne’s hand. Other choices of the sixth hand give slightly different results, but it
always follows that it is not commonly known that Bill knows Anne’s hand. On the
other hand, we can compute in a way similar to that for the five hand protocol, that
both after Anne’s and after Bill’s announcement it now remains common knowledge
that Cath does not know any of Anne’s or Bill’s cards, and thatafter Bill’s it is common
knowledge that Anne knows Bill’s hand and Bill knows Anne’s.So, on the assumption
that it is not commonly known that the protocol is of length two, we have found a
solution of the Russian Cards problem of length two. This solution is different from
the previous solution, because the intermediate information states are different: after
Anne’s announcement in the first sequence it is public knowledge that Bill knows
Anne’s cards, but after Anne’s announcement in the second sequence this isnotpublic
knowledge (but only common knowledge for Anne and Bill). So we have found a new
solution to the Russian Cards Problem!

Or haven’t we?

The ‘hidden hand’ 245 – hidden because it appears not to be actually used in
the protocol – only makes sense, if, when not 012.345.6 but instead, for example,
245.013.6 were the actual deal, there is a continuation of the communication between
Anne and Bill, starting with Anne’s six hand announcement, that also results in the
solution requirements. Because if not, and because all three players are rational, then
that hand 245 can be ruled out after all from public consideration, and both sequences
would then be ‘essentially’ the same, i.e., describing identical information state tran-
sitions. This requires a systematic investigation ofall possible continuations of that
dialogue, which is exactly what we will undertake in this contribution. It turns out we
only need to investigate protocols up to length four. But before we continue the expo-
sition, we introduce the logic of public announcements in which this discussion finds
a convenient and much more intelligible formal setting, so that we can do without the
precise but sometimes confusing descriptions in natural language that we have used
so far.

3. Public announcement logic

Given a set ofagentsN and a set of (propositional)atomsP , our basic structure is
theepistemic modelM = 〈S,∼, V 〉, whereS is adomainof (factual)states,∼ : N →

6 Journal of Applied Non-Classical Logics. Volume 15 – No. 4/2005

P(S×S) defines a set ofaccessibilityrelations∼n that are equivalence relations, and
V : P → P(S) defines a set ofvaluationsVp ⊆ S. A pointed structure(M, s) is
called anepistemic state. The logical language is inductively defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) |Knϕ | CGϕ | [ϕ]ψ

ForKnϕ read ‘agentn knowsϕ’, for CGϕ (whereGmay be any subset of the ‘public’
N of all agents) read ‘groupG commonly knowϕ’, and for [ϕ]ψ read ‘after (every)
announcement ofϕ, it holds thatψ’. For the dual¬Kn¬ϕ of ‘knowing that’, read
‘agentn can imagine thatϕ’, and we also writeK̂nϕ for that. The semantics of this
multiagent logic of public announcementsis

M, s |= p : iff s ∈ Vp
M, s |= ¬ϕ : iff M, s 6|= ϕ

M, s |= ϕ ∧ ψ : iff M, s |= ϕ andM, s |= ψ

M, s |= Knϕ : iff for all t ∼n s : M, t |= ϕ

M, s |= CGϕ : iff for all t ∼G s : M, t |= ϕ

M, s |= [ϕ]ψ : iff M, s |= ϕ impliesM |ϕ, s |= ψ

where∼G is the reflexive and transitive closure of the union of all∼n, i.e.,∼G :=
(
⋃

n∈G ∼n)
∗, andM |ϕ is the restriction ofM to the states whereϕ is true, i.e.,

M |ϕ := 〈S′,∼′, V ′〉 such that

S′ := {v ∈ S |M,v |= ϕ}
∼′
n := ∼n ∩ (S′ × S′)

V ′
p := Vp ∩ S

′

From the various principles that hold for this logic, we merely mention two validities
that we will refer to in the continuation:[CNϕ]CNϕ says that the announcement of
something that is already publicly known is not informative, and [ϕ][ψ]χ ↔ [ϕ ∧
[ϕ]ψ]χ says that the postconditions of[ϕ][ψ] and[ϕ ∧ [ϕ]ψ] are the same, or in other
words: if you first announceϕ and after thatψ, you might as well have announced
all at onceϕ ∧ [ϕ]ψ. Further note that[ϕ]ϕ is not valid.1 Public announcement logic
is a special case of the action model logics presented in [BAL99, BAL 04]. For an
overview of the logic and a direct and succinct completenessproof, see [DIT 05a].

For the Russian Cards example, there are three agents and 21 atoms (seven cards
times three agents). Atomqn describes the fact that agentn holds cardq, andijkn :=
in ∧ jn ∧ kn describes that playern’s hand is{i, j, k}, so that Anne holding card
0 is described by0a, and that Anne’s hand is 012 is described by012a, etc. The
structures on which we interpret such descriptions consistof a domain containing all
deals of cardsQ = {0, 1, 2, 3, 4, 5, 6} over playersN = {a, b, c} (for Anne, Bill,

1. A well-known counterexample is the (dynamic reading of the) Moore-sentence: after an
announcement ofp ∧ ¬Kap, this formula is no longer true: the agent now knows that
p. For another example, the last of the introductory examplesis not a solution because
Rus|Ka(012a ∨ ¬(0a ∨ 1a ∨ 2a)), 012.345.6 |= [Kacignorant]¬Kacignorant.

The case of the hidden hand 7

and Cath, respectively). The equivalences on this domain are induced by players
being able to see their own cards, and how many cards other players have. There-
fore we can restrict ourselves to the (connected) model consisting of the

(

7

3

)

·
(

4

3

)

·
(

1

1

)

= 140 card deals where Anne and Bill each hold three and Cath one card. We
call this modelRus (for ‘Russian’). E.g., thea-equivalence class of deal 012.345.6
is {012.345.6, 012.346.5, 012.356.4, 012.456.3}, whereas theb-equivalence class of
that deal is{012.345.6, 016.345.2, 026.345.1, 126.345.0}, and itsc-equivalence class
contains

(

6

3

)

= 20 card deals.

To give some examples, we can now describe that Anne knows that she holds
card 0 byKa0a, that Anne considers it possible that Bill holds card 6, eventhough
he actually does not hold that card, by¬6b ∧ K̂a6b, and that the players have com-
mon knowledge (background knowledge) that Anne knows her own hand of cards, as
Cabc

∧

i 6=j 6=k∈Q(ijka → Kaijka).

The epistemic requirements for a problem solution are that Anne knows Bill’s hand
of cards, that Bill knows Anne’s hand of cards, and that Cath is ignorant of any card
held by Anne or Bill:

aknowsbs :=
∧

i 6=j 6=k∈Q(ijkb → Kaijkb)

bknowsas :=
∧

i 6=j 6=k∈Q(ijka → Kbijka)

cignorant :=
∧

q∈Q

∧

n=a,b ¬Kcqn

When an agentn (a or b) is sayingϕ, this is interpreted as the announcement of
Knϕ ∧ [Knϕ]Cabccignorant. Using the validities above, we see that

[Knϕ ∧ [Knϕ]Cabccignorant]ψ

is equivalent to
[Knϕ][Cabccignorant]ψ .

Using the validity of[Cabccignorant]Cabccignorant, this is equivalent to

[Knϕ](Cabccignorant ∧ ψ) ,

so that we can characterize a ‘safe announcement’ as one thatis true and after which
cignorant is common knowledge. A solution is a sequence of safe announcements
after whichCab(aknowsbs ∧ bknowsas) is true.2

We now can formalize the difference between the five hand and the six hand solu-
tion that we investigate. Define

anne5 := Ka(012a ∨ 034a ∨ 056a ∨ 135a ∨ 246a)
anne6 := Ka(012a ∨ 034a ∨ 056a ∨ 135a ∨ 245a ∨ 246a)
bill := Kb6c

2. In [DIT 03] only (aknowsbs ∧ bknowsas) is required as a postcondition. The stronger post-
conditionCab(aknowsbs∧bknowsas) should also obviously hold (clearly, from the perspective
of the communicating agents). It is unclear whether this makes a difference, and/or whether
Cabc(aknowsbs ∧ bknowsas), with publicknowledge, is even stronger.

8 Journal of Applied Non-Classical Logics. Volume 15 – No. 4/2005

These announcements are all safe. The two solution sequences can be abbreviated as
anne5; bill andanne6; bill. Their difference appears from the modelsRus|anne5 and
Rus|anne6.

The epistemic modelRus|anne5 can be schematically represented as

012.345.6 012.346.5 012.356.4 012.456.3

034.125.6 034.126.5 034.156.2 034.256.1

056.123.4 056.124.3 056.134.2 056.234.1

135.024.6 135.026.4 135.046.2 135.246.0

246.013.5 246.015.3 246.035.1 246.135.0

Its domain consists of all states (card deals) where the announcement formula was
true, i.e., where Anne holds one of the five hands in the announcement. The rows rep-
resenta-equivalence classes, allb-equivalence classes are singleton, and the columns
representc-equivalence classes. For example, it holds thatRus|anne5, 012.345.6 |=
Cabcbknowsas, because allb-equivalence classes are singleton, so that whatever hand
of cards Bill holds there is only one possiblea-hand that he considers possible – there-
fore, heknowsAnne to have that hand of cards.

The modelRus|anne6 can be pictured as

012.345.6 012.346.5 012.356.4 012.456.3

034.125.6 034.126.5 034.156.2 034.256.1

056.123.4 056.124.3 056.134.2 056.234.1

135.024.6 135.026.4 135.046.2 135.246.0

245.013.6* 245.016.3 245.036.1 245.136.0

246.013.5* 246.015.3 246.035.1 246.135.0

where allb-equivalence classes are singleton except{245.013.6, 246.013.5}. To indi-
cate that, we have *-ed these two deals. We now have thatRus|anne6, 012.345.6 |=
K̂c¬Kabknowsas, because012.345.6 ∼c 245.013.6 (same column) andRus|anne6,

245.013.6 |= ¬Kabknowsas, because245.013.6 ∼a 245.013.6 and alsoRus|anne6,

245.013.6 |= ¬bknowsas. The last is true, because245a holds but notKb245a (be-
cause245.013.6 ∼b 246.013.5 andRus|anne6, 246.013.5 6|= 245a), so that we have
Rus|anne6, 245.013.6 6|= 245a → Kb245a.

Both after(anne5; bill) and after(anne6; bill) the model is

012.345.6

034.125.6

135.024.6

in which all solution requirements are common knowledge (so, in particular, it is not
just common knowledge to Anne and Bill that they know each other’s hand of cards,
but this is even publicly known to all players). This will be enough backbone to
strengthen our exposition in Section 5, after first, in the next section, exhaustively
exploring all further developments of protocols starting with anne6.

The case of the hidden hand 9

4. Uncovering the hidden hand

So, once more, as in Section 2, suppose that Anne says: “My hand is one of 012,
034, 056, 135, 245, 246,” but that the actual deal is 245.013.6 instead of 012.345.6.
In this scenario, Bill has not learnt that Cath’s card is 6. How can Bill safely respond
to Anne, and Anne to Bill, and so on? We will now systematically investigate all
responses.

I do not know Cath’s card

Bill cannot admit that he doesn’t know Cath’s card, or, equivalently, that he doesn’t
know Anne’s hand, because he would then be giving away that Anne’s hand must be
either 245 or 246. Cath would therefore learn that Anne has cards 2 and 4. Lost.

Please say something again, Anne

He also cannot saynothing, or in more polite phrasing: “Please say something
again, Anne.” This is because Anne cannot respond tothat: After Anne’s announce-
ment, Bill does not know whether Anne has 245 or 246. If Anne actually held 246
she could respond to Bill’s request by saying, after all, that her hand is one of 012,
034, 056, 135, 246; i.e. she simply leaves out 245. But she holds 245, and no strict
subset of{012, 034, 056, 135, 245, 246} containing 245 is safe! This is easy to ob-
serve: Bill’s response has only heuristic and no informative content. Therefore, we
can analyze Anne’s second announcement as if it were made in the original epistemic
state(Rus, 245.013.6). Suppose 012 were left out, then if Cath held 5 she would learn
that Anne held 4; suppose 034 were left out, then if Cath held 2, she would learn that
Anne held 5. Without 056, if Cath holds 2 she learns Anne holds3, without 135, if
Cath holds 0 she learns Anne holds 2. But{012, 034, 056, 135, 245} is also unsafe;
e.g., if Cath had 0, she would learn that Anne has 5. So she can’t say anything, apart
from “Please say something again, Bill.” But then we are backwhere we started: what
should Bill say?

Two obvious replies of Bill to Anne have been outruled now. Bill cannot say that
he does not know Cath’s card yet, but he can also not try to hidethat information by
being non-committal. It seems we have run out of options. Butthis is far from the
case: there aremanyothers! After Anne says that she has one of 012, 034, 056, 135,
245, and 246, the domain consists of 24 card deals. These makeup 23b-equivalence
classes: all are singleton, except{245.013.6, 246.013.5}. An announcement of Bill
is a set of alternativeb-hands, i.e., is interpreted as a union ofb-classes, and as Bill
is truthful, theb-class that contains the actual deal must always be included. But
that means that any subset of these 23 classes that includes{245.013.6, 246.013.5}
denotes a possible reply of Bill to Anne. That makes222 replies to choose from.
So far, we have ruled out two: the subset{245.013.6, 246.013.5} corresponding to
“I don’t know your hand, Anne,” and the subset ofall b-classes, corresponding to

10 Journal of Applied Non-Classical Logics. Volume 15 – No. 4/2005

“Please say something again, Anne.” Note that we could rule out these replies by
investigating any possible reply of Anne to that reply of Bill, and so on. There are
therefore222−2 remaining possible replies of Bill to investigate, and for each of those
we have to consider all replies Anne can make to Bill’s, and subsequent replies of Bill
to Anne’s second announcement, etc., ad infinitum. This appears rather intractable, if
not undecidable at that...

Fortunately, we can systematically investigate all cases by further logical and com-
binatorial analysis [DIT 03]. One important observation is, that we can assume a max-
imum number of announcements in a protocol. (So that there isa decision procedure
to determine the adequacy of arbitrary protocols.) This is because all informative
announcements restrict the domain, because the domain is finite, and because unin-
formative replies of the kind “please say something again” (as above) are meaningless
if they occur at least twice in a row. Another important observation is that announce-
ments must be safe: most of theb-classes are deals; for a given card (that Cath may
hold), we must have enough deals to ensure safety, i.e., to ensure Cath’s ignorance if
she held that card. Now a set of two deals is only safe if Anne’sand Bill’s hands are
disjoint, i.e., if it has the form{ijk.lmn.o, lmn.ijk.o}. From the 24 deals that we
consider here only{135.246.0, 246.135.0} have that property (and the exception does
not include the actual deal). So – keeping in mind the exception – if Bill’s announce-
ment includes one deal for some cardq, it must contain at least two more deals where
Cath holdsq. (So, as well, exhaustive search for protocols may be more tractable than
it appears on first sight.)

Now consider the following reply – it turns out this one will be safe, and it is
typical forall other safe replies:

Cath has 5 or 6

Suppose Bill says “Cath has card 5 or card 6.” This is true, andthis is safe. Com-
mon knowledge of Cath’s ignorance was already established after Anne’s first an-
nouncement, and will obviously remain true for any union ofb-classes that is a union
of c-classes. The models underlying the epistemic states before and after the response
are

012.345.6 012.346.5 012.356.4 012.456.3

034.125.6 034.126.5 034.156.2 034.256.1

056.123.4 056.124.3 056.134.2 056.234.1

135.024.6 135.026.4 135.046.2 135.246.0

245.013.6* 245.016.3 245.036.1 245.136.0

246.013.5* 246.015.3 246.035.1 246.135.0

⇓ Kb(5c ∨ 6c)

The case of the hidden hand 11

012.345.6 012.346.5

034.125.6 034.126.5

135.024.6

245.013.6*

246.013.5*

What can Anne say that is still safe? She cannot say: “Cath hascard 6,” because
that would make it public that she knows that, which would eliminate thea-classes
{012.345.6, 012.346.5} and{034.125.6, 034.126.5} where she does not know that,
so the resulting model would be

135.024.6

245.013.6

so that Cath knows that Anne holds card 5 and is no longer ignorant. Formally, we
have that

Rus, 245.013.6 |= [anne6][Kb(5c ∨ 6c)][Ka6c]¬cignorant

because
Rus|anne6|Kb(5c ∨ 6c)|Ka6c, 245.013.6 |= ¬cignorant

becauseKc5a holds in the last epistemic state. Is there anything else shecan say in
response? Yes: Anne can respond with “I do not have 135.” We then get the model

012.345.6 012.346.5

034.125.6 034.126.5

245.013.6*

246.013.5*

This announcement is safe, because it remains common knowledge that Cath is igno-
rant. What can Bill say in return, after that? Unfortunately, nothing informative: any
restriction of either of the currentc-classes makes them unsafe – for the given card
deals, anyc-class with fewer than three elements is unsafe. Right, so weare down to
222 − 3 remaining cases. What next?

Variations on ‘Cath has 5 or 6’

What deal can we remove from Bill’s reply “Cath has 5 or 6” suchthat it remains
safe? The actualb-class{245.013.6, 246.013.5} must always be included (or Bill
would be lying). Therefore, at least two deals where Cath holds 5 and at least two
deals where Cath holds 6 have to be included as well, such thatit remains common
knowledge that she is ignorant (see above). There are only two other deals where
Cath holds 5, that therefore both need to be included. There are three other deals
where Cath holds 6, and any two out of these three keep Cath ignorant. For example,
if Bill omits 135.024.6 (“My hand of cards is one of 345 346 125126 024 013.”) we
get

12 Journal of Applied Non-Classical Logics. Volume 15 – No. 4/2005

012.345.6 012.346.5

034.125.6 034.126.5

245.013.6*

246.013.5*

and Anne cannot respond informatively to Bill at all, nor canBill if Anne were to ask
Bill to respond once more. Any strict subset ofa-classes is unsafe, as before. If Bill
omits 012.345.6 instead, we get

012.346.5

034.125.6 034.126.5

135.024.6

245.013.6*

246.013.5*

and again Anne cannot respond. The case where Bill omits 034.125.6 instead, is
similar. Down to222 − 6 ...

Other replies

We have now analyzed six possible replies, two of those were unsafe, four were
safe but were leading nowhere. Now take any of those four, andconsider adding any
number of the remainingb-classes, i.e. any card deal where Cath does not hold 5 or 6.
For example, taking the last epistemic model, we get, schematically

012.346.5 +++

034.125.6 034.126.5 +++

++

135.024.6 +++

245.013.6* +++

246.013.5* +++

where +++ and ++ denote possible other card deals included byBill, and ++ specifi-
cally those where Anne holds 056. Very similar to the scenarios before, Anne cannot
now say anything: the hands she will announce always must include her actual hand
245 and therefore as well 034 and 135, because any subset is unsafe, but that means
she will have to carry along at least one deal where Cath holds5 as well, namely
034.126.5. But therefore she will have to include enough other deals where Cath
holds 5 so that thec-equivalence class for card 5 is safe, so therefore she must always
include her hands 012 and 246 anyway. The only remaining handis now 056. Sup-
pose Bill had included, for example, 056.123.4 in his announcement, then he would
have been obliged to include 012.356.4 and 135.026.4 as well, and because Anne’s
announcement includes hand 012 and 135 it therefore must include 056 as well. Sup-
pose, instead, Bill had included 056.124.3 in his announcement, then ..., etc. So Anne

The case of the hidden hand 13

cannot deletea singlefrom her six hands, i.e., she cannot make an informative an-
nouncement. The other cases are just as similar to another one of the ‘Cath has 5 or 6’
variations that we have already discussed. Either Anne cannot respond at all, as here,
or Anne may be able to reply to that she does not have 135, to which then Bill cannot
respond. That was, after all, rather quick for222 − 6 remaining cases!

