SHIP PRODUCTION COMMITTEE

FACILITIES IMPROVEMENTS

OUTFITTING AND PRODUCTION AIDS

INDUSTRIAL ENGINEERING FOR SHIPBUILDERS

SHIPBUILDING STANDARDS

THE NATIONAL DESIGN/PRODUCTION INTEGRATION SHIPBUILDING

COMPUTER AIDS FOR SHIPBUILDING RESEARCH

SURFACE PREPARATION AND COATINGS PROGRAM

FLEXIBLE AUTOMATION

TECHNOLOGY TRANSFER

EDUCATION AND TRAINING

WELDING

REAPS

WORK PLANNING FOR SHIPYARD SURFACE

PREPARATION AND COATING (SP&C)

A TRAINING MANUAL

U.S. DEPARTMENT OF TRANSPORTATION

Maritime Administration

in cooperation With

National Steel and Shipbuilding Company

San Diego, California
Work Planning for Shipyard Surface Preparation and Coating (SP&C)

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN 1987</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work Planning for Shipyard Surface Preparation and Coating (SP&C)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Surface Warfare Center CD Code 2230 - Design Integration Tools Building 192 Room 128 9500 MacArthur Blvd Bethesda, MD 20817-5700</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>SAR</td>
<td>513</td>
</tr>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
WORK PLANNING FOR SURFACE PREPARATION AND COATING

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Purpose and Scope</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Section I</td>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.1 Organization</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.2 Objectives</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.3 Definitions</td>
<td>6</td>
</tr>
<tr>
<td>Section II</td>
<td>Overview</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.1 Context and Problems</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.2 Shipyard Work Planning Differences</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.3 Work Planning Practices Common</td>
<td>12</td>
</tr>
<tr>
<td>Section III</td>
<td>SP&C Work Planning Factors</td>
<td>14</td>
</tr>
<tr>
<td>Section IV</td>
<td>Instructor Guide</td>
<td></td>
</tr>
<tr>
<td>Section V</td>
<td>Student Workbook</td>
<td></td>
</tr>
<tr>
<td>Section VI</td>
<td>Visual Aids</td>
<td></td>
</tr>
</tbody>
</table>
FOREWORD

As part of a continuing effort to improve shipyard efficiency, the Ship Production Committee Surface Preparation has sponsored this Project, entitled Work Planning for Shipyard Surface Preparation and Coating, under the auspices of the National Shipbuilding Research Program, a joint Industry, Navy, and Maritime Administration program. The project is related to recent industry developments (e.g., modular construction, zone outfitting, and advanced surface preparation, coating and painting) which have led to an emphasis on the cost savings that accrue when detailed planning and scheduling are done well in advance of the actual work. The processes of surface preparation and coating are being emphasized because they represent an increasingly significant part of the cost of new ship construction and overhaul, and because historically the proper planning, scheduling and prioritization of those processes have been neglected.
PURPOSE & SCOPE

The purpose of this training manual is to improve work planning for surface preparation and coating by providing training material directed primarily at those personnel involved in the near-term-planning, scheduling and direction of SP&C operations.

The training manual will provide (1) the means to use the material for instructional purposes, and (2) work planning factors that will be of value to other levels of work planners within a shipyard.

The training material presented is designed for a user who has a reasonable degree of expertise in the technical requirements of surface preparation and coating.

It is believed that application of this training to work planning within the Surface Preparation and Coating disciplines will result in improved work organization, increased production rates for blasters and painters, and more near term schedule tasks accomplished on time.

The material presented in this training manual has been written for the broadest application to the hull block construction process. This requires each shipyard presenting this material to "personalize" the contents to reflect individual yard work planning organizations processes, and procedures.
WORK PLANNING FOR SHIPYARD
SURFACE PREPARATION AND COATING

SECTION I. INTRODUCTION

1.1 Organization and Objectives of the Training Manual.

This training manual is organized to present its contents as follows:

SECTION I. An introduction to the manual

SECTION II. An overview of the problems in SP&C work planning; a discussion of the reasons for shipyards having different systems for SP&C work planning; a discussion of shipyard SP&C work planning practices which are potentially common to most yards.

SECTION III. The research data - SP&C work planning factors

SECTION IV. Instructor Guide

SECTION V. Student Workbook

SECTION VI. Visual Aids

The topics presented in Section II provide the basis for analysis of the many work planning factors which must be considered in the SP&C work planning process. The manual provides a detailed matrix of work planning factors, their definition, their impacts on the planning process, and suggestions on how the planning factor should be used to improve operations.

The manual uses the term "planning factors" for the planner/scheduler/supervisor in its broadest sense.
For easier application the work planning factors are defined as follows:

(1) Physical Description
(2) Location
(3) Support
(4) Specifications
(5) Time/Manpower
(6) Minimizing Rework
(7) Material
(8) Equipment
(9) Handling/Storage
(10) Inspection
(11) Disruption/Interference
(12) Safety
(13) Schedules

This provides a structure from which to address the multifaceted problems of SP&C work planning. The work planning factors are designed to assist planners/schedulers and supervisors concerned with near-term SP&C work planning for ship construction or repair. The matrix (Section III) provides information from the research which was used to develop the training manual. To support the instructional process the work planning factors are presented in the context of five shipbuilding planning phases;

- Management Planning
- Pre-Construction Planning and Operations
- Assembly Level Operations
- Block Level Operations
- Zone Level Operations

1.2 **Objectives of this training manual.**

OBJECTIVE #1. Improve the ability of SP&C supervisors to effectively plan and schedule near-term Surface Preparation and Coating work on new ship construction.
OBJECTIVE #2. Increase shipyard management's knowledge of the effects of near term detailed surface preparation and coating planning on overall shipyard production efficiency.

OBJECTIVE #3. Improve the exchange of SP&C work planning information and ideas between shipyard top management, SP&C supervisors and other craft planners and schedulers.

1.3 Definitions.

SURFACE PREPARATION AND COATING (SP&C): The surface preparation of all materials for a ship and their coating for preservation, appearance, and other functions (e.g., anti-fouling).

NEAR-TERM PLANNING: Generally, the lowest level of planning and scheduling (2 week schedule) or to the first level of trades supervision (Foreman).

WORK PLANNING: The means of performing the necessary steps to prepare for and accomplish SP&C tasks - it includes:

1. Determining where, when, and who will perform the work (planning and scheduling)
2. Acquisition of the required materials and equipment to perform the work
3. Scheduling SP&C craftsmen to perform the work
4. Integrating SP&C trades work with work planned for other trades

ASSEMBLY: The second level of construction (the first level is parts fabrication). The joining of two or more component parts to make up a system or an assembly (i.e., deck, sides, and ribs, etc.)

BLOCK: A group of assemblies jointed to form an independent section of the vessel (bow, stern, deck house, etc.). Blocks are completed as far as practical (piping, ventilation, electrical, surface preparation and coating) and then joined (or via grand blocks) to form the complete vessel.
GRAND BLOCK: A relatively large block assembly made from 2 or more blocks.

ZONE: An identifiable space or group of spaces of the assembled vessel, providing for work and control purposes.

PLANNERS: Individuals whose primary job function is to plan work accomplishment through equipment, processes, or manpower applications.

SCHEDULERS: Individuals whose primary job function is to schedule work accomplishment through the various planned processes in the most efficient manner.

SP&C SUPERVISORS: Trades foremen and higher supervisors who are responsible for planning and scheduling SP&C work.

SP&C OPERATIONS: Trades performance of surface preparation and coating work tasks, e.g.; blasting, cleaning, painting, etc.

SECTION II. OVERVIEW.

2.1 Context and Problems in SP&C Work Planning.

Historically, the surface preparation and coating operations in the shipbuilding and repair industry has been the last planned for item on the ship completion list. Consequently, SP&C planning has been subject to the cumulative effects of delays, omissions and changes that occur in the fabrication, assembly, erection and outfitting process.

With the advent of hull block construction in varying degrees in the United States, surface preparation and coating are integrated at the beginning of the shipbuilding process rather than waiting until the end. The Japanese have been the leaders in this integration. While work organization, planning, scheduling and managing systems differ, depending on the particular process flow and other characteristics of the individual yards, systems that are somewhat generic in nature could be used by all U.S. shipyards.

Recent studies by both the Maritime Administration and the industry confirm the labor intensiveness of U.S. shipbuilding, relative to the international market. Productivity improvements through reduction of man-hours is needed within the U.S. industry. This is being accomplished through improved shipbuilding techniques - such as the work packages associated with Hull Block Construction Method, Zone Outfitting Method, and Zone Painting Method and by improved managerial efficiencies gained through information transfer and training, such s the National Shipbuilding Research Program.

Several major problem areas in surface preparation and coating are inherent in the nature and complexity of ship construction and repair. First and foremost has been the pressure to complete surface preparation and painting just before delivery. Access, lighting, ventilation, staging, and safety are frequently less than optimum. A lack of precision in preparing machinery, equipment, piping and modules for on-board installation requires significant fitting work on-board; thus, surfaces that require repreparation and repainting develop. Finally, it is probably true that the shipyard engineers, planners,
fabricators and installers do not normally think in terms of: "Can we prepare and paint early under good conditions and then preserve that paint job through the remainder of the process, thus saving time and money for all?"

The most completely controllable preparation and painting processes occur within a shop where there are installed blasting and coating spaces with adequate ventilation, dehumidification and drying facilities. The day to day problems normally associated with in-shop SP&C are minimal compared to the complexity and magnitude of SP&C production problems associated with on-ship work.

Blasting, surface preparation and coating within the yard, but not on the ship, present the normal problems attributable to wind direction and force, temperature and humidity, and closure/protective of any nearby equipment that could conceivably be damaged by blasting or coating. Reacting to these problems can cause frequent schedule changes.

SP&C on the ship present the most varied situations and the largest number of complex problems. On-board SP&C can be roughly categorized into underwater bottom, tank compartments, superstructure, exterior hull and deck, and bilge situations. Each situation has somewhat different problems that must be considered and dealt with by the painting foreman, planners, and schedulers.

For underwater bottom and appurtenances, various factors must be considered, such as, the type of blasting, the degree of surface preparation desired, abrasive removal, staging or man-lift equipment vendor services, weather conditions, and the placing of preparation and painting materials in drydock on a not-to-interfere basis. In addition, details - such as, heavy smoke exhaust from poorly maintained man-life equipment depositing a film on the bottom prior to painting - all must be dealt with by the SP&C planner, scheduler and supervisor.

Tanks present still additional problems. Gas-free testing and authentication, humidity and ventilation control, abrasive removal, staging within the tank, proper grounding and safety watches must be considered and scheduled. The
cumulative effects of these factors complicate the supervisor's job in advance of and during the surface preparation and coating process.

On board work in compartments or on superstructures not only present the normal types of SP&C work planning problems associated with weather and temperature/humidity; but also the interference problems caused by both planned and unplanned work by other trades makes scheduling difficult.

Bilges, in-place machinery, and equipment surface preparation and coating present a myriad of problems that cover all aspects of the safety, staging, temperature/humidity, and interferences. No two jobs are alike and all require close attention, flexibility, and patience on the part of the SP&C supervisor. For example, if the SP&C involves working on nuclear powered ships for construction and/or repair, then the number of scheduling constraints may be significantly increased.

The computer, sophisticated Gantt charts, and aspects of PERT and CPM are all devices that when used properly will assist the painting supervisor/foreman in accomplishing his difficult job of maintaining productivity with his man/material resources. Sophisticated scheduling must be coupled with a realization that major improvement in SP&C efficiency cannot be accomplished by the blasters and painters in isolation from other trades. The SP&C tasks must be considered in each step of the total ship construction/overhaul work planning process.

