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1 Introduction

The nonlinear transverse dynamics of single longitudinal mode lasers in cavities is

described by the Maxwell-Bloch (MB) equations that account for the interaction of

the electromagnetic field with the active media inside the cavity. Several different

order parameter equations have been derived from the MB equations and are cur-

rently used to gain some understanding of transverse pattern forming instabilities in

lasers (see, e.g., the recent reviews [1] and [2]). The study of these order parameter

equations (OP) is interesting not only for the analysis of the transverse nonlinear

dynamics of lasers, but also from the more general point of view of pattern forma-

tion in general spatially extended systems, because the same OP equations can be

used to describe other physical systems that exhibit the same basic destabilization

mechanism [3].

The derivation of the OP equations from the MB equations is based on the slow

envelope assumption, i.e., on the assumption that the amplitudes of the physical

fields are small and depend slowly on time and on the transversal spatial scales.

But the OP equations are commonly applied without observing the slow envelope

requirement, and it is not infrequent to find in the literature solutions of the OP

equations that do not exhibit only long scales. This is normally justified by saying

that the OP equations retain the essential dynamics of the system and thus its range

of application can be somehow extended and they still provide ”qualitative” infor-

mation about the patterns and instabilities that take place in the original physical

system (see [1, 2] and the references therein).

The main goal of this research work is to go beyond the qualitative description

and quantitatively validate the OP equations to show how accurate and precise are

the predictions they provide about the dynamic states and transitions that take

place in the transverse laser profiles.

To this end, we will first apply multiple scales techniques to the MB equations to

derive the corresponding OP equation and its coefficients in terms of the physical

parameters of the problem. For the laser parameter values that we will consider,

namely class C with small detuning, the resulting OP equation is a complex Swift-

Hohenberg (CSH) equation [4, 5]. In this case, due to the small value of the detuning,

the diffusion of the system acts on a much slower time scale than the dispersion
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and, if the slow envelope assumption is consistently applied, this scale disparity is

inherited by the CSH equation that necessarily includes terms of different asymptotic

order and, in in some particular regimes, it even allow us to further simplify the

resulting CSH to a complex Ginzburg-Landau (CGL) equation. This unavoidable

asymptotic nonuniformity of the resulting CSH equation is not properly taken into

account in the usual analyses in the literature, where, invoking the argument of

the qualitative only scope of the OP description, a CSH equation with all terms of

the same order is normally used to analyze this laser instability. In order to clarify

this point, we carry out in this research effort numerical integrations of both, the

MB equations in an extended spatial domain and the CSH equation, that allow us

to confirm that the quantitatively correct weakly nonlinear description of the MB

system is given by the above mentioned, asymptotically nonuniform CSH equation

(and, in some cases, by the simpler CGL equation).

This report is organized as follows. In the next Section we introduce our physical

model for the laser transverse dynamics, the MB equations, and study the basic

linear stability characteristics of the non-lasing state in a class C laser with small

detuning. The derivation of the corresponding CSH equation that describe the near

onset dynamics of the system is carried out in Section 3 and the simplest pat-

terns (travelling waves and spiral waves) displayed by the system and their stability

properties are analyzed in Section 4. Finally, Section 5 contains some numerical

simulations of the CSH equation performed in order to check the presence of two

asymptotically different scales, and the description and results of the procedure im-

plemented in order to quantitative compare the solutions the MB and CSH, together

with a brief explanation of the numerical methods used to integrate both, the MB

and CSH equations.
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2 Maxwell-Bloch model

The dynamics of a two-level laser in the 2D plane section transverse to the main

propagation direction of the electromagnetic wave is governed by the well-known

Maxwell-Bloch (MB) equations [6] that, in the simple case of a single longitudinal

mode, can be written as

∂E

∂t
= ia∇2E − σE + σP, (1)

∂P

∂t
= −(1 + iΩ)P + (r −N)E, (2)

∂N

∂t
= −bN +

1

2
(EP + EP ). (3)

We are using here the same nondimensional formulation as in [7], where E(x, y, t)

and P (x, y, t) represent the complex electric and polarization fields, N(x, y, t) is the

real valued field of the population inversion, a > 0 measures the strength of the

diffraction, σ > 0 and Ω account for the cavity losses and the cavity detuning,

r is the pumping parameter, b > 0 is the decay rate of the population inversion,

∇2 = ∂2/∂x2 + ∂2/∂y2 is the 2D laplacian operator and the bar stands for the

complex conjugate. In the equations above the size of the fields have been scaled in

order to remove the coefficients of the nonlinear terms and time is measured using

the characteristic decay time of the polarization. Note also that the diffraction

coefficient, a, can be set to 1 without loss of generality (as we will do hereafter) just

by scaling the space variables x = (x, y) with the diffraction length
√
a.

Lasers are usually classified according to the relative value of the decay rate of

the population difference γ‖, the cavity decay rate κ, and the decay rate of the

polarization γ⊥: for a class A laser, γ⊥, γ‖ � κ; for a class B laser, γ⊥ � κ � γ‖;

and all decay rates are comparable for a class C laser, κ ∼ γ⊥ ∼ γ‖, see e.g. [8]. We

will focus our attention on class C lasers that, in the nondimensional formulation

of eqs. (1)-(3) where time has been scaled with γ⊥ and σ = κ/γ⊥ and b = γ‖/γ⊥,

correspond to σ ∼ 1 and b ∼ 1.

The linear stability properties of the basic nonlasing state (E,P,N) = (0, 0, 0)
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Figure 1: MB zero state neutral stability curves for Ω < 0, Ω = 0 and Ω > 0 (shading indicates
instability).

are readily calculated inserting the ansatz E(x, y, t)

P (x, y, t)

N(x, y, t)

 =

 E

P

N


k

eik·x+λt

into the linearized version of the MB and solving the resulting eigenvalue problem, λ+ σ + ik2 −σ 0

−r λ+ 1 + iΩ 0

0 0 λ+ b


 E

P

N


k

=

 0

0

0

 ,
which gives the following stability exponents, λ, as a function of the wavevector,

k = (kx, ky),

λ = −b, (4)

λ = −σ + 1 + i(k2 + Ω)

2
±

√
((σ − 1) + i(k2 − Ω))2 + 4rσ

2
, (5)

with k2 = |k|2. After some tedious algebra, one can see that the zero solution is

stable if the pump, r, is below the critical value

rc = 1 +
(k2 − Ω)2

(σ + 1)2
,

and unstable otherwise [4, 5].
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Figure 2: Growth rate of the MB almost neutral modes near onset for Ω < 0 and Ω > 0.

