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Abstract

We propose to estimate time-varying frequency-selective channels using data-dependent super-

imposed training (DDST) and a basis expansion model (BEM). The superimposed training

consists of the sum of a known sequence and a data-dependent sequence, which is unknown to

the receiver. The data-dependent sequence cancels the effects of the unknown data on channel

estimation. Symbol detection is performed using MMSE equalization. The method is compared

to time-division-multiplexing-based methods.



0.1 Introduction

Wireless and mobile communications channels for high data rate transmission are typically time

and frequency selective. Frequency-selectivity is due to multipath propagation and large signal

bandwidth whereas time-selectivity is induced by Doppler. Such doubly selective channels offer

joint multipath-Doppler diversity gains [2]. However, achieving such gains requires channel

acquisition, which is a challenging task. Further, when the channel is fast fading, the common

approach of assuming the channel to be quasi-static over a certain interval of time may lead

to unacceptable system performance. Thus, accurate estimation of doubly-selective channels is

well motivated.

In most practical systems, training is used to facilitate channel estimation. Blind techniques

typically require long data records and are often complex to implement. The conventional

way of multiplexing training symbols with the data is time-division multiplexing (TDM) [3, 4].

In the case of purely time-selective channels, periodic insertion of training symbols, known as

pilot symbol aided modulation (PSAM), was shown to be optimal in the sense of minimizing

the mean square error (MSE) of channel estimation. For purely frequency-selective channels,

periodic insertion of pilot clusters was shown to be optimal [4]. For doubly selective channels

and zero-padded block transmission, using the basis expansion model (BEM) of [1, 2], it was

shown in [14] that periodic insertion of zero-guarded pilot symbols was optimal. For cyclic-

prefixed systems, orthogonal multiplexing is used in the frequency domain [12]. An alternative

approach to orthogonal multiplexing schemes is superimposed training (ST). This scheme saves

valuable bandwidth at the expense of a reduction in the information signal-to-noise ratio (SNR),

since some of the transmitted energy is allocated to the embedded pilots. In the case of purely

time-selective channels, it was shown in [13] that ST outperforms PSAM when the fading is fast.

ST schemes have also been proposed in [9, 10]. The main drawback of such a scheme is that

performance of a channel estimator is limited by the unknown data which act as a source of input

noise. To circumvent this, a variant of the ST scheme, called data-dependent ST (DDST) was

proposed in [8, 11] for purely frequency-selective channels. Unlike the conventional ST scheme,

the training sequence in the DDST method was set to be the sum of a known (to the receiver)

sequence, and a data-dependent sequence, which is unknown at the receiver. Here, we extend

this method to include time and frequency-selective channels. Towards this objective, we use

the basis expansion model (BEM) [1, 2] which has been used to approximate doubly selective

channels.

The report is organized as follows. The next section describes the system model. Channel

estimation is presented in Section 3. The issue of optimum training design is addressed for

the proposed pilot assisted transmission in Section 4. Equalization and symbol detection are

explained in Section 6. Simulations results are presented in Section 7 and conclusions are drawn
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in Section 8.

Notation: Superscripts ∗, T and † denote Hermitian, transpose and pseudo-inverse opera-

tors. The trace and statistical expectation are denoted by Tr {·} and E {·}. The nth element

of a vector z is denoted by z(n). The (N × N) identity matrix is denoted by I. Finally,

diag (a1, ..., aN ) is the (N × N) diagonal matrix whose nth diagonal entry is an. A matrix of

zero will be denoted by 0. The symbol ∝ will mean ”proportional to”.

0.2 System Model

Consider a doubly-selective communication link and let h(t; τ) denote its time-varying impulse

response which includes the doubly-selective channel as well as the transmit-receive filters. Let

H(f ; τ) denote the Fourier transform of h(t; τ). Let us define the delay spread τmax and the

Doppler spread fmax as the thresholds on τ and f beyond which |H(f ; τ)| ≈ 0.

Consider a cyclic-prefixed single-carrier block transmission system operating over such a

channel. In order to avoid interblock interference, we assume the length of the cyclic prefix

(CP) to be larger or equal to the length of the channel. At the receiver, after removing the

CP, the baud-sampled discrete-time baseband signal model for each received block (we omit the

block index for notational simplicity) is

y(n) =
L−1
∑

`=0

h(n; `)s(n− `) + v(n), n = 0 · · ·N − 1 (1)

where N is the length of the block, h(n; `) is the time-varying `th tap of the channel, L − 1 is

the order of the channel in number of samples, and {s(n)} is the transmitted block. Because

of the CP s(−i) = s(N − i), i = 1 · · ·L− 1. We assume that the transmitted symbols s(n) are

zero-mean and independent of the zero-mean noise v(n).