We have now established the following. If the card deal is 245.013.6, then after
Anne has said “I have one of 012, 034, 056, 135, 245, 246,” in whatever way Bill
responds to that, either Anne cannot respond informatively, or Anne can make an in-
formative response to which Bill then cannot respond. Therefore, noeffectiveprotocol
for card deal 245.013.6 starts with Anne saying that she has one of 012 034 056 135
245 246. We assume that Anne and Bill take no risks: they are only willing to exe-
cute protocols that guarantee success, in the sense that, whatever one says, the other
can make at least one safe reply to that which will bring a solution closer. Therefore
Anne will not execute this protocol for any card deal whereinshe holds 245. There-
fore, hand 245 is publicly knownnot to be Anne’s actual hand. That suggests that
the modelsRus|anne6 andRus|anne5 are identical ‘if we incorporate all informa-
tion’. Given thatRus|anne5|bill andRus|anne6|bill were the same anyway (namely
the epistemic model with domain{012.345.6, 034.125.6, 135.024.6}), it would mean
thatanne5; bill andanne6; bill are ‘essentially the same’ in the sense that both induce
the same epistemic state transitions. Thus we have uncovered the hidden hand.

But it turns out that things are, again, not as they seem. Because if Anne held
hand 246 instead of 245, she wouldas wellconsider it possible that Bill holds 013.
And when 246.013.5 is the actual deal of cards, an almost identical line of argument
to the previous one reveals that again no exit of a sequence ofsafe announcements is
guaranteed. Therefore, also hand 246 is publicly known not to be Anne’s hand. But
the remaining set of four hands 012 034 056 135 is unsafe, as was already explained in
Sectionhand. Therefore Anne will not sayat all that her hand is one of the six 012 034
056 135 245 246. By uncovering the hidden hand we have laid bare the foundations
of the entire announcement, and see it collapse.

We conclude that(anne6; bill) does not solve the Russian Cards problem. This is
a minor result, but a result all the same, and we have answeredone of the remaining
riddles concerning Russian Cards.

Suppose wehadshown that bothanne5 andanne6 are suitable first announcements
of secure protocols. Why not excuse ourselves from using thesecond by the simple
observation that it contains the first? A way that makes clearer why this would have
been a result, is to turn matters around: Suppose wehadestablished thatanne6 starts
a sequence of announcements that provides a solution for deal 245.013.6. Then Anne
could have executed the same underlying protocol if her handhad been 012 (as in
deal 012.345.6) but then ‘with 012 in the role of 245’ inanne6. That would have
resulted in, for example, Anne saying: “My hand is one of 012,026, 034, 135, 146,
245.” None of the (more than one hundred) solutions listed in[DIT 03] start with
Anne announcing a subset of that. So, indeed, that would havebeen a new solution to
the problem.

14 Journal of Applied Non-Classical Logics. Volume 15 – No. 4/2005

5. Further research

The previous section ended on a suspicious note with phrasings like ‘incorporate
all information’. What does that really mean? Is that phrasing not just a clever trick to
be excused from formal precision? We observed in Section 3 that an announcement of
ϕ in the card protocols setting should be interpreted asKnϕ ∧ [Knϕ]Cabccignorant.
Given that interpretation, the modelRus|anne5 is contained in the modelRus|anne6.
Apparently, we need to incorporate even more pragmatic information into the meaning
of ϕ, or in other words,ϕ should be interpreted asKnϕ∧ [Knϕ](Cabccignorant∧ψ),
for some formulaψ. Subject tothat interpretation,Rus|anne6 is no longer contained
in Rus|anne5. Indeed, no modelRus|anne6 evenexistsin that case, as the announce-
ment cannot be truthfully (safely) uttered. What isψ?

We constructed such aψ above. Letψ1 represent an arbitrary informative re-
sponse of Bill to Anne’s announcementanne6. In other words, given some card deal
ijk.lmn.o, these are disjunctions containing a partlmnb and various other partspqrb.
For most card deals inRus|anne6 this includes a safe response of Bill to Anne such
that (at least) the solution criteriumbknowsas∧ aknowsbs holds afterwards.3 For deal
245.013.6 this doesnot include such a response. In that case, we get the descriptions of
subsets of the 24 possibleb-hands that include actualb-class{245.013.6, 246.013.5},
as exhaustively described in the previous section. And those formulas now always
contain a part013b.

Further, letψ2 be an arbitrary informative reponse of Anne to Bill’s response, and
ψ3 an arbitrary informative reponse of Bill to that. Note that for arbitraryϕ formula
ϕ ∧ [ϕ]ψ is equivalent to〈ϕ〉ψ. Then we have shown that the following formula is
falsein the modelRus, forKaϕ = anne6. The formula expresses that a solution can
be found bysomeprotocol of depth at most four. We omit details.

〈K̂aϕ〉(Cabccignorant ∧ Cabc((bknowsas ∧ aknowsbs)∨
∨

ψ1
〈K̂bψ1〉(Cabccignorant ∧ Cabc((bknowsas ∧ aknowsbs)∨

∨

ψ2
〈K̂aψ2〉(Cabccignorant ∧ Cabc((bknowsas ∧ aknowsbs)∨

∨

ψ3
〈K̂bψ3〉Cabccignorant))))))

In other words, Anne only says something, if it is safe and – unless the problem is
solved – if Bill has at least one safe response to that, to which – unless the problem
is now solved – Anne will be able to respond safely, and so on, until the problem is
solved. In our example, ‘depth four’ sufficed to uncover a non-solution. In general,
the depth required is finite and it is a function of the card deal. We are still uncertain
about the general formula; these dynamic settings are rather sensitive to the presence
of common and public knowledge requirements (such as, should it always beCabc,
or justCab). A more elegant formulation is to be expected in a more expressive (but

3. In fact for all card deals except245.013.6, 246.013.5, 012.356.4, and034.126.5. Please
ignore the common knowledge closure conditionCab – this makes no difference here.

The case of the hidden hand 15

undecidable) logic, namely the logic of public announcements with arbitrary iteration
of announcements [MIL 05].

We hope to continue our investigations in these directions.

Acknowledgements

For the completion of this research I acknowledge support from research grant
AOARD-05-4017. Sieuwert van Otterloo suggested the six hand example and the
complication thatanne6 ; bill appears to be a solution of length two on the assumption
that a solution may be of greater length. I thank the anonymous referees supplied
by the journal for their constructive and helpful comments.This article is largely
based on a similarly titled contribution to the (informal) Liber Amicorum Dick de
Jongh [DIT 04]; note that in that version wemistakenlyclaimed thatanne6 was safe
and could be reduced toanne5 – even though the analysis prior to that conclusion is
identical to the one presented here.

6. References

[ALB 05] A LBERT M., ALDRED R., ATKINSON M., VAN DITMARSCH H., HANDLEY C.,
“Safe communication for card players by combinatorial designs for two-step protocols”,
Australasian Journal of Combinatorics, vol. 33, 2005, p. 33–46.

[BAL 99] B ALTAG A., MOSSL., SOLECKI S., “The logic of public announcements, common
knowledge, and private suspicions”, report , 1999, Centrumvoor Wiskunde en Informatica,
Amsterdam, CWI Report SEN-R9922.

[BAL 04] B ALTAG A., MOSSL., “Logics for epistemic programs”,Synthese, vol. 139, 2004,
p. 165–224, Knowledge, Rationality & Action 1–60.

[BUR 90] BURROWSM., ABADI M., NEEDHAM R., “A logic of authentication”,ACM Trans-
actions on Computer Systems, vol. 8, 1990, p. 18–36.

[DIT 03] VAN DITMARSCH H., “The Russian cards problem”,Studia Logica, vol. 75, 2003,
p. 31–62.

[DIT 04] VAN DITMARSCH H., “The Case of the Hidden Hand”,Liber Amicorum Dick de
Jongh, 2004,http://www.illc.uva.nl/D65/.

[DIT 05a] VAN DITMARSCH H., VAN DER HOEK W., KOOI B., “Dynamic Epistemic Logic”,
Manuscript, 2005.

[DIT 05b] VAN DITMARSCH H., VAN DER HOEK W., VAN DER MEYDEN R., RUAN J.,
“Model Checking Russian Cards”, Presented at MoChArt 05 (Model Checking in Artificial
Intelligence) and to appear in Electronic Notes in Theoretical Computer Science, 2005.

[FIS 96] FISCHER M., WRIGHT R., “Bounds on Secret Key Exchange Using a Random Deal
of Cards”,Journal of Cryptology, vol. 9(2), 1996, p. 71–99.

[MIL 05] M ILLER J., MOSSL., “The Undecidability of Iterated Modal Relativization”, Studia
Logica, vol. 79(3), 2005, p. 373–407.

16 Journal of Applied Non-Classical Logics. Volume 15 – No. 4/2005

[MIZ 02] M IZUKI T., SHIZUYA H., NISHIZEKI T., “A complete characterization of a family
of key exchange protocols”,International Journal of Information Security, vol. 1, 2002,
p. 131–142.

[OTT 04] VAN OTTERLOO S., VAN DER HOEK W., WOOLDRIDGE M., “Model Checking
a Knowledge Exchange Scenario”,Applied Artificial Intelligence, vol. 18(9-10), 2004,
p. 937–952.

[RAM 01] RAMANUJAM R., SURESHS. P., “Information based reasoning about security pro-
tocols”, Electr. Notes Theor. Comput. Sci., vol. 55(1), 2001.

Model Checking Sum and Product

H.P. van Ditmarsch1, J. Ruan1,�, and L.C. Verbrugge2,��

1 University of Otago, New Zealand
{hans, jruan}@cs.otago.ac.nz

2 University of Groningen, Netherlands
rineke@ai.rug.nl

Abstract. We model the well-known Sum-and-Product problem in a
modal logic, and verify its solution in a model checker. The modal logic
is public announcement logic. The riddle is then implemented and its
solution verified in the epistemic model checker DEMO.

1 Introduction

The Sum-and-Product problem was first stated—in Dutch—in [1]:

A says to S and P : I have chosen two integers x, y such that 1 < x < y
and x+ y ≤ 100. In a moment, I will inform S only of s = x+ y, and P
only of p = xy. These announcements remain private. You are required
to determine the pair (x, y).
He acts as said. The following conversation now takes place:
1. P says: “I do not know it.”
2. S says: “I knew you didn’t.”
3. P says: “I now know it.”
4. S says: “I now also know it.”

Determine the pair (x, y).

This problem is, that the agents’ announcements appear to be uninformative,
as they are about ignorance and knowledge and not about (numerical) facts,
whereas actually they are very informative: the agents learn facts from the other’s
announcements. For example, the numbers cannot be 14 and 16: if they were,
their sum would be 30. This is also the sum of 7 and 23. If those were the numbers
their product would have been 161 which, as these are prime numbers, only is
the product of 7 and 23. So Product (P) would have known the numbers, and
therefore Sum (S)—if the sum had been 30—would have considered it possible
that Product knew the numbers. But Sum said that he knew that Product didn’t
know the numbers. So the numbers cannot be 14 and 16. Sum and Product learn
enough, by eliminations of which we gave an example, to be able to determine
the pair of numbers: the unique solution of the problem is the pair (4, 13).

� Hans and Ji appreciate support from AOARD research grant AOARD-05-4017.
�� Hans and Rineke appreciate support from the Netherlands Organization for Scientific

Research (NWO).

S. Zhang and R. Jarvis (Eds.): AI 2005, LNAI 3809, pp. 790–795, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

Model Checking Sum and Product 791

Logical approaches to solve the problem are found in [2,3,4,5]. As far as we
know, we are the first to use an automated model checker to tackle the Sum-
and-Product problem.

In Section 2 we model the Sum-and-Product problem in public announcement
logic. In Section 3 we implement the Sum-and-Product specification of Section
2 in DEMO and verify its epistemic features.

2 Public Announcement Logic

Public announcement logic is a dynamic epistemic logic and is an extension of
standard multi-agent epistemic logic. Intuitive explanations of the epistemic part
of the semantics can be found in [6]. We give a concise overview of the logic.

Language. Given are a set of agents N and a set of atoms Q. The language of
public announcement logic is inductively defined as

ϕ ::= q | ¬ϕ | (ϕ ∧ ψ) | Knϕ | CGϕ | [ϕ]ψ

where q ∈ Q, n ∈ N , and G ⊆ N are arbitrary. For Knϕ, read ‘agent n knows
formula ϕ’. For CGϕ, read ‘group of agents G commonly know formula ϕ’. For
[ϕ]ψ, read ‘after public announcement of ϕ, formula ψ (is true)’.

Structures. An epistemic model M = 〈W,∼, V 〉 consists of a domain W of
(factual) states (or ‘worlds’), accessibility ∼ : N → P(W ×W), and a valuation
V : Q → P(W). For w ∈ W , (M,w) is an epistemic state (also known as a
pointed Kripke model). For ∼(n) we write ∼n, and for V (q) we write Vq .

Semantics. Assume an epistemic model M = 〈W,∼, V 〉.

M,w |= q iff w ∈ Vq

M,w |= ¬ϕ iff M,w 	|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= Knϕ iff for all v ∈W : w ∼n v implies M, v |= ϕ
M,w |= CGϕ iff for all v ∈W : w ∼G v implies M, v |= ϕ
M,w |= [ϕ]ψ iff M,w |= ϕ implies M |ϕ,w |= ψ

The group accessibility relation ∼G is the transitive and reflexive closure of the
union of all access for the individuals in G: ∼G ≡ (

⋃

n∈G ∼n)∗. Epistemic model
M |ϕ = 〈W ′,∼′, V ′〉 is defined as

W ′ = {w′ ∈W | M,w′ |= ϕ}
∼′

n = ∼n ∩ (W ′ ×W ′)
V ′

q = Vq ∩W ′

The dynamic modal operator [ϕ] is interpreted as an epistemic state transformer.
Announcements are assumed to be truthful, and this is commonly known by all
agents. Therefore, the model M |ϕ is the model M restricted to all the states

792 H.P. van Ditmarsch, J. Ruan, and L.C. Verbrugge

where ϕ is true, including access between states. The dual of [ϕ] is 〈ϕ〉: M,w |=
〈ϕ〉ψ iff M,w |= ϕ and M |ϕ,w |= ψ. Validity and logical consequence are defined
in the standard way. For a proof system, see [7].

To give a specification of the Sum-and-Product problem in public announce-
ment logic, first we need to determine the set of atomic propositions and the
set of agents. Define I ≡ {(x, y) ∈ N

2 | 1 < x < y and x + y ≤ 100}. Con-
sider the variable x. If its value is 3, we can represent this information as the
(truth of) the atomic proposition ‘x = 3’. Slightly more formally we can think
of ‘x = 3’ as a propositional letter x3. Thus we create a (finite) set of atoms
{xi | (i, j) ∈ I} ∪ {yj | (i, j) ∈ I}. The set of agents is {S, P}; S and P will also
be referred to as Sum and Product, respectively.

A proposition such as ‘Sum knows that the numbers are 4 and 13’ is described
as KS(x4∧y13). The proposition ‘Sum knows the (pair of) numbers’ is described
as KS(x, y) ≡ ∨

(i,j)∈I KS(xi ∧ yj). Similarly, ‘Product knows the numbers’ is

described as KP (x, y) ≡ ∨

(i,j)∈I KP (xi ∧ yj). This is sufficient to formalize the
announcements made towards a solution of the problem:

1. P says: “I do not know it”: ¬KP (x, y)
2. S says: “I knew you didn’t”: KS¬KP (x, y)
3. P says: “I now know it”: KP (x, y)
4. S says: “I now also know it”: KS(x, y)

We can interpret these statements on an epistemic model SP(x,y) ≡ 〈I,∼, V 〉
consisting of a domain of all pairs (x, y) ∈ I (as above), with accessibility rela-
tions ∼S and ∼P such that for Sum: (x, y) ∼S (x′, y′) iff x + y = x′ + y′, and
for Product: (x, y) ∼P (x′, y′) iff xy = x′y′; and with valuation V such that
Vxi = {(x, y) ∈ I | x = i} and Vyj = {(x, y) ∈ I | y = j}. The solution of the
problem is represented by the truth of the statement

SP(x,y), (4, 13) |= 〈KS¬KP (x, y)〉〈KP (x, y)〉〈KS(x, y)〉

or, properly expressing that (4, 13) is the only solution, by the model validity

SP(x,y) |= [KS¬KP (x, y)][KP (x, y)][KS(x, y)](x4 ∧ y13)
Note that announcement 1 by Product is superfluous in the analysis. The ‘knew’
in announcement 2, by Sum, refers to the truth of that announcement in the
initial epistemic state, not in the epistemic state resulting from announcement 1,
by Product.

3 The Epistemic Model Checker DEMO

Recently, epistemic model checkers have been developed to verify properties of
interpreted systems, knowledge-based protocols, and various other multi-agent
systems. The model checkers MCK [8] and MCMAS [9] have a temporal epistemic
architecture, and exploration of the search space is based on ordered binary
decision diagrams. The epistemic model checker DEMO, developed by Jan van

Model Checking Sum and Product 793

module SNP

where

import DEMO

pairs = [(x,y)|x<-[2..100], y<-[2..100], x<y, x+y<=100]

numpairs = llength(pairs)

llength [] =0

llength (x:xs) = 1+ llength xs

ipairs = zip [0..numpairs-1] pairs

msnp :: EpistM

msnp = (Pmod [0..numpairs-1] val acc [0..numpairs-1])

where

val = [(w,[P x, Q y]) | (w,(x,y))<- ipairs]

acc = [(a,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1+y1==x2+y2]++

[(b,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1*y1==x2*y2]

fmrs1e = K a (Conj [Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

Neg (K b (Conj [Prop (P x),Prop (Q y)]))]| (x,y)<-pairs])

amrs1e = public (fmrs1e)

fmrp2e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K b (Conj [Prop (P x),Prop (Q y)])])|(x,y)<-pairs]

amrp2e = public (fmrp2e)

fmrs3e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K a (Conj [Prop (P x),Prop (Q y)])])|(x,y)<-pairs]

amrs3e = public (fmrs3e)

solution = showM (upds msnp [amrs1e, amrp2e, amrs3e])

Fig. 1. The DEMO program SNP.hs. Comment lines have been removed.

Eijck [10], is not based on temporal epistemics. DEMO is short for Dynamic
Epistemic MOdelling. It allows modelling epistemic updates, graphical display
of Kripke structures involved, and formula evaluation in epistemic states. DEMO
is written in the functional programming language Haskell. The model checker
DEMO implements the dynamic epistemic logic of [7]. For a comparative study
of these three model checkers, on a different problem, see [11]. We have specified
the ‘Sum and Product riddle’ in DEMO only. The verification of a comparable
specification in MCK exceeds its computational power (and this is also to be
expected for MCMAS), although clever restriction of variables might well bring
such verification with reach.