Figure 1 shows the resulting neutral stability curves, i.e., the critical value of the

pump rc, against the wavenumber k for different values of Ω. When Ω < 0, the

most unstable mode is k = 0, while when Ω > 0 the most unstable modes lie along

a circumference (in the plane kx-ky) of radius k =
√

Ω. These are the modes that

first become unstable when the pump is increased over the lasing threshold rc,min,

which is given by rc,min = 1 + Ω2

(σ+1)2
for Ω < 0 and rc,min = 1 for Ω > 0.

Let us consider now that the system is close to threshold: r = rc,min + ε, with

|ε| � 1. The order of magnitude of the unstable wavenumbers can be determined

from Fig. 2. If Ω < 0, then k ∼
√
|ε| and, using scale separation and applying

solvability conditions, a well known complex Ginzburg-Landau (CGL) equation is

straightforwardly obtained [7] for the weakly nonlinear description of the system

dynamics. If, on the other hand, Ω > 0, then the circumference of neutral modes in

the plane kx-ky becomes a thin annulus of unstable modes of width ∆k ∼
√
|ε| (see

Fig. 2). In this case a a pair of counter-propagating coupled CGL equations can be

obtained for 1D and quasi-1D configurations [7, 9, 10], but the OP equation that

completely describes this incipient destabilization in 2D is not currently known, and

it still constitutes one of the open problems in pattern formation [3].

This report covers the transitional case of small detuning |Ω| � 1 in a class C

laser, which is described by a complex Swift-Hohenberg (CSH) equation [4, 5]. The

CSH can be also obtained for class A lasers, and even for class B lasers (e.g., CO2

and semiconductor lasers), but starting from a more specific set of equations [11, 12].

A detailed derivation of the CSH from the MB equations, where special emphasis

is placed on the asymptotic order of its different terms, is presented in the next

section.
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3 Order parameter equation for small detuning

In this section we derive the slow envelope equation that describes the transverse

laser patterns displayed by the MB equations (1)-(3) right after onset, in the small

detuning case.

Near the destabilization threshold, the weakly nonlinear dynamics of the system

is dominated by its linear part and the order of magnitude of the slow scales that

the system exhibits can be obtained from the study of the behavior of the branch

of eigenvalues responsible for the stability change. The small nonlinearities of the

problem do not play any role in the slow scale selection; they just define the charac-

teristic size of the resulting pattern through the saturation of the instability growth,

and they will be taken into account later on.

For small detuning, the modes of the system that first become unstable are those

corresponding to small wavevectors, and their linear stability characteristics are

given by expression (5) with the + sign, which can be expanded as

Re(λ) =
σ

σ + 1
(r − 1)− σ

(σ + 1)3
(k2 − Ω)2 + · · · , (6)

Im(λ) = −k
2 + σΩ

σ + 1
+ · · · , (7)

in the limit of small detuning, small displacement from threshold and small wavevec-

tor, i.e.,

|Ω| � 1, |r − 1| � 1 and k � 1. (8)

From the expression of the growth rate (6) we can see that the characteristic slow

time is given by τ ∼ 1/|r− 1| � 1 and that the range of almost neutral modes goes

up to k ∼ |r−1|1/4 (see Fig. 3). The growth rate of the modes with k � |r−1|1/4 is

much larger and negative and therefore they are quickly damped out in the slow time

scale. Note that in the scaling arguments above we are implicitly assuming that |Ω|
is, at most, of the order of |r−1|1/2. We are not considering the case |Ω| � |r−1|1/2

and Ω > 0 (Ω < 0 is stable and far from threshold), in which a narrow band of

almost neutral modes of size ∆k ∼ |r − 1|1/2/
√
|Ω| develops around the critical

wavevector circumference of radius kc ∼
√
|Ω| � ∆k, because it corresponds to a

completely different destabilization type, namely to that represented in Fig. 2 for

Ω > 0.
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∼ k
4

k

∼ |r − 1|1/4

|r − 1| ∼

Re(λ)

Ω > 0

Ω < 0

Figure 3: Sketch of the growth rate of the most unstable MB modes right after onset, for |Ω| � 1,
|r − 1| � 1 and k � 1.

In other words, the behavior of the growth rate ensures that, for large times, the

system can only exhibit spatial scales that are of the order 1/|r−1|1/4 � 1 or larger,

but no smaller ones, because those are damped out by the dominant linear effects.

On the other hand, the associated mode frequencies given by eq. (7) are always

large as compared with the damping terms of the growth rate. This indicates that

the effect of dispersion on the neutral modes of the system is faster and much stronger

than that of diffusion. The envelope equation that describes the slow dynamics of

the system has to take into account these two effects simultaneously and therefore it

is necessarily going to contain terms of different asymptotic orders, which can never

be rescaled to be of the same order. This is not the case in the transition represented

in Fig. 2 for Ω < 0, where dispersion and diffusion are both of the same order ∼ k2

and the weakly nonlinear dynamics of the system is described by an asymptotically

uniform complex Ginzburg-Landau equation [7].

The need to retain terms of different orders made the derivation of the envelope

equation presented in [4, 5] quite involved. They first assumed a particular scaling for

the fields and the slow spatial and temporal variables, then they proceeded to derive

the envelope equation and its next order correction, and, finally, they collapsed back

the two term expansion into the original (unscaled) variables in order to obtain a

single envelope equation.

The derivation of the envelope equation that we present below is, we believe,

much more simple because we do not assume a priori any scaling relation between

7



the variables, we just look for small amplitude solutions that depend slowly on space

and time (similar scaling free derivations can be found in [13] and [14] in the context

of convection and water waves).

More precisely, the neutral mode at threshold, r = 1 and Ω = 0, corresponds to

λ = 0 and k = 0, with associated eigenvector

V0 =

 1

1

0

 ,
and suggests an expansion for the solution of the MB equations (1)-(3) of the form E(x, y, t)

P (x, y, t)

N(x, y, t)

 = V0ψ + V1∇2ψ + · · · , (9)

where the complex amplitude ψ(x, y, t) has to verify a solvability condition that is

also expanded as

ψt = α0ψ + α1∇2ψ + · · · , (10)

and is precisely the envelope equation that we are looking for. The expansions above

include all possible combinations of the powers of the small quantities

|Ω| � 1, |r − 1| � 1 and |ψ| � 1, |∇2ψ| � 1, |∇4ψ| � 1, . . .

that are treated as independent parameters, only constrained by the weakly nonlin-

ear level of this approach, which requires essentially that

· · · � |∇4ψ| � |∇2ψ| � |ψ| � 1 and · · · � |ψt| � |ψ| � 1 . . . ,

i.e., small envelope amplitude and slow time and space dependence (we have also

anticipated the fact that only even order spatial derivatives will be produced because

of the particular structure of the MB equations).

When the above expansions (9) and (10) are inserted in the MB equations (1)-

(3), a linear nonhomogeneous singular system is obtained at each order. And, as

it is the standard procedure in multiple scale methods to ensure that no secular
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terms are present [15, 16], the nonhomogeneous terms of these systems must satisfy

a solvability condition that provides the contribution of this order to the envelope

equation.