2.2 Shipyard Work Planning Differences.

2.2.1 General. There are a number of factors that differ from shipyard to shipyard and from work project to work project. Because of the variety and diversity of these factors it is not possible to set forth, in this manual, hard and fast rules, methods or considerations that the SP&C planner/scheduler can apply directly to his particular situation. Rather, he must apply them within the context of his own shipyard and specific project.
2.2.2 Some of the major factors that cause each yard to be quite different are as follows:

a. The degree to which block/zone/module pre-construction, preoutfitting, and SP&C of items before on-ship erection is in use, affects all planning and scheduling.

b. The methods of organization, titles and distribution of responsibility and authority among the design, engineering, planning procurement and production departments can differ significantly from yard to yard.

c. Methods and systems for work accomplishment can vary significantly because of size of the project and whether it is new construction, major overhaul or repair.

d. Different projects/jobs can have varying time/cost constraints which affect planning and scheduling.

e. The actual facilities and equipment for SP&C operations will vary from yard to yard (e.g., a large modern blast house vs. none or an antiquated facility.

f. The geographical location of the shipyard has considerable affect on planning and scheduling because of weather, water access, and physical restrictions.

g. Variations from state to state and local municipality with respect to environmental rules and regulations can change methods, schedules and procedures from yard to yard.

h. The degree to which outside vendor services are used to accomplish SP&C operations affects scheduling flexibility and control.
The differences in customer specifications, inspections and certifications directly affects methods, planning and scheduling.

2.3 SP&C Work Planning Practices Common to Shipyards.

The detailed SP&C plans and schedules with respect to what, where and when in the total process are, of course, a function of the overall work planning system in the shipyard. The type and magnitude of pre-construction operations, fabricating, outfitting, and SP&C work planned for accomplishment prior to erection and/or installation on the ship can vary significantly both from yard-to-yard and project-to-project. It is not possible to specify systems/procedures/plans in detail that would work for all shipyards.

In the training course, depending upon whether the participants are from a single or several yards it is intended that the following basic requirements or subsystems would be discussed form the viewpoint of the most practical and productive means of improving overall SP&C short-term scheduling.

(1) A method(s) to ensure that SP&C department experts contribute to proposals, paint schedules (specification by project/ship), work flow plans and work planning conferences that integrate trade requirements by space/location on the ship.

(2) An SP&C feedback data system from on-the-job production to engineers, planners, designers and proposal writers that provides up-to-date time/manpower standards by type job, location, special conditions, and recommendations for alternative methods/equipment, etc.

(3) A system whereby, once the near-term schedule is fixed, the responsibility for pre-positioning equipment and SP&C materials and ensuring the production employee is properly dressed-out is clearly defined so that the shift supervisor can start actual work immediately.
(4) A material classification and standard SP&C flow pattern through the yard for each classification so that all engineers, planners, scheduler's will be aware of the intended location and type of SP&C planned for each type of material (piece, part, subassembly, module, non-structural component).
3.1 General.

This section presents the details of thirteen major planning factors that must be thought of/considered/planned for or checked on in the total process of arriving at the most efficient SP&C work plan.

This section does not categorize these factors into near, middle or long-term. The near-term SP&C supervisor and work planner is dependent on the long-term planners and how well others in the yard plan for and consider the many aspects of work planning leading to "limited rework" on ship. However, the near-term SP&C planner/scheduler can cause improvements by considering all of the planning factors and contributing his opinions, suggestions and recommendations, both to other planners and ship designers at the beginning of the planning process.
Thirteen SP&C Work Planning Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Description</th>
<th>Affects</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL DESCRIPTION (of the item to receive SP&C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIZE</td>
<td>Sq. Ft. Area/Cu. Ft. Area/Quantity Size data comes from SP&C Spec.</td>
<td>Handling, transportation, quantity of labor and material, schedules and work</td>
<td>For off-ship SP&C work, put primer coat on small pieces/plates/beams/brackete/foundations/pipe hangers/nuts/bolts/washers/doors/hatches, etc.</td>
</tr>
<tr>
<td></td>
<td>Pieces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAPE AND APPURTENANCES</td>
<td>Handling, positioning</td>
<td>Ventilation, Staging, lighting, access</td>
<td>- put intermediate coat(s) on intermediate size PCS subassemblies, modules, etc.</td>
</tr>
<tr>
<td></td>
<td>Affects</td>
<td>Affects</td>
<td>- put final coats on large pre-erection assemblies and aux. items such as masts/king posts/smokestacks/elevators</td>
</tr>
<tr>
<td>WEIGHT</td>
<td>Handlings (liftings)</td>
<td>Movings</td>
<td>Important to off-ship work (N.A. to on ship work.)</td>
</tr>
<tr>
<td></td>
<td>Affects</td>
<td>Affects</td>
<td>- put final coats on large pre-erection assemblies and aux. items such as masts/king posts/smokestacks/elevators</td>
</tr>
<tr>
<td>OPENINGS</td>
<td>Ventilation, lighting accessibility/protection/staging/number workers/cleanup/curing</td>
<td></td>
<td>Generally more opening preferred except "In-yard" requires more protection to blank the excess openings</td>
</tr>
<tr>
<td>TYPE MATERIAL.</td>
<td>Whether Mild, HY-80 Steel, S.T.S. Aluminum Stainless Steel, other</td>
<td>Selection of SP&C extent of protection type of blast media</td>
<td>Determines the types of SP&C process and length of time to perform it.</td>
</tr>
<tr>
<td></td>
<td>Affects</td>
<td>Affects</td>
<td>put primer on as soon as structural erection is complete in area</td>
</tr>
<tr>
<td>CURRENT MATERIAL CONDITION</td>
<td>New steel, w/wo millscale, rusty old paint, toxic/non-toxic, crease, oil, special contaminations</td>
<td></td>
<td>Impacts type cleaning</td>
</tr>
<tr>
<td></td>
<td>Impacts type personnel protection</td>
<td>Impacts cleanup and disposition of residuals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impacts degree of disruption to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOTE - All plate to be blasted and coated 3/4 mil with pre-erection primer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thirteen SP&C Work Planning Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Description</th>
<th>Implications</th>
<th>Control Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>(where the SP&C work will be performed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF-YARD</td>
<td>Vendor or suppliers items that may arrive already coated - partially coated or not coated at all.</td>
<td>Planners from design or purchasing should have these routed on arrival to provide for In-house SP&C. These items must be receipt inspected and SP&C processed as required.</td>
<td>Require vendor structural items to be primer coated prior to delivery as much as possible. Require vendor outfitting items to be finished coated prior to delivery as much as practical.</td>
</tr>
<tr>
<td></td>
<td>Units that are fabricated and SP&C processed - generally outside and exposed to the environments.</td>
<td>Exterior environment impacts SP&C efficiency and quality.</td>
<td>Minimize in-yard SP&C work Utilize a combination of preconstruction primer and subassembly units done in Blast Houses.</td>
</tr>
<tr>
<td></td>
<td>Affects community environment, clean water, fumes and fall out noise - protection.</td>
<td></td>
<td>Planners and SP&C Personnel should collaborate on break out size of units for most efficient SP&C work. Where to SP&C Primer Where to SP&C Intermediate Where to SP&C Final.</td>
</tr>
<tr>
<td></td>
<td>Affects company environment offices/trades/etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN-YARD</td>
<td>Units that are SP&C coated in a Blast House - metal finishing paint shop or similar in house company facility.</td>
<td>Generally the preferred SP&C method for total cost control when proficiently planned and processed.</td>
<td>Employ computers and blast shop coordinators to regulate the short-term work flow - avoid peaks and valleys and provide priority to the most critical units in support of various project schedules, consistent with production line flow schedules.</td>
</tr>
<tr>
<td></td>
<td>This location is ideal for parts, pieces and small to medium size subassemblies or modules.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thirteen SP&C Work Planning Factors

LOCATION (cont.)

<table>
<thead>
<tr>
<th>On-ship, External</th>
<th>SP&C work performed on the exterior surfaces of ships - superstructure decks, side shell, bottom</th>
<th>The location of the ship at the time of SP&C work must not be overlooked for toxicity. Check application of methods, materials, cleaning methods & materials, staging, support functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affects</td>
<td>SP methods, & materials coating/methods & materials, cleanup/methods & materials, staging, support functions</td>
<td>Impacts - environmental staging Use portable air compressors for higher air pressure faster cutting uses less grit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>On-ship, Interior</th>
<th>SP&C work performed on the interior surfaces of: ships, tanks/volds, machinery/spaces/bilges, storerooms, hotel spaces</th>
<th>Impacts - access ventilation lighting staging level of Manning method of SP&C work</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Use airless spray paint equipment vs. atomizing or other application tools.</td>
<td>Strive for SP&C work packages that schedule a block of work (tanks) (compts) (spaces) or area at one time to minimize support functions and disruption.</td>
</tr>
</tbody>
</table>
Thirteen SP&C Work Planning Factors

SUPPORT

Functions usually supplied by in-house service trades other than the SP&C trade personnel.

HANDLING

- **Does the subject SP&C work require lifting/turning/moving/hanging?**
 - If so, what service trade support is required?

- **Does the subject SP&C work require transporting?**
 - If so, what type of transportation is required?

Size and type of handling equipment. Number of moves required.

To and from blast house

To temp. storage before or after SP&C processing

To other yard locations for SP&C

Preconstruction primer application should include planned facilities for blasting/coating and quick curing of primer applied to steel on receipt at the plant (shipyard).

Blast and coat houses generally include provisions for transporting sub-assem. or modules throughout the fabrication and SP&C processes - the Planners Job is to make efficient use of these facilities at all levels of points of SP&C planning.

UTILITY SERVICES

- **Compressed air for power cleaners,**
 - **Blast equipment,**
 - **Paint spray pumps,**
 - **Grinders,**

- **Air**
 - **Water**
 - **Gas**

- **Electric power**
 - **Portable lights**
 - **Fixed lighting to work by**

Compressed air for power cleaners, blast equipment, paint spray pumps, grinders, etc.

Gas to heat buildings/units/shops

For cleaners, vacuum machines

Set up and operation by SP&C personnel

Set up by support personnel

Minimize temporary stage construction - use fixed staging - man lifters cranes with personnel floats, etc., whenever you can.

Never enter any tank or space that has just been opened until gas tester or safety rep clears space for entry and designates type of personnel protection require.

VENTILATION

- **For personal health, comfort, safety**
- **For confined space explosion protection**
- **For coating/drying/curing**

Time to perform SP&C

Safety of personnel

Other trade support

Natural or forced ventilation

Utilize upside down position to minimize scaffolding requirements.

STAGING

- **Type and quantity**
- **When and how to set up/Initiate**
- **When and how to take down/remove**

For access and maneuvering

Blocking other work

Necessary to SP&C operations and inspection

Tie staging to drydock NOT ships hull.

