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STEADY RIGID-BODY MOTIONS
IN A CENTRAL GRAVITATIONAL FIELD

Li-Sheng Wang * J.H. Maddocks*  P.S. Krishnaprasad t

ABSTRACT.

In recent work, the exact dynamic equations for the motion of a finite rigid
body in a central gravitational field were shown to be of Hamiltonian form
with a noncanonical structure. In this paper, the notion of relative equi-
librium is introduced based upon this exact model. In relative equilibrium,
the orbit of the center of mass of the rigid body is a circle, but the center
of attraction may or may not lie at the center of the orbit. This feature
is used to classify great-circle and non-great-circle orbits. The existence of
non-great-circle relative equilibria for the exact model is proved from var-
ious variational principles. While the orbital offset of the non-great-circle
solutions is necessarily small, a numerical study reveals that there can be
significant changes in orientation away from the classic Lagrange relative

equilibria, which are solutions of an approximate model.

1. Introduction
This paper describes some results concerning the relative equilibria, or steady circular
orbits, of a rigid body of finite extent moving under the effects of an inverse square

gravitational force field. In different parameter regimes, the analysis applies equally well
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to an artificial satellite orbiting the Earth, to a moon orbiting a planet, or to a planet
orbiting a sun. In any of these cases the approximate problem at hand is that of the
motion of a two-body system. We shall further assume that a restricted two body problem
is appropriate, i.e. one of the bodies is extremely massive in comparison to the other, so
that the motion of the heavier body is unaffected by the motion of the lighter one.

Of course if the two bodies are further approximated as two point masses the
restricted two body problem is completely integrable and is completely solved. The points
of interest that will be addressed here arise due to effects arising from the finite extent of the
bodies. This topic has also received considerable attention, for example the n-rigid-body
problem studied in [5], the three-rigid-body problem discussed in [6], [3], and the effects of
finite extent of bodies on the equilibria of the restricted three-rigid-body problem described
in [7]. For the two-rigid-body problem and the restricted two-rigid-body problem, there
are extensive discussions in [2], and in {23], [26], [12], and [22] where problems including
gyrostats are considered. Moreover, the steady-state (rotational) motions (or relative
equilibria) of a rigid body in a central gravity field and their stability were considered
in {24], [21], [11], [14], and [1]. Similar problems are studied in [31] for interconnected
gyrostats. All of the above analyses make some approximation of the gravitational force
acting on the rigid body. We shall show that for some rigid bodies, steady-state motions of
the ezact problem are qualitatively, and quantitatively different from the classical so-called
Lagrange or regular motions in which one of the principal axes coincides with the radius

vector. The precise differences are further described below.

Approximation of a finite rigid body as a point mass can be justified in two distinct
ways. A point mass is an exact model in the case of a rigid body having spherical mass
distribution (a result due to Newton). Alternatively, approximation as a point mass
appears to be reasonable if a body is very small in comparison to a typical orbit radius.
In the case of an Earth-satellite system, the justification for treating the Earth as a point
mass is approximate spherical symmetry, and the justification for treating the satellite as
a point mass is that it is very small. Deviations of the Earth from spherical symmetry
are an important effect in low Earth orbits, and the problem has been studied by many

workers including recent work of Deprit and collaborators [4]. Here we are concerned with
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effects associated with the approximation of the satellite as a point mass. Accordingly we
shall hereafter assume the Earth to be exactly spherical, and therefore exactly equivalent

to (an extremely heavy) point mass.

The equations of motion for the restricted two body problem comprise a force balance
equation, and a moment balance equation. A typical line of analysis, apparently tracing
back to Lagrange, and followed by Beletskii [2], Sarychev [25] and Roberson [22] among
others, is to rctain the lowest-order nonvanishing term of the potential in each equation.
As a consequence of this strategy the force balance equation involves only the zeroth order
term of the potential. Moreover the force balance equations decouple from the moment
balance equations to give force conditions that are identical with those of a point mass.
The steady-state solutions, or relative equilibria, are circular orbits that are also great
circles in the sense that the center of the circular orbit coincides with the center of the
Earth. Once the orbits have been determined, the moment balance equation must still
be satisfied. In the moment balance the first nonvanishing term of the potential is of
second-order. It may then be concluded that the satellite must be oriented such that its
principal axes of inertia are aligned with the radius, tangent and normal vectors to the
circular orbit. When signs are associated with the principal axes there are (6 x 4 =) 24
such orientations depending upon whether it is the axis with largest inertia that is tangent
etc. Some of these solutions are known to be stable, some are known to be unstable, and

the nonlinear stability properties of others are indeterminate.

In a recent work [29], the above problem has been reanalyzed from the viewpoint of
Hamiltonian mechanics. In particular it was shown that the evolution equations can be
written as a (noncanonical) Hamiltonian system with the potential being one term in the
Hamiltonian. Different approximations of the potential then provide different dynamical
systems that can be analyzed. In the case of a second-order approximation of the potential
the classic results described above were recovered, albeit by a different, more consistent,
approximation scheme. Interestingly in the analysis of the second-order model considerable
effort had to be spent to exclude the possibility of non-great-circle relative equilibria in
which the orbit vector sweeps out a cone rather than a disk. The possibility of non-

great-circle solutions is excluded a prior: in the approximations adopted by most previous
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authors. In light of this experience we proceeded to consider the exact problem in which the
potential is not approximated, and in this paper we shall show that great-circle equilibria
are exceptional (i.e. non-generic) for bodies without planes of symmetry. Moreover any
body with no great-circle solutions has at least four non-great-circle steady orbits. On the
other hand in the ezact problem for a body with three planes of symmetry (as is implicitly

assumed in the second-order model) there are at least 24 great-circle solutions.

The counterintuitive result concerning existence of non-great-circle solutions can
best be explained by the observation that as far as an inverse square gravitational field
is concerned, the center of mass of a body is not a distinguished point. However it 1s
physically clear that the lateral displacement of the plane of the orbit of the center of mass
is necessarily very small, and in particular smaller than the dimension of the satellite.
Nevertheless we will present numerical examples which show that this tiny offset in orbit
can be associated with a large rotation away from the classic 24 orientations predicted by
the second-order model. Consequently these non-great-circle relative equilibria may be of
importance in the understanding and design of Earth pointing satellites. In particular, we

argue that large deviations in orientation are to be expected when two or more principal

inertias are nearly equal.