The linear terms of the envelope equation (10) can be easily anticipated because

they correspond to the Taylor expansion of the critical eigenvalue branch λ(k2, r,Ω)

(eq. (5) with the + sign) at (k2, r,Ω) = (0, 1, 0) (see, e.g., [3]),

λ(0,1,0)ψ +
∂λ

∂r

∣∣∣∣
(0,1,0)

(r − 1)ψ +
∂λ

∂Ω

∣∣∣∣
(0,1,0)

Ωψ − ∂λ

∂(k2)

∣∣∣∣
(0,1,0)

∇2ψ +

+
1

2

∂2λ

∂(k2)2

∣∣∣∣
(0,1,0)

∇4ψ − ∂2λ

∂Ω∂(k2)

∣∣∣∣
(0,1,0)

Ω∇2ψ +
1

2

∂2λ

∂Ω2

∣∣∣∣
(0,1,0)

Ω2ψ + . . . ,

and thus, according to expressions (6) and (7), are of the form

σ

σ + 1
((r − 1)− iΩ)ψ + i

1

(σ + 1)
∇2ψ − σ

(σ + 1)3
(Ω +∇2)2ψ + · · · (11)

The computation of the nonlinear terms requires to take the expansions (9) and

(10) to the MB equations, which should be first rewritten in the more convenient

form σ −σ 0

−1 1 0

0 0 b


 E

P

N

= − ∂

∂t

 E

P

N

+

 i∇2E

(r − 1)E − iΩP

0

+

 0

−NE
1
2
(EP + EP )

, (12)

with the dominant terms grouped in the left hand side. The first order nonlinear

contribution to the expansions (9) and (10) is given by

V |ψ|2 and α|ψ|2,

where the vector V and the scalar α are obtained from σ −σ 0

−1 1 0

0 0 b

V= −αV0 +

 0

0

1

 .
This system can only be solved if the right hand side is orthogonal to the solution

9



of the adjoint problem

V a
0 =

 1

σ

0

 ,
and this solvability condition yields

V =

 0

0
1
b

 and α = 0.

Thus there is no contribution of this term to the envelope equation, in other words,

it is not a resonant term. At next order we have the terms

Wψ|ψ|2 and βψ|ψ|2,

which must verify  σ −σ 0

−1 1 0

0 0 b

W= −βV0 +

 0

−1
b

0

 ,
and, again, we apply the solvability condition to obtain the following coefficient of

the envelope equation

β = − σ

b(1 + σ)
.

Finally, after collecting the leading nonlinear contribution above and the linear

terms in (11), the envelope equation reads

ψt =
σ((r − 1)− iΩ)

σ+1
ψ+

i

(σ+1)
∇2ψ− σ

(σ+1)3
(Ω+∇2)2ψ− σ

b(σ+1)
ψ|ψ|2 + · · · , (13)

which is the well known complex Swift-Hohenberg equation (CSH) (see [4, 5]). It is

important to stress that this equation has to be solved in the limit

|Ω| � 1 and |r − 1| � 1, (14)

and that its solutions must verify the slow envelope assumption

· · · � |∇4ψ| � |∇2ψ| � |ψ| � 1. (15)

10



And therefore, as it was expected from the study of the growth rate, the CSH above

contains different order terms: the effect of dispersion is always much bigger than

the dissipation of the double diffusive term.

We now introduce the small parameter 0 < ε� 1 and the scaling of the variables

(r − 1)− Ω2

(σ + 1)2
=

(σ + 1)2

σ2
αε2, t̃ =

(σ + 1)

σ
tε2,

(x̃, ỹ) =
(σ + 1)√

σ
(x, y)ε, ψ = e−i σΩ

(σ+1)
t
√
b
(σ + 1)

σ
φε ,Ω =

(σ + 1)2

σ
ωε, (16)

which brings eq. (13), after dropping tildes, to the more convenient form

φt = αφ+ i∇2φ− φ|φ|2 − 2εω∇2φ− ε2∇4φ, (17)

where the rescaled pump, α, and detuning, ω, are now order one parameters. Note

that α can be also absorbed by means of a trivial change of variables, but we prefer

to keep it because later on, when we perform some numerical integrations of eq.

(17), it will allow us to make the scaled size of the domain independent of ε.

In the scaled CSH eq. (17) the dominant, dispersion induced dynamics is of

order one: the typical length scale exhibited by the dispersive patterns (that was

∼ 1/
√
|r − 1| � 1 in the original variables) is now δdisp ∼ 1. On the other hand,

the small coefficient multiplying the double diffusive term indicates that the system

is capable of displaying scales as small as δdiff ∼
√
ε ( ∼ 1/ 4

√
|r − 1| � 1 in the

original variables) before diffusion becomes overwhelming and everything is damped

out, recall Fig. 3.

The most simple solutions of eq. (17) are those that only exhibit scales ∼ δdisp ∼ 1

as ε→ 0. For those dispersive states, the spatial derivatives remain of order one and

thus the two last terms in eq. (17) represent, in the limit ε→ 0, a small correction

that can be neglected to give

φt = αφ+ i∇2φ− φ|φ|2. (18)

This is a very interesting complex Ginzburg-Landau equation (CGL) [3, 17, 18]:

purely dispersive but with a dissipation that comes from the nonlinear term only.

This CGL appears in a straightforward way from the small detuning MB equations

due to the dominant character of the dispersion but, so far, we have not seen it
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analyzed in the literature. Instead, the equations that are currently used to describe

the weakly nonlinear dynamics of the MB equations in the small detuning case are

either (i) the unscaled CSH eq. (13), but integrated without observing conditions

(14) and (15), see [7, 4, 5, 19], or (ii) a CSH eq. scaled similarly to eq. (17), see [20],

but again studied for ε ∼ 1, when ε� 1 is the only physically relevant regime from

the point of view of the slow envelope description of the transverse laser pattern

dynamics.

Besides lasers, the CSH equation has been used as a model for other non-linear

optical systems such as optical parametric oscillator [21, 22] and photorefractive

materials, where the equation qualitatively reproduces experimental results [23].
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4 Patterns

This section is dedicated to the study of some basic solutions of the CGL eq. (18),

namely: spatially uniform travelling waves and spirals. Note that all solutions of

the CGL are approximate solutions (up to O(ε) corrections) of the CSH, and once

a stable solution of the CGL is found, in order to be sure that it is a stable state

of the CSH, one must also check its stability under perturbations containing small

diffusive scales, whose dynamics is not contained in the CGL.