Figure 1 contains the specification of the Sum and Product riddle in DEMO.
The set I ≡ {(x, y) ∈ N

2 | 1 < x < y and x+y ≤ 100} is realized in DEMO as the
list pairs = [(x,y)| x<-[2..100], y<-[2..100], x<y, x+y<=100]. A pair
such as (4, 18) is not a proper name for a domain element. In DEMO, natural
numbers are such proper names. Therefore, we associate each element in pairs
with a natural number and make a new list ipairs = zip [0..numpairs-1]
pairs. Here, numpairs is the number of elements in pairs, and the function

794 H.P. van Ditmarsch, J. Ruan, and L.C. Verbrugge

zip pairs the i-th element in [0..numpairs-1] with the i-th element in pairs,
and makes that the i-th element of ipairs.

The initial model msnp of the Sum-and-Product riddle (see Figure 1) is a
multi-pointed epistemic model, that consists—this is the line msnp = (Pmod
[0..numpairs-1] val acc [0..numpairs-1]) in the program—of a domain
[0..numpairs-1], a valuation function val, an accessibility relation function
acc, and [0..numpairs-1] points. As the points of the model are the entire do-
main, we may think of this initial epistemic state as the (not-pointed) epistemic
model underlying it.

The valuation function val maps each state in the domain to the subset of
atoms that are true in that state. This is different from our previous definition
of a valuation V , but the correspondence q ∈ val(w) iff w ∈ V (q) is elementary.
An element (w,[P x, Q y]) in val means that in state w, atoms P x and Q y
are true. For example, given that (0,(2,3)) is in ipairs, P 2 and Q 3 are true
in state 0, where P 2 stands for ‘the smaller number is 2’ and Q 3 stands for ‘the
larger number is 3’. These same facts were described in the previous section by
x2 and y3, respectively, as that gave the closest match with the original problem
formulation. In DEMO, names of atoms must start with capital P,Q,R.

The function acc specifies the accessibility relations. Agent a represents Sum
and agent b represents Product. For (w,(x1,y1)) and (v,(x2,y2)) in ipairs,
if their sum is the same: x1+y1==x2+y2, then they cannot be distinguished by
Sum: (a,w,v) in acc; and if their product is the same: x1*y1==x2*y2, then
they cannot be distinguished by Product: (b,w,v) in acc. Function ++ is an
operation merging two lists.

Sum and Product’s announcements are modelled as structures called ‘single-
ton action models’, generated by the announced formula (precondition) ϕ and an
operation public. For our purposes it is sufficient to focus on that precondition.

Consider KS¬
∨

(i,j)∈I KP (xi ∧ yj), expressing that Sum says: “I knew you

didn’t.” This is equivalent to KS

∧

(i,j)∈I ¬KP (xi∧yj). A conjunct ¬KP (xi∧yj)

in that expression, for ‘Product does not know that the pair is (i, j)’, is equivalent
to (xi ∧ yj) → ¬KP (xi ∧ yj). The latter is computationally cheaper to check
in the model, than the former: in all states but (i, j) of the model, the latter
requires a check on two booleans only, whereas the former requires a check in
each of those states of Product’s ignorance, that relates to his equivalence class
for that state, and that typically consists of several states. This explains that the
check on

∧

(i,j)∈I ¬KP (xi ∧ yj) can be replaced by one on
∧

(i,j)∈I((xi ∧ yj) →
¬KP (xi∧yj)). Using a model validity, the check on

∨

(i,j)∈I KP (xi∧yj) (Product

knows the numbers) can also be replaced, namely by a check
∧

(i,j)∈I((xi∧yj) →
KP (xi ∧ yj)). Using these observations, and writing an implication ϕ → ψ as
¬ϕ ∨ ψ, the three problem announcements 2, 3, and 4 listed on page 792 are
checked in DEMO in by the formulas fmrs1e, fmrp2e, and fmrs3e, respectively,
as listed in Figure 1. The corresponding singleton action models are obtained by
applying the function public, for example, amrs1e = public (fmrs1e).

The riddle is solved by updating the initial model msnpwith the action models
corresponding to the three successive announcements:

Model Checking Sum and Product 795

*SNP> showM (upds msnp [amrs1e, amrp2e, amrs3e])
==> [0]
[0]
(0,[p4,q13])
(a,[[0]])
(b,[[0]])

This function showM displays a pointed epistemic model with, on successive lines,
point [0], domain [0]—after each update, states are renumbered starting from
0—, valuation (0,[p4,q13])—representing the facts P 4 and Q 13, i.e., the so-
lution pair (4, 13)—, and accessibility relations (a,[[0]]) and (b,[[0]])—Sum
and Product have full knowledge, as their access is the indentity. Intermediate
results of the computation can also be given. For the complete output of such
interaction, see www.cs.otago.ac.nz/staffpriv/hans/sumpro/.

References

1. Freudenthal, H.: (formulation of the sum-and-product problem). Nieuw Archief
voor Wiskunde 3(17) (1969) 152

2. McCarthy, J.: Formalization of two puzzles involving knowledge. In Lifschitz,
V., ed.: Formalizing Common Sense : Papers by John McCarthy. Ablex series in
artificial intelligence. Ablex Publishing Corporation, Norwood, N.J. (1990) original
manuscript dated 1978–1981.

3. Plaza, J.: Logics of public communications. In Emrich, M., Pfeifer, M., Hadzikadic,
M., Ras, Z., eds.: Proceedings of the 4th International Symposium on Methodolo-
gies for Intelligent Systems. (1989) 201–216

4. Panti, G.: Solution of a number theoretic problem involving knowledge. Interna-
tional Journal of Foundations of Computer Science 2(4) (1991) 419–424

5. van der Meyden, R.: Mutual belief revision. In Doyle, J., Sandewall, E., Torasso,
P., eds.: Proceedings of the 4th international conference on principles of knowledge
representation and reasoning (KR), Morgan Kaufmann (1994) 595–606

6. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT
Press, Cambridge MA (1995)

7. Baltag, A., Moss, L., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. Technical report, Centrum voor Wiskunde en
Informatica, Amsterdam (1999) CWI Report SEN-R9922.

8. Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge.
In Alur, R., Peled, D., eds.: Proceedings of the 16th International conference on
Computer Aided Verification (CAV 2004), Springer (2004) 479–483

9. Raimondi, F., Lomuscio, A.: Verification of multiagent systems via ordered binary
decision diagrams: An algorithm and its implementation. In: 3rd International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004),
IEEE Computer Society (2004) 630–637

10. van Eijck, J.: Dynamic epistemic modelling. Technical report, Centrum voor
Wiskunde en Informatica, Amsterdam (2004) CWI Report SEN-E0424.

11. van Ditmarsch, H., van der Hoek, W., van der Meyden, R., Ruan, J.: Model
checking russian cards. Electronic Notes in Theoretical Computer Science (2005)
To appear; presented at MoChArt 05 (Model Checking in Artificial Intelligence).

Model Checking Russian Cards

H.P. van Ditmarsch1,2

Computer Science, University of Otago, Dunedin, New Zealand

W. van der Hoek3

Computer Science, University of Liverpool, United Kingdom

R. van der Meyden4

School of Computer Science and Engineering, University of New South Wales & National ICT
Australia, Sydney, Australia

J. Ruan5

Computer Science, University of Otago, Dunedin, New Zealand

Abstract

We implement a specific protocol for bit exchange among card-playing agents in three different
state-of-the-art epistemic model checkers and compare the results.

Keywords: Cryptography, unconditional security, model checking, information-based protocols,
epistemic logic.

Electronic Notes in Theoretical Computer Science 149 (2006) 105–123

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.07.029

http://www.elsevier.com/locate/entcs

1 Introduction

The security of cryptographic protocols generally depends upon the truth of
several assumptions: that the agents are computationally limited and that cer-
tain computational problems are intractable given these computational lim-
its. In protocols based on public key encryption schemes such as RSA, for
example, decryption of messages is tractable for the intended recipient but
assumed to be impossible for an eavesdropper, because it requires factoring a
large product of primes, a problem assumed to be intractable. There do exist,
however, unconditionally secure protocols, whose security does not rely upon
such assumptions. These protocols can be shown to be secure even against
adversaries with unlimited computational powers, because they ensure that
the adversary cannot learn secrets for information theoretic rather than com-
putational reasons.

A popular approach to the verification of cryptographic protocols has been
to analyse them in terms of information flow as expressed using logics of
knowledge and belief [3,12]. In general, the semantics of these logics do not
capture the dimension of computational complexity upon which the security of
the protocols rest: instead, they treat agents as purely information theoretic
reasoners, having computational powers extending even beyond the recursive
enumerable. However, this very feature makes these logics a highly appropriate
tool for the analysis of unconditionally secure protocols.

In this paper, we consider the application of the logic of knowledge to un-
conditionally secure protocols based on the exchange of information grounded
in correlations arising from a deck of cards having been dealt to the agents. A
player can communicate secret bits such as card ownership to another player

1 This research has been carried out with support from AOARD (Asian Organization for
Airforce Research and Development) research grant AOARD-05-4017. National ICT Aus-
tralia is funded through the Australian Government’s Backing Australia’s Ability initiative,
in part through the Australian Research Council. Hans van Ditmarsch and Ji Ruan closely
collaborated while Ji visited Hans in Otago. Hans thanks Jan van Eijck for the exciting
interaction during DEMO’s development, and for his suggestions. Wiebe van der Hoek has
been involved in ‘Russian Cards’ matters for a long time, since visiting Otago in 2002 as
a William Evans Fellow. Ron van der Meyden wrote the first version of what ultimately
became the MCK program, as well as the basis for a first attempt at the MCK program for
announcements from arbitrary intiial states, during Hans’ visit to Sydney in 2003. Hans
and Ji later completed these. Ron later developed much faster versions of both MCK pro-
grams. We kindly acknowledge Franco Raimondi’s very helpful assistance while completing
the MCMAS program. We also thank the anonymous referees supplied by the MoChArt 05
organization for their comments.
2 Email: hans@cs.otago.ac.nz
3 Email: wiebe@csc.liv.ac.uk
4 Email: meyden@cse.unsw.edu.au
5 Email: jruan@cs.otago.ac.nz

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123106

mailto:hans@cs.otago.ac.nz
mailto:wiebe@csc.liv.ac.uk
mailto:meyden@cse.unsw.edu.au
mailto:jruan@cs.otago.ac.nz

without revealing these secrets to a third player (eavesdropper). This has
been investigated in [6,16,10,1,17]. A typical example is the ‘Russian Cards
Problem’: two players each draw three cards from a pack of seven cards, and
the remaining player (eavesdropper) gets the last card. The ‘problem’ is to
find protocols that allow the sender and receiver to learn each other’s hand of
cards, without revealing this information to the eavesdropper. In [16], proto-
cols of length two are presented that solve this problem. Protocols of length
greater than two are investigated in [17].

In such card protocols, the required postconditions are not always clear or
not easy to verify, publicly known protocol features may involve fairly complex
nested dynamic epistemic formulas, and enumeration of all possible protocols
is an issue as well. Model checkers are promising tools with which to address
these complexities. A model checking analysis has been partially carried out
for the Russian Cards problem in [20]: epistemic properties of the scenario are
translated into (linear time) LTL, and then verified using the model checker
SPIN. A deal of cards together with a number of announcements corresponds
to a time line. Uncertainty of the agents is represented by exploiting local
propositions proposed in [4], see also [13]. This approach to model checking
epistemic logic has a number of disadvantages: the need for translation means
that the epistemic aspects are only implicit in the analysis, it requires that
the appropriate local propositions – which may be difficult to identify – be
explicitly provided by the user, and in the case of negative occurrences of
the knowledge operator, multiple runs of the model checker are necessary to
conduct the verification.

In this contribution, we take a more direct approach, verifying protocol
properties in model checkers which work with epistemic logic explicitly. We
conduct a comparative study of a number of systems, based on a variety of
approaches to representing the evolution of knowledge: combinations of the
logic of knowledge with linear and/or branching time [5,9,14], and dynamic
epistemic logics [8,2,15]. Specifically, we consider the model checkers MCK
[7] which deals with the logic of knowledge and both linear and branching
time using BDD based algorithms, MCMAS [11] which handles knowledge
and branching time using BDD based algorithms, and DEMO [18], which is
an explicit state model checker based on a dynamic epistemic logic.

We have selected one specific Russian Cards protocol, the ‘five hands pro-
tocol’, implemented it in these quite different dedicated ‘epistemic’ model
checkers, and verified its relevant properties. This involved reinterpreting dy-
namic epistemic concepts in temporal epistemic terms; this theoretical exer-
cise was carried out successfully and increased our understanding of dynamic
epistemic features. All three implementations were carried out within a rea-

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123 107

sonable development time and all were successful. Some additional Russian
Cards protocol features, in particular for protocols of length greater than two,
have been kept outside this comparison. Also, incorrect protocols (such as
for non-solutions of the Russian Cards problem) can be easily shown to be
so by establishing failure of (commonly known or other) epistemic conditions.
This only requires (almost) trivial changes in the scripts presented below for
a correct protocol.

In Section 2 we present the Russian Cards problem. Sections 3 to 5 are ded-
icated to the implementation of the ‘five hands’ protocol for the Russian Cards
problem in the model checkers, respectively, MCK, DEMO, and MCMAS. Sec-
tion 6 compares the results. The MCK, DEMO, and MCMAS input scripts
can be found on http://www.cs.otago.ac.nz/staffpriv/hans/aoard/.

2 Russian Cards

From a pack of seven known cards two players each draw three cards and a
third player gets the remaining card. How can the players with three cards
openly inform each other about their cards, without the third player learning
from any of their cards who holds it?

This ‘Russian Cards’ problem originated at the Moscow Math Olympiad
2000. Call the players Anne, Bill and Cath, and the cards 0, ..., 6, and suppose
Anne holds {0, 1, 2}, Bill {3, 4, 5}, and Cath card 6. For the hand of cards
{0, 1, 2}, write 012 instead, for the card deal, write 012.345.6, etc. Assume
from now on that 012.345.6 is the actual card deal. All announcements must
be public and truthful. There are not many things Anne can safely say. Ob-
viously, she cannot say “I have 0 or 6,” because then Cath learns that Anne
has 0. But Anne can also not say “I have 0 or 3,” because Anne does not
know if Cath has 3 or another card, and if Cath had card 3, she would have
learnt that Anne has card 0. But Anne can also not say “I have 0 or 1.” Even
though Anne holds both 0 and 1, so that she does not appear to risk that
Cath eliminates either card and thus gains knowledge about single card own-
ership (weaker knowledge, about alternatives, is allowed), Cath knows that
Anne will not say anything from which Cath may learn her cards. And thus
Cath can conclude that Anne will only say “I have 0 or 1” if she actually holds
both 0 and 1. And in that way Cath learns two cards at once! The appar-
ent contradiction between Cath not knowing and Cath knowing is not really
there, because these observations are about different information states: it is
merely the case that announcements may induce further updates that contain
yet other information.

Whenever after Anne’s announcement it is (at least) not common knowl-

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123108

http://www.cs.otago.ac.nz/staffpriv/hans/aoard/

edge to Anne, Bill, and Cath, that Cath remains ignorant of any of Anne’s
or Bill’s cards, this may be informative to Cath after all. A typical example
is when Anne says that she either holds 012 or not any of those cards, after
which Bill says that Cath holds card 6. For details, see [16]. Indeed, a solu-
tion requirement is that Cath’s ignorance remains public knowledge after any
announcement. Such announcements are called safe.

A solution to the Russian Cards problem is a sequence of safe announce-
ments after which it is commonly known to Anne and Bill (not necessarily
including Cath) that Anne knows Bill’s hand and Bill knows Anne’s hand.
This (instance of a) five hands protocol is a solution:

Anne says “My hand of cards is one of 012, 034, 056, 135, 246,” after which
Bill says “Cath has card 6.”

Note that Bill’s announcement is equivalent to “My hand of cards is one of
345, 125, 024.” After this sequence, it is even publicly known that Anne knows
Bill’s hand and Bill knows Anne’s hand. If we extend Anne’s announcement
with one more hand, namely 245, and if it is public knowledge that the pro-
tocols used by Anne and Bill are of finite length (so may consist of more than
two announcements), then it is ‘merely’ common knowledge to Anne and Bill
that they know each other’s hand, but (disregarding further analysis) Cath
considers it possible that they do not know each other’s hand of cards. This is
a useful security feature for Anne and Bill, as Cath plays the role of the eaves-
dropper. A further postcondition is that all safe announcements by Anne
ensure at least one safe response from Bill, and vice versa. This recursive
requirement results in a more complex condition. See [17].

Public announcement logic The Russian Cards problem can be modelled
in public announcement logic with common knowledge. We give a concise
overview of the language and its semantics.

Given are a set of agents N and a set of atoms P . An epistemic model M =
〈S,∼, V 〉 consists of a domain S of (factual) states (or ‘worlds’), accessibility
∼ : N → P(S × S), and a valuation V : P → P(S). For s ∈ S, (M, s) is an
epistemic state. For ∼ (n) we write ∼n, and for V (p) we write Vp. So, access
∼ can be seen as a set of equivalence relations ∼n, and V as a set of valuations
Vp. For (

⋃

n∈G ∼n)∗, write ∼G: this is access to interpret common knowledge
for group G.

The language of public announcements is inductively defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | Knϕ | CGϕ | [ϕ]ψ

where p ∈ P , n ∈ N , and G ⊆ N are arbitrary. For Knϕ, read ‘agent n

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123 109

knows formula ϕ’. For CGϕ, read ‘group of agents G commonly know formula
ϕ’. For [ϕ]ψ, read ‘after public announcement of ϕ, formula ψ (is true)’. The
effect of the public announcement of ϕ is the restriction of the epistemic state
to all worlds where ϕ holds. So, ‘announce ϕ’ can be seen as an information
state transformer, with a corresponding dynamic modal operator [ϕ].

The semantics is as follows. Given is an epistemic model M = 〈S,∼, V 〉.

M, s |= p iff s ∈ Vp

M, s |= ¬ϕ iff M, s �|= ϕ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= Knϕ iff for all t ∈ S : s ∼n t implies M, t |= ϕ

M, s |= CGϕ iff for all t ∈ S : s ∼G t implies M, t |= ϕ

M, s |= [ϕ]ψ iff M, s |= ϕ implies M |ϕ, s |= ψ

Model M |ϕ = 〈S ′,∼′, V ′〉 is defined as

S ′ ≡ {s′ ∈ S | M, s′ |= ϕ}
∼′

n ≡ ∼n ∩ (S ′ × S ′)

V ′
p ≡ Vp ∩ S ′

In other words: the model M |ϕ is the model M restricted to all the states
where ϕ holds, including access between states. Formula ϕ is valid on model
M , notation M |= ϕ, if and only if for all states s in the domain of M :
M, s |= ϕ. Formula ϕ is valid, notation |= ϕ, if and only if for all models M :
M |= ϕ.