In [2], [26], [21] and [1], non-great-circle relative equilibria (sometimes called oblique
regular motions) have already been discussed. Their approaches were based on various
approximate models of the potential which used local coordinates such as Euler angles.
Here, we are dealing with an exact Hamiltonian model. The work most closely related
is [1] in which it was assumed that the ratio between the body size and the radius is
very small and only oblique regular motions close to the regular motions (i.e. to the
great-circle relative equilibria) are observed. Nevertheless, we have verified numerically
that large deviations in orientation from these classic motions are possible. In fact, we
exhibit large changes of orientation for a particularly simple idealized rigid body which
we call a molecule, namely six point masses, two lying on each principal axis. In order
to magnify the effects of higher order terms in approximation of the potential function
(cf. [14]), the three moments of inertia are chosen to be close to each other. On the

other hand, the mass distribution of the molecule is designed to be as asymmetric as
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possible to emphasize the orientation change. During the numerical search for the relative
equilibria of such structures, continuation methods are adopted to solve efficiently the
appropriate system of nonlinear algebraic equations by successive application of Newton-
Raphson iterations. We also apply an error analysis (due to Kantorovich) which guarantees
that exact solutions exist close to our numerical approximations. The error analysis is
particularly important because the problems turn out to be severely ill-conditioned in the
appropriate parameter regimes. Indeed in order to obtain sufficient accuracy to guarantee
a solution, we implemented our algorithm in double-precision on a 96-bit machine (actually
in Fortran on a CRAY which leads to approximately 29 significant digits). The numerical
non-great-circle relative equilibria we found justify the statement that while the orbital

offset is very small, the change in orientation from the regular motions can be significant.

2. Dynamic Equations and Non-dimensionalization

We consider the motion of a rigid body B* moving in a central inverse-square
gravitational force field that is generated by a massive body Bo*. The body Bo* is assumed
to be stationary so that a restricted two-body problem is at hand. A configuration of the
system is depicted in Figure 2.1. We assume that the reference or inertial frame is located
at the center O of the inverse square field due to the mass of By*. Let C' denote the
center of mass of the moving body B*, and let r* denote the vector from O to C in
the inertial frame. The attitude of the rigid body B* is described by a set of orthogonal
basis vectors located at C' and fixed relative to B*, which will be termed the body frame.
Let the orientation transformation from the body frame to the inertial frame be denoted
by B, which is a rotation matrix or element of the special orthogonal group SO(3). By

elementary analysis, the time derivative of the rotation matrix can be written as
B = B, (2.1)
where = maps the instantaneous angular velocity * € R® of B (or B*) in the body

frame, to an element in so0(3), the space of 3 x 3 skew-symmetric matrices, according to

the rule



Q) 0 -0 Q4
Q) = | @5 0 - . (2.2)
0y —Q, Q0

Figure 2.1. A Rigid Body in a Central Gravitational Field

In (2.1) and what follows, we adopt the convention that variables with an asterisk *
have dimension, and the dot operator * denotes the derivative of the corresponding variable

with respect to the dimensional time variable #*.

Let @Q* be the vector from C to an arbitrary material point in B* relative to the body
frame, and denote the associated mass element by dm(@Q*). Then the linear momentum

of B* can be written as
d . '
P o= / 20 + BQY) dm(@) = mr, (23)
where m is the total mass of B*. Here the fact that [, @*dm(Q*) = 0 has been used. On

the other hand, the angular momentum of B* about O (expressed in the inertial frame) is

= [ 07+ BEYx 507 + BQ) dm(@)
B*

=7r* xmr~ + BI*Q*,

(2.4)

where



r= [ FF an(@) (2.5)
B*

is the moment of inertia of B* relative to the body frame.

The gravitational force exerted on B* by By* can be derived from the potential

G * *
V== ) e @), 29

where G is the universal gravitational constant, and ¢* is a vector from O to a material

point in By* with mass dmg(q*). Now we assume that the body Bo* has spherical
symmetry. Then by elementary analysis it can be shown that the potential function V

simplifies to
GM
V = —/ ——— dm(Q"), 2.7
. T 1 BT (@) (2.7)

where M is the total mass of the body By*. Consequently, assuming there are no forces
external to the two-body system, the resultant force on B* can be expressed as

_ GM(r* + BQ@*
f= /B‘ I + BQ*|?

) dm(Q"). (2.8)

Similarly, assuming there is no external couple acting on B*, the resultant torque is

GM(r* + BQ*)
lr* + BQ*P

r== [ 6"+ B dm(Q") = 0. (2.9)
B*

Balance of linear momentum then implies, from (2.3), and (2.8),

- GM(r + BQ) .
P = -] T pop @) (2.10)

On the other hand, balance of angular momentum implies

7 = 0. (2'11)

Let IT* = I*Q* denote the instantaneous body angular momentum of B*. Then from (2.1),
(2.4), and (2.9), we can derive an evolution equation for II*

. _ GM(BTr x Q%)
i = I x T~ /
) T Jo T+ BQP

dm(Q"). (2.12)
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Consequently, equations (2.1), (2.3), (2.10), (2.12) completely describe the motion of the

rigid body B* moving in the gravitational force field.

Now we define convected or body variables,

» = BTy, = BTp,

which are vectors expressed in coordinates with respect to the moving body frame. In

terms of these variables, the equations of motion may be written as

: _ GM(\* x Q)
I* = M xI*'o + dm(Q*),
e g )
o= M x4+ opt/m, 7
: _ GM(X* + Q%)
*=*><1*1n*-/ dm(Q*),
pro= p e T O (@)

B = BIII*.

We now nondimensionalize this system. With mass, length, and time scales,

1 1
_[(tr(I)\? _ B\
m, | = ( — ) R and T = <GM> )

the nondimensional variables are

A* }1* ’ H* : #*
[ — = ——— = —eeee—— t = =
A l’ a miT-1’ I ml2T-1’ and T

(2.13a)
(2.13b)

(2.13¢)

(2.13d)

(2.14)

(2.15)

Next we introduce a nondimensional body (or domain of integration) B. From the

dimensional mass measure dm, we define

=9 @ = —im@),

and accordingly,

[a@ = [ Sam@) =1

The nondimensional moment of inertia of B is

1= tr(I7)’

8
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so that .
tr(I) = 1. . (2.19)

In terms of these nondimensional variables, the dynamical equations (2.13) can be

expressed as

A X Q
I = OxI'O + / du(Q), 2.20a
ror M@ (2.200)
N o= AxITUI + g (2.200)
_ A+ Q
] — 1 _ d 92
W= wxtm - [ 2 ), (2:200)
B' = BIL (2.20d)

where the prime ' denotes a derivative with respect to the nondimensional time ¢. It is

the nondimensional system (2.20) that will be investigated in the following Sections.

3. Relative Equilibria

Equations (2.20 a,b,c) do not include the attitude B and are therefore decoupled from
(2.20d). Accordingly, the equations of motion (2.20 a,b,c) on the nine dimensional space
(I, A u) € R® will be called the reduced dynamics. Equilibria of the reduced dynamics
give rise to motions in the original space (r*, B, p*, II*) satisfying (2.1), (2.3), (2.10), (2.12)
such that the rigid body B* exhibits a steady spin about the fixed center O, while the
center of mass C moves in a circular orbit. Such a motion will be referred to as a relative
equilibrium. All such motions are equilibria relative to a steadily rotating frame. There is
no a priori reason that the center of the circular orbit traced by C need coincide with the
origin 0. Indeed we will exhibit relative equilibria where O is not the center of the orbit.

