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Human event-related potentials (ERPs) were recorded from 10
subjects presented with visual target and nontarget stimuli at
five screen locations and respending to targets presented at
one of the locations. The late positive response complexes of
25-75 ERP average waveforms from the two task congitions
were simuitaneously analyzed with Independent Component
Analysis, a new computaticnal method for blindiy separating
finearly mixed signals. Three spatialy fixed, termnporally inde-
pendent, behaviorally relevant, and physioiogically plausible

components were identified without reference. to. peaks. in.....

~ single-channel waveforms. A novel frontoparietal compenent
{P3f) began at ~140 msec and peaked, in faster responders, at
the onset of the moter command. The scalp distribution of P3f
appeared consistent with brain regions activated during spatiat
orienting in functional imaging experiments. A longer-latency
large component (P3b), positive over parietal cortex, was fol-
lowed by a postmotor potential {Pmp) component that peaked

20C msec after the button press and reversed polarity near the
central sulous. A fourth component associated with a left fron-
tocentral nontarget positivity (Pnt) was evoked primarily by
target-fike distractors presented in the attenided location, When
no distractors were presented, responses of five faster
responding subjects contained largest P3f and smallest Fmp
compenents; when distractors were included, a Pmp compo-
nent appeared only in responses of the five slower-responding
subjects. Direct relationships between component ampiitudes,
latencies, -and-behavioraf responses, plus sirilarities betwaen
component scalp distributions and regional activations re-
ported in functional brain imaging experiments suggest that
P3f, Pmp, and Pnt measure the time course and sirength of
functionally distinct brain processes.

Key words: electroencephalogram; event-related potential;
evoked response; independent componerit analysis; rsaction
tims; P300; motor; inhibition; frontoparietal; arienting

Late positive event-related potentials (ERPs) (3001000 msec)
dominated by a vertex-positive response, called P300, occur in
response to stimuli perceived as belonging to an infrequently
presented category (Sutton et al., 1965). Although similar late
positive responses are reliably evoked by visual, auditory, or
somatosensory stimuli in a variety of tasks, they may not be
unitary (Squires et ak, 1975; Ruchkin et al., 1990). Their ampli-
tudes and peak latencies are affected by several task variables,
including attention and novelty, and their scaip distributions vary
both within and across responses. Results of lesion studies {Hal-
gren et al, 1980; Knight et al, 1989) and functional imaging
experiments (Ford et al., 1994; Ebmeier et al., 1995} also suggest
that late positive responses are complexes of components gener-
ated in more than one brain region.

Scalp-recorded late positive complexes (LPCs} cannot be easily
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decomposed into components, because their time courses and
scalp projections generally overlap. LPC components are com-
mounly identified with single response peaks in single-channel
waveforms. By this procedure, Squires et al, {1975} reported that
auditory target responses in some subjects contained three com-
ponents. Others have attempted to identify components with
peaks in difference waves between LPCs evoked in simple and
choice response tasks (Hohnsbein et al, 1991; Falkenstein et al,,
1995). However, none of these studies adequately assessed the
spatial stationarity of the response near the identified peaks.
Thus, they could not be sure that each peak was composed of only
one spatially fited component. Peak-based methods also cannot
be used when response components do not produce separate
peaks. Nor can they determine other details of the component
time courses. Independent Component Analysis (ICA), 2 new
approach te linear decomposition {Bell and Sejnowski, 1995,
Makeig et al,, 1995a, 1947}, can overcome some of these [imita-
tions. ICA is compatible with the assumption that an ERP is the
sum of brief, coherent activations occcurring in a4 small number of
brain regions whose spatial projections on the scalp are fixed
across time and task conditions.

Nearly all visual LPC studies have used simple tasks involving
the presentation of two or three stimulus types in pseudarandom
order at a single spatial location. Most ERP studies of spatial
selective attention, in contrast, have focused on early visual re-
sponse features whose amplitudes are augmented or suppressed



2666 ). Neurosci., Aprit 1, 1999, 19{(7):2685-2580

A B Cc BpP
117ms

51—

225-10680 ms

el

-

Figure 1. Schematic view of the task. The top trace shows the time line of
a typical trial. BP, Button press. 4, Screen before stimulation. The cross is
the fixation point, and the lghtly shaded box is the attended location
during the ensuing 76 sec block. B, Appearance of a filled circle stimulus
at an unattended location; no response required. C, Appearance of a filled
square at the attended location in the discrimination task; button press
required. See Materials and Methods.

in response to stimuli presented at attended or nonattended
locations (Hillyard et al, 1995). Here, we present results of
applying ICA to 31-channel ERP recordings of ERPs evoked in
two visual selective attention tasks. We demonstrate that LPCs
evoked in these tasks can be robustly decomposed into four
components with distinet time courses and relationships to be-
havior. Two of these components varied in amplitude and peak
latency between faster- and slower-responding subjects, sugpest-
ing that intersubject differences in visual response speed may be
accounted for by differences in the degree to which independent
components of the scalp-recorded LPC are activated. In particu-
far, & new frontoparietal component {P3f) appears to reflect brain
activity involved in rapidly responding to stimuli presented at an
attended location.

MATERIALS AND METHODS

Task design. ERPs were recorded from subjects who attended to random-
ized sequences of filled round or square disks appearing briefly inside
one of five empty squares that were constantly displayed 0.8 cm above
central fisation cross {Fig. 14). The 1.6 cm square outlines were dis-
played on a black background at horizontal visual angles of 0, =2.7, and
+3.5° from fixation. During each 76 sec block of trizls, one of the five
outlines was colored green, and the other four were blue. The green
square marked the location to be attended, This location was counter-
balanced across biocks. One hundred single stimuli { filled white cireles in
one condition, filled circles and squares in a second) were displayed for
117 msec within one of the five empty squares in a pseudorandom
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sequence with interstimuhs intervals of 250-1000 msec (in foyuy
equiprobable 250 msec steps).

Ten right-handed volunteers (two women, eight men; ages 2749
years} with normal or corrected to normal vision participated in the
experiment, Subjects were instructed to maintain fixation on the ceniral
cross while responding only to stimuli presented in the green-coloreq
{attended) square. In the “detection” task condition, all stimuli were
filled circles, and subjects were required to press z right-hand held themp
button as soon as possible after stimul presented in the attended location
(Fig. 1B). Thirty blacks of trials were coliected from each subject,
yielding 120 rarget and 480 nontarget trials at each Jocation. Subjects
were given 1 min breaks between blocks.

In the “discrimination” task conditien, 75% of the presented stimuli
were filled circles, the other 25% filled squares. Subjects were required to
press the response button only in response to fitled squares appearing in
the attended location (Fig. 1C) and to ignore filled circles. In this
condition, thirty-five blocks of trials were collected from each subject,
soven blocks at each of the five possible attended focations. Each block
included 35 target squares and 105 distractor (or “nogo”) circles pre-
sented at the attended location, plus 560 circles and squares presented at
the four unattended locations.

These experiments were designed and run to study the attentioral
enhancement of early visual components Pt and N1 (positive and neg-
ative peaks occcurring between 100 and 200 msec) evoked by stimulj
presented in different parts of the visua! field {Townsend et al, 1996),
Analyses of those data will be reported elsewhere. Here we report an
analysis of brain responses to the farget stimull presented at attended
locations ia the same experiments.

Evoked responses, EEG data were collected from 29 scalp electrodes
mounted in a standard electrode cap (Electrocap) at locations based on
a modified International 10-20 system and from two periosular elec-

. frodes placed below the right. eve and. at.the left outer canthus. Al ..

channels were referenced to the right mastoid with input impedance <5
k€. Date were sampled at 512 Hz withis an analog pass band of 0.01-50
Hz. To further minimize line noise artifacts, resporses were digitally
low-pass filtered below 40 Hz before apalysis. After rejecting trials
containing electrooculographic (EOG) potentials >70 uV, brain ro-
sponses 1o circle and square stimuli presented at each location in each
attention condition were averaged separately using the ERPSS (Event-
Related Potential Software System, J. 8. Hansen, Fvent-Related Poten-
tiaf Laboratory, University of California San Diego, La Jolla, CA, 1993)
software package, producing a total of 75 512-point ERPs for each
subject in the two tasks. Responses to target stimuli were considered
correct and averaged omly when subjects responded between 150 and
1000 msee. Most studies of the LPC or P300 have used a simple *oddball”
paradigm, presenting stimuli in only two classes (standard, rare), ai-
though similar-appearing late positive components are evoked by infre-
quently presented stimuoli in a wide range of evoked-response experi-
ments. We hypothesized that data from these five-location selective-
attention tasks might be better suited than simple oddball paradigms for
decomposing LPCs by ICA because it included a relfatively large number
(75} of target and nontarget classes.