Consider permanent scaffold clips to remain with ship.
<table>
<thead>
<tr>
<th>TEMPORARY PROTECTION</th>
<th>CLEANUP</th>
<th>CHEMIST</th>
<th>GAS TESTER</th>
<th>SAFETY ENGR.</th>
<th>LAB SERVICES</th>
<th>VENDOR REPS.</th>
<th>PAINT SUPPLIER</th>
<th>EQUIPMENT ISSUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>What to protect and how?</td>
<td>What type cleanup</td>
<td>When required - why?</td>
<td>What is the authority level of chemist - of gas tester?</td>
<td>When is each required - why?</td>
<td>Who calls/contacts each - why?</td>
<td>Involved for quality and safety enhancement of the coating work.</td>
<td>Who communicates need for either/each</td>
<td>SP&C operators work with supply rep.</td>
</tr>
<tr>
<td>Who installs protection?</td>
<td>What area or space and when?</td>
<td>Who calls/alerts?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wh removes protect on - when?</td>
<td>What magnitude?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toxic or not?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service trades required?</td>
<td>Impacts schedule length</td>
<td>Impacts schedule time for confined spaces, for tanks just opened, and highly flammable coatings.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts time for erection and removal</td>
<td>Impacts equipment</td>
<td>Impacts schedule time and quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts cleaning/blasting work space</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts painting and cure time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Utilize processes, positions, and locations to minimize cleanup

Communication with vendors, suppliers, and equipment reps.
SP&C SPECIFICATIONS

<table>
<thead>
<tr>
<th>SOURCES OF SPECIFICATIONS OR SP&C INSTRUCTIONS</th>
<th>Customer detail specifications</th>
<th>Unclear, incomplete or incorrect specs. result in error. Impacts schedule, rework, material procurement, and manpower.</th>
<th>Specification review by qualified SP&C personnel required in work planning process.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering - SP&C instructions taken from known as "Paint Schedule" (paint blueprint)</td>
<td>SP&C work package data taken from above two sources</td>
<td>Do not start mixing and coating without reviewing product data sheets and safety data sheets.</td>
<td>Always check the shelf life date on paint can - use only known good paint to avoid costly problems.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE OF COATING REQUIRED AND ITS IDENTIFICATION</th>
<th>GENERIC FAMILY - Alkyd resin, Vinyl, Epoxy, Inorganic Zinc, Urethane, Latex (water base), coal tar compounds</th>
<th>CHARACTERISTICS: Combustible, Flammable, Highly Flammable, Non-Toxic, Toxic, Poisonous, Non-Combustible, Non-Flammable</th>
<th>The coating characteristics impact where and how job may or may not be done.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coating characteristics are obtained from:</td>
<td>Product Data Sheets</td>
<td>Safety Data Sheets</td>
<td>Both should be supplied by paint vendor or manufacturer.</td>
</tr>
<tr>
<td>Brush/roll/spray/dip/flow; combination of above.</td>
<td>Spray application is considered the current basic application method - supported by brush touch up and brush coating of welds, etc.</td>
<td>Impacts rate of production, cure time, equipment, and manpower.</td>
<td>Use airless spray coating as the prime equipment supported by atomizing spray: brush/roller touch-up work.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>METHOD OF APPLICATION</th>
<th>Generally two or more coats required.</th>
<th>Two coat systems expend less initial application labor than three coat systems and expedite items thru blast paint rooms.</th>
<th>Use three coat system where permissible on most off ship work.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- At least one prime cost and one top coat</td>
<td>Two coat systems are quicker, but usually require more touch-up and more rework so that the three coat system often proves best even at the same total dry rolls.</td>
<td>- This gives flexibility to job</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Potential for reduced rework</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Overall lower cost and better quality</td>
</tr>
</tbody>
</table>
FILM THICKNESS

Recommended wet film thickness is obtained from product data sheet; is important monitor at application to ensure that each coat dries to specified dry film thickness to end up with specified total dry film. Impacts quality, control, application time, potential rework, and equipment required. Explore your options and apply same thickness on 3 coats:

- 2 Dry Mils of primer
- 6 Dry Mils intermediate coat
- 4 Dry Mils top coat (later)

A typical epoxy system may require:

- 2 Dry Mils of primer
- 10 Dry Mils of top coat
- 12 Dry Mils total

DRYING/CURING

Drying generally refers to time between coats before next coat. Curing refers to completion of chemical reactions and/or drying and ready for intended service function. Drying/curing impact when/where/how long it takes to do a specific job. Provide accelerated curing environment in blast paint houses - heat, ventilation, humidity control.

- Long dry care can bog down blast house operations

INSPECTION

Inspections may be formal or informal, in-process or upon completion. Required Inspections influence quality and progress of SP&C work. Unnecessary inspections generate confusion, overlap and rework, and contribute to higher costs. Make maximum use of in progress inspections.

- Minimize formal planned inspections and keep those near end of job.

COATING OBJECTIVES

Coatings serve a variety of purposes. Purposes - corrosion protection, cosmetic anti-fouling, weather resistance. Sanitation or a combination of these. The SP&C objective impacts when/where/how coatings are applied and must be considered in long and short-term planning in relation to the SP&C system and to the service function of the paint/coating. Use wet and dry film gages

- Monitor total film thickness

Too thick is worse than too thin because it consumes excess material and generates re-work thus using more labor - resulting in higher costs overall.
<table>
<thead>
<tr>
<th>Method</th>
<th>All surface prep falls under one of these classes: manual cleaning, power cleaning, blasting, chemical cleaning or combinations thereof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast Media</td>
<td>Sand, metal shot, metal grit, Black Beauty resin grit, etc.</td>
</tr>
<tr>
<td>Profile/Anchor Pattern</td>
<td>Dries the spec or paint system require specific profile, anchor pattern? Media used impacts production rate.</td>
</tr>
<tr>
<td>Options</td>
<td>Does the spec or system allow any options—such as use of mechanical needle guns in lieu of blasting on small areas?</td>
</tr>
</tbody>
</table>

Utilize efficient methods that meet minimum spec. required.

Blast profile should be in accord with product data sheet or as rule of thumb 1/4 to 1/3 of the first coat thickness (dry film).

Example: If you wish to apply 3 rolls dry film of a given primer that is listed at 50% solids, then you need a 1 mil profile (anchor pattern) on which you apply 5 wet rolls of paint that will dry to 3 rolls for a well bonded primer.

Use the needle gun option where permissible to avoid spot blasting on large units and on ship.
<table>
<thead>
<tr>
<th>THIRTEEN SP&C WORK PLANNING FACTORS</th>
</tr>
</thead>
</table>

MANPOWER PLANNING
- **Objective** - accomplish acceptable SP&C in the shortest practical time with minimum manpower used and minimum rework required.
- **Impacts** schedule and cost of job.

ALLOCATED TIME PER SCHEDULE
- Planners allow target times to process designated sizeable units of work through fixed operations.
- Planners should communicate with SP&C reps who attend planning meetings.

AVAILABLE MANPOWER
- Planners should communicate with each other as well as SP&C operators to look at total target work load and project manpower needs.
- Availability of manpower is more a planning problem between SP&C supervisors and dept. heads.

SPACE RESTRICTIONS
- Affects the type of equipment used and number of workers used at a time, thus controls elapsed time to do job and influences total manhours.
- Impacts SP&C facilities - blast/ coat houses - etc. and work planned for inside.

LABOR SKILLS LEVEL
- Affects the elapsed time of job in relation to the average skill of the operations and impacts the total cost in similar manner.
- Impacts production rate.

SP&C OPERATORS ESTIMATED TIME AND LABOR TO COMPLETE
- The SP&C operators - foremen and his support elements must recompile all input work from several sources to determine his weekly and daily work plan, thus producing his estimated time on specific tasks/units.
- Planners and operators must recognize that some short-term sacrifices must occasionally be made in time and manpower to support the team objective of overall shortest time and lowest manpower. These are management decisions and line supervisors/planners should not feel guilty at resulting higher costs.
- Always have one or more backup people trained or in training for each spot on your team. An ideal gang would be composed of:
 - 35% long-time reliables
 - 35% experienced mechanics
 - 30% new people in training

SP&C operators should keep a log of estimated times vs. actual times to complete each SP&C work packages. These should then be made available to and/or discussed with long-term planners, schedulers and estimators.
Thirteen SP&C Work Planning Factors

TIME/MANPOWER (cont.)

<table>
<thead>
<tr>
<th>SCHEDULE TIME vs. ESTIMATED TIME</th>
<th>Scheduled time is generally a broader target or guide established at earlier planning levels. Estimated time is a short-term detail time estimate that needs to be as accurate as possible and feed back to planning meeting so as to make on course corrections in schedules. Both current and future schedules.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Impacts overall SP&C schedule performance when scheduled time and estimated times are significantly different.</td>
</tr>
<tr>
<td></td>
<td>The compatibility of scheduled time and estimated time is a measure of the total team experience and ability in many situations.</td>
</tr>
<tr>
<td></td>
<td>This compatibility plus a recognized system of SP&C work in any given shipyard will do much to improve production and reduce costs.</td>
</tr>
</tbody>
</table>

If the planners schedule and time coincides with the SP&C operators schedules and time then output should be on schedule. Of course, the above rarely exists because the SP&C operators have to deal with SP&C planning coming from several sources, such as project managers, different fabrication shops, different planners, etc., and the lack of standard units of SP&C work.
Thirteen SP&C Work Planning Factors

MINIMIZING SP&C REWORK

OPTIONS:

A. The costliest part of SP&C blast work is the removal and disposition of blasting residuals. Therefore, the prime objective is to avoid or at least minimize blasting on ship.

B. Application of an accepted preconstruction primer applied at the time of receipt of steel in the yard is a desired step when it is permissible within the spec. and management system.

C. Consider the use of a precon-struction primer in some cases as a preservative and color assist to other trades even if it must be blasted off to use the spec. primer.

D. Use light colors of primer and intermediate coats where the system permits to highlight and assist correction of unfinished structural/outfitting prior to application of the final coat; and to improve illumination in constriction areas and spaces.

WHEN TO APPLY PRIMER

1. As preconstruction primer when steel arrives in shipyard
2. Small subassembly units/pieces on the yard
3. Subassembly/modules/pieces in the blast and paint shop
4. Large subassembly units prior to on-ship erection
5. Post-erection/on-ship application

WHEN TO APPLY INTER-MEDIATE COAT

1. Small subassembly units/pieces on yard
2. Subassembly/modules/pieces in the blast and paint house
3. Large subassembly units prior to on-ship erection
4. Post-erection/On-ship application
<table>
<thead>
<tr>
<th>WHEN TO APPLY FINAL COAT(s)</th>
<th>OPTIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Small subassembly units/pieces on yard</td>
<td></td>
</tr>
<tr>
<td>(2) Subassembly/modules in blast and paint shop</td>
<td></td>
</tr>
<tr>
<td>(3) Large subassemblies prior to on-ship erection</td>
<td></td>
</tr>
<tr>
<td>(4) Post-erection on-ship application</td>
<td></td>
</tr>
</tbody>
</table>

	A. Final coat(s) should be applied (5) When "quality" and/or "coating integrity" is the priority
	consideration then-and only then should on-ship, SP&C operations considered as the best choice for the bulk of SP&C work. (This eliminates patching in of make-up seams, joints, etc. - permits full continuously covered coats of primer, intermediate and final painting.
	B. Final coat(s) to structural components should be applied off-ship to large subassembly units or on-ship after completion of other work depending on spec. and system requirements. This is a foreman's/planner's consideration, but not their decision.
Thirteen SP&C Work Planning Factors

MATERIAL

For Surface Preparation - Part of SP&C: Impacts:

1. Abrasive steel shot
2. Abrasive steel grit
3. Combination of (1) & (2) above
4. White stand
5. Synthetic abrasive (byproduct of other industrial operations)
6. Aluminum oxide
7. Sandpaper and similar mfg. abrasives
8. Chemical cleaners - citric acid, phosphoric acid, etc; soap type cleaners
9. Masking tape, etc.

For Painting or Coating Part:

1. Alkyd resin paints
2. Vinyl resin paints
3. Inorganic zinc coatings
4. Epoxy resin coatings
5. Polyurethane paints
6. Coatings - coal tar products
7. Latex (water base) paints
8. Other similar paints, coatings
9. Solvent cleaners
10. Solvent thinners
11. Masking tape

EXAMPLES OF SP&C MATERIALS

SP&C personnel have limited options to decide on the use of cleaning or coating materials - the choices are locked in earlier. You DO HAVE and MUST USE the option of communicating back through your bosses and/or counter parts relative to materials that do not perform well and the need for better performing materials.

Always insist on material product data and safety sheets. Review these for each SP&C job.

Always check the shelf life date - insist on newly packaged coatings.

Get control of and maintain a 3 to 5 day supply of SP&C materials for your gang.

Who else is using same type material in same or close by area? Watch this for performance clues and for material supply control.

SAFETY

Is this a new material or one I am familiar with/have used before?

NOTE: Refer to safety heading on sheet () of these considerations

Is there a safety data sheet, and who has it?