Conditions of relative equilibria are easily found from the reduced dynamics. In

terms of the reduced variables, we have the following equations,

Ox1710 + /B‘;\ % gl“ dv(Q) = 0, (3.1a)



AxITUI + p o= 0, (3.1b)

A+ Q

x 7111 —
g sh + QF

dv(Q) = 0. (3.1c)

Discussion of the existence of solutions to (3.1), and their qualitative and quantitative
features are the main theme of this paper.
In [2g], a Hamiltonian approach to this problem was exploited. It was shown that

the reduced dynamics (2.20 a, b, ¢) can be written as a Hamiltonian system

d I
— = ] 3.2
o A AVH (3.2)
with Hamiltonian
H@AW) = + <mims 420 / @@, (9
2 2 g 1A+ QI

and Poisson tensor,

S
A=1{3 o 1], (3.4)
i -1 0

whichisa 9 x 9 skew-symmetric matrix with block structure. Here the notation ~ is
defined through (2.2), and 1 denotes the 3 x 3 identity matrix. The Poisson tensor A is

rank-degenerate. In fact, its null space is one-dimensional and is spanned by the vector

O+ Axp
VO, A p) = (u x (IT+ A Xn)) ; (3.5)
(IL+ A x ) x A

where C is the total angular momentum,

C(IL A, 1) = %|n+,\ « ul?. (3.6)

The function C is sometimes called a Casimir function of the noncanonical Hamiltonian
structure, cf. [g]. It is clear from (3.2) that at relative equilibria, the vector VH must lie

in the null space of A, in other words,
VH(Hv/\) #) = C VC(H,)‘Hu')v (37)
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for some scalar ¢. Accordingly, there is a variational principle which characterizes the
relative equilibria, namely

make stationary H(II, A, p)

(3.8)
subject to the constraint C(II, A, p) = constant.

The first-order conditions for (3.8) are nothing other than (3.7), which can also be expressed

-1 M4 A x g
(VAV(») - c(p « (T4 A X#)), (39)
p I+ A xp)xA
where
70y = - /B I_A_%_Q_I dm(Q). (3.10)

Equation (3.9) can be immediately simplified to
I C(IT+ A x p)
VoV () | = px I . (3.11)
U I7MI x A
Thus g can be eliminated from (3.11) to yield
I (@ +Ax (T x A)) (3.12)
VaV(A) ) — (IO x ) x17in /- '
- By introducing the body angular velocity 2 = I7!II, we find
1
IN+AX(QxA) = =Q,
( ) ¢ (3.13)
(QxA) xQ=Va\V()) =.0.

It is easy to check that (3.13) are the first-order conditions for the variational principle,

make stationary U(L, A) subject to %IQIZ’ = ¢, (3.14)

where

U=2<0I0> + %19 K AR = T (3.15)

1
2
It is this variational principle that provides the starting point of our proof of the existence

of relative equilibria. By further rearrangement, (3.13) can be rewritten as
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I + 3THQ = 89, (3.16a)

ray [ A+ Q

Slor = e (3.16¢)
where AT} and 0T() are 3 x 3 matrices constructed from the vectors A and § through
formula (2.2). By construction, solutions of (3.1) and solutions of (3.16) are in one-to-one
correspondence.

It should be remarked that the Hamiltonian system (3.2) is the Poisson reduced
system of (2.20) in the sense of Poisson reduction [13]. Relative equilibria characterized
by (3.1) or (3.16) exactly coincide with the notion of relative equilibrium associated with
the Poisson reduction. Accordingly, the principle of symmetric criticality [19] [28] can be
applied, namely, the configuration components of the relative equilibria are the critical

points of the augmented potential function, which for our problem is —U . Consequently,

the variational principle (3.14) is a particular manifestation of the principle of symmetric

criticality.

4. Great-circle Relative Equilibria

If we make the further assumption that the rigid body B has spherical symmetry,
then it can be checked that the dynamical behavior of the center of mass C is exactly
that of the Keplerian point mass model. It is well known that for a point mass moving in
a central force field, the motion is constrained to a plahe passing through the origin O.
However, for an arbitrary rigid body, this may not be the case. In particular, at relative
equilibrium, the radius vector from the origin O to the center of mass C' may either trace
a disc, or trace a cone, cf. Figure 4.1(a), (b). Those relative equilibria in which C traces
a circle that resides on a plane passing the origin O will be termed great-circle relative
equilibria. Otherwise, they will be called non-great-circle relative equilibria. In this section,
we study only the great-circle relative equilibria.

From Figure 4.1(a), it is clear that the necessary and sufficient condition for great-

circle relative equilibria is



(b)
Figure 4.1. (a) Great-circle vs. (b) Non-great-circle Relative Equilibria.
Here 1 = BA is the radius vector in inertial frame, and £ = Bl points
along the azis of rotation. The classic approzimate analysis predicts great-
circle orbits in which the orbit vector r sweeps out o disk. However, the
Hamiltonian approach to the ezact problem for asymmetric bodies predicts

non-great-circle solutions in which r sweeps out a cone.

A-Q =0, (4.1)

namely, the axis of rotation is perpendicular to the radius vector of C. Notice that equation

(3.16a) can be rewritten as
I+ A1 - 0NHe = 84, (4.2)

13



where 1-denotes the (3 x 3) identity matrix and AT is a (3 x 3) rank one matrix. Thus

for a great-circle relative equilibrium, in which A - = 0, we must have
I2 = (8 - AP)Q, (4.3)

or equivalently {2 must be an eigenvector of the moment of inertia tensor. Moreover,

condition (3.16b) reduces to

2y _ A+ Q) m
ops = [ 22 am(@). (44)

By regarding || in (4.4) as a Lagrange multiplier, it can be shown that (4.4) is the

first-order condition for the variational problem,

make stationary 146N subject to % A2 = ¢, (4.5)

where V is defined in (3.10). In summary, in order for (, ), ) to be a great-circle
relative equilibrium, the vector A must be a solution of the problem (4.5), and  must be
an eigenvector of the inertia tensor, i.e. a principal axis. With condition (4.1), we then see
that A must also lie in a principal plane (i.e. a plane perpendicular to a principal axis).
The argument can be reversed. If there is a vector A¢ solving the variational problem

(4.5), there exists a multiplier « such that

V,\V(/\o) = h‘,/\o. | (46)

Moreover, for physically relevant situations the rigid body does not overlap the center of

the field. Thus

AP+ 2@ = P = QL = A - 1QI) > o. (4.7)

It can then be proved from (4.6) and (4.7) that the multiplier & is necessarily positive.
By comparing (4.6) and (3.16b) and if A lies in a principal plane, we can construct a
great-circle solution by picking |©2|?> = &, and Q the principal axis with Q- = 0. In fact,
there are at least two such solutions corresponding to the choices Q and —. Accordingly,
if (4.6) holds for a A¢ in a principal plane, we can find at least two great-circle relative

equilibria. Furthermore, any plane of symmetry of the body B is necessarily a principal

14



plane, and there are at least two critical points of V() in the symmetry plane (a maximum

and a minimum). As a consequence, we have the following theorem.