Now, we use a BEM to model the time-varying channel. We focus here on the exponential

basis functions. Under the assumption that the delay and Doppler spreads are bounded by τmax

and fmax respectively, the time-varying channel can be modelled for n = 0, · · · , N − 1 as

h(n; `) =

Q/2
∑

q=−Q/2

hq,`e
j2πqn/N , ` = 0, ..., L− 1 (2)

where L and Q satisfy the following conditions:

(L− 1)T ≥ τmax Q/(NT ) ≥ 2fmax

where T is the symbol period. We also assume that N >> L(Q+ 1).

Using eq. (2), the signal model in eq. (1) can be written in vector form as

y =

Q/2
∑

q=−Q/2

DqHqs + v (3)
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where Dq := diag
(

1, · · · , ej2πq(N−1)/N
)

, Hq is an (N × N) circular matrix with first column,

[hq,0, hq,1, ...hq,L−1, 0, ..., 0]
T , and s is the (N × 1) transmitted block. Equivalently, y can be

rewritten as

y =

Q/2
∑

q=−Q/2

DqShq + v (4)

where S is the leading (N×L) matrix of the (N×N) circular Toeplitz matrix whose first column

is s, and hq = [hq,0, ..., hq,L−1]
T . In a more compact form, y can be expressed as

y = D[IQ+1 ⊗ S]h + v (5)

where D = [D−Q/2 · · ·DQ/2], h = [hT
−Q/2 · · ·h

T
Q/2]

T .

0.3 Channel Estimation using Data-Dependent Superimposed

Training

In a TDM scheme, some of the entries of s are known pilots. In the conventional ST scheme, a

known training sequence, c, is added to the data vector, w, i.e., s = w + c. The data symbols

are assumed to be zero-mean, i.i.d. random variables drawn from a finite alphabet, e.g., PSK

or QAM; let σ2
w denote the data symbol power. The channel coefficients can be consistently

estimated using the first-order statistics of the received signal [5, 6]. A disadvantage of this

method is that the channel estimate is degraded by the embedded unknown data, which acts as

a source of input noise. To mitigate this problem, we use the DDST approach [8], where w is

distorted prior to adding the known training sequence. Let w = w + e be the distorted data

vector, where e is a zero-mean data-dependent sequence. With s = w + c, y can be written as

y = D[IQ+1 ⊗ C]h +D[IQ+1 ⊗W]h + v

where C andW are defined similar to S in (4). The linear least squares (LLS) channel estimate,

which regards the data-related term on the RHS of the above equation as noise, is given by

ĥ = (D[IQ+1 ⊗ C])† y. (6)

0.3.1 Identifiability

The channel estimator in eq. (6) is consistent iff the following identifiability condition is satisfied

rank {D[IQ+1 ⊗ C]} = L(Q+ 1). (7)

Equivalently,

rank
{

[D−Q/2C, ...,D0C, ...,DQ/2C]
}

= L(Q+ 1).
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Recall that C is the N × L leading submatrix of a circulant matrix, and the D’s by definition

are N × N full rank matrices. Equivalently N ≥ L(Q + 1), C must have full column rank L,

and the Q + 1 sub-matrices must be orthogonal to one-another, i.e., C∗D∗
mDnC = 0, m,n =

−Q/2, ..., Q/2, m 6= n. We note that such a condition would be required even if the exponential

bases were replaced by an arbitrary orthonormal basis set. For the exponential basis set, the

necessary and sufficient conditions are

Result 1 Channel identifiability is ensured iff N ≥ L(Q + 1), the training sequence has at

least L non-zero tones, and C∗DqC = 0, q = ±Q, ...,±1.

Let Dc̃ = diag (c̃) with c̃ being the DFT of c. Then a sufficient condition is that D∗
c̃J

qDc̃ = 0,

q 6= 0, where J is the circular shift matrix operator. Thus, the training sequence must satisfy

an interesting shift-orthogonality in the frequency domain.