We now model the Russian Cards problem in this logic. Given a stack of
known cards and some players, the players blindly draw some cards from the
stack. In a state where cards are dealt in that way, but where no game actions
of whatever kind have been done, it is commonly known what the cards are,
that they are all different, how many cards each player holds, and that players
only know their own cards. From the last it follows that two deals are the
same for an agent, if she holds the same cards in both, and if all players hold
the same number of cards in both. This induces an equivalence relation on
deals.

An epistemic model (Rus, 012.345.6) for the deal 012.345.6 that we inves-
tigate, encodes the knowledge of the players Anne, Bill and Cath (a, b, c) in

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123110

this card deal. It consists of
(

7
3

)(

4
3

)(

1
1

)

= 140 deals. For each player, access
between states is induced by the equivalence above, for example, 012.345.6 ∼a

012.346.5 says that Anne cannot tell these two card deals apart (as her hand
is 012 in both). Facts about card ownership written as qn, for ‘card q is held
by player n’. The valuation V0a of fact 0a (Anne holds card 0) consists of all
60 deals where 0 occurs in Anne’s hand, etc.

After a sequence of announcements that is a solution of the Russian Cards
problem, it should hold that Anne knows Bill’s cards, that Bill knows Anne’s
cards, and that Cath doesn’t know any of Anne’s or Bill’s cards:

a knows bs ≡ ∧

q=0..6(Kaqb ∨ Ka¬qb)

b knows as ≡ ∧

q=0..6(Kbqa ∨ Kb¬qa)

c ignorant ≡ ∧

q=0..6(¬Kcqa ∧ ¬Kcqb)

We suggested in the previous section that these conditions are too weak. This
can be exemplified by the observation that, e.g.,

Rus, 012.345.6 |= [Ka(012a ∨ (¬0a ∧ ¬1a ∧ ¬2a))][c ignorant]¬c ignorant

After Anne says that her hand is 012 or that she does not hold any of those
cards, c ignorant is true, but a further update with that (in other words: when
Cath can assume that this is true) makes Cath learn some of Anne’s cards,
so that c ignorant is false. The actually required postconditions avoiding such
complications are: after every announcement of an executed protocol, it is
publicly known that Cath is ignorant, and after the execution of the entire
protocol it is commonly known to Anne and Bill that: Anne knows that
Bill knows her hand of cards, and Bill knows that Anne knows his hand of
cards. Also using that Cab(Kba knows bs ∧ Kab knows as) is equivalent to
Cab(a knows bs ∧ b knows as) this is formalized as

Cab(a knows bs ∧ b knows as)

Cabcc ignorant

Concerning protocols: when Anne announces ‘ϕ’, this should be interpreted as
‘Kaϕ’ given that she knows what she says, and even as ‘Kaϕ∧[Kaϕ]Kac ignorant’
given her intention, and beyond that even as ‘Kaϕ ∧ [Kaϕ]CabcKac ignorant’
given that her intention is public. One can then show that

Rus, 012.345.6 |= [Kaϕ ∧ [Kaϕ]Cabcc ignorant]Cabcc ignorant

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123 111

So in this case the intention is indeed realized, unlike above: the announcement
is safe. We ignore the further complication that safe announcements require
safe responses in this submission. The solution given in Section 2 consists of
the successive announcements

a announce ≡ 012a ∨ 034a ∨ 056a ∨ 135a ∨ 246a

b announce ≡ 6c

Temporal epistemic logics Two of the model checkers that we present
require interpreted system representations and / or verification of temporal
epistemic logical formulas. Therefore, some words are in order on how these
compare to a dynamic epistemic setting.

An interpreted system I is a pair (G,R) consisting of a set of global states
G and a set of runs R relating those states. A global state g ∈ G is a tuple
consisting of local states gn for each agent and a state gε of the environment.
A run r ∈ R is a sequence of global states. The m-th global state occurring
in a run r is referred to as r(m), and the local state for agent n in a global
state r(m) is written as rn(m).

A point (r, m) is a pair consisting of a run and a point in time m – this is the
proper abstract domain object when defining epistemic models for interpreted
systems. In an interpreted system, agents can distinguish global states from
one another iff they have the same local state in both, which induces

(r, m) ∼n (r′, m′) iff r(m) ∼n r′(m′) iff rn(m) = r′n(m′)

With the obvious valuation for local and environmental state values, that
defines an epistemic model. For convenience we keep writing I for that. Given
an actual point (r′, m′), we thus get an epistemic state (I, (r′, m′)). Epistemic
and (LTL) temporal (next) operators have the interpretation

I, (r, m) |= Xϕ iff I, (r, m + 1) |= ϕ

I, (r, m) |= Knϕ iff for all (r′, m′) : (r, m) ∼n (r′, m′) implies I, (r′, m′) |= ϕ

We now outline the relation between ‘next’ and announcement operators. An
announcement is seen as a completely observable clock tick, synchronizing the
system. Announcing ϕ at time m is simulated in I by changing the value of
some environmental variable p for exactly those points where ϕ is true, when
transiting from point (r, m) to point (r, m+1), and passing on that information
to the local states of the agents. The static information available at time m is
contained in the restriction I|m of the interpreted system I to all points for

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123112

time m. This determines the meaning of purely epistemic formulas. But for
formulas containing epistemic and ‘next’-temporal operators the situation is
more complex. Assume that for each time m there is a formula ϕ such that the
only transitions allowed at m are those induced by announcement of ϕ. We
can define a translation ∗ where, given an epistemic state and a formula, each
X-operator in that formula is replaced by a corresponding dynamic operator
[ϕ]. The following now are all equivalent

if I, (r, m) |= ϕ, then I, (r, m) |= Xψ

if I, (r, m) |= ϕ, then I, (r, m + 1) |= ψ

if I|m, (r, m) |= ϕ∗, then I|m|ϕ∗, (r, m) |= ψ∗

I|m, (r, m) |= [ϕ∗]ψ∗

In case ϕ and ψ are both purely epistemic, so that ϕ∗ = ϕ, and ψ∗ = ψ, we
have that

I, (r, m + 1) |= ψ corresponds to I|m|ϕ, (r, m) |= ψ

It is interesting to observe, that checking ψ in the former involves (given
synchronous perfect recall) the entire domain of I|(m + 1), whereas checking
ψ in the latter only involves the ϕ-states of its predecessor I|m, corresponding
to only one value of the environmental variable that is reset in the transition
from m to m + 1. For ‘Russian Cards’, the first announcement reduces the
domain from 140 to 20 points, and the second from 20 to 3 points.

3 Model Checker MCK

MCK, for ‘Model Checking Knowledge’, is a prototype model checker for tem-
poral and knowledge specifications, developed by Peter Gammie and Ron van
der Meyden [7]. The overall setup supposes a number of agents acting in an
environment, by temporal development. This is modelled by an interpreted
system where agents perform actions according to a protocol. Actions and the
environment may be only partially observable at each instant in time.

Different approaches to the temporal and epistemic interaction and de-
velopment are implemented. Knowledge may be based on current obser-
vations only, on current observations and clock value, and on the history
of all observations and clock value. The last corresponds to synchronous
perfect recall. We have used that approach. In the temporal dimension,
the specification formulas may describe the evolution of the system along

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123 113

a single computation, i.e., using linear time temporal logic (LTL), or they
may describe the branching structure of all possible computations, i.e, us-
ing branching time or computation tree logic (CTL). We have used LTL. See
http://www.cse.unsw.edu.au/~mck/ for more information.

Russian Cards in MCK In MCK, we have to reinterpret the dynamic
epistemics of Section 2 in temporal epistemic terms. In a program rus.mck

we successively introduce environmental variables and initialize those; we cre-
ate three agents A, B, and C with corresponding protocols "anne", "bill"

and "cath"; a main part of the program specifies the (temporal) transitions,
induced by card dealing and the announcements, that relate different infor-
mation states for these players; finally rus.mck contains a part with various
to be verified properties of the timelines created.

A hand of cards of an agent is encoded by a list of seven booleans, for
example a hand : Bool[7] specifies for all of the cards 0, ..., 6 whether
they are held by Anne or not, such that anne cards[0] is true when Anne
holds card 0, etc. Initially, such variables are set to false.

Agent A, for Anne, is created by

agent A "anne" (a_hand, a_announce, b_announce, stage)

The name of the agent is A. It uses protocol "anne". It can interact with,
and potentially observe the variables between parentheses. The first of those
is, obviously, only observable by Anne, the others will reappear in the other
agent definitions, as they are publicly observable. The variable stage is the
‘clock tick’.

The transitions part of rus.mck specify what happens in different stages
of the execution of the protocol. We distinguish stages (clock ticks) 0, 1, 2,
and 3. In stage 0 the cards are dealt to the players, in the order 0, ..., 6. We
show it up to the dealing of card 0.

stage == 0 ->

begin if

na < 3 -> begin a_hand[0]:=True; na:= na+1 end []

nb < 3 -> begin b_hand[0]:=True; nb:= nb+1 end []

nc == 0 -> begin c_hand[0]:=True; nc:= 1 end

fi;

Variables na, nb, and nc are counters to record how many cards agents have,
and [] means nondeterministic choice. In this part of the transitions, 140
different deals are created, represented as 140 different timelines.

In stage 1, Anne announces that her hands is one of 012, 034, 056, 135, and
246. This is done indirectly by executing the protocol "anne", that contains a

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123114

http://www.cse.unsw.edu.au/~mck/

condition corresponding to these five deals, which causes the action Announce

to be executed. This then results in the atom a announce becoming true.

stage == 1 /\ A.Announce -> a_announce := True

In stage 2, Bill announces that Cath holds card 6. Alternatively, one can
model that Bill announces Cath’s card – whatever it is. Bill’s announcement
is by way of an action B.Announce, and results in the variable b announce

to become true. This is the transition to stage 3, the final stage. We can
imagine the whole system to consist of 140 different runs. Whether variables
a announce and b announce are true in stage 2 and stage 3, respectively,
depends on the deal in that run.

The protocol for Anne is

protocol "anne" (cards: observable Bool[7],

a_announce: observable Bool, b_announce: observable Bool,

stage: observable Counter)

begin

skip; if

((cards[0] /\ cards[1] /\ cards[2]) \/

(cards[0] /\ cards[3] /\ cards[4]) \/

(cards[0] /\ cards[5] /\ cards[6]) \/

(cards[1] /\ cards[3] /\ cards[5]) \/

(cards[2] /\ cards[4] /\ cards[6]))

-> <<Announce>>

fi

end

The ‘begin-end’ part of this protocol specifies for each of the stages 0, 1, and
2 what happens in that stage. In stage 0 nothing happens: skip. In stage
1, the action Announce – that is, whatever is found between << and >> –
is executed. Actually, the value or instance of cards for Anne is a cards;
see above, where Anne is created. Alternatively to five actual hands, a much
longer protocol creates five arbitrary hands of cards based on Anne’s actual
hand. Nothing is specified for stage 2: this is therefore skip again by default.
Bill has a similar protocol but his protocol starts with skip ; skip, as his
announcement is in stage 2. And Cath does not act at all, which carries the
protocol skip ; skip ; skip.

The knowledge of the agents evolves with every stage, via the agents’
limited access to the environment. Initially, they only observe their own hand
of cards, and Anne’s and Bill’s public announcement is accessed by all agents.
Anne cannot distinguish two states iff her observations are the same in those
states. For example, in stage 1 Anne cannot distinguish the timelines for deals

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123 115

012.345.6 and 012.346.5, because: both have the same a hand values (for all
seven variables), a announce is true in both cases, and b announce is false
is both cases. But in stage 3, Anne can distinguish these timelines, since
b announce is true for the former and false for the latter.

A final part of rus.mck lists various temporal epistemic properties to be
checked. For example, we want to verify that Rus, 012.345.6 |= [a announce]
[b announce]Caba knows bs. The current version (0.2.0) of MCK does not sup-
port common knowledge operators for specification in the perfect recall mod-
ule. Therefore we verify instead that in stage 3, a knows bs is valid in the
model. This corresponds to Rus|a announce|b announce |= a knows bs which
ensures that Rus|a announce|b announce, 012.345.6 |= Cabca knows bs. And in
this specific model Caba knows bs ↔ Cabca knows bs is also valid.

spec_spr_xn = X 3 ((a_announce /\ b_announce) =>

((((Knows A b_hand[0]) \/ (Knows A neg b_hand[0]))) /\

(...)

(((Knows A b_hand[6]) \/ (Knows A neg b_hand[6])))))

The part spec spr xn means that we are using the perfect recall module of
MCK, and X 3 is the triple ‘next state’ temporal operator, counting from
stage 0. Therefore, the formula bound by the operator is checked in stage 3.
Similarly, other properties of the five hands protocol are verified.

4 Model Checker DEMO

The tool DEMO is developed by Jan van Eijck [18]. DEMO is short for Dy-
namic Epistemic MOdelling. It allows modelling epistemic updates, graphical
display of Kripke structures involved (i.e., epistemic or state models, and ac-
tion models that represent epistemic actions), formula evaluation in epistemic
states, etc. Epistemic models are minimized under bisimulation, and action
models are minimized under the (more appropriate, weaker) notion of action
emulation [19]. DEMO is written in the functional programming language
Haskell. See also http://www.cwi.nl/~jve/papers/04/demo/.

The model checker DEMO implements the dynamic epistemic logic of [2].
In this ‘action model logic’ the global state of the multi-agent system is rep-
resented by an epistemic model (multi-agent Kripke model), and the agents’
action is represented by an action model. An action model is also based on
a multi-agent Kripke frame, but instead of carrying a valuation it has a pre-
condition function which assigns a precondition to each point in the action
model, which stands for an atomic action. The state change in the system is
via an operation called update product. This is a restricted modal product.
In this submission we restrict our attention to action models for public an-

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123116

http://www.cwi.nl/~jve/papers/04/demo/

nouncements. Such action models have a singleton domain. We refrain from
details and proceed with the recursive definition of formulas in DEMO.

Form = Top | Prop Prop | Neg Form | Conj [Form] | Disj [Form]

| K Agent Form | CK [Agent] Form

Formula Top stands for �, Prop Prop for atomic propositional letters (the first
occurrence of Prop means that the datatype is ‘propositional atom’, whereas
the second occurrence of Prop is the placeholder for an actual proposition
letter, such as P0), Neg for negation, Conj [Form] stands for the conjunction
of a list of formulas of type Form, similarly for Disj, K Agent stands for the
individual knowledge operator for agent Agent, and CK [Agent] for common
knowledge operator for the group of agents listed in [Agent].

A pointed (and singleton) action model for a public announcement is cre-
ated by a function public with a precondition (formula) as argument. The
update operation is specified as

upd :: EpistM -> PoAM -> EpistM

Here, EpistM is an epistemic state and PoAM is a pointed action model. The
update generates a new epistemic state as specified above. Formula checking
is defined as

isTrue :: EpistM -> Form -> Bool

Its arguments are an epistemic state and a formula, and it returns a boolean
value.

Russian Cards in DEMO In DEMO, one is restricted to propositional
letters starting with lower case p, q and r, so we cannot write, for example, 0a

for the atomic proposition that Anne holds card 0, as in Section 2. Instead,
atoms {p, . . . , p6, q, . . . , q6, r, . . . , r6} represent such atomic propositions. The
name p4 – Anne holds card 4 – actually stands for Prop (P 4), etc. Instead
of p0 we write, somewhat arbritrarily, p, and similarly for q and r.

The initial epistemic state rus representing the knowledge in card deal
012.345.6 is constructed as follows. A set of integers [0..139] represents the
140 different deals. Each integer is associated with seven propositional letters
– the valuation of facts in that state. The first two deals correspond to the
valuations

(0,[P 0,P 1,P 2,Q 3,Q 4,Q 5,R 6]),

(1,[P 0,P 1,P 2,Q 3,Q 4,Q 6,R 5])

The deal numbered 0 stands for actual deal 012.345.6. A pair of two integers is
in the accessibility relation for an agent n, if that agent holds the same cards in

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123 117

both deals. Two such pairs for Anne are (a,0,0),(a,0,1). DEMO assumes
arbitrary accessibility relations. So, unfortunately, we have to explicitly list
all pairs in the equivalence relation for each agent, as above.

Anne’s public announcement a announce corresponds to the following sin-
gleton action model named a announce, which is produced by the function
public.

public(K a (Disj[Conj[p,p1,p2],Conj[p,p3,p4],Conj[p,p5,p6],

Conj[p1,p3,p5],Conj[p2,p4,p6]]))

Similarly, we have an action model b announce for Bill’s announcement b announce.
The postcondition that Anne knows Bill’s hand of cards, a knows bs, is repre-
sented as

aknowsbs = Conj[Disj[K a q, K a (Neg q)],

Disj[K a q1, K a (Neg q1)],

Disj[K a q2, K a (Neg q2)],

Disj[K a q3, K a (Neg q3)],

Disj[K a q4, K a (Neg q4)],

Disj[K a q5, K a (Neg q5)],

Disj[K a q6, K a (Neg q6)]]

Similarly for b knows as and c ignorant. The model checker now verifies the
postconditions of the constructed models. After Bill’s announcement it is
common knowledge to Anne and Bill that Anne knows Bill’s hand of cards,
and it is also common knowledge to Anne and Bill that Bill knows Anne’s
hand of cards. It is publicly known that Cath remains ignorant:
*RUS>isTrue (upd (upd rus a_announce) b_announce) (CK [a,b] a_knows_bs)
True
*RUS>isTrue (upd (upd rus a_announce) b_announce) (CK [a,b] b_knows_as)
True
*RUS>isTrue (upd (upd rus a_announce) b_announce) (CK [a,b,c] c_ignorant)
True

Epistemic state (upd rus a announce) is the result of updating the initial
epistemic state rus with singleton pointed action model with precondition
a announce – to improve readability we have chosen to name the action model
a announce and not the precondition. The epistemic state (upd (upd rus

a announce) b announce) is the result of updating epistemic state (upd rus

a announce) with the singleton pointed action model named b announce (with
that precondition).

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123118

5 Model Checker MCMAS

MCMAS presumably stands for Model Checking Multi-Agent Systems. This
model checker has been developed by Franco Raimondi and Alessio Lomus-
cio [11]. The current version is mcmas 0.6. System descriptions and pro-
tocol properties are verified using ordered binary decision diagrams, compa-
rable to the approach used in MCK. It extends existing obdd-based tech-
niques for reactive systems by adding both an epistemic (ATL) and a deon-
tic dimension to the logical language, and allowing input in terms of inter-
preted systems. MCMAS is implemented in C++. For more information, see
http://www.cs.ucl.ac.uk/staff/F.Raimondi/MCMAS/.

In MCMAS, the global state is represented as a tuple of the local states of
the agents. For Russian Cards, agents Anne, Bill, and Cath represent players,
and an agent Env (the environment) represents the card deal. The local state
of agent Anne requires five components, that can be seen as variables; three
represent her hand of cards, and two the status quo and outcome of the two
announcements. Version 0.6 of MCMAS does not support variables in the
description of agents’ local states. Therefore we encode the variable parts in a
single string. For example, one local state for Anne is a012tf. This means that
Anne holds cards 0,1, and 2, that Anne’s announcement a announce has been
(truthfully) made in the global state of which this local state is a component,
and that Bill’s announcement b announce could not be made (was false) in
that global state. Similarly, we have five variables for Bill, and three variables
for Cath. The local state of the agent Env has seven variables, because it
represent a card deal. An example is e0123456. This stands for the actual
deal 012.345.6.

