The U.S. Army is evolving into an expeditionary force with periods of deployment interspersed with periods of home garrison training. The majority of recent deployments have been in relation to Operation Iraqi Freedom (OIF) and have involved battlefield scenarios and potentially volatile peacekeeping missions. Given the current military operations, the Army represents a unique noise-exposed and medically evaluated population of soldiers who may be at increased risk for noise-related health outcomes.

The objective of this study was to establish a noise-induced hearing loss injury (NIHLI) prevalence baseline for a period of time including major unit deployments and units returning from deployments (redeploying) with noise exposures consistent with heavy combat operations from April 1, 2003, through March 31, 2004. This baseline is intended to help military preventive medicine better assess deployment health risks and improve monitoring effectiveness of risk reduction intervention efforts in current and future deployments; it is also designed to be compliant with federal law regarding current deployment health surveillance (Medical Tracking System for Members Deployed Overseas, 1997, 2003). To our knowledge, no such evaluation of noise-related postdeployment health outcomes has been reported to date.

The Department of Defense Military Health System (MHS) has, however, established procedures that enable such an evaluation. Every soldier returning from theaters of operations is required to complete a standard post-deployment health assessment form (DD Form 2796; U.S. Department of Defense, 2003) and is interviewed by a health care provider predicated on the soldier’s responses to the standard questionnaire. Included in the standard health assessment form are questions about changes in health status, noise exposure, and experiencing “ringing in the ears.” In a random sample of 3,000 DD2796 records for OIF (for the time frame June 1, 2003, through May 31, 2004), Geckle and Lee (2004) observed that 71.0% of the soldiers reported exposures to loud noises and 15.6% reported ringing in the ears. They also reported that exposure to loud noises was the third most common exposure, preceded by sand/dust exposure and vehicle exhaust fumes exposure.
Postdeployment Hearing Loss in U.S. Army Soldiers Seen at Audiology Clinics From April 1, 2003, Through March 31, 2004

U.S. Army Center for Health Promotion and Preventive Medicine
Edgewood, MD

Approved for public release, distribution unlimited

1. REPORT DATE
DEC 2005

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Postdeployment Hearing Loss in U.S. Army Soldiers Seen at Audiology Clinics From April 1, 2003, Through March 31, 2004

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
SAR

18. NUMBER OF PAGES
8

19. NAME OF RESPONSIBLE PERSON
The interviewers who review the DD2796 surveys and make referrals to specialty clinics include physicians, physician’s assistants, nurse practitioners, and senior medics. Based on the results of the interviews, soldiers are referred for medical evaluation at different clinics (General Accounting Office, 2003). Positive answers to these questions about noise exposure and ringing in the ears should generate referrals to the audiology clinic for evaluation.

Outcomes data from audiology generally exist in three separate formats: (a) the objective audiometric data recorded on a paper form, (b) the audiologist’s documented interpretation of the data (usually expressed in a Subjective, Objective, Assessment, Plan [SOAP] note; Miller & Groher, 1990; Paul-Brown, 1994; see the Appendix for details), and (c) the Composite Healthcare System/Ambulatory Data Module or Composite Healthcare System II electronic patient record health care database, which translates the SOAP note into International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes (U.S. Department of Health and Human Services, 2003), Current Procedural Terminology (CPT) codes (American Medical Association, 2003), and specific clinic codes. The ICD-9-CM and CPT codes are stored in a standard ambulatory data record (SADR) database in compliance with the Health Insurance Portability and Accountability Act of 1996 and the federal regulations on electronic health care data transaction standards (Health Insurance Reform, 2000). These SADR database codes are mainly used for MHS health care administration purposes (reimbursement) but are also used for public health surveillance including deployment health surveillance.

Helfer, Shields, and Gates (2000) published standardized ICD-9-CM/CPT coding guidelines for audiology clinic visits associated with NIHLI with a goal of establishing outcomes data standards that support an evidence-based practice approach to occupational hearing loss prevention, force health protection, and deployment health surveillance. Their intention was to use these data to apply public health surveillance methods in evaluating the effectiveness of hearing loss prevention and intervention. This process would include monitoring population health outcomes (standardized ICD-9-CM) data through active and passive surveillance for sentinel events associated with NIHLI.

This hearing loss surveillance would be performed by applying the public health performance evaluation processes and deployment health surveillance strategies outlined by the Institute of Medicine of the National Academy of Sciences (1996, 1997, 1999a, 1999b). These approaches include involving experts in clinical practice, epidemiology, biostatistics, and clinical data management to analyze health outcomes data for increasing the effectiveness of interventions with noise-exposed populations, including deployed U.S. armed forces (Adera, Amir, & Anderson, 2000a, 2000b; Adera, Donahue, Malit, & Gaydos, 1993a, 1993b; Adera & Gaydos, 1997; Adera, Gullickson, Helfer, Wang, & Gardner, 1995; Brownson, Baker, Leet, & Gillespie, 2003; Dever, 1997).