How do I check the safety data sheet?
Thirteen SP&C Work Planning Factors

EQUIPMENT

<table>
<thead>
<tr>
<th>Type for SP&C</th>
<th>Support Operations (Examples)</th>
<th>Proper equipment use requires trained operators.</th>
<th>Minimize start/stop operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fork lift</td>
<td>Cranes</td>
<td>Front-end loaders</td>
<td>Set up time</td>
</tr>
<tr>
<td>Front-end loaders</td>
<td>Conveyors</td>
<td>Proper equipment use requires trained operators.</td>
<td>Repair/breakdown thru effective PM</td>
</tr>
<tr>
<td>Cranes</td>
<td>Conveyors</td>
<td>Cranes</td>
<td>Plan equipment utilization</td>
</tr>
<tr>
<td>Conveyors</td>
<td>Grit-hoppers</td>
<td>Conveyors</td>
<td>Maintain equipment inventory</td>
</tr>
<tr>
<td>TYPE FOR SP&C</td>
<td>SUPPORT OPERATIONS (EXAMPLES)</td>
<td>Grit-hoppers</td>
<td></td>
</tr>
<tr>
<td>Grit-hoppers</td>
<td>Air compressors</td>
<td>Support operations</td>
<td></td>
</tr>
<tr>
<td>Air compressors</td>
<td>Air drivers</td>
<td>Support operations</td>
<td></td>
</tr>
<tr>
<td>Air drivers</td>
<td>Manlifters</td>
<td>Support operations</td>
<td></td>
</tr>
<tr>
<td>Dehumidifiers</td>
<td>Manlifters</td>
<td>Support operations</td>
<td></td>
</tr>
<tr>
<td>Manlifters</td>
<td>Rall cars</td>
<td>Support operations</td>
<td></td>
</tr>
<tr>
<td>Rall cars</td>
<td>Tractor-trailers</td>
<td>Support operations</td>
<td></td>
</tr>
<tr>
<td>Tractor-trailers</td>
<td>Trucks</td>
<td>Support operations</td>
<td></td>
</tr>
<tr>
<td>Trucks</td>
<td>Aux - Heaters</td>
<td>Support operations</td>
<td></td>
</tr>
<tr>
<td>Aux - Heaters</td>
<td></td>
<td>Support operations</td>
<td></td>
</tr>
</tbody>
</table>

Abrasive Blast Equipment

- Automatic
- Manual
- Fixed portable
- Pneumatic/centrifugal types
- Vacu/veynrs/vacuum cleaners

Other Type Cleaning

- Power wheels - sanders
- Power chippers/scalers/needle guns
- Chemical (1) Dip-wipe-etc.
- Manual/sand blast

As a rule of thumb for discussion of equipment:

- Centrifugal abrasive wheels will predominate in small blast machines and small blast grit recycling rooms.
- Manually operated blast nozzles with expendable abrasives (non-recycling) usually prevail for off-ship exterior work and all on-ship blasting work.
- Portable air compressors generally provide cleaner and higher pressure air for blasting, thus they reduce:
 - elapsed time
 - labor time
 - blasting material consumed per unit of work output.
Thirteen SP&C Work Planning Factors

8 EQUIPMENT (cont.)

<table>
<thead>
<tr>
<th>TYPE FOR COATING</th>
<th>Equipment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray paint</td>
<td>- Airless spray paint pump type equipment will perform better on viscous coatings and those to be applied in thicker wet films like 6 or more wet film rolls per coat.</td>
</tr>
<tr>
<td>- Air/airless</td>
<td>A combination of airless spray and atomizing spray equipment is the best overall painting equipment, supported by roller/brush, etc.</td>
</tr>
<tr>
<td>- Electrostatic</td>
<td>Insist on spray operators using "wet film" thicknesses - put on the desired thickness at one time without excess and without rework.</td>
</tr>
<tr>
<td>- Combination</td>
<td></td>
</tr>
<tr>
<td>Brush/roll (power or manual)</td>
<td></td>
</tr>
<tr>
<td>Dip or flow coating</td>
<td>- A combination of airless and low pressure atomizing spray equipment works better on interior compts. and machine spaces working in and around obstructions, such as, pipes, cable runs, electronic consoles, machinery, furniture, etc.</td>
</tr>
</tbody>
</table>
Thirteen SP&C Work Planning Factors

<table>
<thead>
<tr>
<th>HANDLING AND STORAGE OF SP&C UNITS/ PIECES OFF-SHIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HANDLING</td>
</tr>
<tr>
<td>WHAT is to be handled</td>
</tr>
<tr>
<td>WHY is it to be handled</td>
</tr>
<tr>
<td>Lifting - turning or moving to allow desired processing of SP&C work.</td>
</tr>
<tr>
<td>WHO is to handle it</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ROUTING AND SCHEDULE</td>
</tr>
<tr>
<td>Step #1 can be primer or interim</td>
</tr>
<tr>
<td>Step #2 can be interim or storage/final</td>
</tr>
<tr>
<td>Step #3 can be final</td>
</tr>
<tr>
<td>The routing would be targeted at the planning level, but detail schedule would fall to SP&C operations.</td>
</tr>
<tr>
<td>STORAGE</td>
</tr>
<tr>
<td>---------------------------------</td>
</tr>
<tr>
<td>Units may be stored at the completion of fabrication with no coating or with residual preconstruction primer.</td>
</tr>
<tr>
<td>Units may be SP&C primed after fab. and stored at this point.</td>
</tr>
<tr>
<td>Units may be SP&C primed and part top coated - then stored awaiting additional assembly or erection.</td>
</tr>
<tr>
<td>This determination is a function of the system and where specific units fit in - the SP&C operations must know the system and fit of the pieces even if they can’t change the system.</td>
</tr>
<tr>
<td>Length of time in storage should be considered to avoid rust and corrosion of uncoated units and to avoid deterioration of partly coated units.</td>
</tr>
<tr>
<td>Units should be protected against surface film contaminations during storage or be thoroughly cleaned at end of storage or before additional recoating.</td>
</tr>
<tr>
<td>Certain coating systems may not be suspended for storage or other reasons at the primer or intermediate coat level, but must be continued thru final coat application within time constraints. The product data sheets will caution on this and it should always be respected. However, lower temperatures can extend recoat time and higher temperature can reduce recoat time. Judge accordingly. Check with paint lab personnel for added assurances.</td>
</tr>
</tbody>
</table>

Store units or pieces:
- inside where practical
- in position that allows runoff of water. Drill drain holes if runoff can’t be relied on
- away from salt water flooding or salt water spray or mist with spacer pieces between flat faces/surfaces
Thirteen SP&C Work Planning Factors

10 INSPECTION

<table>
<thead>
<tr>
<th>Inspection of work performed at any of several levels affects the following concerns:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does spec. require specific inspection?</td>
</tr>
<tr>
<td>Who conducts inspections?</td>
</tr>
<tr>
<td>Who witnesses inspections?</td>
</tr>
<tr>
<td>Who accepts/rejects?</td>
</tr>
</tbody>
</table>

SPECIFICATION REQUIREMENTS

<table>
<thead>
<tr>
<th>NOTE: Spec./owner/customer used interchangeably here.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the yard management system require inspections?</td>
</tr>
<tr>
<td>Does the paint vendor/representative inspection?</td>
</tr>
</tbody>
</table>

INTERNAL REQUIREMENTS

| Does the dept. supt. require inspections by department-trained inspectors, independent of production personnel? | Impacts the scheduling of inspection services. |

FOREMAN'S LEVEL

| Do you, the foreman, faithfully inspect and accurately evaluate the production accomplishments of your gang? | This, when faithfully and accurately done, is the best level of SP&C work inspection. |

Impacts based upon spec. are:

- Depend on in-process inspections by experienced inspectors - you or your counterparts
- Keep formal inspections to the minimum. These disrupt work and serve no purpose (unless mandatory).
- The most effective inspection system is composed of:
 - in-process monitoring that includes wet mil. thickness reading and dry mil. readings after each coat followed by one thorough final inspection of each unit/area/tank/compartment, etc. at completion of major coating work
Thirteen SP&C Work Planning Factors

11 DISRUPTION/INTERFERENCE

<table>
<thead>
<tr>
<th>GENERATED BY SP&C</th>
<th>Delays/slow downs/cancellation/damage to other trades or other work functions as a result of SP&C operations.</th>
<th>Applicable SP&C operations on- and off-ship. The most damaging aspects occurring on-ship and on the adjacent dock areas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP&C BLAST OPERATIONS (CLEANING)</td>
<td>Generates hazards to others in form of dust/flying abrasives/noise.</td>
<td>SP&C preparatory operations involve clean up/cover up to aren/unit, etc. that generate displacement, - move over disruptions for other trades before and after actual blasting and coating operations.</td>
</tr>
<tr>
<td></td>
<td>Blocks access routes due to masking and closure protective measures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precludes other to protect the surfaces being processed.</td>
<td>Plan SP&C operations for off shift times, after normal work hours or on weekends.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utilize blast and coat rooms effectively thru a planned/agreed system.</td>
</tr>
<tr>
<td>SP&C COATING OPERATIONS (PAINTING)</td>
<td>Generates flammable/explosive/toxic/irritating fumes.</td>
<td>Precludes other work due to personal health/safety/well-being of others.</td>
</tr>
<tr>
<td></td>
<td>Generates wet (painted)/slippery/keep off surfaces that preclude other work even if nonflammable/nontoxic coating is used.</td>
<td>Precludes or strictly limits access and movement thru or within the area/shop/bldg./space/compartment/dry dock or open decks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reduce rework. Do it right and once only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Make use of approved accelerated curing techniques heat/humidity/ventilation control.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utilize approved “fast cure” versions of available coatings.</td>
</tr>
<tr>
<td>Coating must cure to he:</td>
<td>Generates delays that tie up facilities/area/spaces/ compartments. While waiting for coatings to cure.</td>
<td></td>
</tr>
<tr>
<td>- tack free from dust, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- fume free to avoid fire or explosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- dry hard to permit walking on without damage to the coating dry firm to remove protection/covering to release surfaces for continuation of other work.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thirteen SP&C Work Planning Factors

SAFETY

General Note:

Impacts of unsafe operations:

- Injury
- Delay
- Liability
- Loss of work
- Claims

The life you save has a very high probability of being your own: in SP&C operations more than most other shipbuilding functions.

Put safety first; mixed right in with performance, production, quality control, etc.

“DO it right for once-only and safely.”

WHAT/WHO

Your personal safety

- the first line supervisor has the prime responsibility

Your personnel (your gang)

- the planners have associate responsibility

Your fellow employees

Your work area/shop/yard/ship

- the safety engineers have joint responsibility

Your shipyard/company

- the managers have leadership responsibility

Your community/environment

Safety is everybody’s business

Your materials

Your equipment

SP&C HAZARDS

Dust

- nuisance
- irritating
- toxic

Flying Particles

- abrasive grit
- abrasive shot
- abrasive other
<table>
<thead>
<tr>
<th>High pressure air/fluids</th>
<th>High pressure air from blast or paint equipment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- hose rupture</td>
<td></td>
</tr>
<tr>
<td>- nozzle exhaust</td>
<td>High pressure fluid from water blast or from airless spray equipments.</td>
</tr>
</tbody>
</table>

Fire (explosion)

Fumes

- nuisance
- irritating
- toxic
- oxygen displacing

Falls

- from staging/ladders
- from personnel lift equipment

Chemicals

<table>
<thead>
<tr>
<th>Affects</th>
<th>From</th>
</tr>
</thead>
<tbody>
<tr>
<td>- burns</td>
<td>From chemicals used as cleaners</td>
</tr>
<tr>
<td>- blisters</td>
<td>From chemicals being blasted off</td>
</tr>
<tr>
<td>- irritants (eyes^2)</td>
<td>From paints/coats containing chemicals</td>
</tr>
<tr>
<td>- irritants (respirator)</td>
<td>From solvents/thinners</td>
</tr>
<tr>
<td>- irritants (skin)</td>
<td></td>
</tr>
</tbody>
</table>
Thirteen SP&C Work Planning Factors

<table>
<thead>
<tr>
<th>13 SCHEDULES</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTRACT SCHEDULES</td>
</tr>
<tr>
<td>Management Developed. These target the start and finish of contract jobs. “The beginning and end” of specific jobs. No detail concern for SP&C personnel.</td>
</tr>
</tbody>
</table>

| **MASTER SCHEDULE** |
| A management tool that details: |
| - Key events |
| - Award of contract |
| - Lay keel |
| - Launch |
| - Deliver |
| This schedule sets the time frames for other more detail/supporting schedules. SP&C personnel can estimate their broad scope of work from this. |

| **MAIN EVENTS SCHEDULE** |
| Details main events in sequencing order. |
| Details SP&C of biles in machinery spaces. |
| Generates iteration of SP&C activity with other craft activity at specified times. |
| Erection/launching/outfitting/compartment completion/testing/train trail/delivery |
| Details SP&C for some tanks. |
| Details SP&C completion dates on compts/mach. spaces, etc., but leaves details to later planning. |

| **SHOP MFG. SCHEDULE** |
| Details items/units/components/sub-assemblies built in shops or on exterior building plattens, skids/areas |
| Targets subassemblies to the blast/coat house or provides means for SP&C operators to estimate when units are ready for SP&C processes |