Independent component analysis. The “infomax” ICA algorithm we
used (Bell and Sejnowski, 1995, 1996} is one of a family of aigorithms that
expleits temporal independence to performn blind separation. Recently,
Lee et al. {199%9a) have shown that all these algorithms have a common
information theoretic basis, differing chiefly in the form of distribution
assumed for the sources, which may not be critical (Amari, 1998),
Informnax ICA finds a square “unmixing” matrix by gradient ascent that
maximizes the joint entropy (Cover and Thomas, 1991; Linsker, 1992;
Nadal and Parga, 1994) of 2 nonlinearly transformed ensemble of zero-
meun input vectors (see Appendix for further details). Logistic infomax
can accurately decompese mixtures of component processes having sym-
metric or skewed distributions, even without using nonlinearities specif-
ically tailored to them,

The algorithm can be used practically on data from a 100 or more
chaneels. The pumber of time peints required for training may be as fow
as several times the number of variables (the square of the number of
channels). In turn, the number of channels must be at lezst equal o the
number of components to be separated. As confirmed by simulations
{Makeig et al,, 1996b), when training data consists of a mixture of fower
large scurce components than channels, plus many more small source
components, as might be expected in acteal EEG dats, large source
camponenis are accurately separated inte separate output components,
with the remaining output components consisting of mixtures of smabler
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perimental variables such as subject performance and behavior, as well as
considering their physielogical pleusibility,

LCA assumptions. Four miin assumptions underlie ICA decomposition
of ERP data:(1} sighal copduction tirmes are equal, and summation of
currents at the sealp electrodes is linear; both reasonable assumptions for
cuttents carried tor the scalp électrodes by volurde conduction at BEG
frequencies (Nungz, 1981% (2} spatial projections of components are
Bxed sctosy tinte dnd eqnditons; (3) $iree activations are teniporally
independent of one another across the input data; and (43 statistieal
distributions of the compogent activation values are not Gaussian (in
contrast, PCA assumes that the sources have 1 Gaussian distributicn).

Spalial Hationarity. Spatial stationatity of the component scaip maps,
assumed in ICA, is compatible with the observation made inlarge
ntsmbers of functiosnal imaging reports that. performande of particulas
tasks. mcreases blood fHow within small (several cubic centimeters),
diserete brain- regiofs {Fnsi:sn 1998) ERP sources reflecting ‘task-
related - information Processing are generally assumed fo sum activity
from spatially stutionary generators, although stationarity may not apply
o s0ME Spontanedisly penerated FEG phénomena such as spreading
depression of sleep spindfes (Werth et al, 1997),
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Figure 3. A, The scalp distribution of the LPC evoked by attended visual stimuli is not spatiaily fixed. Grand mean evoked response to detected target
stimuli in the detection task (average of responses from 10 subjects and five attended locations). Response waveform at all 29 scalp chapnels and two
periocular channels [ECQG) are plotted on 2 common axis. Topographic plots of the scalp distribution of the response at four indicated latencies show
that the L.PC topography is labile, presumably reflecting the sommation at the electrodes of potentials generated by temporally overlapping activations
in several brain aress, cach having broad but topographically fixed projections {0 the scelp. All scalp maps are shown individually scaled 1o increase L0
contrast with polarities at their maximum projection, as indicated in the color bar, B, Separate projections of the three major LPC components {cotored
tracesy overplotied on the grand mean targel respense {Blacic races) for the detection task. Not the latge projection of the P3f componeat {blue ira e}
at the two periocular electrodes (fop fraces) and its smaller projection at Pz and the polarity reversal of component Pmp { green traces) between Cef
and frontal channels, , Single target-response triais at the periocular etectrodes (see Materials and Methods) for one subject in the detection task
five locagions), plotted as vertical colored lines (coloz code on right). Before ploting, noise and movement artifacts were removed from each frial BY
subtracting ICA companents accounting for eye artifact, Bipe, and muscle noise from a 31-channel decomposition of the single-trial data {Tung et
199%), An early broad positivity { yellow band) appeared between 200 and 350 msec in mast trials, with near constant amptitude, latency, and dural
D, Separation of P3f was not adected by omitting the two periocular channels. Separate ICA decompositions of 25 grand-mean {figure legend contl
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(Faussian process, recur in speech and many other natural sounds and
visual fimages (Bell and Sejnowski, 190s, 1997). The assumption of
super-Gaussian source distributions is compatible with the physiologh-
cally plausible assumption that ERPs are composed of one or more
overlapping series of relatively brief activations within spatially fixed
braln aress performing separable stages of stimolus information
processing.

Nonetheless, some sub-Gaussizn independent components have been
demonstrated in EEG data (Jung et al,, 1998), chiefly line noise. Because
our data were low-pass filtered below 40 Hez, their power at the line
frequency {60 Hz) was negligible. To insure that some other sub-
Gaussian component O components were nof present in the data, we aiso
decomposed some of the data by two different 1CA algorithms capable of
detecting and sepazating sub-Gaussian components, extended infomax
and Joint Approximate Diagonalization of Eigen-matrices (JADE, see
Appendix). For comparison with previously proposed linear decomposi-
tion methods, we also decomposed these same data using PCA, and
rotated the largest seven PCA components using Varimax and Promax
(see Appendix). We compared the closest resulting PCA-based compo-
nents with the ICA-derived components for stability across subjects and
degree of relationship to performance.

Evoked-response decomposition. The logistic infomax ICA algoriihm
was applied to sets of 25-75 averaged ERP epochs (31 channels, 512 time
points) time locked from 100 msec before to 900 msec after onsots of
target and nontarget stimuli presented st each of the five stirmutus
locaticns in the five spatial attention conditions in the twa tasks (detec-
fien, discrimination). Fnitial decompositions were performed on grand
averages of data from all 10 subjects, Subseguently, data from subject
subgroups selected on the basis of response speed, and from singie
subjects, were decomposed separately as detailed below. TCA decompo-
sition was performed using routines running uvnder Matlab 5.01 (the
Mathworks) on a Dec Alpha 306 M Hz processor. The learning batch size

-wias 55-118, depending on input data-length. Inftiai-learning vate seited

at ~0.004 and was gradually reduced to 10-% during 50--100 training
iterations that required ~3 min of computer time. Results of the analysis
were relatively insensitive to the exact choice or learzing rate or batch
size. For further details, see Appendix,

Single-mrial artifact removal In most evoked response research, the
possibility that neural activity is expressed in periocular data channels is
usually ignored for fear of mistabeling eye activity artifacts as brain
activity. Some of the ICA components of EBG records can be identified
as accounting primarily for eye movements, line or muscle neise, or other
artifacts (Makeig et al., 1996a; Vigario, 1997}. Subtracting the projections
of artifactual components from averaged or single-trial data can elimi-
nate or reduce these artifacts while preserving the remaining nonartifac-
tual EEG phenomena in all of the dasa channels {Fung et al., 1998). ICA
thus makes it possible, for the first time, to examine periocular neural
activity,

P examine the between-trial distribution of periocular components
observed in the target response averages, alf single target trials in the
detection task for two subjects were decomposed using ICA, and projec-
tions of 16 of the resuling 31 components were removed from the
single-trial data. The removed components were those that either (1)
accounted predominantly for eve moverents or muscle activity, or {2)
whose projections appeared to contribute only very small amounts of
noise to the averaged response, We identified eye and musele artifact
components on the basis of their scalp maps and activation time courses,
Eye movement components had dominant periocular and frontal projec-
tions and slow, sporadic activations; musele-noise components had lo-
calized scalp patterns and were dominated by broadband 20-50 Hz

e
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activity. The remaining 15 single-trial components were projected to-
gether back onto the scalp channels. For further details of this procedure,
see Jung et al. (1998),

RESULTS

Target-evoked response

Performance levels on both the detection task and the discrimi-
nation task were high [detection task: 94.8% hits = correct 150—
1060 msec response times (RTs), 0.6% false alarms, median RT
353 & 41 msec; discrimination task: 91.4% hits, 0.6% faise alarms,
median RT 455 msec]. Responses evoked by target stimuli (their
grand mean shown in Fig, 34, coloved fraces) contained a prom-
inent LPC peaking after expected early visual response peaks P1,
N1, P2, and N2. In the grand-mean detection-task FESpONse, no
single-chanael waveform contained more than one large positive
peak between 300 and 700 msec. However, during this period the
scalp topography of the response varied continuously (Fig. 14,
scalp maps).