The present study was based on the premise that clinical coding quality at Army Medical Department medical treatment facilities had improved hearing loss surveillance data quality substantially since these coding guidelines were initially developed and updated routinely. The latest MHS Audiology/Hearing Conservation coding guidelines are available at http://www.tricare.osd.mil/org/pae/ubu/default.htm (U.S. Department of Defense, 2005).

Method

MHS health care administration data (ICD-9-CM codes from the SADR) accessed through the Medical Metrics (M2) database of the MHS Executive Information/Decision Support system were used in this analysis. The M2 database was queried for Army soldier (Active Duty, Reserves, and Guard) visits to audiology clinics from April 2003 through March 2004.

The relevant ICD-9-CM code with an extension related to postdeployment and other NIHLI ICD-9-CM codes of analytic interest are presented in Table 1. Two of the NIHLI categories noted (H-3 and H-4 hearing profiles) are specific to the military population and are considered duty-limiting. H-3 hearing profiles constitute moderate to severe hearing loss with speech reception thresholds less than 30 dB HL (can be aided), thus precluding soldiers from performing certain normal military duties; H-4 hearing profiles comprise severe to profound hearing loss with aided speech reception thresholds greater than 30 dB HL, thereby potentially disqualifying a soldier from continued service (U.S. Department of the Army, 2005). Of note, a diagnosis of permanent threshold shift within the MHS is taken to mean that in the audiologist’s documented

<table>
<thead>
<tr>
<th>ICD-9-CMa Condition diagnosed</th>
</tr>
</thead>
<tbody>
<tr>
<td>V70.56P Postdeployment-related</td>
</tr>
<tr>
<td>388.1 Acoustic trauma</td>
</tr>
<tr>
<td>388.12 Permanent threshold shift</td>
</tr>
<tr>
<td>388.30–388.32 Tinnitus</td>
</tr>
<tr>
<td>384.20–384.9 Eardrum perforation</td>
</tr>
<tr>
<td>389.8P H-3 hearing profile</td>
</tr>
<tr>
<td>389.9P H-4 hearing profile</td>
</tr>
<tr>
<td>E923.8 Exposure to other explosive materials—explosions not a result of war operations</td>
</tr>
<tr>
<td>E928.1 Exposure to noise—usually steady noise not impulse</td>
</tr>
<tr>
<td>E993 Exposure to enemy explosives and own—+ injury due to war operations by explosion</td>
</tr>
<tr>
<td>E995 Exposure due to unspecified forms of conventional war operations—+ injury due to war operations (not including blast injury, E993)</td>
</tr>
</tbody>
</table>

*In coding into Military Health System (MHS) data systems, the V code comes first, then the applicable diagnostic numeric codes, and lastly the E code.

*MHS unique code usage for data collection; not applicable to civilian providers.
Results

Within the time frame examined, a total of 141,856 Army Active Duty, Reserve, and Guard members were seen through the MHS audiology clinics. Multiple visits were noted among 21,680 (15.3%) of this patient population, resulting in a total of 171,261 audiology clinic visits over the course of the year.

Audiology patients evaluated were 29.3 years old on average (SD = 9.2 years). Patients were predominately active duty (82.3%), male (87.1%), and enlisted (83.9%) soldiers. Population demographics are summarized in Table 2.

As can be seen in Table 3, annual prevalence rates of NIHLI during the period April 2003 through March 2004 were significantly higher among audiology clinic patients whose diagnoses were classified as deployment-related for all NIHLI categories (68.6% compared with 4.0%, respectively; \(p < .001 \)). Postdeployment status remained a highly significant predictor (\(p < .001 \)) of NIHLI for all categories when adjusted for various demographics. Additional predictors of risk included increased age and active duty status. Results of this analysis are presented in Table 4.

Figure 1 shows the quarterly visit rates of NIHLI occurring from April 2003 through March 2004 (April–June 2003, July–September 2003, October–December 2003, and January–March, 2004) for postdeployment and non-postdeployment visits.

Visits classified as deployment-related during the time period investigated showed significantly higher rates of NIHLI. A surge of postdeployment visits for acoustic trauma and permanent threshold shift was observed during the second and third quarters. Rates observed during non-postdeployment visits were relatively stable and low.

An elevated visit rate for eardrum perforations occurred in the first quarter, and a decline in that rate occurred in the following quarters among soldiers with documented post-deployment-related visits as compared with the low and stable rates observed during non-postdeployment visits. Pearce (2004) has shown a similar pattern for combat fatality rates during this time frame; the majority of deaths and wounded in action during the first quarter were due to blast injuries, a major cause of eardrum perforations. This first period coincided with the heaviest combat operations during OIF.