<p>| MODULE BLAST/COAT SCHEDULE |
| Short-term composite schedule made up by SP&C personnel to show SP&C loading and work flow from fabrication areas to erection time. |
| This varies widely from yard to yard and from time to time within the same yard. |
| Points up the need for a SP&C coordinator team to make this a more efficient process in all shipyards. |</p>
<table>
<thead>
<tr>
<th>Work Planning Factor</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HULL ERECTION SCHEDULE</td>
<td>Schedules completion of structural work off-ship for erection units and the date of erection of these units on the ship.</td>
<td>Provides the control dates for some SP&C work that is to be done off-ship prior to erection. 60% of all SP&C coating should be completed prior to erection and 90% of all blasting for SP&C should be complete.</td>
</tr>
<tr>
<td>LAUNCHING SCHEDULE</td>
<td>Shows details of structural completion and proposed staging removal prior to ship launching</td>
<td>Provides SP&C dates for underwater work and for exterior hull painting (dress up) prior to launching. Underwater SP&C operations may be decided by spec - management or project level. Final economics is a function of proposed system and how long between proposed launch and delivery.</td>
</tr>
<tr>
<td>DOCKING SCHEDULE</td>
<td>Proposed redocking times between launching and delivery</td>
<td>Provides one or more optional times for underwater SP&C work in whole or in part.</td>
</tr>
<tr>
<td>OUTFITTING SCHEDULE</td>
<td>Provides target SP&C dates by showing completion of external sections/tanks/compts/machinery spaces</td>
<td>Additional short-term schedules are provided by project/depts. to detail SP&C operations.</td>
</tr>
<tr>
<td>o SP&C TANKS</td>
<td>Provides hydro testing of tanks before launch</td>
<td>These are areas where the SP&C foreman can and should make real contributions by direct participation or by indirect representation at or to the planning meetings that schedule and re-schedule these SP&C operations. Eliminate rework at each opportunity, but do not hesitate to repeat your ideas, suggestions or complaints that may contribute to better performance in SP&C operations.</td>
</tr>
<tr>
<td>o SP&C MACH. SPACES</td>
<td>SP&C operators have input into these schedules thru planning meetings to detail start and finish times for each compartment/tank/area</td>
<td>Instrumental in SP&C supervisors estimating number of workers required to comply with scheduled number of compartments.</td>
</tr>
<tr>
<td>o SP&C EXTERIOR</td>
<td>Breaks exterior of ship into sections for SP&C work</td>
<td></td>
</tr>
<tr>
<td>o COMPARTMENT COMPLETION SCHEDULE</td>
<td>Targets number of compts. to be completed per week or month and on certain Navy work it targets the compartments/spaces that are turned over to the ship's crew for living and operational purposes and/or</td>
<td></td>
</tr>
<tr>
<td>o COMPARTMENT TURNOVER SCHEDULE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WORK PLANNING FOR SHIPYARD SURFACE PREPARATION AND COATING (SP&C)

INSTRUCTOR GUIDE

U.S. DEPARTMENT OF TRANSPORTATION
Maritime Administration

in cooperation with
National Steel and Shipbuilding Company
San Diego, California
Table of Contents

FRONT MATTER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>i</td>
</tr>
<tr>
<td>Scope & Overview</td>
<td>iii</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>iv</td>
</tr>
<tr>
<td>Note to Instructor</td>
<td>v</td>
</tr>
<tr>
<td>Definitions</td>
<td>vii</td>
</tr>
<tr>
<td>Bibliography</td>
<td>ix</td>
</tr>
</tbody>
</table>

INTRODUCTION

SECTION I

Objectives

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Historical Background</td>
<td>I-0</td>
</tr>
<tr>
<td>B. Approach to SP&C Work Planning</td>
<td>I-1</td>
</tr>
<tr>
<td>C. Shipyard Planning Organization</td>
<td>I-3</td>
</tr>
<tr>
<td>D. Thirteen SP&C Work Planning Factors – An Overview</td>
<td>I-5</td>
</tr>
</tbody>
</table>

SECTION II

Objectives

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Pre-award Management Planning and SP&C Planning Factor Utilization</td>
<td>II-1</td>
</tr>
<tr>
<td>B. Preconstruction Planning and Operations</td>
<td>II-16</td>
</tr>
</tbody>
</table>

SECTION III

Objectives

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Special Considerations for Basic Planning</td>
<td>III-0</td>
</tr>
<tr>
<td>1. Safety Conditions and Gas Chemistry</td>
<td>III-1</td>
</tr>
<tr>
<td>2. Shift Change Communication and Coordination</td>
<td>III-3</td>
</tr>
<tr>
<td>3. Worker Qualifications</td>
<td>III-5</td>
</tr>
</tbody>
</table>
B. Construction Stage #3, Assembly Level Operations III-6

c. Construction Stage #4, Block Level Operations III-8

D. Construction Stage #5, Zone Level Operations III-10

SECTION IV

An SP&C Work Planning Exercise IV-1

SECTION V

Closing Administration V-1

APPENDICES

A. How To Use The Instructor Guide A-1

B. Presentation Methods and Tips to the Instructor B-1

c. Exercise I, Shipyard Planning Organization Review C-1

D. Exercise II, Management Planning Workshop D-1

E. Exercise III.A.1., SP&C Safety Planning E-1

F. Exercise III.A.2., SP&C Shift Change Communication and Coordination F-1

G. Exercise III.A.3., SP&C Worker Qualifications G-1

H. Exercise IIIB., Assembly Level Operations: Work Planning Factor and Elements Identification H-1

I. Exercise III.C., Block Level Operations: Work Planning Factor and Elements Identification I-1

J. Exercise III.D., Zone Level Operations: Work Planning Factor and Elements Identification J-1

K. Exercise IV, SP&C Work Planning K-1

L. H.O. #1, Thirteen SP&C Work Planning Factors L-1

M. Viewgraphs M-1

N. Foreman Work Planning Checklist N-1
SCOPE AND OVERVIEW

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Hours of Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1/2</td>
</tr>
<tr>
<td>SECTION I</td>
<td></td>
</tr>
<tr>
<td>A. Historical Background</td>
<td>1/2</td>
</tr>
<tr>
<td>B. Approach to SP&C Work Planning</td>
<td>1/2</td>
</tr>
<tr>
<td>c. Shipyard Planning Organization</td>
<td>3/4</td>
</tr>
<tr>
<td>D. Thirteen SP&C Work Planning Factors - An Overview</td>
<td>3/4</td>
</tr>
<tr>
<td>E. The Five Stages of Work Planning in the Ship Construction Process</td>
<td>1/2</td>
</tr>
<tr>
<td>SECTION II</td>
<td></td>
</tr>
<tr>
<td>A. Pre-Award Management Planning and SP&C Planning Factor Utilization</td>
<td>3/4</td>
</tr>
<tr>
<td>B. Management Planning Workshop</td>
<td>1</td>
</tr>
<tr>
<td>c. Preconstruction Planning and Operations</td>
<td>3/4</td>
</tr>
<tr>
<td>SECTION III</td>
<td></td>
</tr>
<tr>
<td>A. Special Considerations for Basic Planning</td>
<td>3/4</td>
</tr>
<tr>
<td>1. Safety Conditions and Gas Chemistry (w/exercise)</td>
<td>3/4</td>
</tr>
<tr>
<td>2. Shift Change Communication/Coordination (w/exercise)</td>
<td>1/2</td>
</tr>
<tr>
<td>3. Worker Qualifications (w/exercise)</td>
<td>1/2</td>
</tr>
<tr>
<td>B. Assembly level operations (w/exercise)</td>
<td>1/2</td>
</tr>
<tr>
<td>c. Block level operations (w/exercise)</td>
<td>1/2</td>
</tr>
<tr>
<td>D. Zone level operations (w/exercise)</td>
<td>1/2</td>
</tr>
<tr>
<td>E. Foreman Work Planning Checklist</td>
<td>1</td>
</tr>
<tr>
<td>SECTION IV</td>
<td></td>
</tr>
<tr>
<td>A. An SP&C Work Planning Exercise</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Total Hours 13 1/2</td>
</tr>
<tr>
<td>SECTION V</td>
<td></td>
</tr>
<tr>
<td>A. Closing Administration</td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

1. The purpose of this course is to provide the background information and skills necessary to improve the general ability of SP&C supervisors to effectively plan and schedule near-term surface preparation and coating work on ship construction.

2. A desired second outcome of this course is to increase the shipyard management’s knowledge of the effects of near-term detailed surface preparation and coating planning on overall shipyard production efficiency.

3. A third outcome of this course is to increase the SP&C planner’s knowledge and awareness of the safety implications and practices, and personnel needs necessary to carry through SP&C operations.

4. Lastly, a desired outcome is an improved exchange of SP&C work planning information and ideas between shipyard top management, SP&C supervisors and cognizant craft planners and schedulers.
NOTE TO THE INSTRUCTOR

This Instructor Guide provides the information required to prepare for, instruct and conduct a workshop on Work Planning for Surface Preparation and Coating. You are provided with workshop objectives and topics that must be covered to reach the objectives.

1. Shipyard Instructor’s Qualifications

The instructor is a technically competent and experienced SP&C supervisor, and is knowledgeable in his shipyard’s organization and work planning practices. The instructor will review and understand this training manual and the application of the SP&C work planning factor’s applicable to the five phases of shipyard work planning. The instructor has the ability to conduct the workshop and mediate group discussions aimed at accomplishing the workshop objectives. An effective instructor should possess the interpersonal skills to effect this group discussions process.

2. Shipyard Participants

The workshop participants will include SP&C managers and supervisors, and other planners from shipyard organizations directly involved in the work planning process. The participants will openly contribute their ideas and experiences as related to the discussions. SP&C supervisors will attend the full workshop without interruption. Senior managers attend the first 4 hours and then complete the final 2 hour exercise with the other participants. No advance course preparation is required.

Composition of the Instructor Guide.

The Instructor Guide lesson pages are made in a two column format for instructor use.

Column One consists of:

1. Lesson objectives
2. Topics for discussion or presentation
3. Transition ideas to aid in the flow of instruction.

Column Two consists of:

1. Related instructor activity directing the necessary action for instruction or discussion.
2. Visual aid keys
3. References to the student workbook or other documents.
4. Discussion points
5. Related participant activity required for exercises or discussion.
The Instructor Guide Appendices contain:

1. Instructions on conducting this course
2. Review of presentation methods
3. All exercises

Please familiarize yourself with the lesson pages and sequence of activities prior to conducting the seminar. We recommend that you devote 16 hours to study, rehearsal, and personalization of the course and materials prior to presentation.

The instructional setting and equipments required for the training presentation are as follows:

1. Space. A suitable training room with comfortable chairs, tables, and quiet surroundings.

2. Equipment.
 - Lectern
 - Chalk/White board and Chalk/Dry-Erase markers
 - Easel pads and markers
 - Screen
 - Overhead projector
 - 35mm Slide projector with remote control

3. Participant Supplies
 - 1 Student workbook
 - 1 Paper tablets
 - 1 Pencils
 - 1 Straight edge
DEFINITIONS

SURFACE PREPARATION AND COATING (SP&C): The surface preparation of all materials for a ship and their coating for preservation, appearance, and other functions (e.g., anti-fouling).

NEAR-TERM PLANNING: Generally, the lowest level of planning and scheduling (two week schedule) or to the first level of trades supervision (Foreman).