As a previous step, we study the stability properties of the nonlasing solution

φ = 0. The solutions of the linearized version of the CSH in a square periodic

domain can be written in the form

φ ∼ eik·x+λt,

where λ is given by

λ = α− ik2 + 2εωk2 − ε2k4,

with k = |k| and 0 < ε � 1. Two different kinds of perturbations can be distin-

guished. Those with wave vector k ∼ 1, i.e., those exhibiting only dispersive scales

δdisp ∼ 1, for which the dispersion relation above simplifies to

λ = α− ik2 + . . . , (19)

and thus are stable for α < 0 and become unstable for α > 0. The evolution of

these perturbations is well represented by the CGL, which could have been used to

obtain their stability properties. The second kind of perturbations are those with

very high wave vector k ∼ K/
√
ε� 1 and K ∼ 1, which have a typical wavelength

of the order of the small diffusive scales δdiff ∼
√
ε � 1, and whose growth rate is

given by

Re(λ) = α+ 2ωK2 −K4. (20)

For negative detuning ω < 0 these small scale perturbations become unstable for

positive α, but for ω > 0 the destabilization takes place for α > −ω2 at a critical

wavenumber k =
√
ω/
√
ε� 1. The dynamics of these perturbations is not included

in the CGL and its analysis requires to deal with the complete CSH.

The structure of the growth rate of these perturbations is sketched in Fig. 4 and,
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α < 0

α > 0

Re(λ)

k ∼ 1

k ∼ 1/
√

ε � 1

k

ω > 0

ω > 0

CGL CSH

ω < 0

ω < 0

Figure 4: Growth rate of the perturbations of the zero solution of the CSH eq. (17) for ω > 0 and
ω < 0, with the two wavenumber regions shown: k ∼ 1 (dispersive perturbations) and k ∼ 1/

√
ε�

1 (diffusive perturbations).

as it was expected, it is just a rescaled version of that obtained in the previous section

for the MB, see Fig. 3. The resulting stability region of the nonlasing solution is the

dark shaded area in the α− ω plot in Fig. 5.

Inside the linear stability region depicted in Fig. 5, the zero solution is, in fact,

globally stable, that is, all solutions of the CSH for all possible initial conditions

decay to 0 as time increases. In order to see this, we multiply eq. (17) by φ̄, add

the complex conjugate and integrate over the domain D to obtain

d

dt

∫
D

|φ|2 = 2

∫
D

|φ|2(α− |φ|2) + i

∫
D

(φ̄∇2φ− φ∇2φ̄)

−2εω

∫
D

(φ̄∇2φ+ φ∇2φ̄) + ε2

∫
D

(φ̄∇4φ+ φ∇4φ̄).

If we now take into account that

φ̄∇2φ = ∇ · (φ̄∇φ)− |∇φ|2,

and apply Green’s formula, the second integral above can be expressed as∫
D

∇ · (φ̄∇φ− φ∇φ̄) =

∫
δD

(φ̄
∂φ

∂n
− φ

∂φ̄

∂n
) = 0,

that is zero because of the periodicity boundary conditions at the boundary δD of
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α

ω

α = −ω
2

α = ω
2

TW unstable

0 unstable

TW stable

0 stable

Figure 5: Stability diagram for the zero solution and the TW. Light shading: TW stable. Dark
shading: zero solution stable.

the square domain D. The same arguments allow us to write∫
D

(φ̄∇2φ+ φ∇2φ̄) = −2

∫
D

|∇φ|2,

and ∫
D

(φ̄∇4φ+ φ∇4φ̄) = 2

∫
D

|∇2φ|2,

where we have also make use of the relation

φ̄∇4φ = ∇ · (φ̄∇(∇2φ)− (∇φ̄)(∇2φ)) + |∇2φ|2.

Collecting all the above results, one can write

d

dt

∫
D

|φ|2 = 2[

∫
D

|φ|2(α− |φ|2) + 2εω

∫
D

|∇φ|2 − ε2

∫
D

|∇2φ|2], (21)

and also
d

dt

∫
D

|φ|2 = 2[

∫
D

|φ|2(α+ ω2 − |φ|2)−
∫
D

|ε∇2φ+ ωφ|2], (22)

as it can be readily seen after taking into account the following relation

|ε∇2φ+ ωφ|2 = ε2|∇2φ|2 + ω2|φ|2 + εω(φ̄∇2φ+ φ∇2φ̄)
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and the result above for the integral of its last term.

Finally, for ω < 0 all negative terms in the right hand side of eq. (21) can be

removed to give
d

dt

∫
D

|φ|2 ≤ 2α

∫
D

|φ|2,

that, according to Gronwall’s Lemma, implies that∫
D

|φ|2 ≤ Ce2αt → 0 as t→∞,

and thus we can conclude that∫
D

|φ|2 → 0 as t→∞,

i.e., all solutions decay to zero for α < 0 and ω < 0. If now ω > 0, then we can use

Eq. (22) and follow the same argumentation as above to obtain that, for α+ω2 < 0,

all solutions also decay to zero.

It is interesting to notice that the global stability of the zero solution allow us to

conclude that the CSH cannot exhibit localized solutions with a nonzero central core

and tail that decays to zero; in order to have such solutions the zero solution has

to be stable but this also implies, because of the global stability, that the pulse-like

solution has to decay to zero.

4.1 TW solutions

The simplest nonzero solutions of the CGL eq. (18) are the spatially uniform trav-

elling waves (TW),

φTW =
√
α eikTW·x−ik2

TWt, (23)

with kTW = |kTW| ∼ 1, which exist only for α > 0 and are approximate solutions of

the CSH up to O(ε) corrections.

The TW stability characteristics can be easily obtained looking for solutions of

the form

φ = φTW(1 + ξ) with |ξ| � 1

in the CSH and neglecting all but the linear terms. The following equation for the
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Re(λ)
CGL CSH

ω > 0

ω < 0

k ∼ 1

k ∼ 1/
√

ε � 1

0

−2α

k

Figure 6: Growth rate of the perturbations of the TW for ω > 0 and ω < 0, with the two wavenum-
ber regions shown: k ∼ 1 (dispersive perturbations) and k ∼ 1/

√
ε� 1 (diffusive perturbations).

evolution of the perturbation ξ is obtained

ξt = i(∇2ξ + i2kTW · ∇ξ)− α(ξ + ξ̄)− 2εω[∇2ξ + . . . ]− ε2[∇4ξ + . . . ],

where, as we will see below, only the main contribution of the small diffusive terms

needs to be retained. If we now expand ξ in Fourier series

ξ =
∑

ξk(t)e
ik·x,

only the mode pairs with wavevectors ±k are coupled and their evolution equations

read

dξk
dt

= (−α− ik2 − i2kTW · k + 2εωk2 − ε2k4)ξk − αξ̄−k,

dξ̄−k

dt
= (−α+ ik2 − i2kTW · k + 2εωk2 − ε2k4)ξ̄−k − αξk.

where k = |k|. The solutions of this linear system are proportional to eλt with λ

given by

λ = −α− i2kTW · k + 2εωk2 − ε2k4 ±
√
α2 − k4.