THEOREM 4.1.

For a rigid body having a plane of symmetry, there are at least four great-circle
relative equilibria. Furthermore, if the rigid body is symmetric with respect to two planes,
there are at least eight great-circle relative equilibria, and for a rigid body with three
planes of symmetry, there are at least 24 great-circle relative equilibria.

i

The second and third statements in Theorem 4.1 follow from similar arguments as
those described above. The classic second-order approximate models analyzed in [11] im-

plicitly assume that the body has three planes of symmetry, and they find exactly 24

grea! -circle relative equilibria.

5. Non-great-circle Relative Equilibria

In this section, we shall establish the existence of non-great-circle relative equilibria
for non-symmetric bodies. We observed in the previous section that at a great-circle
relative equilibrium, the variational problem (4.5) must have a solution A lying in a
principal plane. This fact can be used to prove that for some particular V (i.e. for
some particular rigid body B), there are no great-circle relative equilibria, cf. [2g], [27].
In particular, let the rigid body be a “molecule” consisting of six point masses, two on
each principal axis, cf. Figure 5.1. (The molecule with unequal principal moments of
inertia is an example in Beletskii [2] satisfying the conditions for the existence of relative
equilibrium.) It was shown in [27] that if z; # z2, y1 # y2, and z; # 23, there is no great-
circle relative equilibrium. Now if we could prove the existence of solutions to the problem
(3.14), then for the cases in which there is no great-circle relative equilibrium, there must
be a non-great-circle relative equilibrium. In fact, we shall show that for a general body,
variational principle (3.14) is not useful for proving existence of relative equilibria. The
difficulty is associated with “critical points at infinity”, namely solutions in which 2 and

) are parallel with |A\] — oco. Fortunately, this difficulty can be finessed due to the pure

15



quadratic dependence upon 2. We introduce another variational principle, namely

make stationary  U(Q, )) = % <Q, I0> + %]Q x A%,

5.1)
subject to %IQ]2 = ¢, and V()\) = e

where we have introduced an additional artificial constraint with ¢, lying in the interval

(--— fB(l/IQI)du(Q), O). The Lagrangian associated with (5.1) is

1 1 1 -~ -
Ly = 5 <@ IQ> + S 10xAF = H(GI0F —a) = BV -e).  (52)

mj
[ ] mG
X:BA )(6
X
Mo e X9 92‘ 1 om;
e
€3
Xs
Mg X4

Figure 5.1. Molecule

Solutions of (5.1) with B2 = 1 correspond to solutions of (3.14) for some value of ¢ and

therefore to relative equilibria. The first-order conditions associated with (5.2) are

I+ 3ATHa =4 Q, (5.3a)

QTN — BVaV(N) =0, (5.3)
%[QF = ¢, 5.3¢)

V(A =c. (5.3d)

By taking the scalar product of A with (5.3b), we get

16



(A2 + X-Q)

P g 1A+ QP

dm(Q) = (1P - (2-3)?). (5.4)

Notice that the right hand side of (5.4) is always nonnegative. On the other hand, from

(4.7), it is seen that the multiplier 8, of solutions of problem (5.1) must be nonnegative,

with the eéuality holding if and only if  and A are parallel.

We now compare conditions (5.3) and (3.16). It is clear that if there is a solution
(€, X, Bi, Ba) of (5.3) with 3, = 1, then (3.16) is solved by (Q, X, £;) with ¢ = ¢;.
Moreover, since (5.3a) is linear in Q, we can scale  arbitrarily without violating (5.3a).
Accordingly, if we have a solution of (5.3) such that 8, > 0, we obtain a solution
(Q/\B2, X, Bi) of (3.16) with ¢ = ¢;/f;. On the other hand, the zeroth-order
approximation of (5.3b) implies that 3, ~ 2¢;/c3 (Kepler’s frequency formula). Thus
by holding c¢; fixed, and by varying c;, we can achieve arbitrary #,. The constant c
is then also seen to be arbitrary. As a consequence, in order to prove the existence of
solutions for problem (3.14) for some c, it suffices to find a solution of the problem (5.1)
with §; > 0.

Next, we consider those extremals at which 8, = 0. From (5.5), we see that for such

extremals Q is parallel to )\, which, in turn, shows that { must be an eigenvector of I,

say

~

10 = L4,

or By = I, cf. (5.3a). It is then easy to check that the objective function (£, )) cannot

assume its minimum value at such extremal points. In fact, the Hessian of Ly for B2 =0

can be found to be

L1 2)\?2—9)\ ) , (5.6)

D%Q,,\)Lr? = (

and the tangent space at ((2, :\) to the constrained subspace can be expressed as,

D= {(y,y2) R’ : Q-1 =0, VoiV(}) -2 =0}.
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Since Q is a principal axis of the rigid body B, the vector y; must be in a principal plane.

We compute

(i 0) Dfg 3 Lg(, ) (%1)
=yiIyy + A xpn)? = Lyl

> (A - (L - min(L)) I 2,

since we also have X -y; = 0. Moreover, through the non-dimensionalization process, we
have tr(I) = 1, which implies |I; — min{I;}| < 1. Thus with the natural assumption
Al > 1, cf. (4.7), the difference |A|? — (I} — min{l;}) is always positive. Consequently,
the quadratic form of the Hessian restricted to D can never be negative-semidefinite. This
implies that the critical point with 8, = 0 can never be a maximizer for the problem
(5.1). However, problem (5.1) has a continuous objective function U on a closed and
bounded constraint set. It follows that there must be a maximizer for the problem. The
above argument reveals that this maximizer must be a critical point with 8 > 0. As a
consequence, there must be a solution for the problem (5.4). Recall that for the molecule
example, cf. Figure 5.1, there is no great-circle relative equilibrium. Thus the solution
whose existence is proven here must give rise to a non-great-circle relative equilibrium.

More detailed information can be obtained by applying Morse theory to this problem.
The variational principle (5.1) can be re-stated as finding critical points of U on the
manifold RP? x S%, by modding out the Z; symmetry on . It can be checked that the
Betti numbers for the manifold RP? x $% are fo =1, fi =1, o =2, fs =1, fs = 1.
On the other hand, the indices of the critical points with #2 = 0 can be found by counting
the number of negative eigenvalues of the Hessian (5.6) restricted to the tangent space D.
It turns out that there are two solutions for each index 0, 1, and 2. Now invoking the
Morse inequalities {16], we conclude there is at least one solution for each of the indices
3 and 4, respectively. Consequently, by including the Z, symmetry, it may be concluded
that there are at least four non-great-circle relative equilibria.

In [1], a proof for the existence of non-great-circle relative equilibria for approximate

models was given based on the assumptions that the principal central moments of inertia
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are not equal, and the body size is sufficiently small in comparison with the distance to
the center of the field. The variational proof given above applies to the exact model as

well as to its approximations and makes less restrictive hypotheses.