WORK PLANNING: The means of performing the necessary steps to prepare for and accomplish SP&C tasks, it includes:

1. Determining where, when, and who will perform the work (planning and scheduling)
2. Acquisition of the required materials and equipment to perform the work
3. Scheduling SP&C craftsmen to perform the work
4. Integrating SP&C trades work with work planned for other trades

ASSEMBLY: The second level of construction (the first level is parts fabrication). The joining of two or more component parts to make up a system or an assembly (i.e., deck, sides, and ribs, etc.).

BLOCK: A group of assemblies joined to form an independent section of the vessel (bow, stem, deck house, etc.). Blocks are completed as far as practical (piping, ventilation, electrical, surface preparation and coating) and then joined (or via grand blocks) to form the complete vessel.

GRAND BLOCK: A relatively large block assembly made from 2 or more blocks.

ZONE: An identifiable space or group of spaces of the assembled vessel, providing for work and control purposes.

PLANNERS: Individuals whose primary job function is to plan work accomplishment through equipment, processes, or manpower applications.
SCHEDULERS: Individuals whose primary job function is to schedule work accomplishment through the various planned processes in the most efficient manner.

SP&C SUPERVISORS: Trades foremen and higher supervisors who are responsible for planning and scheduling SP&C work.

SP&C OPERATIONS: Trades performance of surface preparation and coating work tasks, e.g.; blasting, cleaning, painting, etc.

1. Integrated Hull Construction, Outfitting and Painting (IHOP), U.S. Department of Transportation, Maritime Administration, May, 1983.

INTRODUCTION
COURSE INTRODUCTION

<table>
<thead>
<tr>
<th>NARRATIVE</th>
<th>INSTRUCTOR NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Introductory Remarks</td>
<td>Viewgraph #1: Course Title</td>
</tr>
<tr>
<td></td>
<td>Viewgraph #2: Introduction</td>
</tr>
<tr>
<td>B. Course Objectives</td>
<td>Viewgraph #3: Objectives</td>
</tr>
<tr>
<td></td>
<td>Discuss each course objective</td>
</tr>
<tr>
<td>c. Participant Self-introductions</td>
<td>Provide introduction to self & group. Provide the self-introduction sheets to be</td>
</tr>
<tr>
<td></td>
<td>completed by participants.</td>
</tr>
<tr>
<td></td>
<td>Self-introductions 1" each.</td>
</tr>
<tr>
<td></td>
<td>Have participants turn in self-introduction sheets after introduction complete.</td>
</tr>
<tr>
<td>D. Course Scope and Overview</td>
<td>Viewgraph #4: Scope and Overview</td>
</tr>
</tbody>
</table>

Section I

A. Historical Background

B. Approach to SP&C Work Planning

C. Shipyard Planning Organization

D. Thirteen SP&C Work Planning Factors

E. The Five Stages of Work Planning in the Ship Construction Process
Section II

A. Pre-award Management Planning and SP&C Planning Factor Utilization

B. Preconstruction Planning and Operations

Section III

A. Special Considerations for Basic Planning
 1. Safety Conditions and Gas Chemistry
 2. SP&C Shift Change Communication and Coordination
 3. Worker Qualifications

B. Construction Stage #3, Assembly Level Operations

C. Construction Stage #4, Block Level Operations

D. Construction Stage #5, Zone Level Operations
E. Foreman Work Planning Checklist

Section IV

SP&C Work Planning Exercise

F. Conduct of instruction

1. Participant learning activities

2. Methods and media

3. Materials

4. Special requirements

G. Administrative notes

H. Opportunity for questions

I. Summary
WORK PLANNING FOR SHIPYARD SURFACE PREPARATION AND COATING (SP&C)

INTRODUCTION WORKSHEET

Instructions: Please use this worksheet to organize a short self-introduction

NAME:

SHIPYARD DEPARTMENT:

POSITION/TITLE:

LOCATION:

Shipyard planning experience:

<table>
<thead>
<tr>
<th>Experience</th>
<th>Types of planning experience</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific expectations from this Workshop:

Specific Questions you want answered:
OBJECTIVE

The purpose of this section of the course is to provide the background information and skills necessary to improve the general ability of SP&C supervisors to effectively plan and schedule near-term surface preparation and coating work on ship construction.

In order to meet this objective, the following enabling objectives have been formulated to provide guidance.

Enabling Objectives:

1. Given the necessary background information, be able to state and describe the importance of the 13 SP&C work planning factors.

2. Given information on the practical application of SP&C be able to discuss the benefits derived for work planning in SP&C.

3. Given the 13 SP&C work planning factors, be able to associate the appropriate work planning factor(s) with each of the five stages of construction.

4. Given information on SP&C work planning, be able to describe the advantages of long range planning of SP&C work to overall yard efficiency.

5. Given information on SP&C work planning, be able to analyze the impact of shipyard practices on SP&C work planning.
A. Historical background

1. SP&C planning history
 a. Historically, SP&C functions have been the last item on a ship's completion list.

 b. Difficulties existed in effectively managing SP&C work under traditional construction methods. These were:

 - Onboard SP&C work creates safety hazards
 - Inefficiency due to the inherent nature and complexity of the traditional ship construction and repair processes used
 - Pressure for completion of SP&C work, which is planned to be completed just prior to delivery
 - Inefficient use of blast & paint houses - (most controllable SP&C process environments)
 - Too much work planned to be done onboard
 - Not enough finish coats applied under SP&C controlled conditions
 - Significant outfitting work done onboard creates rework:
 - re - prep surface
 - repaint surface

Viewgraph #1: Historical Background

Discuss historical background of topic.
o SP&C operations performed onboard cause less than optimal working conditions for SP&C technicians and others

2. U.S. Shipyards are not competitive because of:
 a. Labor intensive workforces
 b. Low productivity
 c. Antiquated systems and processes
 d. Antiquated industrial equipment & facilities.
 e. Potential for in-process changes and alterations

3. Advent of Hull Block Construction Method:
 a. Japanese lead world in this system
 b. Varying degrees of the Hull Block Construction Method now in U.S. shipyards
 c. Traditional system survives, in whole or in part in the U.S.

4. National Shipbuilding Research Program:
 a. Sponsor of the effort to improve shipyard industry SP&C processes.
 b. Concern that SP&C now represents 10-20% of ship construction cost

Viewgraph #2: U.S. Shipyards Not Competitive
Viewgraph #3: Hull Block Construction Method
Viewgraph #4: National Shipbuilding Research Program
c. Concern that painter’s work still controlled by the design and production methods which are decided by others in the planning process.

d. This training package is a result of that concern.

B. Approach to SP&C Work Planning

1. Hull block construction serves to improve the long-range work planning process for the entire ship construction process.

2. Practical applications of SP&C work planning:

 a. Prepare & paint as early as possible in the ship construction process
 b. Do as much as possible under SP&C controlled conditions
 c. Use blast & paint houses when possible
 d. Apply preconstruction primer as an extension of other fabrication processes
 e. In order to preclude rework, paint final coats only after all other work is done
 f. Minimize hand work when possible
 g. It may be cheaper to move the paint than the item to be painted (cost trade off)
 h. Inspect, before you paint as well as after painting

Viewgraph #5: Approach to SP&C Work Planning

Discuss each principle listed.

These principles were developed by experienced SP&C professionals.

 - highlight controls such as:
 - environments
 - safety
 - schedules
i. Plan the blaster’s and painter’s work in relationship to other trades which are involved in the construction process.

j. The Hull Block Construction approach permits and encourages most outfitting and SP&C work to be accomplished earlier under more efficient conditions:
 - Safer
 - Cleaner
 - Tools & materials delivered to work sites quickly, economically

k. Plan early and adhere to your plan.

3. Benefits derived from this approach:
 - Reduced blast and paint time
 - Minimize onboard work
 - Simplify SP&C planning & scheduling
 - Avoid interference between trades
 - Achieve greater efficiency of handling equipment and material
 - Improve safety
 - Improve working environment
 - Improve productivity
 - Improve quality
 - Minimize rework

Viewgraph #6: Benefits derived
Discuss each benefit.
4. Concluding Note

Successful SP&C work in hull block construction is dependent upon hull construction and outfitting planners as well as painting planners, becoming more aware of each other's function. Through finding ways to coordinate and compromise, a reduction in the overall cost of ship construction will result.

TRANSITION: Introduce shipyard organization exercise.

C. Shipyard Planning Organization

Conduct Shipyard Organization exercises. (See Appendix C, Shipyard Organization Exercise).

D. Thirteen SP&C Work Planning Factors

1. The following 13 factors should be considered when planning and scheduling SP&C work. This list is meant to serve as an aid to supervisors and planners.
 a. This list was developed for the improvement of SP&C work planning in the overall yard planning process

Progress check:

1. What difficulties have historically existed in managing SP&C work effectively under traditional construction methods?
2. Why have U.S. shipbuilders not been competitive?
3. How does hull block construction serve to improve the long-range work planning process?
4. State the eleven practical applications of work planning for SP&C.
5. What are the benefits derived from the practical applications of work planning for SP&C

Suggestions for Further Reading:

Viewgraph #7: Shipyard Organization

Viewgraph #8; 13 Work Planning Factors

State each factor.

Developed by SP&C professionals

Viewgraph #9: Physical Description
b. Factor #1. Physical Description (of the item to be painted):
 - Size
 - Shape
 - Openings
 - Appurtenances
 - Materials types
 - Materials conditions

C. Factor #2. Location (Where work is to be performed)
 - Off-yard
 - In-yard
 - On-Ship
 - External
 - Interior

Viewgraph #10: Location
Discuss these options

d. (Factor) #3. Support
 - Handling
 - Transporting
 - Utility services
 - Ventilation
 - Staging
 - Temporary protection
 - Cleanup
 - Chemist
 - Gas tester
 - Safety

Viewgraph #11: Support
Discuss this factor
Typical elements of support which vary from shipyard to shipyard.