In the following, we refer to the indices of the nonzero entries of c̃ as pilot frequencies.

Let P denote the subset of {0, · · · , N − 1} containing these pilot frequencies and let P denote

its cardinality. Note that a necessary but not sufficient condition for channel identifiability is

P ≥ L.

Corollary 1 If P = L, then channel identifiability is guaranteed if the pilot frequencies are

spaced at least (Q+ 1) apart.

We make the following remarks

• Corollary 1 implies that L(Q + 1) unknown channel coefficients can be identified with

only L pilot tones. When Q = 0, this is the standard result: the training sequence must

have at least L tones to cope with the unknown possibly annihilating L− 1 channel zeros.

For Q > 0, this identifiability is possible thanks to the frequency diversity (or frequency

spread) offered by the time-varying channel and enabled by the “shift-orthogonal” training

sequence.

• A channel identifiability condition that is independent of P is P ≥ (L− 1)Q+ 1. This is

required when the pilot frequencies are cyclicly contiguous.

0.3.2 Data-Independent Channel Estimation Condition

In order for ĥ to be independent of the data, the following condition must be satisfied

[IQ+1 ⊗ C]HDHD[IQ+1 ⊗W] = 0 (8)

which can be equivalently expressed as

CHDqW = 0, q = −Q, · · · , Q (9)
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Using the same reasoning as in the previous subsection, condition (9) can be expressed in

the frequency domain as

N−1
∑

m=0

c̃∗(m)w̃(< m+ q >N )ej2πm`/N = 0

q = −Q, · · · , Q.` = −L+ 1, · · · , L− 1 (10)

where w̃ is the DFT of w, and < · >N denotes arithmetic modulo N .

Let Z be the subset of {0, · · ·N −1} containing the indices of the DFT entries of w̃ involved

in Condition (10), and let Z denote its cardinality. Note that Z depends on P. More specifically,

if k ∈ P, then {< k −Q >N , · · · , < k +Q >N} ⊂ Z. Condition (10) imposes (2L− 1)(2Q+ 1)

constraints on Z elements of w̃ indexed by Z. Therefore, the number of effective constraints on

w̃ (or w) is min(Z, (2L − 1)(2Q + 1)). By keeping P to the minimum value for a given pilot

placement scheme, it can be shown that min(Z, (2L+ 1)(2Q+ 1)) = Z. In this case, Condition

(10) implies that the n ∈ Z-th DFT entries of w̃ must be set to zero. Hence, in what follows,

P will be kept to the minimum value. We now make the following remarks.

• If the pilot frequencies are cyclicly contiguous, the minimal value of P that guarantees

channel identifiability is P = (L − 1)Q + L, as mentioned in the previous subsection. In

this case, Z consists of only one cluster of size Z = (L+ 1)Q+ L.

• In the case where L pilot frequencies are spaced at least (Q+ 1) apart, as in Corollary 1,

Z consists of L disjoint clusters of size 2Q + 1, and Z = L(2Q + 1). Since Z in this case

is larger than that obtained in the case of contiguous pilot frequencies, data distortion is

also greater. However, as we will see in the next section, designing the pilot frequencies to

be contiguous is worst when performance of channel estimation is concerned.

• Note that Z > P for time-varying channels, unlike the case of time-invariant channels (i.e.,

Q = 0) where Z = P regardless of P [8].

• In the presence of a DC-offset, it is preferable that P does not include the zero frequency

in order to decouple channel and DC-offset estimation. To make DC-offset estimation

data-independent, the zero frequency should be added to Z.

0.4 Optimum Training Sequence Design

In the case of purely frequency-selective channels, it was shown in [?] that designing c so that

its DFT has only L non-zero entries which are equally spaced and have the same magnitude

is optimal in terms of minimizing the mean square error (MSE) of the LLS channel estimate

and minimizing data distortion. For doubly-selective channels, the design of c is not as simple
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because as we will see later, minimizing the MSE of ĥ under Condition (9) does not minimize

data distortion and vice-versa.

0.4.1 Minimizing the MSE of Channel Estimate

Since v is AWGN, the MSE of ĥ is, under Condition (9), given by

mse

(

ĥ
)

:= Tr
{

E
{

(ĥ− h)(ĥ− h)H
}}

= σ2Tr
{

(

[IQ+1 ⊗ CH ]DHD[IQ+1 ⊗ C]
)−1

}

.