6. A Numerical Search and Error Analysis

The existence of non-great-circle relative equilibria for certain bodies B are ensured
by the arguments presented in the previous section. We now seek such relative equilibria
numerically, and justify the statement that while the offset of the circular orbit is
necessarily very small, the associated attitude change may be quite significant. The
numerical method adopted and the associated error analysis are described in this Section.
Specific examples will be given in Section 7.

We consider the example of a molecule as depicted in Figure 5.1. Recall that the

conditions for relative equilibria are given in (3.16), which can be rewritten as

2 _ . m,(/\ + Q ) _ 6
QA = (-9 — Z NTOF - 0, (6.1a)
IO + A\PQ — (- )X\ + 8Q = 0, (6.1b)
}.|Q|2 — ¢ =0, (6.1¢)
2 .
where
Iy —T2 0
Ql = 0 aQ2 = 0 7Q3 = Z3 |,
0 0 0
0 0 0
Q4 = -4 |, Q5 = 0 ’ QG = 0 y
0 zs —Zg

and A is a parameter included for numerical purposes. Physically the parameter A
is associated with scaling in time. It will be chosen later to minimize numerical ill-
conditioning. Equation (6.1) comprise a nonlinear system of seven equations in seven
unknowns (), 2, 3) € R”. A numerical continuation method will be used to find solutions

of these equations, and therefore to yield relative equilibria.
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First we make some observations. It has been proven that if a molecule is asymmetric,
there is no great-circle relative equilibrium. Thus for the purpose of illustrating examples
of non-great-circle relative equilibria it suffices to consider bodies of this very special type.
On the other hand, if the molecule is symmetric (i.e. z; = z2, 3 = z4, 75 = 76 ), there
are 24 great-circle relative equilibria which are known explicitly. Such explicit solutions

will be the starting points for our continuation methods. Consider the following case

a 0
A= 0}, Q = b . (6.2)
0 0
We have
6 (G-anllV + (a:-n:t:zz)2 + Z?=3 _a\/’;L-'Tiz?
AZ mi()\ + Q:) — A m3Ts . o M4aT4 i
i=1 I/\ + Qi|3 B ?nzst:i% ?:stzi

Vet Versd ‘
m m 2mza 2msa
atzn? T @—z2) +O\/a2+z§3 * \/“2+I§3

0

= A

’

because of the symmetry of the molecule. Thus (6.1a) can be reduced to

Qb — ( my 4 ma N 2msa n 2msa
(a+z1)?2  (a—z2)?  _/g2. +'_‘x§3 e ¥ ‘x‘§'3

Similarly for solutions of the form (6.2), equation (6.1b) reduces to

) = 0, (6.3)

Lb+a%b—Bb = 0.

With a, b= +/2c, and B satisfying (6.3) and

B = —(I+ad%), (64)

then A, Q of the form (6.2) provide a solution of (6.1), and are thus a relative equilibrium.
Similar arguments can be applied to ail other great-circle solutions. With the solutions
for symmetric cases as starting points, it is possible to follow the path of solutions by
numerical continuation as the parameters are varied to the desired asymmetric case.

The numerical continuation or path-foﬂowing method is discussed in many places,

see e.g. [10] [30] [8], and references therein. The basic idea is to solve a sequence of
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problems as a parameter is varied, starting with a known solution, so that at each step a
locally convergent algorithm can be applied to yield the new solution, which will form the
starting point for the next iteration. A homotopy provides the linkage between the known
simple solutions, and the desired answer. Since in our problem the relative equilibria
for a symmetric molecule are simply obtained by solving (6.3), it is natural to start the

homotopy from these symmetric cases. Let (6.1) be represented as

F(ml,mZam37m4,m5am67A797lB) = 0. (65)

For a completely asymmetric molecule, we have my # ms, ms # my, and ms # ms.

Define

my + my ma + my ms + ms
7 0 ™M T T e = T

m; =

Three homotopies will be-used in series to fulfill the path-following process, namely,

Hi(AQ,8,7)=F(rmy +(1 —m)mg,mma + (1 — T)Mg, My, My, My, mz, A, Q, B), (6.6a)
Ha(\,Q,8,7) = F(my,mg,7m3 + (1 — )my, 7ma + (1 — 7)my, m,,m,, A, Q, 8), (6.6b)

Hg()\, Q,ﬂ,r) = F(ml,mg,mg,m4,7m5 -+ (1 - T)mz,Tme + (1 - T)mz, A,Q,ﬂ) (\660)

By slowly varying 7 at each stage, locally convergent algorithms such as the Newton-
Raphson method lead to the desired solutions. In order to successfully find the solutions

of (6.3), we note the fact that for A-Q =0 and |A\| > max{z;,i =1,---,6},
AP ~ A, (6.7)

which is the Kepler’s frequency formula for the zeroth order approximate model, cf. [29).
Accordingly, for given A, (6.3) can be solved by choosing the initial value (A/2)!/3,
The above path-following method will later be termed method of continuation in
mass. We now study the local numerical algorithm for finding solutions at each step along
the path. Due to the smallness of the ratio between the body size (the z;) and the radius
|A|, the numerical search for solutions of (6.1) becomes highly ill-conditioned. The constant

A plays an important role in making our numerical methods tractable. Before performing

21



the error analysis, we describe a theorem of Kantorovich which will play a pivotal role in

proving that actual solutions lie close to our numerical approximates.

THEOREM 6.1. ( Kantorovich)

Let D C IR" be an open set, F : D — IR" be continuously differentiable, and
the matrix F' be Lipschitz continuous in D with Lipschitz constant a. Let z¢ € D,
with F'(zo) nonsingular, and suppose there are positive constants ¢ and 7 such that
IF!(z0)~Y|| < o, || F'(z0)~! F(zo)|| < 7,2nd h £ aoy < 1/2. Set e* = (1—/I = 2h)/ac.
Let B(zo,e*) be the open ball with center zy and radius e*, and suppose further that h
is so small that B(ze,e*) C D. Then there is a unique z* € B(zg,e*) with F(z*) = 0.

: i
'The proof of this theorem can be found in [10], [18], or [17]. The first part of the theorem

provides a way to measure the error bound for the approximate solutions, and could also

serve as a criterion for convergence. In particular, if an approximate solution satisfies the

conditions
v <€, acy < 1/2, (6.8)

then the error of this approximate solution is bounded by €. As a consequence,
condition (6.8) can be used to guarantee the convergence of an algorithm.

In order to apply Theorem 6.1 to our problem, a value of A (appearing in (6.1))
muct be chosen and there are some constants to be determined. The detailed derivation
of these constants is presented in Appendix B. Here we summarize the results by noting
that the conditions on A are given by, cf. (B.9), (B.15),
| |Al®

T2mmax

A~ A% and A < : (6.9)

and suitable forms for the constants appearing in Theorem 6.1 are, cf. (B.3), (B.12),
and (B.17),

v = max{dz;, i=1,---,n}, o = e , and a =~ 2nlA|. (6.10)

Pmin

Here 6z solves (B.11), and pmin is the minimum eigenvalue of F'(A,Q,8). With those

constants determined through (6.10), criteria (6.8) can be applied to the Newton-Raphson
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method to find approximate solutions with an associated error bound. The constant A
determined from (6.9) makes it possible to deal with numerical ill-conditioning. These

considerations will be further described in the next section.