The information changes take the usual steps: (1) the cards are revealed to
the agents, (2) Anne announces a announce, and (3) Bill announces b announce.
All reachable global states will be included in the next stage. An example ini-
tial global state is (annnnn, bnnnnn, cnnn, e0123456); an ‘n’ essentially
means that the agent has no information on the value of corresponding vari-
able, modelled by giving the variable that value n. So, bnnnnn means that
Bill’s local state is that he does not know his cards yet (the first three n’s),
that Anne has not made her announcement yet (the fourth n) and that Bill has
not made his announcement yet. The above global state (annnnn, bnnnnn,

cnnn, e0123456) then transits to (a012nn, b345nn, c6nn, e0123456), where
each agent knows what cards it holds. Anne’s a announce is then made, causing
the transition to (a012tn, b345tn,c6tn, e0123456) and b announce finally
results in (a012tt, b345tt,c6tt, e0123456) – this time, Bill’s announce-
ment is successful. These state transitions are specified in the program. For
example, for agent Anne, the transition for step one is as follows; Lstate is

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123 119

http://www.cs.ucl.ac.uk/staff/F.Raimondi/MCMAS/

the local state of (current) agent Anne, and Env.Lstate is the local state of
Env.

a012nn if (Lstate=annnnn and

(Env.Lstate=e0123456 or Env.Lstate=e0123465 or

Env.Lstate=e0123564 or Env.Lstate=e0124563));

The environment Env does not change during transitions, but this has to be
made explicit as

e0123456 if Lstate=e0123456;

In the ‘valuation’ part of an MCMAS program we define what can be seen as
(the denotation of) atomic propositions. For example

ab_d0123456 if (Anne.Lstate=a012tt and Bill.Lstate=b345tt and

Cath.Lstate=c6tt and Env.Lstate=e0123456);

is the atom that is (uniquely) true in the global state (a012tt, b345tt,c6tt,

e0123456). Similarly, atoms expressing card ownership such as 0a for ‘Anne
holds card 0’ are defined by enormous expressions starting as (and consisting
of 60 alternative card deals)

a0 if (Env.Lstate=e0123456 or Env.Lstate=e0123465 or ...

Groups of agents can be named too. This is useful when checking common
knowledge. For example, expression ABC={Anne, Bill, Cath}; gives the
group consisting of Anne, Bill, and Cath the label ABC. The common knowledge
formula Cabc(0a → Ka0a) is then represented as CK(ABC,a0->K(Anne,a0)).
We conclude this short exposition with the postcondition Cabcc ignorant that
verifies that Cath remains ignorant after both announcements have been made
– ‘!’ stands for negation.

ab_d0123456 -> GCK(ABC,(

(!K(Cath,a0) and !K(Cath,b0)) and

(!K(Cath,a1) and !K(Cath,b1)) and

(!K(Cath,a2) and !K(Cath,b2)) and

(!K(Cath,a3) and !K(Cath,b3)) and

(!K(Cath,a4) and !K(Cath,b4)) and

(!K(Cath,a5) and !K(Cath,b5)) and

(!K(Cath,a6) and !K(Cath,b6))));

6 Comparison

Rough performance results for the input scripts described above are based on
a PC configuration Linux 2.4.30 i686 Pentium 4, 800Mhz and 2018M RAM.

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123120

The times required, respectively, for the Russian Cards five hands protocol,
as an average over five runs, are:

• MCK – 160 seconds (Long BDD package) or 109 seconds (CUDD BDD
package)

• MCMAS – 117 seconds (CUDD BDD package)

• DEMO – 9 seconds

The time measure for MCK and MCMAS is for the whole model checking
process, i.e., both model construction and formula checking. For MCMAS it
includes the time to autogenerate the MCMAS input script from a C program.
DEMO operates on slightly different principles: First, the Haskell interpreter
compiles RUS.hs and related modules DPLL and DEMO. Only then, we check
individual formulas. We measured the combined autogeneration, compilation
and checking steps.

These results cannot be straightforwardly interpreted as indicative of the
relative performance of the model checkers, however, as they are based on
rather different modellings and model checking questions. One difference is
that the MCK input script explicitly represents the dealing of cards using a
transition program, whereas the input to MCMAS and DEMO already have
the results of a deal explicitly represented in the initial states. Another is that
MCK and MCMAS check a temporal property for all initial states, whereas
DEMO checks a dynamic property at a single initial state. The runtimes can
also be quite sensitive to specific choices made in the modelling. Apart from
the scripts discussed in this contribution, we later developed a much more
concise DEMO program, as well as an alternate MCK modelling in which the
dealing of cards is represented by a constraint on initial states rather than
by a program. We refrain from details and refer instead to the companion
website. The complexity results for these versions are

• DEMO-new – 4 seconds

• MCK-new – 1.1 seconds (Long BDD), 0.27 seconds (CUDD)

The modellings discussed above focus on announcements for the specific
situation of the deal 012.345.6. We have also developed an MCK script mod-
elling a protocol that provides an five hands announcement for Anne for an
arbitrary initial state. This script currently requires about 3 hours to run, and
is still a subject of our experiments.

Mostly, however, we were interested in how versatile the tools appeared to
be, to implement a problem that was originally formulated in local, and dy-
namic epistemic, terms, into temporal epistemic terms and/or as an inter-

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123 121

preted system. In other words, we were more than anything else interested in
development time and supported functionality. Conclusions based on our ex-
periences are extremely tentative. Implementing the Russian Cards problem
in DEMO took about half a day, for Ji Ruan, who is an expert in DEMO.
MCK scripts developed by Ron van der Meyden, expert in MCK, also took
about half a day. Currently, MCK does not support common knowledge (in
the used module), nor epistemic preconditions, nor preconditions to temporal
formulas. The last makes it impossible to have knowledge preconditions to
players’ announcements. Such preconditions are always epistemic, as agents
only announce what they know to be true. Also, unsuccessful updates – for-
mulas that become false because they are announced – cannot be made visible
in the way they have to be checked in MCK: the analogue is a conditional for-
mula where the antecedent is also a subformula of the temporal consequent.
On the other hand, MCK allows a very natural formalization of protocols –
this is not, or less, possible in DEMO or MCMAS. The ‘fully interpreted sys-
tem’ approach of MCMAS is very transparent, but the models that need to
be built are ‘very’ large: (automated input of) thousands of lines of code, as
opposed to (manual input of) about a hundred lines of code in MCK. More
than anything, this case-study increased our insight into the state of the art
in epistemic model checking, and our understanding of the theoretical issues
involved in card cryptography, emerging from the need to reformulate these
issues in different logics.

7 Conclusions

We have implemented the five hands protocol to solve the Russian Cards
problem in the model checkers MCK, DEMO, and MCMAS. Dynamic epis-
temic requirements can be easily reformalized in temporal epistemic terms,
a necessary requirement for formalization in MCK and MCMAS. The model
checkers vary in how easy, or difficult, it is to build the initial epistemic state,
in how difficult it is to formalize announcements and execute them in that
initial state, and in how to verify protocol properties. We intend to pursue
this investigation by implementing more complex protocols and verifying more
complex properties for such ‘card cryptography’, and generalize it to the level
of interpreted systems with agent dependencies, where groups of agents aim
to share their local state value while keeping it a secret from the remaining
agents.

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123122

References

[1] M.H. Albert, R.E.L. Aldred, M.D. Atkinson, H.P. van Ditmarsch, and C.C. Handley. Safe
communication for card players by combinatorial designs for two-step protocols. Australasian
Journal of Combinatorics, 2005. To appear.

[2] A. Baltag and L.S. Moss. Logics for epistemic programs. Synthese, 139:165–224, 2004.
Knowledge, Rationality & Action 1–60.

[3] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transactions on
Computer Systems, 8:18–36, 1990.

[4] K. Engelhardt, R. van der Meyden, and Y. Moses. Knowledge and the logic of local
propositions. In I. Gilboa, editor, Proceedings of TARK VII, pages 29–41. Morgan Kaufmann,
1998.

[5] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge. MIT Press,
Cambridge MA, 1995.

[6] M.J. Fischer and R.N. Wright. Bounds on secret key exchange using a random deal of cards.
Journal of Cryptology, 9(2):71–99, 1996.

[7] P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge. In R. Alur
and D. Peled, editors, Proceedings of the 16th International conference on Computer Aided
Verification (CAV 2004), pages 479–483. Springer, 2004.

[8] J.D. Gerbrandy and W. Groeneveld. Reasoning about information change. Journal of Logic,
Language, and Information, 6:147–169, 1997.

[9] J.Y. Halpern, R. van der Meyden, and M.Y. Vardi. Complete axiomatizations for reasoning
about knowledge and time. SIAM Journal on Computing, 33(3):674–703, 2004.

[10] K. Koizumi, T. Mizuki, and T. Nishizeki. Necessary and sufficient numbers of cards for
the transformation protocol. In K.-Y. Chwa and J. Ian Munro, editors, Computing and
Combinatorics, 10th Annual International Conference (COCOON 2004), LNCS 3106, pages
92–101. Springer, 2004.

[11] Franco Raimondi and Alessio Lomuscio. Verification of multiagent systems via ordered
binary decision diagrams: An algorithm and its implementation. In 3rd International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004), pages 630–637.
IEEE Computer Society, 2004.

[12] R. Ramanujam and S. P. Suresh. Information based reasoning about security protocols. Electr.
Notes Theor. Comput. Sci., 55(1), 2001.

[13] W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In D. Bos̆nac̆ki and
S. Leue, editors, Model Checking Software, Proceedings of SPIN 2002 (LNCS Volume 2318),
pages 95–111. Springer, 2002.

[14] R. van der Meyden. Common knowledge and update in finite environments. Information and
Computation, 140(2):115–157, 1998.

[15] H.P. van Ditmarsch. Descriptions of game actions. Journal of Logic, Language and
Information, 11:349–365, 2002.

[16] H.P. van Ditmarsch. The russian cards problem. Studia Logica, 75:31–62, 2003.

[17] H.P. van Ditmarsch. The case of the hidden hand. In Liber Amicorum Dick de Jongh, 2004.
(electronically published) ISBN 90 5776 1289.

[18] J. van Eijck. Dynamic epistemic modelling. Technical report, Centrum voor Wiskunde en
Informatica, Amsterdam, 2004. CWI Report SEN-E0424.

[19] J. van Eijck and J. Ruan. Action emulation. manuscript, 2005.

[20] S. van Otterloo, W. van der Hoek, and M. Wooldridge. Model checking a knowledge exchange
scenario. Applied Artificial Intelligence, 18(9-10):937–952, 2004.

H.P. van Ditmarsch et al. / Electronic Notes in Theoretical Computer Science 149 (2006) 105–123 123

d p
ts i

6 6 :
i o -

i : 6
s- l a

,F 3,r'

F 3 E
o 5 a

E 6 :

l y

3 -s';

s 3 E
s ; 3

c : c
6 x . 9

P " 9

a E 9
o g o
q : + >

F " €
E 9 9

3 r E

6 9 3 U

" n E r
q € -

3 ; i Z
.E'3 e tr
€. : ;
bq: r
i q is 2
9 6 9 o
.0 9 'F o
E i t uJ
! : i r

. E 0 . F
; P H' M E
; ; - o
: : 9 l l
: o t o
E q . . U
E : < h
o ?> u'l

- 3 5 ; E
- . ^ ^ a <

; : : ! o

l i xe E
T 8 - E f
a3 ; i h
i J E - ; E-

! @ ^

6->P (,)

i E : T 8
: E 9 i E
: * ; E H
E g i ; <
9 3 ? : 9o c 9 d I
e g X 6 F
r : t ! O

E € ; : =
E srjS X
e t 6 ; E
q i iP= a
i E i : t r
F F6 E ' l
: E c ; d
; E E E >
;;ts! 8
8 , 9 : 9 E

9ec i 9
EPi , : Z
- ! ; ! E
€ : ^ a t P
€ ; E P #
; 5 E E ;
p Q i q o
F : i - ^ z

a;ii s
; P E € 6
a ; P i <
r g E E u l
- p 6 3 d

x
F
E

U

L

U

F

rt

z

!

x
:
I

d.
d

z

c

\J

;
o

N
=
o

;

t
c
6
d
N

F

U'
z

tr
z
U

z
F

C)
q,l-,
6
f
an

z

tr
l!u,

c

€

o

F

z
()
E

o

o
E

z
o

6

u
F
G

4

U

5
u

o
z

tr
z
U

=
F()
B

a
o

' :

E F 8
5 d f i

; g F
E F H
t 2 7 a
i = : J< z ;
= 9 t r
c a z

E ? 8
x = 9

z

o

d
@

f

=
z

tr
9

F
z
F

r
I
I
3
z
g

F
z)
z

E
o

o

z

tr

f

F
z
F

g

F
z

z

tr

N

e
I

o
p
S

a

. \
G

a

o
F

F
z
o
o

o
=
z

-
o
q
ttt

ai

.

E

z
(J
d

o

F
o

F
z

o

@

o
u
E

3
6

(J

z
o
6

o

^
:
s
!

E ;
o
F

F
z

l

R z
< t r
= u 1
F d

n z

z

tr
9
5
F

U
o

=o
F

u
Q

z

tr
N
z

F

c
z
z

o
o
3

u,

;

o
o

o
o

q

o

o
!

o

o
o

I
q

o
c

o

c

o

o

q

_ . o
9 !
r o

G 6

>-o

5 €

J
o<

O N \

z - _ .
g \ \

s M
1 . 1

d
F
U
J

a

a

z

E
o
u
U)

u
cr
(!

o
o
N

o
uJ
o
c,t'
@
@

=
E,
o
o
o

=
F
z

g
3

:
o

P s
o p
< b
t r i
F :
z t
o 3o :
E t d
f Q(,)--
o 8
z d
< o
(/) E
Z Q
O E
t r Ez .
]jJ €> s
z # '

\ J i

k : *
o s
o . *
u J cc s

I

\

E
z

o

z

. U A

6 s
o S
E '
< a

t i
d

5
, , , q

- z

v <r o
= ? i
: i

5 a
q F
i z

F

2

E

N

z

o
E
o

A a
u o6 <
^ E

* o o

; 5
z o
o z

d.

o

o
c
N

*
\tr

s

o

j

F

F

U

z

o
z

z

tr
z

z

F

g

F
(J

z
o

u

E

zu
E
z
U

r

U
E
z
d

ri

* 7 e
6 = o E
E ? c H
? g H E
; i E 3

? " 4 = . i
-

q 2 < F
i P E <

Y < o
O A

o
o
u
=
o
@

o

F
I

F
2 ;

F

r r S
E S
g i

tr
zu
> :

;

E
ts

\t
\

:

z

F

F
z

E

z

F
z

z

u

d=
u

z

z

U=
z

N

u
E

z

I
O

s
N

e
s
o

EU

o
o

U
O E

: E
v f

? z

F
tr
j

F
o ^
< a

z A o
P E

3 z

$
f\

R

3

{
!

F()

z
o
6

.n

(J

z
o

6

U

r

z

tr
I
L

E
U
o

F

,
-b-

r)
trl-^g o
l

= A
? A J

=s
: q

r r - r F 1

3 S r u
o S c r
t i o
? i *
; Q

-
G\r., {

N 1
,4f J

N I S
N) Etr
)
i ,r-p 6-
C F

l { \c\-, <
hc;
! c (i 1
ir].t \J;ssx;, ̂
a -

6

s
*
i ;

o
o

s
,q
E

5'o
F
(J

f lL
= a

3 \
Rl-
P -

?r.n
EN
z \ ,
R W;>
o -

E<.
>)
d

6 ' , s

t i

G *
> ' 6z s

E c
E R
< i

*

F
2

=
u
E
z

E
E

=
z

O
q

N
I

U

d
E

o
o

is
* 3
E \
3 , 5
2 - . \
H \...

5 \
; l R
E i.-<: s\r.
E : i
E , ! o
I t-l
= 6x -=
9 * v r
= ; c \
1 6 s -
; 4

o
o

z
$;
l

=
z

Department of Computer Science,
University of Otago

Technical Report OUCS-2006-01

Sum and Product in Dynamic Epistemic Logic

Authors:

H. P. van Ditmarsch

Computer Science, University of Otago

J. Ruan
Computer Science, University of Liverpool, United Kingdom

L.C. Verbrugge

Artificial Intelligence, University of Groningen, Netherlands

Status: Journal submission

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.html

Sum and Product in Dynamic Epistemic Logic∗

H.P. van Ditmarsch†, J. Ruan‡, and L.C. Verbrugge§

Abstract

The Sum-and-Product riddle was first published in [Fre69]. We provide
an overview on the history of the dissemination of this riddle through the
academic and puzzle-math community. This includes some references to
precursors of the riddle, that were previously (as far as we know) unknown.

We then model the Sum-and-Product riddle in a modal logic called
public announcement logic. This logic contains operators for knowledge,
but also operators for the informational consequences of public announce-
ments. The logic is interpreted on multi-agent Kripke models. The infor-
mation in the riddle can be represented in the traditional way by number
pairs, so that Sum knows their sum and Product their product, but also
as an interpreted system, so that Sum and Product at least know their lo-
cal state. We show that the different representations are isomorphic. We
also provide characteristic formulas of the initial epistemic state of the
riddle. Finally we analyze one of the announcements towards the solution
of the riddle as a so-called unsuccessful update: a formula that become
false because it is announced.

The riddle is then implemented and its solution verified in the epis-
temic model checker DEMO. This can be done, we think, surprisingly
elegantly. The results are compared with other work in epistemic model
checking.

Keywords: modal logic, puzzle math, dynamic epistemics, charac-
teristic formula, model checking

1 Introduction

The following problem, or riddle, was first stated, in the Dutch language, in
[Fre69] and subsequently solved in [Fre70]. A translation of the original formu-
lation is:
∗Contact author is Hans van Ditmarsch. Hans and Ji appreciate support from AOARD

research grant AOARD-05-4017. Hans and Rineke appreciate support from the Netherlands
Organization for Scientific Research (NWO). A shortened version of Sections 7 and 8, including
Figure 2, have previously appeared in conference proceedings [vDRV05].
†Computer Science, University of Otago, New Zealand, hans@cs.otago.ac.nz
‡Computer Science, University of Liverpool, United Kingdom, jruan@csc.liv.ac.uk
§Artificial Intelligence, University of Groningen, the Netherlands, rineke@ai.rug.nl

1

Figure 1: The original publication

A says to S and P : I have chosen two integers x, y such that 1 < x <
y and x+ y ≤ 100. In a moment, I will inform S only of s = x+ y,
and P only of p = xy. These announcements remain private. You
are required to determine the pair (x, y).

He acts as said. The following conversation now takes place:

i. P says: “I do not know it.”

ii. S says: “I knew you didn’t.”

iii. P says: “I now know it.”

iv. S says: “I now also know it.”

Determine the pair (x, y).