Again, we can distinguish between perturbations exhibiting only dispersive scales,

i.e., with wavevector |k| ∼ 1, which have a growth rate that can be approximated

as

Re(λ) = −α±
√
α2 − k4 + . . . (24)

17



and are always stable because α is positive for all TW (see Fig. 6); this is again the

result that is obtained if the linear stability analysis is performed on the CGL. And

perturbations with high diffusive wavevectors, k ∼ K/
√
ε � 1 , whose dynamics is

not contained in the CGL, and their growth rate, up to O(
√
ε) corrections, is given

by

Re(λ) = −α+ 2ωK2 −K4 + . . . , (25)

which is also plotted in Fig. 6. These diffusive, short wave perturbations become

unstable outside the region defined by ω > 0 and α > ω2 (marked with light shading

in Fig. 5) with critical wavenumber k =
√
ω/
√
ε� 1. Note that the growth rate of

the diffusive perturbations is of order one and thus this not a higher order correction

that evolves on a much slower time scale; this instability develops in the time scale

t ∼ 1 of the dispersive CGL dynamics.

Finally, it is also interesting to mention that the region ω > 0 and −ω2 < α < ω2

in Fig. 5 appears to be the best suited to look for complex dynamics because in

there both the zero solution and the uniform TW are unstable.

4.2 Spirals

The rotating spiral wave solutions of the CGL are of the form

φS =
√
α ρ(r) ei(ωSt+mθ+ψ(r)),

where (r, θ) are polar coordinates, m ∈ N represents the number of arms of the spiral

and ωS its rotating angular frequency. After inserting the expression above into the

CGL eq. (18), the following equations are obtained for the functions ρ(r) and ψ(r)

ρrr +
1

r
ρr − ρ(ψ2

r +
m2

r2
) = ωSρ, (26)

ψrr +
1

r
ψr + 2

ρr
ρ
ψr = 1− ρ2, (27)

together with the following boundary conditions that prevent the formation of sin-

gularities at r = 0

ψr(0) = 0, ρ(r) = ρ0r
m for r → 0, and ρ(r) → 1 for r →∞, (28)
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see e.g. [24]. The spiral is zero at the origin and, as r →∞, its amplitude approaches

that of the uniform TW
√
α and its radial wavenumber verifies

ψr → ψr∞, with ωS = −ψ2
r∞,

which is precisely the frequency-wavenumber relation of the TW. These spirals of

the CGL are again solutions of the CSH up to O(ε) error.

The numerical integration of the semi-infinite, singular boundary value problem

(26)-(28) has been performed following the steps below.

1. In order to avoid the singularity at r = 0, the solution at r = r0 � 1 is

approximated by the expansions for r → 0

ρ(r) = ρ0r
m +

ρ0ωS

4(m+ 1)
rm+1 + . . . ,

ψr(r) =
r

2(m+ 1)
+ . . . .

2. The third order system (26)-(27) for (ρr, ρ, ψr) is now integrated from r = r0

to r = r∞ � 1 and, at r = r∞, the solution is forced to match the expansion

for r →∞

ρ(r) = 1− ψr∞
2r

− 5ψ2
r∞

8r2
− 4m2 + 29ψ4

r∞
16ψr∞r3

− 80m2 + 973ψ4
r∞ + 32

128r4
+ . . . .

3. For every fixed value of m, the matching conditions for ρ and ρr at r = r∞

give of a two equation system for ωS and ρ0 that is solved applying Newton’s

method (with the Jacobian approximated using second order finite differences).

Note that there is no need to match ψr since it is completely defined, once ρ is

known, by the expression

ψr(r) =
1

rρ2(r)

∫ r

0

sρ2(s)(1− ρ2(s)) ds,

which is readily obtained from eq. (27) after multiplying by rρ2 and integrating

from 0 to r.
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Figure 7: From top to bottom: one, two and three armed spiral solutions corresponding to m =
1, 2 and 3. The left column shows the amplitude ρ and radial wavenumber ψr profiles. Right
column shows the grayscale map of the real part of φS.

The resulting spirals for m = 1, 2 and 3 are shown in in Fig. 7, and the corre-

sponding values of ρ0 and the rotating frequency ωS are given in the table below.

m ωS ρ0

1 -0.426468 0.365958

2 -0.700454 0.0957711

3 -0.909445 0.0192913
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The computations have been done for r0 = 10−3 and r∞ = 20 in order to ensure

that the errors in the expansions for r → 0 and r → ∞ above, which are ∼ r2
0

and ∼ 1/r5
∞ respectively, are both below 10−6 (we have also checked that the digits

presented in the table do not change when r0 is reduced to 10−4 and r∞ is increased

to 30).
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5 Numerical results

The purpose of the numerical results presented in this section is twofold: (i) We

will first perform some numerical simulations of the order parameter equation (the

CSH eq. (17)) to check the stability predictions of the previous section and to show,

as it was advanced in Section 3, the presence of two essentially different scales in

the extended system limit ε→ 0, namely, dispersive, δdisp ∼ 1, and diffusive scales,

δdiff ∼
√
ε. And (ii) we will then numerically integrate both, the complete MB eqs.

(1)-(3) and the CSH eq. (17), and compare their respective solutions to confirm the

validity of the CSH as the appropriate order parameter equation for the description

of the weakly nonlinear dynamics of the MB.

5.1 Numerical simulations of the CSH

The CSH equation (17) is numerically integrated in a square domain [0, 1] × [0, 1]

with periodic boundary conditions for four representative sets of parameter values.

α

ω

0 unstable

TW unstable

2

1

4

3

TW stable

0 stable

Figure 8: Stability diagram for the zero solution and the TW. Light shading: TW stable. Dark
shading: zero solution stable. Numbered dots correspond to the parameter values used in the
numerical integrations.

CASE 1: α = −0.75 and ω = 0.5. For these parameter values, the results

obtained in Section 4 indicate that the zero solution is globally stable, see Fig. 8.

The initial condition used in all simulations is a constant amplitude pure mode with

22



wavevector kTW = (1, 2), represented in Fig. 9, and with a superimposed random

perturbation of amplitude 10−3. The CSH has been integrated for three different

values of ε and the resulting time evolution of the norms of the solution

||φ|| =

√∫ 1

0

∫ 1

0

|φ| dx dy and ||∇φ|| =

√∫ 1

0

∫ 1

0

||∇φ|| dx dy

are shown in Fig. 10. As it was expected, the dynamics of the system in this case

is extremely simple, and all three solutions decay to zero. It is interesting to notice

that the decay rate for ε� 1 appears to be independent of ε (see the slopes of the

two solid lines in the lower plot in Fig. 10) but different from that for ε = 0 (dashed

line in the lower plot in Fig. 10), which decays faster. This is also in agreement with

the results from Section 4: the dispersion relation of the zero solution for ε � 1 is

given by eq. (20), whose maximum value α − ω2 = −0.5 (associated to the slowest

decaying modes) is independent of ε and different form that corresponding to ε = 0

(when the CSH equation simplifies to the the CGL equation (18)) that, according

to eq. (19), is constant and equal to α = −0.75, and thus produces a faster decay

to zero.