Note that both periceular charnels (Fig. 34, EOG) contained a
small (~3 uV), broad positive potential peaking at ~300 msec.
Grand mean target responses from each of the 10 subjects (e.g.,
means of response averages for ajl five attended locations) con-
tained a positive deviation with similar time course near-equal in
amplitude in the two channels. Examination of artifact-corrected
single trials (derived as described in the Methods) showed that

 this potential was evoked in most or.all single trials.of every. -

attended-location condition (Fig. 3C). Most likely these potentials
were not produced by eye movements, because only small, slow,
diagonal eye movements reliably and precisely time-locked to
stimulus onsets could have produced them.

Joint decomposition

ICA was applied to all 75 31-channel responses from both tasks (1
sec ERPs from 25 detection-task and 50 discrimination-task con-
ditions) producing 31 temporally independent components. Of
these, just three accounted for 95-98% of the variance in the ten
target responses from both tasks. A pazsimonious decomposition
was achieved, aithough data for the two conditions for each
subject were obtained on separate days and thus might have
included small between-session differences in electrode place-
ments, which were reduced by averaging across subjects. Figure
38 shows the projections of the three components [fabeled for
convenience as F3f, P3b, and postmotor potential {(Pmp}} in
response o targets in the detection task at all 31 zlectrode sites
{colored races) superimposed on the grand mean response at the
same sites (black races), Component P3f {blue traces} became
active near the N1 peak. Its active period continued through the
P2 and N2 peaks and the upward stope of the LPC. That is, P3f
accounted for a slow shift beginning before LPC onset, positive at

detection-task ERPs (10 subjects) using first (feft) all 31 channels, and then {cenier) 29 scalp channels alone, identified nearly identical P3f components
(right}. Scalp maps plotted on the same relative scele, with polarities as in 4 {bottom Iraces). Projections of the F3f comporent and their difference {bottom
right} on the same microvolt scale. £, Activalion time courses and sealp maps of the four LPC conponents produced by the ICA algorithm applied to
73 1 sec grand-mean {10-Ss} responses from hoth tasks. Map scaling as in 4. Because microvolt scaling information for anch ICA component is divided

between its activation and its scalp ma , units are not indicated {see Resu
P

Its). The thick doted line (feft} indicates stimulus onset. Mean subject-median

RTs in the detection task (red} and discrimination task {Dlue} are indicated by solid verical bars. Three independent components (P, P3b, Pimp)
accounted for 95-98% of LPC variance in both tasks. In both tasks, median RT cofncided with Pmp anset. Pny, a fourth, lefe-frontocentrs) component,
was evoked mainly after noge nontargets presented in the attended location in the diserimination task. The Jaint vertical dosted line at ~250 msec shows
the temporal relationship between the onsess of Pt and P35 and the divergence of the P3f activations after target and nogo stimu¥ in the discrimination
task, F, Separaie ICA decompositions of ERPs from the detection and discrimination tasks geve similar LPC components. For all three components, both
ihe scalp maps (shown) and periods of activation {data not shown) were nearly equivalent, Correlations between the respective component scalp maps

are indicated. Maps individually scaled as in 4,
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Figure 4. A4, Component Pmp is linked to button presses. Results of a control experiment on one slow responder whose target LPC was decomposed
by ICA into clear group P3f, B35, and Pmp compeonent analogs. In a second detection-tagk session, the subject was asked oniy to mentally note target
stizull without pressing the response button. Data from both sessions were decomposed together by FCA. The two panels plot the “envelopes” {the
minimim and maximum values, at cach time point, over the 20 scalp channels) of the responses {black rraces) and of the scalp projeciions of the three
major ICA components (colored traces). The scalp maps of the three components {below, individually scaled as in Fig. 34} resembied those of the group
decompositions (Fig. 3F). The grand-mean target response in the button-press condition (fop panel} contained al! three LPC {figrre legend continues)
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periocular and frontal channels and weakly negative at lateral
parietal sites (fop rows).

A near-exact P3f analog (projection, r = 0.95) was also recov-
ered from a decompeosition of the 25 detecrion-task ERPs at the
29 scalp channels alone, omitting the two periocular channels
(Fig. 30). Component P3b (Fig. 38, red traces) accounted for
nearly all of the LPC at frontocentral channels and for most of its
peak amplitude at posterior channels. Component Pmp (Fig. 3B,
green rraces) accounted for part of the frontal negative-going slow
wave after the LPC as well as for the longer duration of the LPC
ar central and posterior sites.

Allthree ICA components were active near the LPC peak, thus
producing an apparently continuously varying scalp distribution.
Although P3b accounted for most of the LPC peak distribution
and resembled components with the same term in earlier litera-
ture (Squires et al, 1975), the scalp distribution of P3f appeared
io be more strongly frontal and markedly less central than the
“novelty P37, a large central LPC evoked by rare, nove! stimuli
(Courchesne et al., 1975) and other components labeled “P3a”
(Katayama and Polich, 1998). Although the Jabel P3f was chosen
to reflect the relatively frontal projection of this component, P3f
also contained a consistent local maximum near Pz and weak
bilateral negativities at inferior parietal sites.

Smaller activations of the same three components, plus a fourth
left frontocentral component, together accounted for 80—86% of
the variance of the five smaller LPCs evoked by nogo stimuli

(nontarget circles presented in the attended location) in the

discrimination task. Responses to most other stimuli did not
contain the four LPC components; nontarget stimuli that weakly
activated them were invariably presented at or near the attended
location. Analysis of these nontarget activations will be presented
elsewhere.

The four LPC components

Figure 3E shows the scalp maps and time courses of activation of
the four LPC components in both tasks. To illustrate the outputs
of the algorithm and to allow easy comparison between the time
courses of the different components, the raw activations and scalp
maps are presented. Relative sizes of the components are indi-
cated in Figure 3B. Two vertical lines in each panel mark mean
subject-median RT, which was 102 msec longer (455 msec) in the
discrimination task than in the detection task (353 msec).

P
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Component P3f

P3f was evoked principally by targets in both tasks, with largest
amplitudes in the discrimination task. Onset was at ~140 msec,
and offset followed median RT by ~60 msec. Peak root-mean
square (RMS)-projected amplitude in the grand-mean target re-
sponse was 1.5 V. When detection-task responses from cach of
the 10 subjects were decomposed separately, seven of the ten
decompositions contained P3f analogs, defined as components
whose projections at ail channels were correlated (r > 0.5) with
the grand-mean component projection. Each of these seven P3f
components included a weak central parietal positivity that in six
of the seven subjects had a maximum stightly right of midline.
The three decempositions not containing a P3f analog were of
responses from three of the four subjects with the longest median
RTs. The scalp projection of P3f was largest at the periocular
clecirodes (Fig. 3B, fop sites). P3f also was also evoked with
smaller amplitudes by discrimination-task nogo stimuli and by
target stimuli presented in the central location during noncentral
discrimination-task attention conditions.

Component P3b

In single-subject decompositions of detection-task data, clear P3b
analogs (projection, r > 0.75) were returned for all ten subjects.
Peak P3b RMS-projected amplitude in the grand-mean target
respense was 6.1 uV, and P3b peak latency covaried with median
RT in the two tasks. The P3b scalp map réssinbled peak P300
scalp distributions reported for experiments in which subjects
simply counted or attended to rare stimuli instead of pressing a
response button (see Alexander et al,, 1995 and Fig. 44).

The P3b component also accounted for some early response
activity. This appeared to reflect a tendency of the algorithm to
make very large components “spill over” into periods of weak
activity with related scalp distributions. Subsequent decomposi-
tions of the detect-task data by PCA, Varimax, and Promax (see
below} produced P3b analogs in which this spillover was stronger
than for ICA (compare Fig. 3B). However, separate ICA decom-
position of the first 300 msec after stimulus onset (1o be reported
eisewhere} gave a parsimonious decomposition of the early re-
sponse components P1 and NI into one or more components
none of which resembled P3b, whereas a separate decomposition

components; the grand-mean respostse to targets presented in the no-button press condition {pofiem panel ) eveked oniy P3b plus a smatl P3f, but no Pmp,
strongly suggesting that that Pmp was directly related to the button press in the first session. B, Comparison of the raw target ERPs with the time courses
of the three LPC compenents. Targst responses in shorter-RT detection-task target trials (five attended locations; subaverages for five faster and five
slower responders, respectively). Responses at 29 scalp channels are shows on a common time base above the time courses of projected RMS ampiitude
of the three LPC compenents (microvolt scaling as shown, tep right). Arrows show median RT for each group. The activation period for component P3f
fncompasses a slow positive shift in the data that begins earlier {near peak N1) and grows larger in the fast-responder response (bottom Jefs, blue trace).
The larger and later-peaking in the slow-responder average Pmp (bottom right, green frace) accounts for the larger bipolar spread of activity at ~600 msec
in the slow-responder data (top right). C, Separate ICA decompositions of grand-mean detection-task responses from the fve faster- and slower-
responding subjects gave comparable LPC components. Scalp maps (individually scaled as in Fig. 34) and time courses of projected RMS amplitude

{microvolt scaling indicated) of the three target-respense LPC components,

from separate decompositions of 20 nontarget responses plus 10 target

responses (short-RTs, long-RTs at five locations) for the five faster- and five slower-responding subjects, respectively, Correlations between scalp maps
indicated, See Results. I, Comparisen of data and prejected component envelopes with median RT (shors vertical bar). Envelopes of the scalp projections

of all 31 ICA componenis {in microvolts, see bar) superimposed on the envel

opes of the grand-mean target respanses (all 31 channels) for faster- and

slower-responding subgroups in the detection task {fop rows} and discrimination task {botrom row). Results from ail four decompositions (task by
subgroup) gave three major LPC components whose amplitudes and pealc latencies varied systematicaily with RT in different ways for the two subgroups.