We have the following inequality

mse

(

ĥ
)

≥ σ2[L(Q+ 1)]−1Tr
{

[IQ+1 ⊗ CH ]DHD[IQ+1 ⊗ C]
}

with equality iff

[IQ+1 ⊗ CH ]DHD[IQ+1 ⊗ C] ∝ I

which is equivalent to

CHDqC ∝ δ(q)I, q = −Q, · · · , Q.

Using the same reasoning as in the previous section, the above condition becomes

N−1
∑

m=0

c̃∗(m)c̃(< m+ q >N )ej2πm`/N = σ2
c δ(q)δ(`),

q = −Q, · · · , Q; ` = −L+ 1, · · · , L− 1. (12)

A simple design that satisfies the above condition is

|c̃(k)|2 =
Nσ2

c

P

P−1
∑

i=0

δ(k − iM − t), k = 0, · · · , N − 1

and

N = PM, 0 ≤ t ≤M − 1 and M ≥ Q+ 1 (13)

where P , t and M are positive integers. This design consists of P equispaced tones, at least

Q+1 apart. When M ≤ Q, Condition (12) can still be satisfied but in this case, the phases of

the c̃(m) would have to be constrained as well. However, the training design in this case is not

interesting since P should be minimized in the DDST approach, as we will see later. Note that

in the presence of a DC offset, t should be chosen nonzero in order to decouple channel and DC

offset estimations [15].

Note that the identifiability condition in Lemma 1 is equivalent to P ≥ L(Q+ 1). Using eq.

(13), the minimum MSE is given by

mse

(

ĥ
)∣

∣

∣

min
=

σ2L(Q+ 1)

Nσ2
c

. (14)
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It is worth noting that the minimum MSE is not a function of P , the number of non-zero entries

of c̃. Thus, P should be set to its minimum value, L, in order to minimize data distortion.

Recall that when L pilot frequencies are spaced at least (Q + 1) apart, the number of zeroed

entries of w̃ is Z = L(2Q+ 1).

It is worth pointing out that for the optimal design in eq. (13), the channel estimate in eq.

(6) reduces to

ĥq =
1

σ2
c

CHDH
q y, q = −Q/2, · · · , Q/2

The coefficients of ĥq can also be simply expressed as

hq,` =
1

Nσ2
c

P−1
∑

k=0

c̃∗(kM + t)uq,ke
j2π(kM+t)/N (15)

where

uq,k =
N−1
∑

n=0

y(n)e−j2πn(q+kM+t)/N

0.4.2 Minimizing Data Distortion

In order to minimize data-distortion, we choose w which minimizes the Euclidean distance

between w and w under the constraint that the DFT entries of w at the frequencies Z are

identically zero. Using Parseval’s theorem, this is equivalent to minimizing

∑

k/∈Z

|w̃(k)− w̃(k)|2 +
∑

k∈Z

|w̃(k)|2

over {w̃(k), k ∈ Z}. The minimum is obtained when w̃(k) = w̃(k) for all k /∈ Z. Thus,

w = (I−Φ)w

with Φ = FHTZF where TZ is obtained after setting the k ∈ Zth diagonal entries of the

(N ×N) identity matrix to zero. The power of data distortion,

E {‖w −w‖2} = E {‖Φw‖2}

is, under the assumption of i.i.d. data symbols, given by Zσ2
w. Thus, data distortion increases

with Z but is not a function of the placements of the zeroed DFT entries of w. This implies

that minimizing Z also minimizes data distortion. In Subsection 0.3.2, it was shown that Z is

minimum when the pilot frequencies are cyclicly contiguous; Z = (L + 1)Q + 1. However, this

pilot placement is not optimal for channel estimation. Recall that for the optimal pilot design in

eq. (13) where P = L, we have that Z = L(2Q+1), i.e., (L−1)Q more zeroed DFT entries than

the minimum value obtained with cyclicly contiguous pilot frequencies. Note that in the case

of purely time-selective channels (i.e., L = 1), the optimum design in eq. (13) with P = L = 1

7



also minimizes Z. Indeed, in this case, the optimal c̃ contains only one non-zero element at an

arbitrary frequency i, Z = {< i − Q >N , · · · , < i + Q >N} and Z = 2Q + 1. In the presence

of a DC-offset, it is preferable to select i such that the above set of frequencies does not include

the zero frequency [15].