Discuss this factor
These factors determine the SP&C options open to the planner.
<table>
<thead>
<tr>
<th>NARRATIVE</th>
<th>INSTRUCTOR NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>o Lab Services</td>
<td>Viewgraph #12: Specifications</td>
</tr>
<tr>
<td>o Vendor representatives</td>
<td></td>
</tr>
<tr>
<td>- paint supplier</td>
<td></td>
</tr>
<tr>
<td>- equipment supplier</td>
<td></td>
</tr>
<tr>
<td>e. Factor #4. SP&C Specifications</td>
<td>Discuss this factor</td>
</tr>
<tr>
<td>o Film thickness</td>
<td>Limiting factor on process options.</td>
</tr>
<tr>
<td>o Drying/curing</td>
<td></td>
</tr>
<tr>
<td>o Inspection</td>
<td></td>
</tr>
<tr>
<td>o Coating objectives</td>
<td></td>
</tr>
<tr>
<td>o Sources of specifications or SP&C instructions</td>
<td></td>
</tr>
<tr>
<td>o Type of coating required and coating identification</td>
<td></td>
</tr>
<tr>
<td>o Method of application</td>
<td></td>
</tr>
<tr>
<td>o Number of coats</td>
<td></td>
</tr>
<tr>
<td>o Surface preparation</td>
<td></td>
</tr>
<tr>
<td>f. Factor #5. Time/Manpower</td>
<td>Viewgraph #13: Time/Manpower</td>
</tr>
<tr>
<td>o Manpower planning</td>
<td>Discuss this factor</td>
</tr>
<tr>
<td>o Allotted Time Per schedule</td>
<td></td>
</tr>
<tr>
<td>o Available manpower</td>
<td></td>
</tr>
<tr>
<td>o Space restrictions</td>
<td></td>
</tr>
<tr>
<td>o Labor skills level</td>
<td></td>
</tr>
<tr>
<td>o SP&C operators estimated time and labor to complete</td>
<td></td>
</tr>
<tr>
<td>o Schedule time vs. estimated time</td>
<td></td>
</tr>
<tr>
<td>NARRATIVE</td>
<td>INSTRUCTOR NOTES</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>g. Factor #6. Minimizing SP&C Rework</td>
<td>Viewgraph #14: Minimizing Rework</td>
</tr>
<tr>
<td>o When to apply primer</td>
<td>Discuss this factor in terms of component size and system.</td>
</tr>
<tr>
<td>o When to apply intermediate coat</td>
<td></td>
</tr>
<tr>
<td>o When to apply final coats</td>
<td></td>
</tr>
<tr>
<td>h. Factor #7. Material</td>
<td>Viewgraph #15: Material</td>
</tr>
<tr>
<td>o Materials for surface prep</td>
<td>Discuss this factor in terms of both the surfaces to be coated and the SP&C coating resources. Refer to Section 3.8.</td>
</tr>
<tr>
<td>o Materials for painting or coating</td>
<td></td>
</tr>
<tr>
<td>o Material safety</td>
<td></td>
</tr>
<tr>
<td>i. Factor #8. SP&C Equipment</td>
<td>Viewgraph #16: Equipment</td>
</tr>
<tr>
<td>o Support operations</td>
<td>Discuss this factor in terms of its implications to SP&C work locations, handling and storage, safety and rework.</td>
</tr>
<tr>
<td>- forklift</td>
<td></td>
</tr>
<tr>
<td>- air compressors</td>
<td></td>
</tr>
<tr>
<td>o Cleaning</td>
<td></td>
</tr>
<tr>
<td>- abrasive blast equipment</td>
<td></td>
</tr>
<tr>
<td>- pneumatic/centrifugal vacuum cleaners</td>
<td></td>
</tr>
<tr>
<td>o Coating</td>
<td></td>
</tr>
<tr>
<td>- sprayers</td>
<td></td>
</tr>
<tr>
<td>- brush/roll (power/manual)</td>
<td></td>
</tr>
<tr>
<td>j. Factor #9. Handling and Storage</td>
<td>Viewgraph #17: Handling and Storage</td>
</tr>
<tr>
<td>o Handling units to be Processed</td>
<td>Discuss this factor</td>
</tr>
<tr>
<td>o Routing and Scheduling</td>
<td></td>
</tr>
<tr>
<td>o Storage</td>
<td></td>
</tr>
<tr>
<td>NARRATIVE</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>k. Factor #10. Inspection</td>
<td></td>
</tr>
<tr>
<td>o Routine inspection requirements</td>
<td></td>
</tr>
<tr>
<td>o Specifications inspection requirements</td>
<td></td>
</tr>
<tr>
<td>o Foreman’s inspections</td>
<td></td>
</tr>
<tr>
<td>l. Factor #11. Disruption/Interference</td>
<td></td>
</tr>
<tr>
<td>o Generated by SP&C</td>
<td></td>
</tr>
<tr>
<td>o Generated by other trades</td>
<td></td>
</tr>
<tr>
<td>o SP&C blast operations</td>
<td></td>
</tr>
<tr>
<td>o SP&C coating operations</td>
<td></td>
</tr>
<tr>
<td>o SP&C curing (drying time)</td>
<td></td>
</tr>
<tr>
<td>m. Factor #12. Safety</td>
<td></td>
</tr>
<tr>
<td>o What is involved</td>
<td></td>
</tr>
<tr>
<td>o Who is involved</td>
<td></td>
</tr>
<tr>
<td>o SP&C Hazards</td>
<td></td>
</tr>
<tr>
<td>- dust</td>
<td></td>
</tr>
<tr>
<td>- flying particles</td>
<td></td>
</tr>
<tr>
<td>- high Pressure</td>
<td></td>
</tr>
<tr>
<td>- fire</td>
<td></td>
</tr>
<tr>
<td>- fumes</td>
<td></td>
</tr>
<tr>
<td>- falls</td>
<td></td>
</tr>
<tr>
<td>- chemicals</td>
<td></td>
</tr>
<tr>
<td>n. Factor #13. Schedules</td>
<td></td>
</tr>
<tr>
<td>o Contract schedule</td>
<td></td>
</tr>
<tr>
<td>o Master schedule</td>
<td></td>
</tr>
<tr>
<td>o Main Events schedule</td>
<td></td>
</tr>
<tr>
<td>o Shop manufacturing schedule</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSTRUCTOR NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewgraph #18: Inspection</td>
</tr>
<tr>
<td>Discuss this factor</td>
</tr>
<tr>
<td>Viewgraph #19: Disruption/Interference</td>
</tr>
<tr>
<td>Discuss this factor</td>
</tr>
<tr>
<td>Viewgraph #20: Safety</td>
</tr>
<tr>
<td>Discuss this factor</td>
</tr>
<tr>
<td>Viewgraph #21: Schedules</td>
</tr>
<tr>
<td>Discuss this factor</td>
</tr>
</tbody>
</table>
0 Module blast /coat schedule
0 Hull erection schedule
0 Launching schedule
0 Docking schedule
0 Outfitting schedule
0 Trials schedule
0 Delivery schedule

- Most important but least significant amount of work

2. See Appendix L, 13 SP&C Work Planning Factors (H.O. #1)

E. The five stages of work planning in the ship construction process.

1. The following describes the five stages of ship construction related to work planning.
 a. This list is intended to serve as an aid to planners and supervisors.
 b. CONSTRUCTION STAGE #1: PRE-AWARD MANAGEMENT PLANNING
 o The objective is to develop the overall plan and cost of the potential construction job

Progress Check:

1. State and discuss the 13 work planning factors for SP&C planning and scheduling.
 Viewgraph #22: 5 stages of construction
 Discuss the five stages
 Personalize this section to reflect appropriate terminology as used in this yard.
 Viewgraph #23: Management Planning
 Discuss this construction stage
Design planning is:
- developing a bid work plan
- determining specifications
- developing the cost
- determining the methods for construction
- make/buy decisions

> Initiated by opportunity to bid (RFP)
- new ship construction
- repair package

Results in:
- cost-effective competitive bid
- hull erection plan providing known efficiency opportunity parameters
- work plan to follow when contract awarded

Viewgraph #24: Pre-construction Planning & Operations
Discuss this stage of the process.
o Results:
- work packages
- schedules detailed
- manpower planning
- material ordering & receipt
- raw materials preparation, coating, and storing
 accurate/appropriate SP&C specifications
- optimum integration of trades and schedules to minimize interference requirements
- yard ready to operate
- shop processing of raw materials
work commenced on schedule

d. CONSTRUCTION STAGE #3:
ASSEMBLY LEVEL OPERATIONS

- The objective is to issue work orders, and the initiation of actual work including fabrication, joining, assembly of parts and modules

- Initiated by work packages and short term schedules

- Includes:
 - off-ship environment
 - yard/shop joining fabricated parts
 - joining parts assemblies into subassemblies meeting short-term schedules
 - least handling
 - larger surfaces use cost-effective blast/paint houses easier access
 - most down-hand painting
Results:
- SP&C Assemblies ready for block level surfaces protected to intermediate holding levels some final materials coating
- feedback to top mgt. on meeting production rates and schedules

e. CONSTRUCTION STAGE #4: BLOCK LEVEL OPERATIONS

The objective is to begin the outfitting process on the keel block.

Initiated by: work packages and short term schedules

Includes:
- off-ship environment
- yard/shop fabrication
- joining assemblies onto blocks
- less easy access to SP&C work
- more disruption/interference
- more safety and equipt. concerns by supervision
- less down-hand work
- greater coordination between craft planners

Results:
- greater percentage final outfitting and painting in this stage
- greater potential for rework
- feedback to top management on production rate and schedule performance
f. CONSTRUCTION STAGE #5: ZONE LEVEL OPERATIONS

- The objective is to complete outfitting of the ship after all blocks of the ship are completed.

- Initiated by: work packages and short term schedules

- Includes:
 - on-ship SP&C environment
 - maximum disruption/interference
 - maximum space preparation/cleanup
 - maximum safety requirements
 - maximum equipment handling manually
 - maximum restricted access
 - maximum coordination
 - final coats
 - touch up (cosmetics)
 - testing
 - inspecting
 - bottom wet
 - trial schedules
 - most rework intensive
 - most costly SP&C work.

- Results:
 - ship ready for trials
 - ship ready for delivery
 - ship delivery area ready.
To this point we have discussed our industry’s condition - its progress from traditional ship construction methods to the more sophisticated hull block construction method. We discussed the practical applications that we can employ in our planning and operations. We also discussed the 13 SP&C work planning factors and the five stages of ship construction.

Suggestions for further reading:

Integrated Hull Construction Outfitting and Painting (IHOP), National Shipbuilding and Research Program, 1983.
Section II
SECTION II

OBJECTIVE

The purpose of this section is to increase the shipyard management’s knowledge of the effects of near-term detailed surface preparation and coating planning on overall shipyard production efficiency.

In order to meet this objective, the following enabling objectives have been formulated to provide guidance.

Enabling Objectives:

1. Given information about planning factors, be able to discuss and describe the SP&C off-ship and shipboard work schedule and production impacts related to management planning.

2. Given inputs on work planning factor information about manpower and schedules describe and discuss how SP&C planning will minimize rework requirements.

3. Given information about preconstruction planning and operations be able to describe and discuss the overall impacts of applicable work planning factors to preconstruction and planning operations.
SECTION II

A. Pre-award Management Planning and SP&C Planning Factor Utilization

1. Introduction

 a. In this stage we will assume that this yard is bidding competitively for new work. We will either have customer provided plans and specifications or we may have to do all or some of the design engineering in-house. Regardless of the method, the planning process for our yard and SP&C function begins right here.

 b. Pre-award Management Planning Elements:

 o Purpose. Prepare competitive bid for:

 new ship construction

 alteration or repair project

 o Characteristics:

 optimum design within yard constraints

 o Inputs:

 client specifications - statement of work

 - design team inputs (Departments i.e. SP&C)

 - Yard capabilities

1. Most appropriate work planning factors are cited here

Viewgraph #1: Management Planning

Discuss the four elements of design planning
o Outputs:
 - lowest bid price
 - efficient ship design plan meeting specifications
 - hull erection plan that is workable at bid price

e. We must recognize that SP&C is not the only operation to be considered in identifying efficiency which will help keep yard costs down. Every department represented on the planning team will be offering its optimum cost-saving conditions. This means choices - decisions by top managers - which will result in the yard's optimum efficiencies in the design and resulting bid and workplan.

Given the final design concept the hull erection plan is evolved and drives all that occurs once the bid is won.

2. SP&C Work Planning Factors Application to Pre-award Management Planning. It is important to develop a design plan which optimizes each of the applicable work planning factors. This may produce economies for the overall hull erection plan. Considerations are:

a. Factor #1: Physical Description

 o In-yard. For materials fabricated in the yard, SP&C design planning inputs will consider the type of materials, (composition and purpose), the construction stages and the size, shape, weight, openings and appurtenances at each construction stage, and the client's SP&C specifications. SP&C considers ways to:
 - put primer coat on small pieces/plates/ beams/brackets/foundations/pipe handlers/nuts/bolts/washers/doors/hatches, etc, for off-Ship SP&C work
- put intermediate coat(s) on intermediate size pieces sub-assemblies, modules, etc.

- put final coats on large pre-erection subassemblies and auxiliary items such as masts/king posts/smoke stacks/elevators

0 On-Ship. SP&C considers ways to:

- Put final coats on per compartment completion schedule

b. Factor #4 Specifications. Working specifications are derived from the client’s detailed specifications. If the designer considers and incorporates the optimum SP&C efficiencies based on the specifications, cost-saving will be built right into the design and the price bid.

o SP&C professionals can recommend the most efficient painting materials and methods to be planned based upon the given client specifications for finished work. Efficient SP&C can come from exploring alternatives:

the number of coatings and number of applications which can provide accelerated curing environments in blast paint houses
- heat, ventilation, humidity are controlled
- thicknesses of film.