Note the small size of the projections of the remaining 28 components (faick red bundles). See Results. £, F, Detection-task target responses at the left
periotular electrode for one slower responder and one faster responder. Responses plotted as siorizoneal colored lines (see color bar} after sorting by RT
{thizk black linesy and then smoothing with & 30-trial moving-average. Stimulus onsets occurred at dashed lines (left). In the response of the slower
fesponder (feft panet ), note the relatively weak and fixed-fatency pre-response positivity at ~250 msee and the strong post-response {Prmprrelated)
negativity. For the faster responder (right panel ), peak latency of the strong (P3f-related) positivity immediately preceded RT in all trials, and the

post-response {Pmp-related) negativity was absent.
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Figure 5. 4, LPC component peak amplitedes and iatencies plotied relative fo target stimulus onset {ef? panel ) and to median RT (right panel). Peak
latencies of all three LPC components were tied to RT in the fast-responder averages only. B, Comparison of ICA and PCaA-based decompositions. Sefs
of 30 fast-responder and slow-responder detection-task response averages (compare Fig. 4} were separately decomposed using PCA (1op left}. The jargest
seven principal components were then rotated by Varimax {lop right} and Promax {borom left) applied either to their sctivation time courses (shown
here} or to their spatial maps (eigenvectors) (data ot shown). The gure shows envelopes of the grand-average short-RT farget response for the fast
responders (black frucesy with envelopes of the respective component projections (colored races) superimposed. The temporal Varimax and Promax
rotations, shown here, appear to approach the ICA decomposition, aithough the TCA decomposition appears most parsimonious. See Results. €, 1CA
compoients were more stable and more tightly linked o behavior than analogous PCA-based components. The left panel shows means and SDs of the
RMS milliseoond difference between component peak latency and median RT (averaged across twe subgroup decompositions and three LPC
components and two RT-separated data subsets). The righ panel shows mean and SD scaip map correlations between analogous (g legend continuesh
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of the latter portion of the epochs (300-900 msec) reproduced the
whole-epoch P3b {scalp map, » = 0.999).

Component Prp

Abhough components P3f and P3b were evoked by
discrinsination-task nogo nontargets (Fig. 34, dashed lines) at
ap;}mxrmateiy hatf the strength of their activation by
discrimination-task targets (Fig. 54, sofid linesy, neither these nor
any other stimli not followed by a button press strongly activated
Pmp. In both tasks, Pmp onset nearly coincided with median RT,
and its scalp map reversed polarity near the central sulcus. Peak
RMS-projected amplitude in the grand-avérage target response
was 3.00 wV. Pmp appears to be an analog of the response
positivity also known to peak ~200 msec after infrequent volun-
tary Button presses (Makeig et al., 1996¢).

In single-subject decontpositions, Pmp analogs (projection, r >
0:6y were found for gight of the 10 subjects, the exceptions being
twor of e four subfects with the fastest thedian R'Ts. The scalp
maps of Prp analogs in individoal suhjects str@ng%y tesembled
those, reeently pubhsheé Tor & sofiewhat earlier (80 msec. post-
moverient) measure of the vmumary postmovement. pasmvny
dlso peaking at ~200 nx
In'seven of the eight Pm;} -ahalog scalp-maps; the posterior posi-
© tive peak was over the left hemisphere. Decompositions of re-
sponses from three dadditional left-handed subjects not included in

. this study each coptained a Pmp. ana og mth S posxtwe mdx;mum_ )
TUGVEY the rzghf hemlsphere '

Compornent Pat

Component Put {for nontarget positivity) was cvoked chiefly by
nogo nontargets in the discrimination task (Fig. 3, dowed irace)
and by targets (Fig. 3, solid trace}. Its scalp map was most positive

. over left darsokateral prefrontal dnd.contral cortex-(magimum

,u,V} w;th seghglble prﬁ;ect;or} to the periveular elestrades. Prt
analogs wete found in five of the 10 individusl subject decompo-
sitions. Its onset (~260 msec) coincided with the divergence. of
. the nogo and target P3{ activations, and its'period of activation

paralicted that of P3b. The ICx éecc}m;msxtwﬁ thus explained the
MOLe anterior chstribut}on of the noge LPCs in the diserimina-
tign task as rasxﬂtmg from the addition of Pnt fo the small P3b
evoked in the: same time permd by noga stimufi, aacompamad by
a-blunted P3f activation. The divergénce of P3f activations after
targets and nogo stimuli respectively began at the onset of Put at
~230 msec (Fig. 5, faint dotted line). Pnt was activated more
strongly when the atténded location was in the right visual field.

i

after movement {Boetzel etai 1997). -

i the grand~mesan tayget rasgcmse. 09
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Absence of sub-Gaussian components

To test for the presence of indépendent components with sub-
Gaussian distributions, the same grand-average data for all ten
subjects in both tasks (75 responses in all) were decomposed using
two ICA algorithmis eapable of separating sub-Gaussian conipo-
nents, extended itfomax; and JADE {see Appendzx} The result-
ing decompositions resembled that. ‘produced by logistic infomax.
In particular, none of the 31 components derived by cither
method had 2 sub-Gaussian distribution.

Cross-fask reliability

Next, logistic infomax ICA decomposition was applied separately
to the 25 responses from the defection task and to the 50 re-
sponses from the discritiination task. Both decompasitions pro-
duced three componeiis accounting for 96-Y8% of the variance
in the grand mear LPCs (300-700 msec) at the five locations
(Fig. 3F). The periods of activation of the thrée component pairs
were equwalent ané tIﬁelr scalp dzstré;ut;ens were hwhiy corre:

i medzar; RT the iarget LPCsi i the mo %asks c:auld arise fmm
three spa%zally ﬁxad bram systging orsets of cemurren{iy actwated
nﬁtwarke : :

Wtfhmutask rehab;tlty -
To test the reliability of convergence of ‘the algorithm; the
detection-task data (25 1 sec responses) were decomposed 20

“times dnysugcession. The 31 component séaliy maps retusted from' - -

each of the- éecompasztzons were correlated with the 31 compo-
nent maps returned by the original éeccmpos;tzon Next, the
highest-correlated pair of component maps was determined and
removed from further consideration. In the same manner, 30
more successively best-correlated map pairs were drawn fromthe
two sets ef companem maps, and the absomte correlatzons be«

v'xdeﬂtzcai {r 0. 995) o maps of ana{ogous mmpa—
nents i the origival decomposition, and at least 21 compahent
map pairs were correlated (¢ > 0.95). Maps for the three LPC
COMPONENts (rankmg, 1, 2, snid.7 by sizein the m’igmai CIE’CD?I’&*_
position) were near-perfectly. rep]xc:afed (mean of the map corres.