Quarterly visit rates for tinnitus steadily increased during postdeployment visits occurring in the first three quarters, with a sharp increase in the fourth, while a steady decrease occurred during non-postdeployment visits. In regard to the MHS-specific H-3 and H-4 hearing profiles, rates were also considerably higher among soldiers whose diagnosis was classified as postdeployment-related, with rates decreasing each quarter after an initial high in the first quarter. The opposite trend was observed among non-postdeployment-related visits.

The ICD-9-CM E codes shown in Table 1 for external cause of injury based on noise exposure could not be evaluated due to apparent lack of use. In total, only 3 of the 171,261 audiology clinic visits included such a code.

Limitations

As is the case with many studies that rely on passive surveillance, the analysis presented here is limited by its dependence on clinical coding practices. The accuracy of the ICD-9-CM codes related to postdeployment is unknown. It is also likely that in focusing on the audiology clinic population that some NIHLI outcomes were missed. Future analyses should address this issue by linking the MHS health care data from all clinics with the postdeployment data.
captured on the DD2796 postdeployment screening forms and soldier personnel data that include arrival and departure dates by theaters of operation. This would capture all MHS-reported NIHLI regardless of clinic type and enhance determination of soldiers’ deployment status, time deployed, and deployment exposures encountered as potential risk factors. Additionally, M2 data are captured at a higher MHS echelon of care, whereas outpatient data in theater during this period are sparse, not systematically collected, and unavailable for analysis.

Lastly, the Army Reserve and Guard population evaluated is believed to be underrepresented. This is because Reservists and Guard members are subject to limited medical coverage as compared with active duty members; therefore, they are more likely to seek care through civilian providers rather than through the MHS providers queried in this particular analysis. Despite the limitations of the analysis, the clear increase in NIHLI rates observed for soldiers whose visits were reported to be postdeployment-related warrants further investigation.

Discussion

Part of the postdeployment soldiers’ higher risk for hearing loss may be attributed to failure of force health protection and surveillance measures (General Accounting Office, 2003). The hearing loss prevention measures include providing adequate hearing protection and health education to soldiers before deployment, including the standard earplugs in the military’s inventory (U.S. Department of the Army, 1998) and the new combat arms earplug (Sienda, 2004; U.S. Army Center for Health Promotion and Preventive Medicine, 2005). During the months preceding OIF, reports from force projection (deployment) sites to the Army hearing conservation program at the U.S. Army Center for Health Promotion and Preventive Medicine indicated that there were not adequate supplies of earplugs to fit all deploying soldiers.

There was also failure of an Army medical readiness automation system, the Medical Protection System (MEDPROS), to provide unit commanders with information regarding troops having adequate hearing protection and predeployment baseline audiograms, as well as ensuring that all troops had hearing profiles not limiting their duties, or waivers if appropriate. The only hearing information in MEDPROS consisted of whether soldiers wore hearing aids and, if so, whether the soldier had a 6-month supply of batteries.

There was also failure of an Army medical readiness automation system, the Medical Protection System (MEDPROS), to provide unit commanders with information regarding troops having adequate hearing protection and predeployment baseline audiograms, as well as ensuring that all troops had hearing profiles not limiting their duties, or waivers if appropriate. The only hearing information in MEDPROS consisted of whether soldiers wore hearing aids and, if so, whether the soldier had a 6-month supply of batteries.

Finally, there is evidence (from data acquired through the Transportation Command Regulating and Command
Figure 1. Comparison of noise-induced hearing loss injury rates between postdeployment and non-postdeployment visits.
& Control Evacuation System (TRAC2ES)) that soldiers having blast injuries may not have been referred to audiology for adequate evaluation and treatment. We believe that there is a high probability of underreporting of eardrum perforations. These suppositions were developed after comparison with data from another source. TRAC2ES data from other clinics’ treatments of soldiers wounded in action show evidence of 600 to 800 OIF soldiers with potential blast injuries who may not have been referred to audiology for evaluation. This supposition is under investigation based on available data.

It is important to note that some NIHLI is unavoidable despite the availability/use of hearing protection and other preventive measures. This is because some exposures, particularly those experienced in the operational setting, are so extreme that they will exceed the protective capability of hearing protective devices. In addition, skull transmission of intense noise, the element of surprise, and the effects of inhaled toxins such as carbon monoxide in conjunction with noise can affect hearing loss outcomes.