7. Examples

In this section, the ideas described in Section 6 are combined to generate an algorithm
which finds non-great-circle relative equilibria. Here, we only look at simple models, namely
arigid body B with the structure of a molecule, but in principle, the methods we use could
be extended to more complicated mass distributions. In the first example, the parameters
of the molecule are motivated by the parameters of the motion of the satellite Phobos
around the planet Mars. Non-great-circle relative equilibria with small deviations from
the classic solutions are are numerically found. We then fix the size of the molecule and
the radius of the orbit |A|, and study the effects of different moments of inertia on the
relative equilibria. The second example is artificial, but does include the parameter regimes
in which a space station orbiting the Earth would fall, and serves as a demonstration
of large orientation change from the classical solutions. Here, while holding the mass
distribution and the moments of inertia of the molecule fixed, a branch of non-great-circle
_ relative equilibria starting with |A| = 500 and ending with |A| = 40000 is obtained. In
all examples, the Newton-Raphson method is used to find solutions in each step of the

continuation method. With the error criteria (6.8), we revise the standard algorithm as

follows.

ALGORITHM 7.1.
1. Give zg. Set £ ='0. Specify €.
2. Find éz such that

F'(zg) 6z = F(zi).

3. Let v = max{éz;, : = 1,7}. Evaluate @, 0. If y < ¢ and aoy < 1/2, EXIT.
4. Tp41 =Tk +6x. k=k+ 1. Goto 2.
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In Step 2, the singular value decomposition of F'(zx) is found first. This not only
takes care of the problem of ill-conditioning, but also provides us with the smallest singular
value which leads to the constant o, cf. (6.10). The other constant a can also be obtained
from (6.10). As guaranteed by Theorem 6.1, if Algorithm 7.1 successfully converges to
an 7, there must exist a solution z* nearby. The error bound is given by €, which will
be chosen to be 1078, In the following examples, every solution is obtained through this

Algorithm, and is thus a bona-fide approximate solution.

7.1. Phobos

We consider the case of the satellite Phobos moving around the planet Mars.
The related data for our study is included in Appendix A, cf. [15]. In the process of
nondimensionalization, the scales are chosen to be, cf. (2.14),

tr(I*)

m

mass : m = 1.082 x 10'° (kg), length: | = = 12.4 (km). (7.1)

The time scale is irrelevant here, since we are interested in relative equilibria. Accordingly,

the scaled radius is about |A| = 760. Also the non-dimensional moments of inertia are

0.3204 0 0
I = 0 02825 0 |. (7.2)
0 0  0.3881

Now we assume that Phobos is in the shape of an ellipsoid with the above inertia and
uniform mass distribution. The axes of the ellipsoid can be found through elementary
analysis to be 1.847, 2.086, 1.496. We next look for the most asymmetric molecule fitting
inside the ellipsoid (cf. Figure 7.1) to get the most interesting non-great-circle relative
equilibria. Physically this procedure might be interpreted as seeking the largest possible
orbit deviation due to non-uniform mass distribution consistent with an observed shape.
The center of molecule is set to coincide with the center of the ellipsoid. The constants «,

o for this example are approximately 10*, and 10% respectively. It was found that with
21 = 0.9236, z; = 0.4618, 3 = 1.043,

T4

0.5214, z5 = 0.748, z¢ = 0.748,
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Figure 7.1. Molecule inside the ellipsoid of Phobos

we obtain the following non-great-circle relative equilibrium,

A = (759.999,1.215, -1.3 x 10719),
Q = (2.6 x1071,0.000,152.0), B = —577600.40.

In spherical coordinates (r, 8, ¢), the vector A = (r cos ¢ cos 8, r cos ¢sind, rsin¢) can be
represented as (760.00,0.0916,0.000). Here 8 and ¢ are in degrees. Clearly this relative
equilibrium is very close to the great-circle case in which A is (760,0,0). In order to
construct interesting non-great-circle relative equilibria, we hold the size of the molecule
and the third moment of inertia (0.3881) fixed, while varying the other two moments of
inertia. We obtain a family of relative equilibria as listed in Table 7.2, where the norms
of A and Q are 760 and 152, respectively. The notations §(A) and ¢(A) denote spherical
coordinates of the vector A (in degrees).

Figure 7.3 shows the configuration of the molecule at relative equilibrium for the case
of I = 0.305956, I, = 0.305935 in Table 7.2. The molecule rotates approximately 40.13
degrees about the vertical axis. Here we see the effects of nearly equal moments of inertia
in changing the configurations at relative equilibria. It is observed in Table 7.2 that as
the moments of inertia approach each other, the molecule at relative equilibrium exhibits
significant change in orientation from the classical solutions.

We remark that, in [2g], it was shown that there is no non-great-circle relative
equilibrium for the second-order approximate model with large |A|. Here the second-order

approximate model refers to the model with the approximation of the potential function

V()) defined in (3.10) as
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I Iy () ¢(A) 6(Q) $(Q) |
0.329386 0.282505 0.0916 0.0000 0.0509 90.000
0.325386 0.286505 0.1094 0.0000 0.0675 90.000 |
0.320086 0.291805 0.1485 0.0000 0.1049 90.000
0.315186 0.296705 0.2251 0.0000 0.1796 90.000
0.310036 0.301855 0.5087 0.0000 0.4604 90.000 l
0.308036 0.303855 1.0152 0.0000 0.9648 90.000 l
0.306886 0.305005 2.3956 0.0000 2.3414 90.000 |
0.306636 0.305255 3.3944 0.0000 3.3379 90.000
0.306436 0.305455 5.0607 0.0000 5.0010 90.000
0.306336 0.305555 6.6530 0.0000 6.5906 90.000
0.306236 0.305655 9.5089 0.0000 9.4431 90.000
0.306131 0.305760 15.7147 0.0000 15.6474 90.000
0.206086 0.305805 20.2084 0.0000 20.1450 90.000 l
0.306066 0.305825 22.6487 0.0000 22.5890 90.000 - |
0.306016 0.305875 29.8738 0.0000 29.8313 90.000 |
0.305996 0.305895 33.1418 0.0000 33.1095 90.000 l
0.305956 0.305935 40.1303 0.0000 40.1231 90.000 l

Table 7.2. Relative Equilibria for Molecules of Different Inertias at Constant Orbit Radius |A|

. 1 1 3
~ — < ), I >
V() B 21/\]34-2i/\|5< , IA >

In order to have this second-order model fail to be a valid approximation, we expect to have
inertias close to each other. Of course, inertial spherical symmetry does not necessarily
imply a spherically symmetric body, so that the body may be subjected to higher-order
terms, cf. {14]. Our numerical investigation is in accord with the above observations.