‘lations: P3b, 099‘}3 Pmp, 0.9985; P3t; 0?937)

To test ti"xe ds:_g}mdence of %he_ cositfts: o8 the thisics of slectrade
sites, 20 randomly selected subsets of the 31 data channels were
selected for amalysis, leaving out the remaining 11 changels,
Correlations between the activation time courses.of résaiting ICA

component pairs in the fast—responéer and slow-responder response decompaositions {awresgeé across the three LEC cempanents} ICA cempanem
taténicies were more tightly linked to behavior, and their scalp mans better correlated between sibject groups, than the PCA-Lased componenits. 1,
Relative stability of the 1CA- éect;mpt}sttmn Comparison of the enva}o;;seg of the pro;ectmtw of the three LPC Comp{}nefitﬁ of the gravd-mesn (all 10
<ubjac%s) detesiion-task target tedponse derivéd by three ICA demmposnmns involving ilis data. Altheugh gach decomposition was dostinated by fhrse
LPC components, relative corhponent padk laterclés were mote stable betwien decarmpesitions than peak amplitudes. Vertical bars: modian RT. See
Resitlts, F=G, FCA identifies spatial Iy periods: of fxed scalp topopraphy. Decc}mpommon of 30 detection-rask résponse maans for the slow-raspander
subgronp produced two large LPC components, P5h and Pmp. F, A seatter plot of the short-R Tand lopg BT target rospiases (séparately at five attended
tocations) (middle panel} at fwo scalp electodes, Tz and Pz, contuing two suongly madiat (L, apatialiy ﬁxeé} feattsres. The dudhed lines show. the
directions associated with components F3b.and Pinp in these data, as detérmined by () the values of theil saspedtive component scalrp maps leck doesh,
Thus, TCA sepatated it two important spatially fixed components of the input data vsing its (nonGaussian) higherorder stafistics. E, Prejboticns of
companents P3b and Pmp of the grand siean target reésponse onto the same two scalp chanmels ( {fop panel, colored racesy, merpk}tteé on the grand-meas
response waveforms (Back paces), indicate that the two compéments, P3b and Pmp, dominate the ¢entral and late portions of the LPC, respectively.
Irforiax FEA foulid the twe component direetioris by maximizing joint eniropy (Lo, the évenness of the density distribution) of a noftinear trandfoim
of the (3i-cliannel) unmixed data feenter rHght insert). See Apgenézx
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components were computed and rank-ordered as above. On av-
erage, the three best-correlated activation pairs were correlated;
r > 0.94, The three LPC component maps were accurately recov-
ered {submap correlations: 0.998, P3b; 0.993, Pmp; 0.964, P31).

Attend-only control experiment

One of the 18 subjects participated in a second session of the
detection-task control experiment in which he was asked simply
te “mentaily note” targets without making motor responses to
them. ICA decomposition was then performed on all 50 responses
{rom both detection-task sessions for this subject. Figure 4.4 (top
panely shows the envelopes (the most positive and most negative
singie-channel data values, across the 29 scalp channels, at each
time point) of the projections of all 31 components of the grand
mean target response in the button-press condition, superim-
posed on the envelope of the ERP data (black wraces). Envelope
plots allow the time courses, strengths, latencies, and predomi-
nant polarities of several ICA components to be visualized in
refation to the data envelope in a single figure.

The LPC was again decomposed into three spatially fixed
components clearly analogous in time course and scalp map to the
group P3f, P3b, and Pmp. In this right-handed subject, the Prmop
anzlog had a clear left-central scalp projection. The grand mean
target response in the po-button-press condition (Fig. 44, middle
panel) was comprised chiefly of P3b and included a small P31, but
1o Pmp, further confirming that Pmp reflected brain processes
induced by the response moverment and/or resulting tactile feed-

~ back. In this condition, the subject’s LPC was dominated by a

single spatially fixed component, P3b.

Note that the most-positive fraces of the ERP data envelopes
for both sessions (Fig. 44, fop black traces) contain three positive
peaks occurring at ~100 msec intervals during the LPC. These,
however, were not accounted for by activity of the three LPC
components. Instead, the decomposition explained these three
peaks as being produced by one or more a-band components
summing with the LPC and having scalp topographies different
from the three LLPC components. In this case, that is, an LPC
apparently containing three positive peaks was decomposed by
ICA primarily into a single LPC component {P3b) plus residual
activity.

Component differences between faster and
slower responders
In the detection task, subject’s median RTs ranged between 287
and 396 msec. Examination of single-subject decompositions sug-
gested that responses of some faster and sfower responders dif-
fered not only in latency but also in the refative amplitudes of the
1.PC components, To assess these differences more clearly, sub-
jects were divided by median RT into two subgroups of five
subjects dubbed “fast responders” and “slow responders”, respec-
tively. In the detection task, median R'Ts of fast responders were
all shorter than 355 msec (mean = 8D, 321 = 32 msec), whereas
median RTs of slow responders were all longer than 380 msec
(mean £ SD, 386 = 7 msec). The five fastest and five slowest
responders in the discrimination fask (420 = 28 and 489 % 33
msec, respectively) were the same as in the detection task, Target
response rates for the fast-responder and slow-responder sub-
groups did not differ statistically, although fast responders tended
to make more false alarms (0.77 vs 0.4%, both tasks; F,, o =
10.36, p = .012).

To determine whether the observed ERP differences were
stable across relativelv short-RT and long-RT trials, separate
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subaverages were computed of responses to correctly detected
targets in the detection task for which RT was shorter or longer
than the subject median. These five short-RT and five long-RT
target response averages {(one each for each attended location)
were then averaged across subjects in the fast- and slow-responder
subgroups, giving four {fast-responder/slow-responder by short-
RT/long-RT) target response subaverages at each of the five
stimulus locations. Grand average discrimination-task target re-
sponses were also computed for each subgroup. Because there
were far fewer targets presented in the discrimination task, these
target responses were not further separated by response times.
Next, for each subgroup an ICA decomposition was performed
on 30 1 sec detection-task ERP ensembles consisting of 20 aver-
age responses to nomarget stimuli (ie., those presented in the
four unattended locations in each of the five attended-location
conditions), pius the five short-RT and five long-RT target re-
sponses. For both subgroups, ICA again recovered three domi-
nant L.PC components. Figure 45 shows both short-RT subaver-
ages at the 29 scalp channels above the time courses of projected
RMS amplitude of the three component projections. Plotting
RMS-projected amplitude displays the true scalp energy ratios of
the various components but ignores their polarity differences.
Component P3f accounted for the slow positive shift in the
responses encompassing the N2/P2 peaks and part of the LPC
onset, and could not, therefore, have been derived by decompo-
sition methods that treated each peak as a separate component.
The larger component Pmip in the slow-responder avetage ac

‘counted for the larger bipolar spread m the scalp distribution of

the responise at ~600 msec.

Figure 4C compares the scalp maps and time courses of pro-
jected RMS amplitude for the three target-LPC components.
Although the responses analyzed came from two separate subject
subgroups and response decornpositions, the component scalp
maps for the two groups were again highly similar {scalp maps).
P3f onset and peak latencies (rop lefr) were earlier in the fast-
responder average, and the projected P3f amplitude was larger. Its
frontal scalp distribution appeared somewhat more left-sided in
the slow-responder group response decomposition, although the
component map values at the two periocular electrodes (data not
shown) were near equal for both groups. In single-subject re-
sponses as well as in the group subaverages, P3b peak latency ( =
0.724; Fapy = 8.8 p = G.019) covaried with RT. In all subjects,
P3b peak amplitude (122 = 5.7 vs 84 T 44 pVi1, = 627, p <
0.0001) and RMS-projected amplitude (3.2 + 15w 22 = L2 pV,
gy = 5.95; p < 0.0002) were larger in short-RT trial averages,.
This association of P3b and RT is consistent with early reports on
late LPC features (Roth et al., 1978).

Component Pmyp was larger in the slow-responder group sub-
averages. For both groups, neither P3f nor Pmp amplitudes varied
markedly with RT subset, Examination of individual decomposi-
tions suggested that the subgroup amplitude differences in these
two components arose mainly from the absence or near-absence
of P3f in respoenses of three of the slow responders and of Prmp
anzlogs in responses of two of the fast responders. Very similar of
more pronounced subject group differences in amplitudes and
time courses of P3f and Pmp were produced by a single decom-
position of all 50 concatenated detection-task responses from the
two groups (data not shown}.

Between-task response differences
Sets of 30 grand mean discrimination-task ERPs for the fast- and
siow-responder subgroups were decomposed separately. Figurs
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4[> shows the envelopes of the target responses and all of their 31
constituent ICA components for the three detection-task and
discrimination-task subaverages. Examination of P3b analogs in
decompositions of all 75 detection- and discrimination-task re-
sponses from nine subjects separately (omitting one subject with
very small responses) showed that P3b peak RMS-projected am-
plitude was not significantly larger in the detection-task responses
(probability of rejecting the null hypothesis by two-taifed ¢ fest,
p = 0.31). Note that in both discrimination-task decompositions,
the envelope peak latency of the P3b component differs from the
response peak latency. In the slow-responder averages (right col-
umn) P3f peak latency was similar in the three response condi-
tions, irrespective of RT differences. All three subaverages for the
fast responders {feft colurn), on the other hand, contained a P3f
with a larger envelope that peaked 3040 msec before median RT.