This problem is considered a riddle, or puzzle, because the agents’ announce-
ments appear to be uninformative, as they are about ignorance and knowledge
and not about (numerical) facts, whereas actually they are very informative: the
agents learn facts from the other’s announcements. For example, the numbers
cannot be 2 and 3, or any other pair of prime numbers, nor for example 2 and
4, because in all those cases Product would immediately have deduced the pair
from their product. As a somewhat more complicated example, the numbers
cannot be 14 and 16: if they were, their sum would be 30. This is also the sum
of the prime numbers 7 and 23. But then, as in the previous example, Product
would (P) would have known the numbers, and therefore Sum (S) – if the sum
had been 30 – would have considered it possible that Product knew the num-
bers. But Sum said that he knew that Product didn’t know the numbers. So the
numbers cannot be 14 and 16. Sum and Product learn enough, by eliminations

2

of which we gave some examples, to be able to determine the pair of numbers:
the unique solution of the problem is the pair (4, 13).

The knowledge that agents have about other agents’ mental states and,
in particular, about the effect of communications, is vital for solving impor-
tant problems in multi-agent systems, both for cooperative and for competitive
groups. Dynamic epistemic logic was developed to study the changes brought
about by communication in such higher-order knowledge of other agent’s and
of group knowledge [BMS98, Ger99]. The Sum-and-Product puzzle presents a
complex illustrative case of the strength of specifications in dynamic epistemic
logic and of the possibilities of automated model checking, and both can also be
used in real multi-agent system applications. As far as we know, we are the first
to use an automated model checker to tackle the Sum-and-Product problem.

Section 2 gives an overview of the dissemination of the riddle through the aca-
demic community, and suggests some precursors. In Section 3 we introduce pub-
lic announcement logic. In Section 4 we model the Sum-and-Product problem
in public announcement logic. Section 5 models the Sum-and-Product prob-
lem, alternatively, as an interpreted system, and Section 6 provides the general
setting of unsuccessful updates of which some announcements in the riddle pro-
vide examples. In Section 7 we introduce the epistemic model checker DEMO.
In Section 8 we implement the Sum-and-Product specification of Section 4 in
DEMO, and we verify its epistemic features. Section 9 reports on DEMO im-
plementations of similar problems, and compares the model checking results to
our experiences with other epistemic model checkers.

2 History

John McCarthy wrote the earliest full-length treatment of the Sum-and-Product
riddle in the years 1978–1981 [McC90]. McCarthy formulates the problem as
follows:

Two numbers m and n are chosen such that 2 ≤ m ≤ n ≤ 99. Mr.
S is told their sum and Mr. P is told their product. The following
dialogue ensues:

i. Mr. P : I don’t know the numbers.

ii. Mr. S: I knew you didn’t know. I don’t know either.

iii. Mr. P : Now I know the numbers.

iv. Mr. S: Now I know them too.

In view of the above dialogue, what are the numbers?

In [McC90] the problem is elegantly modeled in modal logic in such a way that
it can be processed in the (first-order) logic theorem prover FOL. This includes
an – almost off-hand – introduction of what corresponds to the essential concept

3

of ‘common knowledge’: what Sum and Product commonly know is crucial to
a clear understanding of the problem. Common knowledge had received a very
interesting treatment already in Lewis’ 1969 book Convention [Lew69] (and also
appears in other philosophical literature from that period, e.g. in Schiffer’s work
[Sch72]), but McCarthy seems to have re-invented it in his 1981 article, thereby
inspiring research on common knowledge in Artificial Intelligence.

Note that in the second announcement, Sum seems to give some additional
information that does not appear in the Freudenthal-version of the dialogue,
namely “I don’t know either”. However, some simple considerations show that
this addition is superfluous, because at the current point in the dialogue, it
is already common knowledge among the participants that Sum doesn’t know
either. After all, the only situation in which Sum does know the two numbers
from the start is the one where the pair of numbers is (2, 3), which has already
been ruled out by Product’s first announcement. Further, note that McCarthy
allows the two numbers to be the same, unlike Freudenthal. This also does not
affect the solution.

Many different versions of the puzzle elicited much discussion from the late
seventies onwards. The variations are caused by different announcements, dif-
ferent ranges for the numbers, and different choices for what is considered to be
common knowledge at the starting-point. For yet another example, for a cer-
tain larger range of possible numbers than 2—99 one finds a solution different
from (4, 13) but that then after all is in the 2—99 range. Discussions of several
variants of the problem can be found in the literature on recreational mathe-
matics, see especially [Gar79, Sal95, Isa95], and a website www.mathematik.
uni-bielefeld.de/~sillke/PUZZLES/logic_sum_product that contains many
other references.

More geared towards an epistemic logical audience are [Pla89, Pan91, vdM94,
vdHV02]. Plaza and Panti were students of Rohit Parikh and have both made
some interesting contributions to epistemic logic. In [Pla89] the Sum-and-
Product problem is modeled in a dynamic epistemic logic that is the precursor
of the public announcement logic presented here, namely without an operator
for common knowledge. In [Pan91], on the other hand, the common knowl-
edge involved in the Sum-and-Product puzzle is investigated in detail, with an
emphasis on the arithmetic involved. For example, for the formulation of the
problem where the range of numbers (up to 100) is not considered to be common
knowledge at the start, Panti proves that if the sum of the numbers is greater
or equal than 7, then this (and its logical consequences) is the only fact that is
common knowledge among Sum and Product. Finally, Van der Meyden [vdM94]
suggests a solution in temporal epistemic logic.

2.1 Looking for the origin of Sum and Product

In both of the two first full-length publications on the Sum and Product riddle
[McC90, Gar79], the authors explicitly wondered about but could not give its
exact origins. John McCarthy explains in a footnote in his paper [McC90]:

4

I have not been able to trace Mr. S and Mr. P back beyond its alleged
appearance on a bulletin board at Xerox PARC.

Martin Gardner, in his 1979 “Mathematical Games” column [Gar79], writes:

This beautiful problem, which I call “impossible” because it seems to
lack sufficient information for a solution, began making the rounds
of mathematics meetings a year or so ago. I do not know its origin.

After the appearance of [Gar79], the fact that the puzzle had been published al-
ready in 1969 by Dutch topologist and specialist on mathematics education Hans
Freudenthal, was brought to Gardner’s attention by Dutch algebraist Robert
van der Waall. Van der Waall was one of the small number of Dutch mathe-
maticians who had sent in a correct solution to the Dutch mathematics journal
Nieuw Archief voor Wiskunde after the puzzle’s first appearance in 1969.

We have tried to fill in two missing pieces in the history of the Sum-and-
Product riddle:

i. If [Fre69] is indeed the first published appearance of the problem, then
how did the problem migrate from the Dutch mathematics community of
the late 1960s and early 1970s to “a bulletin board at Xerox Parc” and
“the rounds of mathematics meetings” in the United States in the late
1970s?

ii. Did Freudenthal invent the problem? And if so, has he possibly been
inspired by (less complex) precursors?

Despite several requests on international e-mail lists, we have not been able to
answer the first question. As to the second question, we received a partial answer
from one of the subscribers to Nieuw Archief voor Wiskunde, who thought he
remembered to have seen the Sum-and-Product riddle in the puzzle column
“Breinbrouwsels” (brain brews) in the now defunct Dutch-language weekly De
Katholieke Illustratie (‘Illustrated Catholic Magazine’) in the 1950s.

We have visited several libraries and thus managed to read almost all of the
626 “Breinbrouwsels” that G. van Tilburg published from 1954 until 1965 (and
of those we did not read, we could infer what they were from their answers, in
other issues). This did not turn up the Sum-and-Product puzzle, but we did
find four puzzles (published in 1954, 1955, 1957, and 1963, respectively) that can
clearly be seen as precursors. Mostly these puzzles involve partial information
about a number of persons’ ages, where the fact that one of the participants
cannot deduce the ages from the interlocutor’s hint, but can deduce them after
some further dialogue, is crucial information helping the reader to solve the
problem. We will describe some of Van Tilburg’s interesting problems in a
forthcoming publication in Dutch.

Thus, as far as we know now, Freudenthal really invented the Sum-and-
Product puzzle, but may have been inspired by Van Tilburg’s “Breinbrouwsels”.
Possibly he also read some even earlier riddles of British origin, to which we turn
our attention now.

5

2.2 Precursors of Sum and Product

David Singmaster’s bibliographies on recreational mathematics (see e.g. www.
g4g4.com/MyCD5/SOURCES/singmaterial.htm) point to some candidate epis-
temic puzzles that appeared even earlier than Van Tilburg’s. The earliest pre-
cursor of the Sum-and-Product riddle that we have been able to trace is the
following one, probably invented by Williams and Savage and first published in
book-form in 1940 in The Penguin Problems Book [WS40, p.53]:

The church afloat
“I’m taking three females on the river to-morrow,” said the vicar to
his curate; “would you care to join our party?”

“What are their ages?” asked the curate, cautiously. “Far be it from
me to disclose a lady’s age!” said the vicar, “but I can tell you this
– the product of their ages is 840, and the sum is twice the number
of years in your own age. You, a mathematician, should be able to
find their ages for yourself.”

“Sounds like casuistry, Vicar,” said the curate; “but, as a matter of
fact, I can’t find their ages from your data. By the way, is the eldest
older than you?”

“No, younger.” “Ah, now I know their ages!” said the curate. “Thanks,
I will come with pleasure.”

What was the curate’s age? How old were the ladies? And what can
be deduced about the vicar’s age?

Here follows Williams’ and Savage’s answer [WS40, p.135]:

Sum of ages must be even.

Uncertainty, resolved by the vicar’s final statement, must be due to
the fact of there being more than one such sum which was twice the
curate’s age.

Of the possible sets of 3 factors of 840, there are only two cases of
the same even sum occurring more than once. The sums in these
cases are 46 and 30. Now the curate’s age could not be 15; therefore
he was 23.

The sets of female ages giving a sum of 46 are 35, 8, 3 and 30, 14,
2. Since the vicar’s answer excluded one of these, that one must be
the former. Therefore the ladies’ ages were 30, 14, 2, and the vicar’s
age must lie between 30 and 35.

Note that some world knowledge is used implicitly here, namely the fact that
mathematicians (and curates) are always older than 15 years, and the fact that
the curate, being a mathematician, reasons correctly.

Another problem, that was published in 1944 in The Second Penguin Prob-
lems Book [WS44, p.27], also hinges on the fact that only for some number

6

combinations there is more than one way to make the same sum. In a way, the
next problem is less attractive than the previous one, because the uncertainty
is not completely dissolved at the end: readers are asked to derive the sum of
the ages only.

Domiciliary
“I have told you my age,” said Mr. Ptolemy to the inspector who had
just knocked on his door. “Besides myself, there are three persons
living in this house; the product of their ages is one thousand two
hundred ninety-six, and the sum of their ages is the number of the
house.”

“But it is impossible for me to be sure of their ages without further
information,” said the inspector. “Is any one of them the same age
as yourself?”

“No,” said Mr. Ptolemy.

“Thanks; now I know their ages,” said the inspector.

What was the number of Mr. Ptolemy’s house?

This time, the explanation is as follows [WS44, p.116]; again, the authors im-
plicitly use some world knowledge:

There are many ways of splitting 1296 into three factors, but only
possible ones need be considered. Two of these sets of factors have
the same sum, namely 1, 18, 72 and 2, 8, 81, adding up to 91. The
other sums are all different.

As the inspector could not be sure of the ages from the fact that they
added up to the number of the house (which he, of course, knew),
this number must have been 91.

[Mr. Ptolemy’s age - also known to the inspector - must have been
72 or 81 (unless it was 18 or 8 - both unlikely), but we have no means
of deciding this point.]

The above two puzzles are roughly of the same kind as Van Tilburg’s, but still
different. In fact, Van Tilburg may have been inspired to create his puzzles after
reading the British gentlemen. Essentially the same problem as “Domiciliary”,
but in a somewhat different guise, was printed in Greenblatt’s Mathematical
Entertainments [Gre68], first published in the United States in 1965. Greenblatt
starts with some historical speculation:

One of the few amusing things to come out of World War II was a
new type of brain twister - the “census-taker” problem. (The time
and place of origin of a problem are difficult to specify. To the best
of the author’s knowledge, this problem was born on the M.I.T.
campus in one of the war projects.)

7

As we now know, the type of problem probably stems from at least somewhat
before the start of World War II, and from Great Britain instead of the United
States. After all, The Penguin Problems Book, although published during the
War in 1940, was mostly based on earlier puzzles from Williams’ and Savage’s
column “Perplexities” that used to appear in The Strand Magazine. For more
details, see www.cs.otago.ac.nz/staffpriv/hans/sumpro/.

2.3 Descendants of Sum and Product

In recent years, variants of the Sum-and-Product riddle keep cropping up. Johan
van Benthem has communicated a particularly nice example, dubbed “GSM-
puzzle”. The conversation between the two participants in the GSM-puzzle
follows exactly the same pattern as the one in the Sum-and-Product riddle.
However, due to the context in terms of playing cards with points and colors,
no arithmetic is needed to solve it. Thus, the epistemic complexity remains,
while the arithmetic complexity has been canceled. For a formulation of the
problem, see www.ai.rug.nl/mas/openprojecten.html\#GSM and/or www.cs.
otago.ac.nz/staffpriv/hans/sumpro/.

Some of the more recent variants include more than two participants in the
clarifying conversation, for example the following one [Liu04], which combines
themes from the Muddy-Children puzzle [MDH86] with those from the Sum-
and-Product puzzle. We leave this problem as a challenge to the reader.

Each of Ace, Bea and Cec is wearing a hat on which a positive integer
is printed. Each can see only the numbers on the others’ hats. They
are told that one of the numbers is the sum of the other two. They
make the following statements in succession.

i. Ace: I cannot deduce what my number is.

ii. Bea: Knowing that, I still cannot deduce what my number is.

iii. Cec: Knowing that, I still cannot deduce what my number is.

iv. Ace: Now I can deduce that my number is 50.

Assuming that they all use sound reasoning, what are the numbers
on the two other hats?

After this detailed overview of the dissemination of the Sum-and-Product
riddle, which we hope may prevent some of this information from gradually
disappearing into the fog of war on academic battlegrounds, we continue with
the more technical core of this paper, that consists of an introduction into
public announcement logic, modelling the riddle in this logic, and verifying its
properties in a model checker.

8

3 Public Announcement Logic

Public announcement logic is a dynamic epistemic logic and is an extension of
standard multi-agent epistemic logic. Intuitive explanations of the epistemic
part of the semantics can be found in [FHMV95, vdHV02, vDvdHK05]. We
give a concise overview of, in that order, the language, the structures on which
the language is interpreted, and the semantics.

Given are a finite set of agents N and a finite or countably infinite set of
atoms Q. The language of public announcement logic is inductively defined as

ϕ ::= q | ¬ϕ | (ϕ ∧ ψ) | Knϕ | CGϕ | [ϕ]ψ

where q ∈ Q, n ∈ N , and G ⊆ N are arbitrary. For Knϕ, read ‘agent n knows
formula ϕ’. For CGϕ, read ‘group of agents G commonly know formula ϕ’. For
[ϕ]ψ, read ‘after public announcement of ϕ, formula ψ (is true)’.

Next, we introduce the structures. An epistemic model M = 〈W,∼, V 〉
consists of a domain W of (factual) states (or ‘worlds’), accessibility ∼ : N →
P(W×W), where each ∼(n) is an equivalence relation, and a valuation V : Q→
P(W). For w ∈W , (M,w) is an epistemic state (also known as a pointed Kripke
model). For ∼ (n) we write ∼n, and for V (q) we write Vq. So, accessibility ∼
can be seen as a set of equivalence relations ∼n, and V as a set of valuations Vq.
Given two states w,w′ in the domain, w ∼n w′ means that w is indistinguishable
from w′ for agent n on the basis of its information. For example, at the beginning
of the riddle, pairs (14, 16) and (7, 23) are indistinguishable for Sum but not
for Product. Therefore, assuming a domain of number pairs, we have that
(14, 16) ∼S (7, 23) but that (14, 16) 6∼P (7, 23). The group accessibility relation
∼G is the transitive and reflexive closure of the union of all accessibility relations
for the individuals in G: ∼G ≡ (

⋃
n∈G ∼n)∗. This relation is used to interpret

common knowledge for group G.
Finally, we give the semantics. Assume an epistemic model M = 〈W,∼, V 〉.

M,w |= q iff w ∈ Vq
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ
M,w |= Knϕ iff for all v ∈W : w ∼n v implies M,v |= ϕ
M,w |= CGϕ iff for all v ∈W : w ∼G v implies M,v |= ϕ
M,w |= [ϕ]ψ iff M,w |= ϕ implies M |ϕ,w |= ψ

Here, epistemic model M |ϕ = 〈W ′,∼′, V ′〉 is defined as

W ′ = {w′ ∈W | M,w′ |= ϕ}
∼′n = ∼n ∩ (W ′ ×W ′)
V ′q = Vq ∩W ′

The dynamic modal operator [ϕ] is interpreted as an epistemic state transformer.
Announcements are assumed to be truthful, and this is commonly known by
all agents. Therefore, the model M |ϕ is the model M restricted to all the

9

states where ϕ is true, including access between states. The dual of [ϕ] is 〈ϕ〉:
M,w |= 〈ϕ〉ψ iff M,w |= ϕ and M |ϕ,w |= ψ.

Formula ϕ is valid on model M , notation M |= ϕ, if and only if for all states
w in the domain of M : M,w |= ϕ. Formula ϕ is valid, notation |= ϕ, if and
only if for all models M : M |= ϕ. Logical consequence Ψ |= ϕ is defined as “for
all (M,w), if M,w |= ψ for all ψ ∈ Ψ, then M,w |= ϕ.” For {ψ} |= ϕ, write
ψ |= ϕ.

A proof system for this logic is presented, and shown to be complete, in
[BMS98], with precursors – namely for public announcement logic without com-
mon knowledge – in [Pla89, Ger99]. For a concise completeness proof, see
[vDvdHK05]. Some relevant principles of this logic are

i. [ϕ]ψ ↔ (ϕ→ [ϕ]ψ)

ii. [ϕ][ψ]χ↔ [ϕ ∧ [ϕ]ψ]χ

iii. [ϕ]Knψ ↔ (ϕ→ Kn[ϕ]ψ)

iv. [CNϕ]CNϕ

Item i expresses that the interpretation of the dynamic operator [ϕ] is a partial
function. Item ii expresses that a sequence of two announcements ϕ and ψ can be
replaced by the single announcement ‘ϕ, and after ϕ, ψ’. Item iii expresses the
preconditions and postconditions of announcements with respect to individual
knowledge (for common knowledge, this relation is more complex). Item iv
expresses that public knowledge (i.e., common knowledge for the entire group
of agents) remains true after announcement. Not all formulas remain true after
their announcement, in other words, [ϕ]ϕ is not a principle of this logic. This
matter will be addressed in Section 6. Some announcements towards the solution
of the Sum-and-Product problem provide concrete counterexamples, and this
will explain why the ‘puzzling’ conversation of S and P makes sense.