Re(φ) Im(φ)

Figure 9: Colored contour maps of the real (left) and imaginary (right) part of a pure mode field
of the form φ =

√
|α|eik·x with α = −0.75 and kTW = (1, 2). Lighter (darker) colors correspond

to higher (lower) values.
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Figure 10: Time evolution of the norm of the solution of the CSH eq. (17) (above) and its gradient
(below). The initial condition is the pure mode in Fig 9 with a random perturbation of size 10−3,
and the parameters correspond to the CASE 1 in Fig. 8 with ε = 10−3 (thick line), ε = 10−3/4
(thin line) and ε = 0 (CGL eq. (18), dashed line).

CASE 2: α = 0.75 and ω = 0.5. We are now in the region of the parameter

space where the uniform TW described by expression (23) in Section 4.1 are all

stable (see Fig. 8). Recall that these are TW with wavenumber k ∼ 1 (without

diffusive scales) and therefore, in the ε � 1 limit, they are approximately given by

the CGL equation (18). The starting point of the numerical integrations shown in

Fig. 11 is now a uniform TW (i.e. that with kTW = (0, 0) and amplitude
√
α) with

a 10−3 random perturbation, and, as expected, the system relaxes to the uniform

TW: ||φ|| →
√
α and ||∇φ|| → 0. As it can be appreciated from the lower plot of

Fig. 11, the resulting decay rate for ε� 1 is again independent of ε and is given by

the maximum of the growth rate (25), −α + ω2 = −0.5, and it again differs from

that for ε = 0 that, according to expression (24), is equal to −α = −0.75.
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Figure 11: Time evolution of the norm of the solution of the CSH eq. (17) (above) and its gradient
(below). The initial condition is a spatially uniform steady solution with a random perturbation
of size 10−3, and the parameters correspond to the CASE 2 in Fig. 8 with ε = 10−3 (thick line),
ε = 10−3/4 (thin line) and ε = 0 (CGL eq. (18) dashed line).
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Figure 12: Time evolution of the norm of the solution of the CSH eq. (17) (above) and its gradient
(below). The initial condition is a spatially uniform steady solution with a random perturbation
of size 10−3, and the parameters correspond to the CASE 3 in Fig. 8 with ε = 10−3 (thick line),
ε = 10−3/4 (thin line) and ε = 0 (CGL eq. (18), dashed line).
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CASE 3: α = −0.5 and ω = 2. The initial condition is the same perturbed

uniform state used in CASE 2, but now, as it is clear from Fig. 12, the behaviour

of the system for ε � 1 is completely different from that for ε = 0. The resulting

temporal evolution for ε = 0 is just a monotonous decay to the zero solution (dashed

line in Fig. 12) that, according to eq. (19), is always stable in the CGL dynamics

when α is negative. On the other hand, the zero solution is unstable for the CSH

with ε � 1 (see Fig. 8), and what happens now is that the system evolves to a

nonzero final state that exhibits small diffusive scales (solid lines in Fig. 12). These

small diffusive scales grow exponentially with a finite non-zero growth rate as ε→ 0,

see the lower plot of Fig. 12. Note that, despite of the small coefficients of diffusion

and double diffusion in the CSH eq. (17), the onset of these small diffusive scales is

not a higher order, longer time scale effect; they evolve in the t ∼ 1 time scale of the

CSH, as it is clear from the slope of the solid lines in the lower plot of Fig. 12. The

resulting values of ||∇φ|| at t = 20 for ε = 10−3 and ε = 10−3/4 are, respectively,

82.187 and 164.85, whose ratio is equal to 2.006 . . . , in agreement with the fact that

the small diffusive scales dominate the final state, forcing the norm of the gradient

to behave, in first approximation, as ||∇φ|| ∼ 1/
√
ε. Moreover, the solutions at

t = 20 for ε = 10−3 and ε = 10−3/4 (shown in Figs. 13 and 14) resemble a TW with

a number of wavelengths that is roughly 7 and 14, indicating that this final state

corresponds to a TW but with a diffusive wavenumber k ∼ 1/
√
ε.

Re(φ) Im(φ)

Figure 13: Colored contour maps of the real (left) and imaginary (right) part of the solution of the
CSH eq. (17) at t = 20 for α = −0.5, ω = 2 and ε = 10−3.
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Re(φ) Im(φ)

Figure 14: Colored contour maps of the real (left) and imaginary (right) part of the solution of the
CSH eq. (17) at t = 20 for α = −0.5, ω = 2 and ε = 10−3/4.

CASE 4: α = 0.5 and ω = 2. The initial condition is now that of the CASE

1 simulations: a TW with wavevector kTW = (1, 2) shown in Fig. 9 with a 10−3

perturbation. This TW is stable in the CGL dynamics; this is clearly seen in the

results for ε = 0 plotted in Fig. 15, where the norm of the solution remains almost

constant and equal to its initial value
√
α, and the perturbations (lower plot) decay

exponentially. As it happened in the previous case, this TW is unstable for the CSH

with ε� 1, and the solution develops small diffusive scales that grow exponentially

(see the solid lines in Fig. 15). The ratio of the final values of ||∇φ|| for ε = 10−3

and ε = 10−3/4 is approximately 176.2/87.6 = 2.01, and there are twice as much

wavelengths in the solution in Fig. 17 for ε = 10−3/4 than in that shown in Fig. 16

for ε = 10−3, indicating again that the final state is a TW with diffusive wavenumber

k ∼ 1/
√
ε. Notice that this TW is very similar to that obtained in the previous case;

this is due to the fact that the most unstable wavenumber is given by k ∼
√
ω/
√
ε

(see eq.(25)) that depends only on ω and ε, which take the same values in both cases

(the amplitude of both TW is different but this cannot be appreciated in the color

maps).
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Figure 15: Time evolution of the norm of the solution of the CSH eq. (17) (above) and its gradient
(below). The initial condition is a spatially uniform steady solution with a random perturbation
of size 10−3, and the parameters correspond to the CASE 4 in Fig. 8 with ε = 10−3 (thick line),
ε = 10−3/4 (thin line) and ε = 0 (CGL eq. (18), dashed line).