Subsequent to this analysis, detection-task data were collected
from 12 more normal subjects. Initial analysis of grand averaged
data from the five fastest responders (medizan RTs, 261363 msec)
and five slowest responders (median RTs, 381-429 msec) sup-
ported the differences in P3f amplitudes shown in Figure 4D, A
large P3f component, highly correlated with the fast-responder
P3f (scalp map, » = 0.857), was found for the new group of faster
responders, whereas no equivalent prominent or spatially corre-
Iated component was derived from the response averages of the
new slower responders. Further results of the enlarged subject
group comparisons will be reported elsewhere.

.. The slow-responder target response in the discrimination task.

(Fig. 4D, bottom right) contained a prominent component Pmp
that peaked, as in the other two subaverages, ~200 msec after
median RT. Inindividual decompositions, Pmp analogs of ail five
slow responders had larger peak RMS-projected amplitude in the
discrimination fask. However, in the discrimination task neither
the fast-responder subgroup subaverage (Fig. 412, bottom left) nor
any of the five individual fast-responder discrimination-task tar-
get response decompositions contained a Pmp analog. Note that
the group differences in relative sizes of P3f and Pmp were
maintained in the decompositions of the long-RT subaverage for
fast responders (Fig. 4D, middle left) and the short-RT subaver-
age for slow responders (Fig. 4D, top right), although the median
RTs for these trial subsets were nearly identical (356 and 346
misec, tespectively). Clear Pnt analogs (data not shown), present
in both group decompositions, were somewhat earlier and larger
in the fast-responder group average.

Figure 4, E and F, shows all detection-task target responses at
the left periocular electrode for one of the fast responders and
one of the slow responders, with single trials sorted (left to right)
in order of increasing RT (black traces) and then smoothed with
a 30-trial moving average in a style we call an “ERP image” {(Jung,
Makeig, Westerfield, Townsend, Courchesne, and Sejnowski, un-
published observations). In the faster responder, RT followed the
P3f peak immediately in all but the few longest-RT trials, whereas
in Jonger-RT trials of the slower responder, RT lagged behind the
P3f peak by 200 msec or more. The figure also shows the prom-
fnent post-RT frontal negativity in the slower responder ac-
counted for by Pmp, which was absent from the responses of all
five fast responders,

Figure 54 plots the peak LPC component amplitudes of the
subgroup averages (whose envelopes were shown in Fig. 4D)
against their latencies relative to stimulus onset (fft panel} and
median RT (right panel. In the fast-responder averages (red solid
lines), peak latencies of all three components were time locked o
medign RT (right panel red symbols), whereas in the siow-

Jo Neuroscl, Aprit 1, 1899, 18(7h2665-2680 2675

responder averages (blue dashed lines), P3f peak latency was time
locked to stimulus onset (left panel, bottom left). The response-
locked latency of the P3f peak in the slow-responder averages
matched that of fastresponders only in the detection-task
short-RT trial subaverage {right pane!, botiom left).

Timing of the motor command

Ta more closely assess the relationship between P3f peak lateney
and RT, a control experiment was performed in which the subject
pressed the response button to targets in a single-location variant
of the detection task with her right thumb while electromyo-
graphic {(EMG) activity was recorded from the thumb muscle
{extensor pollis brevis). The EMG record {(data not shown)
clearly indicated that EMG activity began at ~23 msec before the
switch closure used to compute RTs in these experiments. Hsti-
mating the travel time from the brainstem to the thumb muscle at
16 msec {0.8 m at 50 m/sec), the P3f peak and the motor com-
mand appear to have been nearly simultaneous for the faster
responders in ali three response conditions.

- Comparison with other linear decomposition meathods

Detection-task data consisting of 10 long-RT and short-RT target
response averages plus 20 nontarget response averages were de-
composed separately for the fast-responder and slow-responder
groups using spatial PCA. Each data set had four eigenvalues
larger than unity (with three larger than 2). Because PCA, lke

ICA, isa linsar decomposition, PCA and ICA components can be.

plotted using identical methods. Figure 55 shows the grand-mean
short-RT target response (all five attended iocations) for the fast
responders at centroparietal scalp site Pz (black races), with the
projections of the three largest principal components at the same
channel superimposed (colored traces), with the projection wave-
forms of the next four (relatively small) principal components
shown below it

PCA maximized the variance of the fizst principal component
projection (Fig. 3B, red), thereby accounting for most of the
(ICA) P3b plus some of the Pmp and P3f. The second-largest
component (Fig. 5B, green), constrained by PCA to be spatially
and temporally orthogenal to the first, also accounted for early
and late activity assigned separately by ICA to Pmp and P3f,
Orthogonal Varimax rotation of the activations of the seven
largest principal components (Fig. 5B, top right) somewhat re-
duced the temporal spread of the second (Fig. 5B, green) com-
ponent, consistent with its goal of rotation toward “simple struc-
ture.” Further obligue rotation of the resulting Varimax
component activations using the Promax algorithm (Fig. 3B,
bottom lefty further focused the activation of this (Fig. 58, green)
component to the Pmp time period and partly separated P3b from
the earfy LPC. The scalp map (data not shown) of the fargest
Promax component active during the early LPC resembled that
of P3{. Time courses of the largest components produced by
spatial Varimax {data not shown} generally resembled those for
temporal Varimax. Spatial Promax (data not shown) fractionated
P3b into five components with similar time courses,

Projections of the three ICA components are shown for com-
parison (Fig. 3B, bottorn right}. Note the relative parsimeny of the
ICA component structure, with nearly all of the variance ac-
counted for by three components having compact periods of
activation. The spillover of P3b activity (Fig. 58, red} info the N1
and P2 response peaks is smaller in the ICA decomposition than
in the other three decompositions.

Ta test the reliability of the ICA compoenents refative to those
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derived by PCA-based methods, we measured differences in the
four response conditions (fast- and slow-responder subgroups by
short- and long-RT trial subsets) between median reaction time
and peak latencies of the three large comporents most analogous
in time course to the ICA P3f, P3b, and Pmp. Figure 5C {left
panely shows the means and SDis of this RMS latency difference,
averaged across all three components and four subject and re-
sponse subsets. The covariation of the component peaks with
median RT was tightest for ICA (redy (RMS difference, <10
msec), and was tighter for temporal Varimax and Promax rota-
tions (solid lines) than for spatial rotations (dashed lines).

The right panel of Figure 5C shows means and SDs of the
correlations between scalp maps (data not shown) of the three
JICA component-analogs from the fast- and slow-responder de-
compositions, respectively {averaged over the three LPC compo-
nents). The subgroug scalp map correlations were more invariant
for ICA (red) {r = 0.9). These results strongly suggest that,
applied to these data, ICA decomposition: had more simple struc-
ture, was more consistent across subject subgroups, and was more
tightly linked to performance than decompositions produced by
PCA-based methods.

Degree of stability of the decomposition

Although the decomposition produced by ICA is linear, ICA
training is nonlinear. Therefore, the projection of an 1CA com-
ponent derived from the mean of two responses may differ from

‘the mean of analogous component projections drawn from sepa- -

rate decompositions of the same responses. Figure 50 shows the
fine courses of RMS amplitude of the three LPC component
projections for the grand-mean detection-task target response {all
10 subjects and five locations) as given by the three ICA decom-
positiens described above: (1) simultanecus decomposition of 75
10-subject response averages from both tasks; {2) separate de-
composition of the 25 grand-mean detection-task responses only:
and (3) the average of separate detection-task projections for the
fast-responder and slow-responder groups, respectively. All three
decompositions produced LPC components with similar scalp
distributions (compare Figs. 3F, 4C), peak latencies, and time
courses, However, as their peak amplitudes vary, projected ICA-
componeni amplitudes are best compared within rather than
between decompositions.