4 Sum and Product in Public Announcement
Logic

We give a specification of the Sum-and-Product problem in public announce-
ment logic. First we need to determine the set of atomic propositions and the
set of agents. In the formulation of the problem, x, y are two integers such that
1 < x < y and x+y ≤ 100. Define I ≡ {(x, y) ∈ N2 | 1 < x < y and x+y ≤ 100}.
Consider the variable x. If its value is 3, we can represent this information as
the (truth of) the atomic proposition ‘x = 3’. Slightly more formally we can
think of ‘x = 3’ as a propositional letter x3. Thus we create a (finite) set of
atoms {xi | (i, j) ∈ I} ∪ {yj | (i, j) ∈ I}.

Concerning the agents, the role of the announcer A is to guarantee that the
background knowledge for solving the problem is commonly known among Sum
and Product. The announcer need not be introduced as an agent in the logical

10

modelling of the system. That leaves {S, P} as the set of agents. Agents S and
P will also be referred to as Sum and Product, respectively.

The proposition ‘Sum knows that the numbers are 4 and 13’ is represented
as KS(x4∧y13). The proposition ‘Sum knows the (pair of) numbers’ is described
as KS(x, y) ≡

∨
(i,j)∈I KS(xi ∧ yj). Similarly, ‘Product knows the numbers’ is

represented by KP (x, y) ≡
∨

(i,j)∈I KP (xi ∧ yj). Furthermore, note that the
‘knew’ in announcement ii, by Sum, refers to the truth of KS¬KP (x, y) in the
initial epistemic state, not in the epistemic state resulting from announcement
i, by Product. Therefore, announcement i by Product is superfluous in the
subsequent analysis.1 This is sufficient to formalize the announcements made
towards a solution of the problem:

i. P says: “I do not know it”: ¬KP (x, y)

ii. S says: “I knew you didn’t”: KS¬KP (x, y)

iii. P says: “I now know it”: KP (x, y)

iv. S says: “I now also know it”: KS(x, y)

We can interpret these statements on an epistemic model SP(x,y) ≡ 〈I,∼, V 〉
consisting of a domain of all pairs (x, y) ∈ I (as above), with accessibility
relations ∼S and ∼P such that for Sum: (x, y) ∼S (x′, y′) iff x + y = x′ + y′,
and for Product: (x, y) ∼P (x′, y′) iff xy = x′y′; and with valuation V such that
Vxi = {(x, y) ∈ I | x = i} and Vyj = {(x, y) ∈ I | y = j}.

We can describe the solution of the problem as the truth of the statement

SP(x,y), (4, 13) |= 〈KS¬KP (x, y)〉〈KP (x, y)〉〈KS(x, y)〉>

This expresses that, if (4, 13) is the initial state, then it is possible to publicly
announce ii, iii, and iv, in that order. We can also express more properly that
(4, 13) is the only solution as the model validity

SP(x,y) |= [KS¬KP (x, y)][KP (x, y)][KS(x, y)](x4 ∧ y13)

5 Sum and Product as an interpreted system

A relevant observation is that a pair of numbers (x, y) with x < y corresponds to
exactly one sum-product pair (s, p). In one direction this is trivial, for the other
direction: assume (x+y, xy) = (x′+y′, x′y′). Let without loss of generality x be
the smaller of x and x′, so that x′ = x+v. Then from xy = x′y′ = (x+v)(y−v)
follows that yv − xv − v2 = 0, so that v = 0 or v = y − x. The second merely
reverses the role of x and y; in our terms, it cannot be satisfied, because x
was required to be strictly smaller than y. This observation paves the way

1In dynamic epistemic logic with assignment one can model such past tense epistemic
statements explicitly [Koo05].

11

for a different modelling of the problem than the traditional one with ‘(smaller
number, larger number)’ pairs (x, y).

We now let atomic propositions represent the sum and product of the differ-
ent numbers, instead of representing these numbers themselves. For example, s7

represents that the sum of the two numbers is 7. We allow a slight abuse of the
language: if i+j = k then we also write si+j for sk. Similarly, we write pij for pl
when ij = l. Thus we create a set of atoms {sx+y | (x, y) ∈ I}∪{pxy | (x, y) ∈ I}.

The obvious way to interpret such atoms is on an epistemic model SP(s,p) ≡
〈W ′,∼′, V ′〉 with a domain W ′ consisting of all pairs (s, p) such that s = x+ y
and p = xy (as in the original formulation of the problem) for all (x, y) ∈ I, i.e.,
with 1 < x < y and x + y ≤ 100; with accessibility relations ∼′S and ∼′P such
that for Sum: (s, p) ∼′S (s′, p′) iff s = s′, and for Product: (s, p) ∼′P (s′, p′) iff
p = p′; and with valuation such that V ′sx+y

= {(s, p) ∈ W ′ | s = x + y} and
V ′pxy = {(s, p) ∈W ′ | p = xy}.

We have now modelled the problem as an interpreted system where agents at
least know their local state. Interpreted systems were introduced in theoretical
computer science as an abstract architecture for distributed systems [FHMV95].
Sum’s local state is the sum of the two numbers, Product’s local state is the
product of the two numbers. A global state for the problem is a pair of local
states, one for Sum and one for Product. The set of global states is a subset of
the full cartesian product of local state values: the dependencies between local
states enable Sum and Product to communicate their local state to each other
without explicitly referring to it.

‘Sum knows the (pair of) numbers’ can be represented by ‘Sum knows the
global state of the system’, i.e., as KS(s, p) ≡

∨
(x,y)∈I KS(sx+y ∧ pxy), and,

similarly, ‘Product knows the numbers’ by KP (s, p) ≡
∨

(x,y)∈I KP (sx+y ∧ pxy).
The formalization of the announcements made towards a solution of the problem
is then similar to above:

SP(s,p) |= [KS¬KP (s, p)][KP (s, p)][KS(s, p)](s4+13 ∧ p4·13)

An advantage of this representation is that we can apply known results for
interpreted systems, such that agents at least know their local state, and the
availability of characteristic formulas for modal structures [BM96, vB98] to the
specific case of finite interpreted systems [vDvdHK03]. That agent S knows its
local state, means that S knows the sum of the two numbers, whatever they
are: SP(s,p) |= sx+y → KSsx+y. From this follows that in the models for our
problem a requirement KS(sx+y ∧ pxy), that is equivalent to KSsx+y ∧KSpxy,
is equivalent to KSpxy. Similarly, pxy → KP pxy, and therefore, in the models,
KP (sx+y ∧ pxy) is equivalent to KP sx+y.

Concerning the characteristic formula describing the initial situation, we
can apply results from [vDvdHK03].2 The characteristic formula δ(SP(s,p)) is

2A characteristic formula of a pointed model (M,w) is a formula δ(M,w) such that M,w |=
ψ iff δ(M,w) |= ψ, in other words, any ψ true in (M,w) is entailed by δ(M,w). A similar
notion equates model validity with entailment by way of M |= ψ iff δ(M) |= ψ. These
descriptions exist for finite epistemic models. We also have that δ(M,w)↔ (δ(w)∧CN δ(M)),

12

defined as

δ(SP(s,p)) ≡
∨

(x,y)∈I(sx+y ∧ pxy) ∧∧
(x,y)∈I(KSsx+y ↔ ¬KS¬(sx+y ∧ pxy)) ∧∧
(x,y)∈I(KP pxy ↔ ¬KP¬(sx+y ∧ pxy))

The first conjunct of δ(SP(s,p)) sums up the valuations of the different states
in the domain. The second conjunct says (entails) that S knows its local state
if and only if it considers possible any global state with that local state. For
example KSs17 ↔ ¬KS¬(s17 ∧ p52); another conjunct is KSs17 ↔ ¬KS¬(s17 ∧
p60). From this follows that KSs17 implies ¬KS¬p52 ∧ ¬KS¬p60 ∧ . . . : if the
sum of the two numbers is 17, S considers it possible that their product is 52,
or 60, etc.

The traditional modelling of Sum and Product relates to the interpreted
system modelling in a precise technical sense. Expand the language to one
containing atoms for all numbers x, y and atoms for all sums and products s, p of
those numbers. Extend the models SP(x,y) and SP(s,p) to SP+

(x,y) and SP+
(s,p),

respectively, by adding valuations for all sum and product atoms in the former,
and for all smaller and larger number atoms in the latter. For example, to define
SP+

(x,y) we have to add valuations for all atoms s and p such that (x, y) ∈ V +
sx+y

iff s = x+y and (x, y) ∈ V +
pxy iff p = xy. We now have that SP+

(x,y) and SP+
(s,p)

are isomorphic. (From this then follows that the models are also bisimilar
[BdRV01] – a slightly weaker notion of ‘sameness of models’ that still guarantees
that the theories describing the models are logically equivalent.) Without going
into great detail, it suffices to define the isomorhphism as R : I → W ′ such
that R : (x, y) 7→ (x + y, xy), to observe that this relation is a bijection, that
(x, y) ∼S (x′, y′) iff R(x, y) ∼S R(x′, y′) iff (x + y, xy) ∼S (x′ + y′, x′y′), and
similarly for Product, and that the valuation of all facts remains the same for
any states (x, y) and (x+ y, xy). The characteristic formula for the interpreted
system SP+

(s,p) in the expanded logical language is the previous one, δ(SP(s,p)),
in conjunction with ∧

(i,j)∈I

((xi ∧ yj)↔ (si+j ∧ pij))

This propositional equivalence relates a number pair to its unique corresponding
sum and product pair.

To conclude, using the interpreted system representation, we can describe the
initial situation for the Sum-and-Product puzzle in a very precise way. Moreover,
the traditional representation and the interpreted system one are in a sense
interchangeable: they have the same logical theory.

where δ(w) is the description of state w, for example summing up its valuation, or some other
formula only true in w.

13

6 Unsuccessful updates

Not all formulas remain true after their announcement, in other words, [ϕ]ϕ is
not a principle of public announcement logic. A poignant example is when I’m
telling you that “You don’t know that the Highlanders just beat the Lions!”. In
the standard conversational setting this presumes that the factual information
of which you are ignorant is actually the case, i.e., this normally means “The
Highlanders just beat the Lions and you don’t know that the Highlanders just
beat the Lions.” It is therefore an announcement of the form q∧¬Knq. After the
announcement, you know that the fact in question is true – Knq – and therefore
the formula of the announcement has become false: Knq entails ¬q∨Knq, which
is equivalent to ¬(q∧¬Knq), the negation of the announcement. In a somewhat
different setting that the formula q ∧ ¬Knq cannot be consistently known, this
phenomenon has been known in philosophical circles for a long time, namely
as the Moore-paradox [Moo42, Hin62]. In the underlying dynamic setting it
has been described as an unsuccessful update in [Ger99, Ger05]. General ter-
minology is proposed in [vDK05]. Let ϕ be a formula in the language of public
announcement logic:

• Successful formula
ϕ is successful iff [ϕ]ϕ is valid.

• Unsuccessful formula
ϕ is unsuccessful iff it is not successful.

• Successful update
ϕ is successful in epistemic state (M,w) iff M,w |= 〈ϕ〉ϕ

• Unsuccessful update
ϕ is unsuccessful in (M,w) iff M,w |= 〈ϕ〉¬ϕ.

Note that an unsuccessful formula may be a successful update in one epistemic
state and an unsuccessful update in another epistemic state. It can be shown
that [ϕ]ϕ is valid iff [ϕ]CGϕ is valid iff ϕ→ [ϕ]CGϕ is valid. (See [vDK05], the
second equivalence follows directly from the principle [ϕ]ψ ↔ (ϕ→ [ϕ]ψ), listed
as item i on page 10 in Section 3.) Therefore, the successful formulas capture
the notion ‘formulas that remain true after their announcement’.

Clearly, also in the course of solving the Sum-and-Product problem the
agents appear to learn things that they did not know before. So some re-
versal of ignorance into knowledge seems to take place. We therefore expect
that some of the announcements made towards the solution of the problem are
unsuccessful updates. In this section we refer to those four successive announce-
ments as (how they have been enumerated before, namely as) (i) ¬KP (x, y),
(ii) KS¬KP (x, y), (iii) KP (x, y), and (iv) KS(x, y).

The case i Remember that announcement i was superfluous in the analysis
of the riddle. We therefore do not expect it to have ‘surprising informational
qualities’, and this is indeed the case: i is a successful formula.

14

Formula i equals ¬KP (x, y) whereKP (x, y) which was defined as
∨

(i,j)∈I KP (xi∧
yj). Therefore, it has form ¬Knϕ ∧ ¬Knψ ∧ . . . , with ϕ,ψ, . . . booleans. We
show that this formula is successful for two conjuncts, i.e., formula [¬Knϕ ∧
¬Knψ](¬Knϕ ∧ ¬Knψ) is valid for booleans ϕ and ψ; the case for the longer
finite conjunction follows similarly.

Let M,w be arbitrary. Assume M,w |= ¬Knϕ ∧ ¬Knψ. We have to prove
that M |(¬Knϕ ∧ ¬Knψ), w |= ¬Knϕ ∧ ¬Knψ. From M,w |= ¬Knϕ ∧ ¬Knψ
follows that there are v and v′ ∈ D(M) such that v ∼n w and M,v |= ¬ϕ, and
v′ ∼n w and M,v′ |= ¬ψ, respectively. As ∼n is an equivalence relation, we also
have that v ∼n v and v ∼n v′, we have as well M,v |= ¬Knϕ∧¬Knψ; similarly,
M,v′ |= ¬Knϕ ∧ ¬Knψ. In other words, both v and v′ are in the domain of
M |(¬Knϕ ∧ ¬Knψ). As the value of boolean propositions only depends on the
current factual state, from M,v |= ¬ϕ and v ∈ D(M |(¬Knϕ ∧ ¬Knψ)) follows
M |(¬Knϕ∧¬Knψ), v |= ¬ϕ; and from the last follows M |(¬Knϕ∧¬Knψ), w |=
¬Knϕ. Similarly, M |(¬Knϕ∧¬Knψ), v′ |= ¬ψ; from which follows M |(¬Knϕ∧
¬Knψ), w |= ¬Knψ. Therefore M |(¬Knϕ ∧ ¬Knψ), w |= ¬Knϕ ∧ ¬Knψ, as
required.

The case ii An agent can become ignorant from professing his own knowledge,
and announcement ii is a typical example. This may sound strange3, but it can
easily be observed to be true for announcement ii: after ii, Product knows the
numbers (formula iii), so it can no longer be true that Sum knows that Product
does not know the numbers: in other words, formula ii is now false. Ergo, ii is
an unsuccessful update.

The cases iii and iv The last two announcements iii and iv are successful
formulas: this is because they are preserved formulas: they are truth preserving
under submodel restrictions, an inductively defined fragment with – among
other clauses – inductive clauses that atomic propositions are always preserved,
and that if ϕ and ψ are preserved, then also ϕ∧ψ, ϕ∨ψ, and Knϕ [vB02]. The
announcements iii and iv are disjunctions of formulas of the form Kn(xi ∧ yj),
and are therefore preserved. All preserved formulas are successful [vDK05]. And
all successful formulas induce successful updates in all epistemic states.

No inductive definition of the successful formulas is known – in particular, if
ϕ and ψ are both successful, [ϕ]ψ may be unsuccessful. Having said that, it
is remarkable that the sequence of the three announcements ii ; iii ; iv is an
unsuccessful update, or, put in a single formula: ii ∧ [ii]iii ∧ [ii ∧ [ii]iii]iv is
unsuccessful in the initial epistemic state. This formula becomes false after its
announcement: after that, just like after ii, Sum knows that Product knows the
numbers, so it is now false that Sum knows that Product does not know the
numbers: ii has become false, and therefore the entire conjunction correspond-
ing to the sequence ii ; iii ; iv. The first announcement i can also be added to

3Stranger even, is that an agent can also become knowledgeable from professing his own
ignorance, for which there are other examples.

15

the conjunction, so that i ∧ ii ∧ [ii]iii ∧ [ii ∧ [ii]iii]iv is also unsuccessful in the
initial epistemic state.

This last observation captures, we think, more than anything else our intu-
ition that the Sum-and-Product problem is puzzling.

7 The Epistemic Model Checker DEMO

Recently, epistemic model checkers have been developed to verify properties
of interpreted systems, knowledge-based protocols, and various other multi-
agent systems. The model checkers MCK [GvdM04] and MCMAS [RL04] use
the interpreted system architecture; MCK does this in a setting of linear and
branching time temporal logic. The exploration of the search space in both
MCK and MCMAS is based on ordered binary decision diagrams.

A different model checker, not based on a temporal epistemic architecture,
is DEMO. It has been developed by Jan van Eijck [vE04]. DEMO is short for
Dynamic Epistemic MOdelling. It allows modelling epistemic updates, graphical
display of Kripke structures involved, and formula evaluation in epistemic states.
DEMO is written in the functional programming language Haskell.

The model checker DEMO implements the dynamic epistemic logic of [BM04].
In this ‘action model logic’ the global state of a multi-agent system is represented
by an epistemic model as in Section 3. But more epistemic actions are allowed
than just public announcements, and each epistemic action is represented by an
action model. Just like an epistemic model, an action model is also based on a
multi-agent Kripke frame, but instead of carrying a valuation it has a precondi-
tion function that assigns a precondition to each point in the action model. A
point in the action model domain stands for an atomic action. The epistemic
state change in the system is via an operation called the update product. This
is a restricted modal product. In this submission we restrict our attention to
action models for public announcements. Such action models have a singleton
domain, and the precondition of that point is the announced formula. We refrain
from details and proceed with (a relevant part of – recursive clauses describing
the effect of updates have been omitted) the recursive definition of formulas in
DEMO.

Form = Top | Prop Prop | Neg Form | Conj [Form] | Disj [Form]
| K Agent Form | CK [Agent] Form

Formula Top stands for >, Prop Prop for atomic propositional letters (the first
occurrence of Prop means that the datatype is ‘propositional atom’, whereas
the second occurrence of Prop is the placeholder for an actual proposition let-
ter, such as P 3), Neg for negation, Conj [Form] stands for the conjunction of
a list of formulas of type Form, similarly for Disj, K Agent stands for the in-
dividual knowledge operator for agent Agent, and CK [Agent] for the common
knowledge operator for the group of agents listed in [Agent].

16

The pointed and singleton action model for a public announcement is created
by a function public with a precondition (the announced formula) as argument.
The update operation is specified as

upd :: EpistM -> PoAM -> EpistM

Here, EpistM is an epistemic state and PoAM is a pointed action model, and the
update generates a new epistemic state. If the input epistemic state EpistM
corresponds to some (M,w), then in case of the truthful public announcement
of ϕ the resulting EpistM has the form (M |ϕ,w). We can also update with a
list of pointed action models:

upds :: EpistM -> [PoAM] -> EpistM

An example is the sequence of three announcements in the Sum-and-Product
problem.

8 Sum and Product in DEMO

We implement the Sum-and-Product riddle in DEMO and show how the imple-
mentation finds the unique solution (4, 13). Figure 2 contains the implementa-
tion.