In [1], small deviations from great-circle relative equilibria were found as perturba-
tions of solutions to the approximate model. The numerical results presented here show

that with two nearly equal moments of inertia, the exact problem may have non-great-
circle relative equilibria with large changes in orientation from the solutions of the classic

approximate model.
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Figure 7.58. Configuration of a Non-great-circle Relative Equilibrium

7.2. Example with Branches of Solutions Parametrized by ||

We consider a molecule with the following data,
m; = 0.330066, m, = 0.00330033,
my = 0.330033, m4 = 0.00330033,
ms = 0.33, me = 0.00330033,
I, = 03332, I, = 0.3335, I = 0.3333,

moving in a central gravitational field. The intuitive idea behind devising example (7.3) is
to choose the moments of inertia close to each other so as to emphasize the importance of
higher-order terms, while the mass distribution is designed such that the body is structurely
highly asymmetric. In particular, the ratios of masses are 101, 100, and 99 for each principal
axis, respectively.

The method of continuation in mass discussed in Section 5 has been used with
Algorithm 7.1 to find relative equilibria for selected |A| from 500 to 40,000. We remark
here that the nondimensional parameter regime overlaps the range in which Earth orbiting
artificial satellites may lie. For example, the space station Freedom has been designed to
have maximum dimension 0.2 (km) and orbit with radius 6,800 (km). Thus the scaled |A| is
approximately 34,000, which falls within the examined range. With some experimentation,

it was observed that with the initial point,
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0 2]
x={|, ae=1{o
0 0

) B = —P‘|27 (74)

in the method of continuation in mass, the most interesting solutions were obtained.
However, in finding solutions for large |A|, for example |A] = 20,000, the constants are
approximately

a ~ 108, o ~ 10°,

¢

which implies that we need to have the constant v < 10712 to fulfill the condition
acy < 0.5. Because for these solutions |A\] ~ 10%, the 16-digit accuracy available in
double precision on a typical 32-bit machine (e.g. a Sun Workstation) is inadequate. We
therefore ran our program on a CRAY supercomputer which provides 29 significant digits
in double precision, cf. e.g. [20]. Table 7.4 lists those relative equilibria thereby obtained

with A, Q represented in their spherical coordinates.

I\ o)) 8(\) 12| () $(Q) |
500 46.8611 -17.4627 100 -54.7456 -32.6009 |
760 47.8276 -17.8208 152 - -54.7761 -34.1683 |

1000 48.7091 -18.1277 200 -54.8384 -35.5845 |
3000 55.3232 -17.2751 600 -20.2429 38.7129
6000 65.6627 -19.5986 1200 -15.6572 22.9702
8000 71.0045 -22.9513 1600 -11.4520 17.2236
39000 73.0742 -25.3278 1800 -9.5049 15.2639
12000 78.0382 22.8848 . 2400 -7.5808 -10.2578 |
15000 81.2009 18.9175 3000 -6.4284 -6.8820 |
20000 84.1137 13.7814 4000 -4.9693 -3.7331 ]
30000 86.5362 8.1721 6000 -3.2604 -1.4159
40000 87.5514 5.6183 8000 -2.3792 -0.7051

Table 7.4. Relative Equilibria Illusirating Large Orientation Drifts
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Interestingly, there are three segments of distinct branches of solutions shown in
Table 7.4, namely, those with |A| in the range of 500-1,000, 3,000-9,000, and 12,000-
40,000. We conjecture that there are some bifurcation or turxiing points in the (A, ©, )
space. In order to construct one branch completely, we abandoned continuation in the
masses, and instead started with solutions at |A| = 12,000 and reduced the radius |}|
with numerical continuation until |A] = 500. On the CRAY, this method of continuation
in radius successfully gives us the branch of solutions listed in Table 7.5. It can be seen
that the solution branch for |A| = 500-1000 in Table 7.4 is disconnected from the branch
starting from |A| = 12,000-40,000 that is continued in Table 7.5 down to small radii.

Al o)) ¢(A) 19| 6(2) $(8)
500 46.7440 | 351556 | 100 -10.1838 | -37.7702 |
1000 | 48.5200 | 35.0055 | 200 -10.3029 | -36.4710
2000 | 52.0762 | 345767 | 400 | -10.4690 | -33.7789
3000 | 55.5958 | 33.9734 600 | -10.5206 | -30.9911
4000 | 59.0231 | 33.1958 | 800 -10.4787 | -28.1563

5000 62.3003 32.2504 1000 -10.3185 -25.3351
6000 65.3718 31.1514 1200 -10.0596 -22.5938

7000 68.1912 29.9214 1400 -9.7205 -19.9952
8000 70.7275 28.5895 1600 -9.3239 -17.5892
9000 72.9684 27.1885 1800 -8.8934 -15.4074
10000 74.9195 25.7512 2000 -8.4496 -13.4624
11000 76.6003 24.3081 2200 -8.0085 -11.7507
12000 78.0382 22.8848 2400 -7.5808 -10.2578
15000 81.2009 18.9175 3000 -6.4284 | -6.8820
20000 84.1137 13.7814 4000 -4.9693 -3.7331
25000 85.6324 | 10.3865 5000 -3.9630 -2.2060 |
30000 86.5362 8.1721 6000 -3.2604 -1.4159 ‘
34000 87.0289 6.9333 6800 -2.8441 -1.0438 l
35000 87.1310 6.6760 7000 -2.7551 -0.9729 l
40000 87.5514 5.6183 8000 -2.3792 -0.7051 l

Table 7.5. A Branch of Non-great-circle Relative Equilibria
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It would be interesting to find the other branches completely. However, more delicate
numerical tools need to be applied. In particular, a continuation code designed to traverse

turning points is apparently required. This problem is currently under investigation.

8. Conclusions

In this paper, we have proven the existence of non-great-circle relative equilibria for
the exact model of motion of a rigid body in a central gravitational field. A coordinate-
free approach was adopted to avoid singularities and cumbersome manipulations inherent
to local coordinates, such as Euler angles. Numerical methods for finding the relative
equilibria with an associated delicate error analysis have been presented. The numerical
solutions we obtained demonstrate that the non-great-circle relative equilibria may exhibit

‘la.rge orientation changes from the classic approximate solutions for bodies with nearly
equal moments of inertia. If these relative equilibria prove to be stable, the atﬁtude design

of spacecraft might be able to take advantage of such configurations to yield effective

attitude control strategies.

ACKNOWLEDGEMENT.

We are happy to thank J. Alexander, A. Bahri, H. Brezis, B. Kellogg, and
J. Miller for helpful discussions.

Appendix A. Data for Phobos around Mars
. Phobos mass ~ 1.082 x 10'¢ (kg).
Phobos volume ~  5.673 x 103 (km3).
Phobos principal moments of inertia
550 0 0

I* ~ 0 4718 0 x 1017 (kg - km?).
0 0 6481

Phobos orbit radius (major semi-axis) ~ 9,378.5 (km).
Phobos radius ~ 11.1 (km).
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Mars radius ~ 3,394 (km).