ICA identifies independent periods of
spatial stationarity
Geometric insight into how the JCA algorithm decomposes ERP
is suggested by Figure 5F, which shows all 10 mean short- and
long-RT defection-task target responses for the slow-responder
group at two midline scalp electrodes (Fz and Pz}. In this scatter
plot format (muddle parel), the data traces follow a cyclic tzrajec-
tory, slthough time is not represented explicitly. Amplitude
changes in spatially fixed response components are represented by
movements in radial directions away from or toward the origin.
This plot shows (dashed lines) the two radial directions corre-
sponding to the two largest ICA componenis (P3b, Pmp) as
defined by the relative strengths of these components at the two
locations in their scalp maps {e.g., Fig. 56, black doss). The two
component directions are aligned with the most nearly radial
portions of the data (Fig, 5F }, which represent pericds when the
scalp distribution of the response was unchanging at the two
channels and were accordingly dominated by single ICA compo-
nents (Fig. $£)

The spatial structure of the data scatter plot {Fig, 5F) resem-
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bles an cblique parallelogram rather than a Gaussian cloud. [CA
decomposition, by identifying its natural boundaries, finds i
periads of strongest spatial stationarity, and in so doing finds the
axes and bias offsets that transform the irregular shape of the
input data scatter plot into a near-evenly filled square (vight plor
insert), thereby maximizing its entropy. In contrast, PCA would in
effect fit a Gaussian distribution to the data, returning only its
major and minor axes. In this case, the first principal component
{data not shown} would point in a direction resembiing but not
matching that of P3b, and the second principal component, or-
thogonal to it, would ignore the sizable stationarity accounted for
by Pmp, because the two 1ICA component scalp maps are well
correlated {r = 0.888), but PCA maps must be orthogonal. ICA
identified important nonGaussian features of the input data by
means of higher-order {e.gz., nonGaussian} statistics implicitly
involved in ifs training (see Appendix).

DISCUSSION

The resuls reported bere using ICA confirm and clarify the
evidence from early ERP studies that target LPCs are composed
primarily of three components. In addition, a left-frontal LEC
component was evoked by noge stimuli that required subjects to
refrain from responding. These four ICA components had dis-
tinetly different scalp distributions, and their dynamics covaried
in orderly ways with the task, subject, and response time differ-
ences. The decomposition provided information about the effects

- ‘of depéndent variables. on spatiallv and temporally overlapping .

components that would have been difficult or impossible to obtain
from separate measurements on single-channel waveforms,

The novel P3f component
First, an early frontoparietal positivity {with bilateral laferal
parietal negativities), called here P3f, was active from the NI
peak through the first portion of the LPC. In the subaverages of
faster responders, its peak latency was nearly simultaneous with
the subcortical motor command, whereas for five slower respond-
ers its peak latency matched RT oaly for short-RT trials in the
simpler detection task condition. In nearly all decompositions, the
topography of P3f combined a frontal/periocular pesitivity with 2
focal, slightly right-of-center parietal positivity whose peak was
slightly anterior o the P3b extremum. Because the P3f amplitude
was near-equal at both periocular sites and occuwrred in nearly
every trial with similar (~3 pV) amplitude and latercy, it is
unlikely that its periccular projection was generated by eye move-
ments. Instead, P3f likely derives from stimulus-evoked activity in
a frontoparietal system concemed with orienting to spatial stim-
ull. Recently, Corbetta et al. {1998} have shown that two tasks,
one involving voluntary covert shifts of spatial attention {eves
fixated) and the other, voluntary overt attention shifts (saccadic
eye movements to attended locations), produced fMRI signal
activations in bilateral frontal and parietzal areas considered 1o be
analogs of monkey frontal eye field, superior eye field, and lateral
intraparietal sulcus areas, respectively (Gaymard et al, 1998).
This set of arcas is compatible with the scalp distribution of P3L.
The selective evocation of P3f by targets {and partially by nogo
near-fargets}, its frontoparietal topography, and its close associa-
tion with response production in faster responders all suggest that
P3f may also reflect activity in brain systems associated with
speeded manual responding. The combination of periocular,
frontal, and bilateral parietal scalp features in P3f suggests coor-
dinated activity in brain regions undeslying frontal and bilateral
parietal sites involved in speeded manual responses, particularly
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in faster responders. These possibly include human homologs of
the superior parietal “reach region” (Snyder et al, 1997 and
fromtal eve fields (Schlag et ab, 1998). in monkey orbitofrontal
cortex, shown to be. activated by aldrming stimuli #nd sudden
auditory events (Cottraux et al,, 1996; Johnsiude et al,, 1997, and
prefrontal eortex (Rao et al., 1997). More¢ experiments will be

reguired to determineg the mlams importance of speeded e«

sponding, selective attention, and/or spatial orienting for P3f
gencraticd.

Ngvel stimuli presented during focused attention to a stream of
known stimuli gr rare stimuli presented during passive attention
can produce a relatively early, large centiofrontal LPC feature

{Courchésne bt al,, 19"5) The scalp distributions of this novelty

or P3a comporierit {(Kafayama and Polich, 1998) appear different

from the P3f, but farther studies will be required to evaluate

posszbie differsnces between tmm
The Pab campcnent aﬁd Psae :

spéme "‘I‘hesa
(PSb) _xdentiﬁefé

peaks did not coicide. “Thus, ICA éewmpos;non may -greatly
increase the precxslon of studies that use P3b amplitude and
lafeiey measures ab COvariates 16 explore the nature and prcgres~
sion of - psychiatr}c and neurological conditions such as aging
(Fr;edman s al 199’?), schizophrema (Turetsky ef al; 1998}, ard

Vv
btzu:on pz‘ess hs pcstermr max;mum was cammlateraé to e
syeﬁsa hand, &rz.d'itﬁs' Ea“te'éxfi;:zy and: topographic varigbili

. (sicsw wave) Whase ;}eak cavaned thh RT QSimsc)n e:t al 1?7.',
Roth et al., 1978). Makeig et al. (1997; their Fig. 4} also f@und an
ICA csmponent strongly resembling Pmp in-a task reqmﬁng
button presses after mdxstmct atzd;tazy tatgets,

The Pnt componeﬂt and respeﬂse inhibition

A fourth LPC component, labéled Prt, was activated i in paraliel-‘

with. P3b-after flogo nontarget drst‘rae{efs presented i the at-

tended locaim m the ciz&cxzmmaﬁon task T 1 scalp ézs xéutmn ;

dﬁrsoiateral ;ﬁrefmmai br&m :sreas :epeatediv found i lesion and
maging stadies 10 be mx’olvec:i i response inhibition (Taytor et
al,, 1997; Jonides et al., 1998 McKe{awn et al, 1998a). In:partic-
ular, Fhontclogius et fz_{m%ai activation was: found v Bhmier gt
al, (1995} in a positron emission topography experithent in which

distrib

_cavauett i ordmiy Ways with tasfz{ sufzz;e:ct arzd response tlme
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a-three-stimulus oddball paradigm including rate nogo nentargets
was compared with a standard two-stimulus oddball paradigm.
Faster and slower responders

Jokeit and Makeig (1994) reported that subjects in a speeded
auditory response experiment were sphit neatly info two equal
groups of faster- and slower-résponding subjects by the thme
courses of EEG power fiear 40 Hz before and after the imperative
stimuli, They tentatively interpreted this result as supporting &
theory advanced by early psychophy%miog;sts including Wundt
(1913}, that faster fesponders can respond in speeded response
tasks withaut waiting for & clear and conscious perception of the
stimulus, whereas slower résponders inhibit their response uritil
they recogmze the target event and make a conscious decision to
respond to it Qur resulis suggest that the relatively early re-
sporises of faster respondezs may be triggered by P3f, which
appears to comprise concurrent sctivations in more thedn one
bf&m region, Passzblv theﬁlarger Pmp instower ;‘esponciars mxght

}%ze:xfe are. s:nceura i ._They demcmstrate, ﬁr‘st that iCA can

"--:parszm@mﬁusiy decompose ERF duta sets-éomprised of- iy

scalp chavnels, stimiuluy types; and task conditions into tempe-
rally -independent, spatially fixed, and physiologically piausible
components without necessarily requiring the presesice of multi-
ple local response pedks to separate meaningful résponse com-
ponetits. Second, the apparent consonatice of the identified sealp
rcms fcn? P3f Pmp, aﬂd Pat. With fMRI- actlv‘ Hong te-

TERP and FMRT exper:mems Th

tified here: had distinct scalp distribiitions, and their dyndinics

isc; i:feet} apgixed successfuﬂy to anélysrs of fMRE data (‘v{cKem

own et ak, 1998b) and optical recording datd wsing voltage-
sensitive dyes (Brown et al.; 1998}

Cenciusmns

Responses 0 visual stimuli analyzed with ICA have révealed

three major components to the LPC, in accord with the resuits of
early ERP amdm;s on aadléory tarcvet LPC& Mmor IESS?GES&S of

Bent P?af t:ha% %egzgs at MMG msec :md m{:ﬁu&leg cc)nsurrﬁnt

sfronial and bilateral pam@%al sealp focf, The second cormpenent,

Pl vesenibiied the. PR0Y respotise reported: i simple ocdball
éxperiments not jnvolving motor. resporises. The third COIIpO-
nERt; ng}, ten&ad & follow respoiises af slowsr rﬁspm}da{s and
matched the 200 nises postimdverient positivity in voluntary bat-
tor press responses i both latency and scalp distribution. Subject
group differences linked to median RT appearced to be equally
expressed in subaverages of subjects short and kmg R ialy,
supgestintg they may be robust to changes in instiuctions and
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strategy, although this has not yet been tested. The methods
demonstrated here might be used with normal or clinical subjects
to assess cognitive function. They provide a valuable new window
into the relative strengths and time courses of underlying brain
processes.