In summary, we recommend the following: (a) fixing the hearing protection supply chain so that troops receive hearing protection and health education before deployment; (b) improving MEDPROS to ensure that unit commanders have correct information about troops having hearing protection, predeployment baseline audiometry, and suitable hearing profiles for deployment, including waivers; (c) referring all blast injuries to audiology for evaluation, including referrals to civilian audiologists outside the MHS (see the Appendix for preferred documentation format); (d) making routine use of external cause of injury (ICD-9-CM E) codes by health care providers to capture soldier deployment and nondeployment noise exposure data from their clinical records; and (e) targeting future research and development efforts at useful treatments for acute acoustic trauma, a condition that is currently not treatable.

Since the time of the initial postdeployment analyses reported in this study (Helfer, Jordan, & Lee, 2004), corrective actions consistent with our recommendations have taken place. Supplies of earplugs are becoming more available to deploying soldiers, and MEDPROS is being updated to reflect more pertinent deployment readiness information for commanders. Also, since January 2004, Army audiologists have been deployed to a hospital in Baghdad, Iraq, to provide audiology care in the OIF theater of operations. Intradeployment audiology clinic outcomes data are currently being collected from this site for analysis.

Future planned analyses will also expand on the baseline data provided to incorporate more detailed analysis of NIHLI outcomes and potential risk factors acquired through additional data sources. The current Army hearing health surveillance plan is to continue to monitor and report the Army deployment and nondeployment hearing loss outcomes data, examining NIHLI risk behaviors for proof of performance from preventive measures intervention.

Acknowledgments

The opinions or assertions contained herein are the views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. We offer special acknowledgments to U.S. Army audiologists Maj. Jennifer Johnson, Maj. Eric Fallon, and Cpt. Lisa Whitney. These soldier medics have provided and are providing selfless service and during-deployment audiology/hearing loss prevention care and hearing loss record keeping to U.S. and allied forces and Iraqis in theater at the 31st and 86th Combat Support Hospitals, Sina Hospital, Baghdad, Iraq. We acknowledge Ltc. Robert Pero, MD, MPH, for sharing his knowledge of pre- and postdeployment health surveillance data from DD Forms 2795 and 2796. Dr. Pero also shared generously from his knowledge of evidence-based public health and “syndromic surveillance” as to how these paradigms could be applied to NIHLI surveillance. We acknowledge Dr. Anne Shields and Ltc. Kathy Gates for early data coding guidelines work that significantly contributed to the current improved outcomes data quality. We also acknowledge Ms. Lynn Marlow of the Army Medical Department Patient Administration and Bio-statistics Activity and Ms. Alicia Garza of the Air Force Medical Operations Agency for their coding guidance and collaboration with military audiologists on coding guideline improvement. We also wish to acknowledge Maj. Sam Jang, DO, MPH, for review of the manuscript.

References

Received October 15, 2004
Revision received March 30, 2005
Accepted August 12, 2005
DOI: 10.1044/1059-0889(2005/018)

Contact author: Thomas Helfer, CDR, USACHPPM, Attn: MCHB-TS-MHC (Dr. Helfer), 5158 Blackhawk Road, E1570, Gunpowder, MD 21010.
E-mail: thomas.helfer@us.army.mil
Appendix
Documentation and Coding Recommendation

Civilian audiologists may be called upon to evaluate soldiers redeploying from theaters of operations. It will be important to capture and document key variables in the case history and reporting of the postdeployment evaluation ("SOAP note") along with associated ICD-9-CM codes (Miller & Groher, 1990; Paul-Brown, 1994).

Subjective:
1. Was the soldier deployed? (V70.56 is an MHS unique code for postdeployment-related diagnoses; “E” codes below signal an exam of a uniformed armed forces member in a civilian clinic).
 - Operations of war, weapons firing, wheeled/tracked vehicles (E995)
 - Enemy explosive devices (E993)
 - Exposure to other explosive materials—explorations not a result of war operations (E923.8)
 - Exposure to noise—steady noise and/or impulse (E928.1) (E995 and/or E993 should be used by a civilian audiologist to indicate a postdeployment exam. E923.8 and/or E928.1 should be used by a civilian audiologist to indicate a non-postdeployment exam.)
2. Were they exposed to noise? What type?
 - Did they have hearing protection and use it?
3. Did they have hearing protection and use it?
4. Do they experience ringing in the ears? (388.30–388.32)
 - How does it sound?
 - How disruptive is it?

Objective:
1. Otoscopic exam shows eardrum perforation or evidence of perforation? (384.20–384.9)
2. Audiometric results.

Assessment:
1. Acoustic trauma? (388.11-blast/impulse noise injury)
3. Tinnitus? (388.30–388.32)
4. Eardrum perforation or indication? (384.20–384.9)
5. Moderate to severe hearing loss? (389.8-MHS unique, civilians would not use)
6. Severe to profound hearing loss? (389.9-MHS unique, civilians would not use)

Plan:
Refer copy of records to appropriate Army Medical Department authority for further disposition regarding soldier’s health status.