Appendix B. Determining Constants in Theorem 5.1.

In this Appendix, we discuss the issue of determining the constants in Theorem 6.1
as well as how to pick a suitable constant A to make the problem numerically tractable.
We first look at o, the constant associated with the Jacobian of F'. Since (6.1) comes
from a variational principle, the derivative of F' in (6.5) with respect to A, 2, and 3 is a
7 % 7 symmetric matrix with real eigenvalues. Let pnin denote the minimum eigenvalue

of F'(A,,8). It is easy to see that 1/pnyi, is the maximum eigenvalue of F'(),Q,3)7!.
Thus

_ 1
IF'O,8) Ml £ —, (B.1)
min
where || - ||2 denotes the matrix or operator norm induced from the usual vector 2-norm

on R™. Accordingly, if the 2-norm is used, & could be specified as 1/pmin. On the other

hand, if the sup-norm defined by ||z|lcc = max{|z;|,7 = 1,n} is selected, because of the

inequalities
lzlle < llzllz < nllzlleo,  for z € R,
we have
IF'ON28) Moo < nllF'(,2,8) 72 < (B.2)
The constant ¢ can then be chosen as
o = P:in. (B.3)

Since it is considerably more convenient to use the sup-norm in determining the Lipschitz
constant for F', the o defined in (B.3) will be adopted.

In order that conditions (6.8) can hold, it is evident that ¢ cannot be too large, or
equivalently, pmin cannot be too small. In order to have a measure of ppin, we consider

the special case of the relative equilibrium (6.2) for a symmetric molecule.
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The Jacobian of F' can be found from (6.1) to be the symmetric matrix,
(9P - T igiml - 00T —(A-Q)1+207 - QAT 0
6 3Am; ) AT
P08 = | TrmmEar( Q)+ Q)
I+(A2+8)1-0T Q
(B.4)

Evaluation of F” at the particular relative equilibrium (6.2) and (6.4) yields the following

simplified matrix,

J11 0 0 0 2ab 0 0\
( 0 J22 0 —ab 0 0 0
0 0 Js3 0 0 0 0
J = 0 —ab 0 I1 - I2 - a2 0 0 0 , (B5)
2ab 0 0 0 0 0 b
\ 0 0 0 0 0 L1-I, O
0 0 0 0 b 0 0}

where

6 \
3my 3my 6maa 6msa ™ms
Ju=b8+4 + + -+ B L W
((a+m1)3 (a—z1)? Va2 +z3 \/a2+x§5 ;|/\+Q,~I3

(B.6a)
6mazz3 5 m; )
Joo = A —22373 PSS (B.6b
¥ Ve ¥t ; A+ Qif?
2 ( 6mszd 26: mi ) )
Jaz=b+ Al ——— — - : (B.6c
NCET =R
The characteristic polynomial of J is
det(s1 - J) = (s — Jsa)(s ~(Is - IZ))
(s° = (J2 + 1 = I — a®)s + Jpo(Iy — I — a®) — a?b?) (B.7)

<33 — Jist — (1 +4a®)b?s + anz).

There are two obvious eigenvalues of J, namely, J33 and I3 — I;. The second is given by

body parameters, and, in our nondimensionalization, has absolute value smaller than one.

With (6.7), Js3 in (B.6¢) can be approximated as
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A 6A Am;
J3g > — + —4—— m5:r5 Z B ikl

ad /a2 + xs + Qif?
6Amsz? ( 1 )
= +AS (o 2
/-———-5a2+m Z @ DT QiP

- A(mlﬂ"l[(a+w;12(:fz;wl)+azl _mlfl[(a—-w;):(:f(;)—swl)+azl (B.8)
(\/(_1_2_—:1:-—a)a + 22 + av/a? + 22 + d?
a3\/c77+_x-
mswm—a)[a taita a? +af+a’] _ 6msad 5)_

It is now clear that the magnitude of J33 is at most A/a*. Thus in order to have Js3

large, a reasonable criterion for A is

A ~ a4. (Bg)

Next we check the third-order term in (B.7). The coefficient for s is approximately

A 44
(1+4a?)? = (1+4a")5 = —, (B.10)

for large a. The choice of A in (B.9) makes this coefficient large which in turn implies
there is a large eigenvalue. As a consequence, the condition number of the Jacobian matrix
becomes large for large a, or large radius (with the size of molecule fixed). This illustrates

that the problem of solving (6.1) is highly ill-conditioned. However, by using Theorem 6.1,
this difficulty can be handled.

We next check the other constants in Theorem 6.1. By finding 6z € R"™ such that

F'(z9)éz = F(zo), (B.11)

the constant v can be specified as

v = ||6z)le = max{bzi, i =1,---,n}. (B.12)

However, in solving (B.11) for éz, since F'(z,) is ill-conditioned, we need to use a robust
algorithm. A method based on Singular-Value Decomposition (SVD) is chosen to deal
with such difficulties.
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The remaining constant « is the Lipschitz constant for F'. Since F’ is continuously
differentiable at A # 0, we first find a bound on ||F"||, where F'', a third-order tensor, is
the derivative of F' with respect to (), (2, 8). Moreover, F" can be represented as a linear

2 . . .
operator from IR™ to R™ , which, in turn, can be expressed as an (n? X n) matrix P. It

is easy to show that

|F'loo £ nmax{P;;, ¢ =1,n% j=1,n}. (B.13)

Because of the simplicity of this bound, the sup-norm is adopted in Theorem 6.1. Since in
the Theorem, the constant o should be a Lipschitz constant on the whole domain D, we

look for a symbolic representation of a. It can be checked that the elements in the matrix

P have standard forms: 2A, 2§, and

6

+QI7 A+Q|5 o /\+Q15
15Am5()\3 -+ .’E5) GATTL5()\3 -+ :1:5)
- A
P Tt TRgE
15Am6(/\3 :175) 6Am5(A3 bt .’L'e,)
- A
P\‘i‘Q |7 ( +Q6) iA+Ql|5 es,
where e3 = (0 0 1)7. Let mpyax = max{m;, i =1,---,6}. Bounds for these terms can be
found to be
144 A ax
{ 2[Al, 2(Q, ——m;—a— }. (B.14)

In order to monitor the bound conveniently, we select A such that

144 Ampax

< 2|X
IAI4 -—_— 21 |7
which is equivalent to
Al°
) B.15
S - (513)

This constraint on A associated with condition (B.9) provide us a good criterion to

determine A such that the numerical method is tractable.

With (B.15) and (6.7), we can approximate |}| as
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=~ (T{})/ < ——n——@%_ < I, (B.16)

since Mmax > 1/6. Thus (B.16) and (B.15) ensure thét the maximum value in P is 2|A].

A symbolic bound of @ can then be chosen to be

a ~ 2n|Al. (B.17)
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