APPENDIX
Lee et al. (1959a) have shown that the major algorithms proposed
for TCA can be derived from an information theoretic framework,
differing mainly in the distributions they assume for the activation
values of the separate compounents (Jutten and Herault, 1991,
Cichocki et al, 1994; Comon, 1994; Bell and Sejnowski, 1995;
Amari et al., 1996; Cardeso and LaHeld, 1996; Perimutter and
Parra, 1996; Karhunen et al., 1997; Lewicki and Sejnowski, 1998;
Lee et al, 199%b). The infomax ICA algorithm of Bell and
Sejnowski (1995), when implemented using a sigmoid nonlinear-
ity, is capable of separating arbitrary fuil-rank mixtures of com-
ponent processes having temporally independent activations,
with super-Gaussian (positive-kurtosis) digtributions, o
Independence of two or more variables implies not only that
they are uncorrelated, a condition on the second-order moments,
but also that ail the higher-order joint moments are zero. Thus,
decorrelation is a weaker restriction than independence. Inde-
pendence is equivalent to minimizing the mutual information
between a sef of signals, which can be accomplished under certain
conditions by maximizing their joint entropy (Bell and Sejnowski,

- 199%). Entropy is-a measure of the amount of disorder-in a. ..

systern; its maximum cccurs when the joing muliidimensional
probability distribution of the system is uniform.

The infomax ICA algorithm

Each input vector, x{t), represents a set of EEG voltages recorded
from all the input channels at time ¢, Joint entropy maximization
is performed on the (randomly time-ordered) input data after
they are linearly transformed and then compressed by a nonlinear
sigmoidal function:

yit) = glu(t)), where u{t) = Wx{t) + W, (1)

The sigmeidal nonlinearity, g(J, provides necessary higher-order
statistical information to guide the entropy maximization. Op-
tional sphering of the input data before training:

o) = Sx(r), where § = 20" (2)

where << > is the average taken over the data, removes second-
order correlations between channels and may speed up conver-
gence (Bell and Sejnowski, 1996).

Before training, ¥ is initialized to the identity matrix, T (or
else, if the data are not sphered, to the sphering matrix, §) and W,
to ¢, and then W and W, are iteratively adjusted using small
batches of randomly selected data vectors (normally 10 or more)
drawn from {x} without substitution, according #o:

JH(¥)\ S
AW = e(—aw ,_.} WIW = e(F + ou(n) )W (3)
AWy = eplr) (4

Here, H{y) is the joint entropy of v, ¢ is the learning rate
(normally <0.01}, and the function () has elements:

L@ [ Ay
gol.-{fj = émlﬁ(n _-\) (5)
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The “natural gradient” term W in the update equation (Amari
et al., 1996; Cardoso and Laheld, 1996) avoids matrix inversions
and greatly speeds convergence (Amari, 1958). The logistic
nonlinearity:

v = gluy) = 11 +e™) (6)
gives
git) =1 2ydr) (7
and a simple update rule,
Wylt) — (1~ Zydn) (8)

that biases the algorithm toward finding sparsely activated (super-
Gaussian} independent components with positive kurtosis, com-
patible with the assumption that ERPs are composed of one or
mere overlapping series of brief activations within spatially fixed
brain systems performing separable stages of stimulus informa-
tion processing.

The number of time points needed for the method may be ag
few as several times the number of recording channels, which in
turn must be at least equal to the number of components to be
separated, The columns of the inverse matrix, ™ Yor (WS if
the data are sphered, give the projection strengths of the respec-
tive components.onto the scalp sensors. These may be interpo-
lated to give a scalp map associated with each component. The
projection of the ith compenent activation into the original data
space is given by the outer product of the ith row of the compo-
nent activation matrix with the ith column of the inverse unmix-
ing matrix. As scaling information and polarity are distribuzed
between the activation waveforms and the maps (unless one or
the other are normalized), the strengths of different components
should be compared through the sirengths of their projections,
which are scaled in the original data units (microvolts) (Makeig et
al., 1997).

infomanx training

The infomax algorithm reported here used an initial learning rate
near € = 0.004 and computed updates based on batches of ~Z5
time points chosen at random without substitution from the input
data set. After each pass through all the data points, an angle
representing the difference in direction between the update vee-
tors in the current and previous passes.was computed. Whenever
this angle was >60°, the learning rate was reduced by 10%.
Training was halted when the learning rate decreased below
0.000001 [Stand-alone and Matlab routines used are available via
the world wide web (S. Makeig, MATLAB toolbox {or électro-
physiological data analysis, version 3.2, WWW Site, Computa-
tional Neurobiolegy Laboratory, Salk Imstitute, La Jolla CA,
hitp://www.cnlsalk.edu/~scott/ica.htmt {World Wide Web Pub-
lication}, 1998)]. Repeated testing showed that the decomposition
so derived was little affected by the exact cholce of fraining,
annealing, or stopping parameters. As expected, the absolute
values of correlations, {r}, between component activations
{across all the input data) were low (8D of 1 <2 0.028).

Extended-infomax

The infomeax algorithm learning rule can be generalized o sep-
arate sources with either sub-Gaussian (negative-kurtosis) of
super-Gaussian (positive-kurtosis) distributions by approsimat-
ing the estimated probability density function in the form of a
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fourth-order Edgeworth dpproximation (Girolami and Fyfe,
1997). The algoritlin becomes:
AW = e[l — K tagh(in’ — auT]W {9y
where K is an n-dimensional diagonal matrix whose elements are
k; = +1 for super-Gaussian souress |
k= —1for m'b—Gaassiag sOUrCEs

The ks can be estimated from the. generic stability analysis of
separating sohutions, This yzelds the cholee of ks used by Lee et
al., (1999b):

k= sign(E{sech*(u) B} — E{tanh(u}ud)  (10)

which ensures stability of the learning rule.

eter tumng The current ;mplemerita;mn hsmts the m:mbar ef

. _dat& cbannais (and _Sepmfatfsd mm:tzs),' th&t_ can: be pract:cally

PCA~based eiecampos:tmn methsds

A second dlass of proposed LPC decompusitions have involved
POA {Donchin, 1966, Glaser and Ruchkin, 1976; Friedman, 1984;

Dien eE al., 1997} Althmigh PCA can’ eiﬁczentiy charactenze
EFR

dist 'buted dat

in hlgh d:meas;cmai r.iata ﬁ;dvantages dnd shmtcemmgs t}f these
appmaches have b{:en axien&zveiy éiscussed (Wc@d an& Mc«

1995) o :
Vanmax azmi Pmmax '

such 45 those: derlifa_ __by PCA tewaré szmpie structare fiph

ratation of comiponents obtained by spatzal PCA, the prmc;p!e of
simple structure implies that the variance in the orxgmal data
accounted for by each cemponent is coricentrated info relaizv&ly
few scalp channels or into telatively few tiie puints, depenémg
on whether the rotation is applied to the time cotitses of activa-
tioiof the PCA Cottiporents or to their scalp maps {exgenvsctars}

Spanai ro”t&tmn taward srmgie stru::tmze aitempts {te; msmmize t}za :

{iaes not stm:tiy req»u;;e ;mtia%}zatmﬂ by transfcrm&fwm Qf the
data into’s principal component subspace (Mocks and Verleger,
19863, Because it produces din orthogonet rotation, Varifak comi-
ponents derived from PCA exgeﬁvectorc eannot aceount for at
tivity from: functionally separate brain sottees whigse spatial
projeétions to the sealp are nevorthogonal (Deachin et 4l., 1986}
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Promax. (Hendsickson and White, 1964) is an iterative nonlinear
method that performs & highly constrained oblique rotation to
further intensify the orthogonal “rétation to simple structure”
produced by Varimax. In Promasx; the unrotated data and the
data gccounted for by each component are first rmsed 0 a
positive power (often the fourth), retaining their egzgmal sign and

~emphasizing their peai«; values, and the compenent filters are

totated 80 a8 to mirimize the least: ‘square distance between their
projections and the distorted data, We spplied both tempoml and
spatial Varimax and Profmax rotation to the largest seven princi-
pal- compzments of the data (Fig. 5B, C) Promax training was
halied when the relative distance measure stopped decreasing
(after 1-3 fteratioms).
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