Re(φ) Im(φ)

Figure 16: Colored contour maps of the real (left) and imaginary (right) part of the solution of the
CSH eq. (17) at t = 20 for α = 0.5, ω = 2 and ε = 10−3.
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Re(φ) Im(φ)

Figure 17: Colored contour maps of the real (left) and imaginary (right) part of the solution of the
CSH eq. (17) at t = 20 for α = 0.5, ω = 2 and ε = 10−3/4.

The numerical simulations presented above clearly show that there are two types

of solutions of the CSH with a completely different behaviour in the physically

relevant limit of large systems ε → 0: those that only exhibit scales that are of

the order of the total size of the domain, δdisp ∼ 1, and that can be accurately

approximated by the simpler CGL that is obtained by setting ε = 0 in the CSH

(CASES 1 and 2), and those that develop small diffusive scales, δdiff ∼
√
ε, whose

dynamics can only be correctly described using the CSH with ε� 1 (CASES 3 and

4).

The details of the applied numerical scheme are given below in section 5.4. The

typical number of Fourier modes used in the simulations above are 64 × 64 and

128× 128, with a time step in the range dt = 0.001 . . . 0.0001.

5.2 MB and CSH solution comparison

In this section we numerically check the accuracy of the CSH eq. (17) as the order

parameter equation for the description of the weakly nonlinear dynamics of the MB

eqs. (1)-(3) with small detuning.

We numerically integrate the MB in a large square domain [0, L] × [0, L] with
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periodic boundary conditions and L � 1. The pump and the detuning are taken

appropriately small

|r − 1| ∼ 1

L2
� 1 and |Ω| ∼ 1

L
� 1,

and the initial condition, according to the scaling in (16), takes the form E

P

N


0

=

√
b

σ

 1

1

0

 φ0(x/L, y/L)

L
� 1,

where b and σ are fixed, order one parameters (class C laser), and the complex

function φ0 is periodic in [0, 1]×[0, 1] and such that |φ0| ∼ 1, and the final integration

time tMB is chosen such that

tMB ∼ L2 � 1.

We also integrate the CSH in the domain [0, 1] × [0, 1] with periodic boundary

conditions, φ0(x, y) as initial condition and the following parameters (see (16))

α = L2σ((r − 1)− Ω2

(σ + 1)2
) ∼ 1, (29)

ω = LΩ

√
σ

σ + 1
∼ 1, (30)

ε =

√
σ

σ + 1

1

L
� 1, (31)

and up to a final time

tCSH =
1

(σ + 1)L2
tMB. (32)

In order to quantitatively measure the accuracy of the order parameter descrip-

tion, we first perform several simulations of the MB with increasing domain size and

final time

MB1 MB2 MB3 . . .

L1 L2 L3 . . .

tMB1 tMB2 tMB3 . . .

r1 − 1 r2 − 1 r3 − 1 . . .

Ω1 Ω2 Ω3 . . .
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Re(φ) Im(φ)

Figure 18: Colored contour maps of the real (left) and imaginary (right) part of the initial condition
used for the CSH and MB comparison.

and the corresponding ones of the CSH

CSH1 CSH2 CSH3 . . .

ε1 ε2 ε3 . . .

keeping fixed b, σ, α, ω and the final CSH integration time, tCSH, and obtaining the

rest of the parameters (ri − 1), Ωi, tMBi
and εi from the above eqs. (29)-(32) for

every given value of Li. And then, we evaluate the difference of both solutions

di(t) = ‖

 E

P

N


MBi

(L2(σ + 1)t)−
√
b

σ

 1

1

0

 φCSHi
(x/Li, y/Li, tCSHi

)

Li
e−i

σΩi
(σ+1)

t‖, (33)

and check the asymptotic behavior predicted in section 3,

di/εi → 0 as εi → 0. (34)

We repeat the above procedure for two sets of parameter values:

CASE 1: σ = 1, b = 1, α = 0.75 and ω = 0.5. The initial condition (plotted in

Fig. 18) is given by the expression

φ0(x, y) = 0.5 + 3i + cos(x+ cos y)esinx+i3 cos2 y,
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which presents several peaks and valleys and has been selected in order to ensure that

the simulations are started at a generic state, away from the simple TW solutions.

Both systems have been integrated up to final time tCSH = 10 and for four different

values of L, with parameters

MB1 MB2 MB3 MB4

L 20 30 40 50

tMB 8000 18000 32000 50000

r − 1 0.0025 0.001111... 0.000625 0.0004

Ω 0.05 0.03333... 0.025 0.02

CSH1 CSH2 CSH3 CSH4

ε 0.025 0.01666... 0.0125 0.01

And the resulting MB-CSH differences (33) are shown in Fig. 19. The time evolution

of the MB presents a short initial stage, that takes place for tMB ∼ 1 ( tCSH ∼
1/L2 � 1), in which the system quickly damps out all modes with high wavenumber.

This produces a sharp growth and decrease of the MB-CSH difference that can be

appreciated in the lower left plot of Fig. 19. After this initial phase, the system

enters the slow dynamics regime and its evolution takes place in the scale tCSH ∼ 1

(tCSH ∼ L2 � 1), see top plot of Fig. 19. The maximum values of each difference,

dmax, divided by ε are plotted against ε in the lower right plot of Fig. 19; it is clear

from this plot that dmax/ε goes to zero as ε is decreased, confirming the asymptotic

behavior predicted in (34).

CASE 2: σ = 1, b = 1, α = 0.5 and ω = 2. The initial condition is that of

the previous case and, again, both systems have been integrated up to final time

tCSH = 10, but now for five different values of L, with parameters

MB1 MB2 MB3 MB4 MB5

L 20 30 40 50 60

tMB 8000 18000 32000 50000 72000

r − 1 0.01125 0.005 0.0028125 0.0018 0.00125

Ω 0.2 0.1333... 0.1 0.08 0.06666...

CSH1 CSH2 CSH3 CSH4 CSH5

ε 0.025 0.01666... 0.0125 0.01 0.008333...

and the results are now presented in Fig. 20. Again the system exhibits a fast

adaptation stage (lower left plot of Fig. 20) followed by a slow evolution in the
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tCSH ∼ 1 time scale (top plot of Fig. 20). But now, we are in a point of the

parameter space where the final state exhibits diffusive scales δdiff ∼
√
L in the MB

variables. And thus, it is now necessary to go to higher L values (L > 50, ε < .01) in

order to have a clear separation of scales between δdisp ∼ L and δdiff ∼
√
L (δdisp ∼ 1

and δdiff ∼
√
ε in the CSH scaling) and start to see the asymptotic decay predicted

in (34), see the dots in the bottom right plot of Fig. 20.