0.5 Linear Equalization and Data Detection

Since the Hq’s are circular matrices, they can be diagonalised using the DFT matrix, i.e. Hq =

FHHqF where Hq = diag (Hq(n), n = 0, · · · , N − 1) with Hq(n) =
∑L−1

`=0 hq,` exp(−j2π`n/N).

Therefore, left-multiplying y in eq. (3) by F and using the matrix manipulations in subsection

3.1., we obtain

Fy =

Q/2
∑

q=−Q/2

JqHqFs =: HFs (16)

. Thus, the MMSE equalizer of s is given by

ŝ = FHGFy (17)

where G = HH(HHH + σ2
wI)

−1. The soft decision of w is then given by

ŵ = ŝ− c

The above block MMSE equalizer can be replaced by the low-complexity approximation in

[16]. Further, iterative methods such as those proposed in [17] can also be implemented. Such

methods were shown to outperform MMSE equalization because they better take advantage of

the frequency and time diversity of the time-varying channel.

Due to data distortion at the transmission, ŵ is different from w even in the absence of

channel estimation error and noise. Indeed, in this ideal scenario, ŵ = (I−Φ)w. Since (I−Φ)

is singular, w cannot be recovered linearly. However, using the fact that the data symbols are

drawn from a finite alphabet and that Φw is small compared to w, symbol detection can be

undertaken by finding the vector of constellation points w that minimizes the Euclidian distance

between ŵ and (I − Φ)w. This sequence detection scheme is computationally cumbersome.

Further, if sequence detection were to be used, then maximum likelihood detection (such as

sphere decoding) should be preferred to linear equalization. Here, we proposed the following

iterative symbol-by-symbol detection scheme.

The symbol-by-symbol detection algorithm is initialized by treating Φw as an extra additive

noise, and considering ŵ as a soft detector of w; the initial hard detector of w is given by

w̄(0) = buc

8



where buc denotes the vector of constellation points that are the closest to the vector u. The

detected symbols are used to estimate Φw to be used in the next iteration. The detected

symbols at the ith iteration are given by

w̄(i) = bu +Φw̄(i−1)c.

As we will see in the simulation section, the main gain in symbol detection performance over

existing ST-based methods is obtained with w̄(0).

0.6 Simulation Results

We compare the proposed DDST scheme with the TDM scheme proposed in [14] in terms of

channel estimation performance and bit error rate (BER). The length of the data block is set

to N = 256. The time-varying channel is assumed to be of order L = 3 and generated using

Jakes model with a normalized Doppler frequency fD. Two values of fD are considered here:

fD = 0.003 and fD = 0.005. The channel coefficients are assumed uncorrelated and their powers

are given by the exponential delay profile E
{

|h(n; `)|2
}

= exp(−0.2`), ∀q. The exponential basis

function model for the channel is used at the receiver for channel estimation with Q = 2DNe.

For the values of fD mentioned above, we have that Q = 2 and Q = 4. For both schemes,

we use MMSE equalization. The training sequence for the DDST method is the shifted chirp

sequence given in Section 4.1 and its power is set to 10% of the total transmit power. For the

TDM method, zero-guarded pilots are uniformly placed within the block as in [14].

The merits of the two methods are assessed using 500 Monte-Carlo runs. Figures 1 and 3

show the normalized mse on channel estimation which is defined as

∑N−1
n=0

∑L−1
`=0 |h(n; `)− ĥ(n; `)|2

∑N−1
n=0

∑L−1
`=0 |h(n; `)|

2

for different values of the data rate loss of the TDM method. Note that ĥ(n; `) is obtained using

the BEM and the ĥq,`’s. Figures 2 and 4 shows the BER performance. The MSE and BER level

off at high SNR because of the channel modelling mismatch due the BEM approximation. It is

seen that the proposed method outperforms the TDM method in terms of channel estimation.

It also compares favorably with the TDM method in terms of the BER. Recall that the proposed

method does not incur any data rate loss apart from the periodic cyclic prefix insertion.

Simulation results also show that unlike the case of time-invariant channels, the iterative

scheme in the previous section does not seem to provide any significant improvement. This is

due to the fact that the BER at high SNR is dominated by the channel modelling mismatch.
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0.7 Conclusions

We extended the data-dependent superimposed training scheme in [8] to time-varying channels.