A list is a standard data structure in Haskell, unlike a set. The set I ≡
{(x, y) ∈ N2 | 1 < x < y and x+ y ≤ 100} is realized in DEMO as the list

pairs = [(x,y)| x<-[2..100], y<-[2..100], x<y, x+y<=100]

Thus, { and } are replaced by [and], ∈ is replaced by <-, and instead of I
we name it pairs. A pair such as (4, 18) is not a proper name for a domain
element. In DEMO, natural numbers are such proper names. Therefore, we
associate each element in pairs with a natural number and make a new list.

ipairs = zip [0..numpairs-1] pairs

Here, numpairs is the number of elements in pairs, and the function zip pairs
the i-th element in [0..numpairs-1] with the i-th element in pairs, and makes
that the i-th element of ipairs. For example, the first element in ipairs is
(0,(2,3)).

The initial model of the Sum-and-Product riddle is represented as

msnp :: EpistM

msnp = (Pmod [0..numpairs-1] val acc [0..numpairs-1])

where

val = [(w,[P x, Q y]) | (w,(x,y))<- ipairs]

acc = [(a,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1+y1==x2+y2]++

[(b,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1*y1==x2*y2]

17

module SNP

where

import DEMO

pairs = [(x,y)|x<-[2..100], y<-[2..100], x<y, x+y<=100]

numpairs = llength(pairs)

llength [] =0

llength (x:xs) = 1+ llength xs

ipairs = zip [0..numpairs-1] pairs

msnp :: EpistM

msnp = (Pmod [0..numpairs-1] val acc [0..numpairs-1])

where

val = [(w,[P x, Q y]) | (w,(x,y))<- ipairs]

acc = [(a,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1+y1==x2+y2]++

[(b,w,v)| (w,(x1,y1))<-ipairs, (v,(x2,y2))<-ipairs, x1*y1==x2*y2]

fmrs1e = K a (Conj [Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

Neg (K b (Conj [Prop (P x),Prop (Q y)]))]| (x,y)<-pairs])

amrs1e = public (fmrs1e)

fmrp2e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K b (Conj [Prop (P x),Prop (Q y)])])|(x,y)<-pairs]

amrp2e = public (fmrp2e)

fmrs3e = Conj [(Disj[Neg (Conj [Prop (P x),Prop (Q y)]),

K a (Conj [Prop (P x),Prop (Q y)])])|(x,y)<-pairs]

amrs3e = public (fmrs3e)

solution = showM (upds msnp [amrs1e, amrp2e, amrs3e])

Figure 2: The DEMO program SNP.hs. Comment lines have been removed.

Here, msnp is a multi-pointed epistemic model, that consists of a domain
[0..numpairs-1], a valuation function val, an accessibility relation function
acc, and [0..numpairs-1] points. As the points of the model are the entire do-
main, we may think of this initial epistemic state as the (not-pointed) epistemic
model underlying it.

The valuation function val maps each state in the domain to the subset of
atoms that are true in that state. This is different from Section 3, where the
valuation V was defined as a function mapping each atom to the set of states
where it is true. The correspondence q ∈ val(w) iff w ∈ V (q) is elementary. An
element (w,[P x, Q y]) in val means that in state w, atoms P x and Q y are
true. For example, given that (0,(2,3)) is in ipairs, P 2 and Q 3 are true in
state 0, where P 2 stands for ‘the smaller number is 2’ and Q 3 stands for ‘the
larger number is 3’. These same facts were described in the previous section by
x2 and y3, respectively, as that gave the closest match with the original problem
formulation. In DEMO, names of atoms must start with capital P,Q,R, but
the correspondence between names will be obvious.

18

The function acc specifies the accessibility relations. Agent a represents Sum
and agent b represents Product. For (w,(x1,y1)) and (v,(x2,y2)) in ipairs,
if their sum is the same: x1+y1==x2+y2, then they cannot be distinguished by
Sum: (a,w,v) in acc; and if their product is the same: x1*y1==x2*y2, then
they cannot be distinguished by Product: (b,w,v) in acc. Function ++ is an
operation merging two lists.

Sum and Product’s announcements are modelled as singleton action models,
generated by the announced formula (precondition) ϕ and the operation public.
Consider KS¬

∨
(i,j)∈I KP (xi ∧ yj), expressing that Sum says: “I knew you

didn’t.” This is equivalent to KS

∧
(i,j)∈I ¬KP (xi ∧ yj). A conjunct ¬KP (xi ∧

yj) in that expression, for ‘Product does not know that the pair is (i, j)’, is
equivalent to (xi ∧ yj)→ ¬KP (xi ∧ yj).4 The latter is computationally cheaper
to check in the model, than the former: in all states but (i, j) of the model, the
latter requires a check on two booleans only, whereas the former requires a check
in each of those states of Product’s ignorance, that relates to his equivalence
class for that state, and that typically consists of several states.

This explains that the check on
∧

(i,j)∈I ¬KP (xi ∧ yj) can be replaced by
one on

∧
(i,j)∈I((xi∧ yj)→ ¬KP (xi∧ yj)). Using a model validity, the check on∨

(i,j)∈I KP (xi∧yj) (Product knows the numbers) can also be replaced, namely
by a check

∧
(i,j)∈I((xi ∧ yj) → KP (xi ∧ yj)).5 Using these observations, and

writing an implication ϕ → ψ as ¬ϕ ∨ ψ, the three problem announcements
ii, iii, and iv listed on page 11 are checked in DEMO by the formulas fmrs1e,
fmrp2e, and fmrs3e, respectively, as listed in Figure 2. The corresponding
singleton action models are obtained by applying the function public, namely
as amrs1e = public (fmrs1e), amrp2e = public (fmrp2e), and amrs3e =
public (fmrs3e). This is also shown in the figure.

Finally, we show a relevant part of DEMO interaction with this implemen-
tation. The complete (three-page) output of this interaction can be found on
www.cs.otago.ac.nz/staffpriv/hans/sumpro/.

The riddle is solved by updating the initial model msnp with the action
models corresponding to the three successive announcements:

*SNP> showM (upds msnp [amrs1e, amrp2e, amrs3e])
==> [0]
[0]
(0,[p4,q13])
(a,[[0]])
(b,[[0]])

This function showM displays a pointed epistemic model as:

==> [<points>]
4We use the S5-validity ¬Kϕ ↔ (ϕ → ¬Kϕ), that can be shown as follows: ¬Kϕ iff

(ϕ ∨ ¬ϕ) → ¬Kϕ iff (ϕ → ¬Kϕ) ∧ (¬ϕ → ¬Kϕ) iff (ϕ → ¬Kϕ) ∧ (Kϕ → ϕ) iff (in S5!)
(ϕ→ ¬Kϕ).

5We now use that ϕ∨ψ – where ∨ is exclusive disjunction – entails that (Kϕ ∨ Kψ iff
(ϕ→ Kϕ) ∧ (ψ → Kψ)).

19

[<domain>]
[<valuation>]
[<accessibility relations represented as equivalence classes>]

The list [p4,q13] represents the facts P 4 and Q 13, i.e., the solution pair
(4, 13). Sum and Product have full knowledge (their access is the identity) on
this singleton domain consisting of state 0. That this state is named 0 is not a
coincidence: after each update, states are renumbered starting from 0.

For another example, (upds msnp [amrs1e,amrp2e]) represents the model
that results from Product’s announcement (iii) “Now I know the numbers.”
Part of the showM results for that model are

*SNP> showM (upds msnp [amrs1e,amrp2e])

==> [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,

(...)

(0,[p2,q9])(1,[p2,q25])(2,[p2,q27])(3,[p3,q8])(4,[p3,q32])

(5,[p3,q38])(6,[p4,q7])(7,[p4,q13])(8,[p4,q19])(9,[p4,q23])

(...)

(a,[[0,3,6],[1,9,14,23,27,32,37,44,50],[2,10,17,24,28,38,45,46,51],[4

,11,18,29,33,39,47,55,60,65],[5,12,25,35,41,48,52,56,57,62,67,70,73],

[7],[8,22,36],[13,20,26,42,53,58,63,68,71,74,76,79,81],[15,19,30,34,4

0,61,66],[16,21,31,43,49,54,59,64,69,72,75,77,78,80,82,83,84,85]])

(b,[[0],[1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],

(...)

After two announcements 86 pairs (x, y) remain possible. All remaining states
are renumbered, from 0 to 85, of which part is shown. Product’s (b) access
consists of singleton sets only, of which part is shown. That should be obvious,
as he just announced that he knew the number pair. Sum’s (b) equivalence
class [0,3,6] is that for sum 11: note that (0,[p2,q9]), (3,[p3,q8]), and
(6,[p4,q7]) occur in the shown part of the valuation. Sum’s access has one
singleton equivalence class, namely [7]. That corresponds to the state for pair
(4, 13): see (7,[p4,q13]) in the valuation. Therefore, Sum can now truthfully
announce to know the pair of numbers, after which the singleton final epistemic
state (that was already displayed) results.

9 Other model checkers and DEMO programs

As mentioned in the introduction to the previous section, other model checkers
around are MCK [GvdM04], and MCMAS [RL04]. The question is whether
we could also implement this problem in those model checkers. For the latest
versions of these model checkers in both cases the answer appears to be ‘no’.

The current version of MCK is 0.2.0. In MCK, a state of the environ-
ment is an assignment to a set of variables declared in the environment section.
These variables are usually assumed to be partially accessible to the individual
agents, and agents could share some variables. The change of the state of the
multi-agent system is either made by agents or the environment, in the form

20

of changing these variables. There are two ways to make such changes. One
is to send signals to the environment using the action construct by agents in
conjunction with the transitions construct by the environment, which provides
a way to describe how the environment variables are updated. The other is
a specialized form for actions from the perspective that environment variables
are shared variables, by providing read and write operations on those shared
variables. In both cases, we need guarded statements to make the change. For
example, a simple deterministic statement has the form:

if cond → C [otherwise → Co] fi

where command C is eligible for execution only if the corresponding condition
cond evaluates to true in the current state. Otherwise, the command Co will
be executed. If we would like to model the Sum-and-Product problem in MCK,
the effect of a public announcement should be recorded in a variable which is
accessible to all agents. Suppose the effect of P ’s public announcement : “I
now know it” (KP (x, y)) is recorded in variable v. Then in a state just after
this announcement, the variable v will be set to True if KP (x, y) holds in the
previous state, and otherwise to False. Clearly, we need that statement in the
above epistemic form, with cond involving knowledge checking. Unfortunately,
even though in MCK we can check epistemic postconditions, the current version
of MCK does not support checking epistemic formulas as preconditions, as in
cond. This might possibly be related to inherent difficulties to incorporate
knowledge in cond, but an extension seems called for.

The latest MCMAS is version 0.7. The underlying theory has been developed
by Alessio Lomuscio. It can be seen as a continuation of his PhD work on
hypercube systems, which are a special class of interpreted systems [Lom99].
Similarly to MCK, MCMAS also does not support actions with knowledge-based
preconditions to transit from one global state to another global state.

Apart from the Sum-and-Product riddle we have implemented some of the other
riddles discussed in this paper in DEMO, such as the ‘Domiciliary’ problem in
Section 2.2. All these programs are mere variations of the one presented in this
paper, because the communications are always similar public announcements
of knowledge and ignorance in a two-agent system, whereas only the ‘starting
conditions’ – the number (or symbol) pairs initially allowed – vary from problem
to problem. For these programs, including full explanations, we refer to the
website www.cs.otago.ac.nz/staffpriv/hans/sumpro/.

10 Conclusions

We have modelled the Sum-and-Product problem in public announcement logic
and verified its properties in the epistemic model checker DEMO. The problem
can be represented in the traditional way by number pairs, so that Sum knows
their sum and Product their product, but also as an interpreted system with
(sum,product) pairs. Subject to the union of languages, the representations are

21

bisimilar, and even isomorphic. We also analyzed which announcements made
towards a solution of the problem were unsuccessful updates – formulas that
become false because they are announced.

A final word on model checking such problems: originally, an analysis in-
volving elementary number theory and combinatorics was necessary to solve the
problem. Indeed, that was the whole fun of the problem. Solving it in a model
checker instead, wherein one can, in a way, simply state the problem in its orig-
inal epistemic formulation, hides all that combinatorial structure and makes it
appear almost trivial. Far from trying to show that the problem is therefore
actually trivial or uninteresting, this rather shows how powerful model check-
ing tools may be, when knowledge specifications are clear and simple but their
structural ramifications complex.

References

[BdRV01] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cam-
bridge University Press, Cambridge, 2001. Cambridge Tracts in
Theoretical Computer Science 53.

[BM96] J. Barwise and L.S. Moss. Vicious Circles. CSLI Publications,
Stanford, 1996.

[BM04] A. Baltag and L.S. Moss. Logics for epistemic programs. Synthese,
139:165–224, 2004. Knowledge, Rationality & Action 1–60.

[BMS98] A. Baltag, L.S. Moss, and S. Solecki. The logic of common knowl-
edge, public announcements, and private suspicions. In I. Gilboa,
editor, Proceedings of the 7th Conference on Theoretical Aspects
of Rationality and Knowledge (TARK 98), pages 43–56, 1998.

[FHMV95] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning
about Knowledge. MIT Press, Cambridge MA, 1995.

[Fre69] H. Freudenthal. (formulation of the sum-and-product problem).
Nieuw Archief voor Wiskunde, 3(17):152, 1969.

[Fre70] H. Freudenthal. (solution of the sum-and-product problem).
Nieuw Archief voor Wiskunde, 3(18):102–106, 1970.

[Gar79] M. Gardner. Mathematical games. Scientific American, 241
(December):20–24, 1979. Also addressed in the March (page 24)
and May (pages 20–21) issues of volume 242, 1980.

[Ger99] J.D. Gerbrandy. Bisimulations on Planet Kripke. PhD thesis,
University of Amsterdam, 1999. ILLC Dissertation Series DS-
1999-01.

[Ger05] J.D. Gerbrandy. The surprise examination in dynamic epistemic
logic. Synthese, 2005. To appear.

22

[Gre68] M. H. Greenblatt. Mathematical Entertainments: A Collection of
Illuminating Puzzles New and Old. George Allen and Unwin Ltd,
London, 1968.

[GvdM04] P. Gammie and R. van der Meyden. MCK: Model checking the
logic of knowledge. In R. Alur and D. Peled, editors, Proceedings of
the 16th International Conference on Computer Aided Verification
(CAV 2004), pages 479–483. Springer, 2004.

[Hin62] J. Hintikka. Knowledge and Belief. Cornell University Press,
Ithaca, NY, 1962.

[Isa95] I.M. Isaacs. The impossible problem revisited again. The Mathe-
matical Intelligencer, 17(4):4–6, 1995.

[Koo05] B.P. Kooi. On public update logics. Under submission, 2005.

[Lew69] D.K. Lewis. Convention, a Philosophical Study. Harvard Univer-
sity Press, Cambridge (MA), 1969.

[Liu04] A. Liu. Problem section: Problem 182. Math Horizons, 11:324,
2004.

[Lom99] A.R. Lomuscio. Knowledge Sharing among Ideal Agents. PhD
thesis, University of Birmingham, Birmingham, UK, 1999.

[McC90] J. McCarthy. Formalization of two puzzles involving knowledge. In
Vladimir Lifschitz, editor, Formalizing Common Sense : Papers
by John McCarthy, Ablex Series in Artificial Intelligence. Ablex
Publishing Corporation, Norwood, N.J., 1990. original manuscript
dated 1978–1981.

[MDH86] Y. O. Moses, D. Dolev, and J. Y. Halpern. Cheating husbands
and other stories: a case study in knowledge, action, and commu-
nication. Distributed Computing, 1(3):167–176, 1986.

[Moo42] G.E. Moore. A reply to my critics. In P.A. Schilpp, editor, The
Philosophy of G.E. Moore, pages 535–677. Northwestern Univer-
sity, Evanston IL, 1942. The Library of Living Philosophers (vol-
ume 4).

[Pan91] G. Panti. Solution of a number theoretic problem involving knowl-
edge. International Journal of Foundations of Computer Science,
2(4):419–424, 1991.

[Pla89] J.A. Plaza. Logics of public communications. In M.L. Emrich,
M.S. Pfeifer, M. Hadzikadic, and Z.W. Ras, editors, Proceedings of
the 4th International Symposium on Methodologies for Intelligent
Systems, pages 201–216, 1989.

23

[RL04] Franco Raimondi and Alessio Lomuscio. Verification of multia-
gent systems via ordered binary decision diagrams: An algorithm
and its implementation. In Proceedings of the Third International
Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS 04), pages 630–637. IEEE Computer Society, 2004.

[Sal95] L. Sallows. The impossible problem. The Mathematical Intelli-
gencer, 17(1):27–33, 1995.

[Sch72] Stephen Schiffer. Meaning. Oxford University Press, Oxford, 1972.

[vB98] J.F.A.K. van Benthem. Dynamic odds and ends. Technical report,
ILLC, University of Amsterdam, 1998. Report ML-1998-08.

[vB02] J.F.A.K. van Benthem. One is a lonely number: on the logic of
communication. Technical report, ILLC, University of Amster-
dam, 2002. Report PP-2002-27 (material presented at the Logic
Colloquium 2002).

[vdHV02] W. van der Hoek and L.C. Verbrugge. Epistemic logic: a survey.
In L.A. Petrosjan and V.V. Mazalov, editors, Game theory and
Applications, volume 8, pages 53–94, 2002.

[vDK05] H.P. van Ditmarsch and B.P. Kooi. The secret of my success.
Synthese, 2005. To appear.

[vdM94] R. van der Meyden. Mutual belief revision. In Jon Doyle, Erik
Sandewall, and Pietro Torasso, editors, Proceedings of the 4th In-
ternational Conference on Principles of Knowledge Representation
and Reasoning (KR), pages 595–606. Morgan Kaufmann, 1994.

[vDRV05] H.P. van Ditmarsch, J. Ruan, and L.C. Verbrugge. Model checking
sum and product. In Proceedings of the 18th Australian Joint
Conference on Artificial Intelligence (AI 2005), pages 790–795.
Springer Verlag, 2005. LNAI 3809.

[vDvdHK03] H.P. van Ditmarsch, W. van der Hoek, and B.P. Kooi. Descrip-
tions of game states. In G. Mints and R. Muskens, editors, Logic,
Games, and Constructive Sets, pages 43–58, Stanford, 2003. CSLI
Publications. CSLI Lecture Notes No. 161.

[vDvdHK05] H.P. van Ditmarsch, W. van der Hoek, and B.P. Kooi. Dynamic
epistemic logic. Manuscript, 2005.

[vE04] J. van Eijck. Dynamic epistemic modelling. Technical report,
Centrum voor Wiskunde en Informatica, Amsterdam, 2004. CWI
Report SEN-E0424.

[WS40] W. T. Williams and G. H. Savage. The Penguin Problems Book: A
Modern Anthology of Perplexities and Tantalizers. Penguin Books
(Allen Lane), Harmondsworth, 1940.

24

[WS44] W. T. Williams and G. H. Savage. The Second Penguin Problems
Book. Penguin Books, Harmondsworth, 1944.

25

	3 aoard054017-1.pdf
	Introduction
	Russian Cards
	Model Checker MCK
	Model Checker DEMO
	Model Checker MCMAS
	Comparison
	Conclusions
	References

	4 aoard054017-2.pdf
	Introduction
	Public Announcement Logic
	The Epistemic Model Checker DEMO