The numerical method used to integrate the MB eqs. (1)-(3) is briefly described

in the following section. The computations above have been carried out with 64×64

Fourier modes and time integration step dt = 0.0025 and dt = 0.00125. Note that

such small time steps are necessary in order to be sure that the numerical integration

errors of the MB equations are kept small and do not contaminate the differences

that we trying to compute. The combination of small time steps (dt = 0.0025)

and very long integration times (tMB = 50000) makes the computations presented

above extremely CPU costly; the computation of the time evolution of one MB-CSH

difference may take up to 5 days in a 3GHz Pentium IV computer with 1Gb RAM.
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Figure 19: Top plot: Time evolution of the difference of the solution of the CSH and MB equations
for σ = 1, b = 1, α = 0.75, ω = 0.5 and L = 20, 30, 40 and 50. Bottom plot: short time detail of
evolution of difference (left) and (right) the resulting maximum values of the difference versus ε
(the dashed line corresponds to a decay dmax

ε ∼ ε ).
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Figure 20: Top plot: Time evolution of the difference of the solution of the CSH and MB equations
for σ = 1, b = 1, α = 0.5, ω = 2 and L = 20, 30, 40, 50 and 60. Bottom plot: short time detail of
evolution of difference (left) and (right) the resulting maximum values of the difference versus ε
(the dashed line corresponds to a decay dmax

ε ∼ ε ).
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5.3 Numerical integration of the MB equations

The Maxwell-Bloch equations (1)-(3) with periodic boundary conditions in a square

domain of size L,

(E,P,N)(x+ L, y, t) = (E,P,N)(x, y, t), (E,P,N)(x, y + L, t) = (E,P,N)(x, y, t),

are numerically integrated using a Fourier series representation in x and y, and a

4th order Runge-Kutta temporal scheme.

In order to do this, we expand the solutions in a double Fourier series of the form

(E,P,N)(x, y, t) =
∑
k,j

(ek,j(t), pk,j(t), nk,j(t))e
i(2π/L)k·x,

with k = (k, j) and x = (x, y), and

nk,j = n−k,−j,

because the population inversion N(x, y, t) is a real valued field. The resulting

equations for the Fourier components can be written as

dek,j
dt

= −(σ + i(2π/L)2(k2 + j2))ek,j + σpk,j,

dpk,j
dt

= −(1 + iΩ)pk,j + rek,j − [NE]k,j,

dnk,j
dt

= −bnk,j +
1

2
[ĒP + EP̄ ]k,j.

We have to use a sufficiently large number of Fourier modes in order to ensure that

we are accurately solving the shortest spatial scales exhibited by the system, which

are λ ∼
√
L. This implies that the number of Fourier modes, NF, should be such

that

NF ∼ mλ

√
L,

where mλ represents the number of modes used to describe the shortest scales, and

mλ ∼ 5− 10 typically. Therefore, the coefficient that comes from dispersion in the

system above can be quite large and this can give rise to numerical instabilities in

the usual explicit time integration schemes (see [25]).
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This problem can be avoided if we integrate explicitly the linear diagonal terms

to obtain

d

dt

 e−c1k,jtu1k,j

e−c2k,jtu2k,j

e−c3k,jtu3k,j

 =

 e−c1k,jtf1k,j(u1k′,j′ , u2k′,j′ , u3k′,j′)

e−c2k,jtf2k,j(u1k′,j′ , u2k′,j′ , u3k′,j′)

e−c3k,jtf3k,j(u1k′,j′ , u2k′,j′ , u3k′,j′)

 ,
where

uk,j = (u1, u2, u3)k,j = (e, p, n)k,j,

ck,j = (c1, c2, c3)k,j = (−(σ + i(2π/L)2(k2 + j2)),−(1 + iΩ),−b),

fk,j = (f1, f2, f3)k,j = (σu2k,j, ru1k,j − [NE]k,j,
1

2
[ĒP + EP̄ ]k,j),

And then, we use a standard explicit fourth order Runge-Kutta method [25], which

yields the following time marching scheme for a single time step of size ∆t

uk,j(t+ ∆t)= eck,j∆tuk,j(t)+
∆t
6

[eck,j∆tK1
k,j + 2eck,j∆t/2K2

k,j+ 2eck,j∆t/2K3
k,j+K

4
k,j],

where the vectors K1
k,j, K

2
k,j and K3

k,j are given by

K1
k,j = fk,j(uk′j′(t)),

K2
k,j = fk,j(e

ck′j′∆t/2uk′j′(t) +
∆t

2
eck′j′∆t/2K1

k′j′),

K3
k,j = fk,j(e

ck′j′∆t/2uk′j′(t) +
∆t

2
K2
k′j′),

K4
k,j = fk,j(e

ck′j′∆tuk′j′(t) + ∆teck′j′∆t/2K3
k′j′),

and the products of the vectors by the exponentials of the form eck,j∆t have to be

performed component by component.

This integration procedure always handles the Fourier representation of the so-

lution and it is transformed to physical space only during the computation of the

nonlinear terms, which is performed in the following steps

uk,j
to Phys.−−−−−−→ (E,P,N) → (σP, rE −NE,

1

2
[ĒP + EP̄ ])

to Fou.−−−−−−→ fkj,

where the products of the amplitudes are computed in physical space and the so-
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called 2/3 rule is used to remove the aliasing terms (see e.g. [26]).

This numerical procedure has been implemented in a FORTRAN code and the

FFTW subroutines [27] are used to perform the Fourier transforms.

5.4 Numerical integration of the CSH equation

The numerical integration method for the CSH equation (17) in the square domain

[0, 1]× [0, 1] with periodic boundary conditions,

φ(x+ 1, y, t) = φ(x, y, t), φ(x, y + 1, t) = φ(x, y, t),

is completely similar to that described in the previous section for the MB. First the

solution is expanded in Fourier series

φ(x, y, t) =
∑
k,j

φk,j(t)e
i(2π)k·x,

with k = (k, j) and x = (x, y), and then the resulting system of ODE’s for the

Fourier modes

dφk,j
dt

= (α− (2π)2(k2 + j2)(2εω + i)− ε2(2π)4(k2 + j2)2)φk,j − [φ|φ|2]k,j

is integrated with the same temporal marching scheme used for the MB. The linear

terms are integrated explicitly with

ck,j = α− (2π)2(k2 + j2)(2εω + i)− ε2(2π)4(k2 + j2)2, and

fk,j = [φ|φ|2]k,j,

and the nonlinear terms are again computed in physical space

φk,j
to Phys.−−−−−−→ φ→ φ|φ|2 to Fou.−−−−−−→ fk,j,

using the 2/3 rule for the aliasing terms (see e.g. [26]). In this case, the smallest

spatial scale that we have to represent are the diffusive scales δdiff ∼
√
ε � 1

and thus the required number of Fourier modes goes as NF ∼ mδ/
√
ε � 1 with

mδ ∼ 5− 10 typically.
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This numerical procedure has been implemented in a FORTRAN code and the

FFTW subroutines [27] are used to perform the Fourier transforms. This code is

also used to integrate the CGL eq. (18) just by setting ε = 0.
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