We have derived conditions for channel identifiability and zero-interference between pilots and

data. The latter was achieved without trading off data-rate. The only penalties were a slight

decrease in data-to-noise power ratio and a slight data distortion which was mitigated using

iterative symbol decoding.
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[1] G. B. Giannakis and C. Tepedelenlioǧlu, “Basis expansion models and diversity techniques

for blind identification and equalization of time-varying channels,” Proc. IEEE, vol. 86, pp.

1969-1986, Nov. 1998.

[2] A. M. Sayeed and B. Aazhang, “Joint multipath-doppler diversity in mobile wireless com-

munications,” IEEE Trans. Communications, vol. 47, pp. 123-132, Jan. 1999.

[3] J. K. Cavers, “An analysis of pilot symbol assisted modulation for Rayleigh fading chan-

nels,” IEEE Trans. Veh. Technol., vol. 40, pp. 686-693, Nov. 1991.

[4] A. Adireddy, L. Tong and H. Viswanathan, ”Optimal placement of training for frequency-

slective block-fading channels,” IEEE Trans. Information Theory, vol. 48(8), August 2002.

[5] G.T. Zhou, M. Viberg, and T. McKelvey, “A first-order statistical method for channel

estimation”, IEEE Signal Processing Lett., vol. 10(3), March 2003.

[6] J. Tugnait and W. Luo, “On channel estimation using superimposed training and first-order

statistics”, IEEE Communications Lett., vol. 7(9), pp. 413-6, Sept 2003.

[7] A. G. Orozco-Lugo, M. M. Lara and D. C. McLernon, “Channel estimation using implicit

training,” IEEE Trans. Signal Processing, vol. 52(1), Jan. 2004.

[8] M. Ghogho, D. C. McLernon, E. Alameda-Hernande, and A. Swami, “Channel estimation

and symbol detection for block transmission using data-dependent superimposed training”,

IEEE Signal Processing Lett., vol. 12(3), 226-229, Mar 2005.

[9] , G. Tong Zhou and Ning Chen “Superimposed training for doubly selective channels”, Proc

IEEE Stat. Sig. Proc. Workshop 2003.

[10] X. Meng and J.K. Tugnait, “Doubly-selective MIMO channel estimation using superim-

posed training” Proc. IEEE Sensor Array & Multichannel SP Workshop, 2004.

[11] M. Ghogho, D.C. McLernon, E. Alameda-Hernandez and A. Swami, “SISO and MIMO

Channel Estimation and Symbol Detection using Data-Dependent Superimposed Train-

11



ing,” IEEE Int. Conference on Acoustics, Speech and Signal Processing (ICASSP’05) 2005,

Philadelphia, March 2005.

[12] A.P. Kannu and P. Schniter, “MSE-Optimal training for linear time-varying channels”,

Proc. IEEE ICASSP 2005.

[13] M. Dong, L. Tong, and B.M. Sadler, “Optimal insertion of pilot symbols for transmission

over time-varying flat fading channels”, IEEE Trans. Sig. Proc., 52(5), 1403-1418, May

2004.

[14] X. Ma, G.B. Giannakis and S. Ohno, “Optimal training for block transmissions over doubly

selective wireless fading channels”, IEEE Trans. Sig. Proc., 51 (5), 1351-1366, May 2003.

[15] M. Ghogho, “Channel and DC-offset estimation using data-dependent superimposed train-

ing,” IEE Electronics Letters, 41 (22), October 2005.

[16] L. Rugini, P. Banelli, and G. Leus, “Simple Equalization of Time-Varying Channels for

OFDM,” IEEE Communications Letters, 9(7), 619-621, July 2005.

[17] P. Schniter, Low-complexity equalization of OFDM in doubly selective channels, IEEE

Trans. Sig. Proc., 52, 1002-1011, Apr. 2004.

12



5 10 15 20 25
10

−2

10
−1

10
0

10
1

SNR

N
o

rm
a

lis
e

d
 m

se
 o

f 
ch

a
n

n
e

l e
st

im
a

te
s

N=256, L=3, f
D
=0.003, Q=2, σ

c
2=10%

TDM: 10% data rate loss
TDM: 20% data rate loss
DDST

Figure 1: Empirical Mean square error of channel estimates
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Figure 2: Bit error rate
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Figure 3: Empirical Mean square error of channel estimates
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Figure 4: Bit error rate
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