Too thick is worse than too thin because it consumes excess material and generates re-work thus using mere labor, resulting in higher costs overall

Viewgraph #3: Applicable Work Planning Factors

Discuss these work planning factors

Uncover each WPF in sequence
- specification reviews by qualified SP&C personnel required in work planning process to look for improvements which use a three coat system where permissible on most off-ship work
- when to use airless spray coating as the prime equipment supported by atomizing spray; brush/roller touch up work

 o These alternatives provide for:
 - flexibility to job
 - potential for reduced rework
 - overall lower cost and better quality

c. Factor #5: Time/Manpower. Time and manpower are important concerns of SP&C planners and schedulers.

 o SP&C Planners will estimate time to perform work based on a number of factors:
 - availability of manpower
 - labor skills level
 - methods and materials

 o If the manpower is available in the desired skill levels and numbers, SP&C planners and schedulers will be able to:
 - accurately plan the anticipated work
 - maintain schedule when performing
 - have efficient SP&C gangs
 - always have one or more backup people trained or in training for each spot on the team. An ideal gang would be composed of:
 35% long-time reliables
 35% experienced mechanics
 30% new people in training

 o Schedule time vs estimated time in design plan development. Optimum planning requires accurate time estimates of the time it takes to complete SP&C tasks.
scheduled time. is generally a broader target or guide established at early planning levels. Estimated time is short-term a detail time estimate that needs to be as accurate as possible. In order for scheduled times to be properly designed, the planner should consult with SP&C planners for the latest time data for the specifications being required. Good planning will come from tracking estimated job time and labor against the actual time and labor needed to complete tasks. Work package schedules should be made available to and/or discussed with long-term planners, schedulers, and estimators.

d. Factor #6 Minimizing Rework. The painting methods, locations, and materials decided upon in the design planning stages will do much to minimize rework in future operations. Selection of the options for paint applications should be done here:

- When to apply primer
- When to apply intermediate coat
- When to apply final coat(s)

Efficiencies realized depend on the SP&C opportunities which can be written into the design plan so that SP&C planners can:

- accomplish as much off-ship SP&C as permissible and practical within the specification and system constraints
- plan each step of SP&C as close as permissible and practical to the completion of other trades work, especially fitting, cutting, welding, straightening, piping, wiring, etc.
- use light colored primer and intermediate coats, where the system permits, to highlight and help correct unfinished structural/outfitting spaces prior to application of the final coat; and to improve illumination in construction areas and spaces when "quality" and/or "coating integrity" is the priority consideration then and only then should on-ship SP&C operations be considered as best choice for the bulk of SP&C work. (This eliminates patching in of make-up seams, joints, etc., permits full continuously covered coats of primer, intermediate and final painting

e. Factor #7: Material. Beyond Construction stages #1 and #2, in which SP&C materials selection and inventories get locked in, SP&C personnel have limited options to decide on the use of cleaning or coating materials.

- The most efficient and effective methods should be planned **now** - make choices now
- We are speaking of these kind of materials
- Material for surface preparation part of SP&C:

Highlight as "The Parker Technique

(e.g. Inside fresh water tanks and/or other long-term corrosion resistant, inaccessible spots)
widely used for blasting recyclable facilities
- abrasive Steel Shot
- abrasive Steel Grit
- white sand (expendable and used onboard)
- inexpensive
- use for blasting
- substances for blasting & hand cleaning
- disposal of toxiics problem

Material for painting or coating part of SP&C:

- alkyd resin paints (traditional low-cost)
- vinyl resin paints (highly flammable and hazardous)

To minimize the cost of SP&C materials, SP&C may recommend inventory levels and commodities to meet specifications in design planning stage based on:

- specifications required
- known/estimated performance of materials on types of surfaces peculiar to the specifications under environmental conditions allowed under the design plan and consistent with yard manufacturing & storage practices and capabilities/resources

Factor #8 Equipment. SP&C recommendations will set forth appropriate equipment in optimum SP&C environments in accordance with a hull erection plan. The equipment should be consistent with the materials selected:
o Equipment and trained operators for general support operations:

- fork lift
- front end loaders
- conveyors
- grit-hoppers
- air compressors
- air dryers
- de-humidifiers
- manlifters
- aux - heaters

o Equipment and trained operators for cleaning surfaces:

- abrasive blast equipment
 (automatic/manual)
- fixed/portable equipment
- pneumatic/centrifugal types
- vacu/veyors/vacuum cleaners

o Equipment and trained operators for coating surfaces:

- spray paint (air/airless/
electrostatic/combination)
- brush/roll (power or manual)
- dip or flow coating

o Effective use of the right equipment and consequently, lower bid pricing, can result from the following SP&C equipment-related practices:

 - minimize start/stop operations
 - minimize set up time
 - minimize repair/breakdown thru effective preventive maintenance plan
 - equipment utilization
 - maintain equipment inventory

o Maximize use of equipment appropriate to the work and the work environment:

 Give examples of how these are used.
- Portable air compressors generally provide cleaner and higher pressure air for blasting. Thus, they reduce elapsed time, reduce labor time, and reduce blasting material consumed per unit of work output. Centrifugal abrasive wheels will predominate in small blast machines and small blast grit recycling rooms. Manually operated blast nozzles with expendable abrasives (non-recycling) usually prevail for off-ship exterior work and all on-ship blasting work. A combination of airless spray and atomizing spray equipment is the best overall painting equipment; supported by roller/brush, etc.

- Insist on spray operators using "wet film" thickness gages. Put on the desired thickness at one time without excess and without rework.

g. Factor #9: Handling and Storage off-ship. A well-planned design will minimize the off-ship handling and storage tasks and minimize repeat handling and consequent SP&C rework tasks.

 o SP&C design planning inputs would consider costs based on optimum handling and storage afforded by yard/shop constraints, i.e.:

 - Maximum in-shop handling by SP&C personnel
 - Minimum lifts to items where SP&C is complete

 o Maximum economies can come from appropriate storage of appropriately preserved/coated pieces.
o Storage constraints must be considered:

- certain coating systems may not be suspended for storage or other reasons at the primer or intermediate coat level, but must be continued thru final coat application within time constraints.
- length of time in storage should be considered to avoid rust and corrosion of uncoated units and to avoid deterioration of partly coated units
- units should be protected against surface film contamination during storage or be thoroughly cleaned at end of storage or before additional re-coating
- store units or pieces inside where practical
 store in position that allows runoff of water, or drill drain holes if runoff can't be relied on
- store away from salt water flooding or salt water spray or mist

h. Factor #10: Inspection. The inspections relating to SP&C work tasks go beyond the foreman or quarterman checking to see if the surface is clean enough to paint or if the paint is dry.

o The number and type of SP&C inspections are derived from several sources:

- contract specifications
- design plan
- yard manufacturing capabilities
- QA plan
- QC plan
- SP&C practices
- operational rework
- coating material & data sheets
- environmental conditions
SP&C planners are able to provide Design Plan inputs that interpret contract SP&C specs, constraints of yard manufacturing capabilities, and practices against specific SP&C tasks. The result is a lower bid price based on:

- cost effective SP&C formal/informal inspection mix
- cost effective QA Plan
- cost effective QC Plan
- close schedule maintenance

SP&C inspection economies are gained by:

- in-process inspection by experienced inspectors
- keeping formal inspections to the minimum. These disrupt work and serve no purpose (unless mandatory)
- the most effective inspection system is composed of in-process monitoring that includes wet mil thickness reading and dry mil readings after each coat, followed by one thorough final inspection of each unit/area/tank/compartment etc., on the completion of major coating work

i. Factor #13: Schedules. There are many different schedules to develop and consider throughout the ship construction project. We can point out where SP&C inputs are critical to design planning.

- Delivery Schedule:
 - cosmetics (dress up)
 - least significant of all for SP&C yet most important in the yard.
o Trial Trip:

- SP&C operations generally complete
 smooth underwater hull (re: ship’s speed and performance)
- SP&C short term schedule
- visual quality of compartments & spaces impact customer satisfaction

o It would seem that the SP&C supervisor would have little input to these two schedules in the management planning stage, but that’s not factual. The SP&C input is in:

- QA Plan Customer Satisfaction
- QC Plan
- material factor (coating) meeting specifications
- time for underwater hull work

o The docking schedule and the launching schedule are critical to certain on-ship work:

- exterior hull
- underwater hull
- underwater SP&C operations may be decided by specifications, management, or project level. Final economics is a function of proposed system and how long between launch and delivery

o The following schedules form the core that drive most of SP&C work. It is easily seen that SP&C planning concerns related to these schedules should find their way into the Design Plan:

- 60% of all SP&C coating should be completed prior to erection and 90+% of all blasting for SP&C should be complete
- the Design Plan must ensure this
- SP&C Design Plan inputs will help
Consider the Outfitting Schedule. One of its primary functions is the compartment completion schedule, which does the following:

- targets number of compartments to be completed per week or month and on certain Navy work targets the compartments/spaces that are turned over to the ship’s crew for living and operational purposes instrumental in SP&C supervisors estimating number of workers required to comply with scheduled number of compartments SP&C Time/Manpower inputs are clearly affected here

The relationships between the Core Five and the last four (Docking, Launching, Trials, and Delivery) schedules to the Main Events schedules sequencing and thus the Design Plan are self-evident. The timeline is key, and it cannot be estimated accurately for bid pricing unless SP&C inputs and those of the other trades are considered and balanced in a cost-effective Design Plan

Progress check:

1. State the four elements for pre-award management planning

2. Discuss in-yard and on-ship planning considerations for SP&C

3. Discuss the SP&C work planning elements and their relationship to design planning.
NARRATIVE

SUMMARY

- Importance of building SP&C into the Design Plan early
- Efficiency aspects of SP&C factors compliment the Hull Block Construction method

TRANSITION

- Introduce Management Planning Exercise. See Appendix D.

MANAGEMENT PLANNING WORKSHOP

a. Introduction. The goal of management planning is to develop a ship construction or repair management design which incorporates all known and achievable yard efficiencies to meet client specifications at most competitive prices.

 - Achieving the goal requires that design planners:
 - identify and consider all available shipyard efficiencies
 - identify all information and recommendation inputs required

b. Conduct the exercise (See Appendix D, Management Planning Exercise)

c. Opportunity for Questions

d. Summary

INSTRUCTOR NOTES

- Suggestions for further reading:
 - Paint and Surface Preparation, National Shipbuilding Research Program, 1979.

- Viewgraph #5: Management Planning Workshop

- Summarize main points where SP&C recommendations and information inputs can support development of price competitive ship construction or repair Design Plans.
IDEAS FOR TRANSITION:

- Positive reinforcement on inputs re: above
- Remind trainees to complete their planning aids from the chartpak sheets.
- At this time foremen only need to remain. Senior managers will report back to participate in the Section IV planning exercise, summary and closeout activities.
- Identify next topic/exercise
- Provide break if appropriate
3. Preconstruction Planning and Operations

Introduction

a. In this stage, we are going to consider that our yard has won the competitive bid for ship construction. We now must execute a new ship construction project within the price and schedule proposed.

b. Preconstruction Planning is:
 o Planning material processes
 o Issuing purchase orders and contracts
 o Planning material receipts, processing and storage
 o Developing detailed work schedules
 o Developing shop load plans
 o Writing work packages
 o Converting the design plan to a work plan
 o Determining module sizes
 o Developing work process flow paths

c. Preconstruction Operations are:
 o Material preservation upon receipt
 o Raw material processing
 o Material cutting, shaping, bending
 o Subassembly manufacture
2. SP&C planning factors are directed toward:

a. Influencing the preconstruction planning process and operations to make SP&C work that follows the most efficient as it is translated into:

 - Detailed work schedules
 - Material and equipment requirements consistent with the bid specifications
 - The cost of operations based upon the bid price.

b. Once the Design Plan has been translated to detailed work packages and fixed schedules, the SP&C planner has very little influence over his efficiency or destiny on the project. His work is now driven by what others produce for him to paint.

c. The most effective operations will be built from this process integrating the SP&C planner into the detailed yard planning process with other craft planners

SP&C work planning factor application to preconstruction planning and operations.

a. Factor #1: Physical Description

 - Plan work packages and Schedules for:
 - size items for in-shop SP&C
 - minimizing in-yard open work on items with many openings
 - minimizing number of item appurtenances
 - minimizing degree of SP&C difficulty
Preconstruction operations for off-ship work:

- put primer coat on small pieces/plates/beams/brackets/foundations/pipe hangers/nuts/bolts/washers/doors/hatches
- put intermediate coat(s) on intermediate size subassemblies, modules, and pieces
- put final coats on large pre-erection subassemblies and auxiliary items such as masts/king posts/smokestacks/elevators/lifts
- preconstruction primer application should include planned facilities for blasting/coating and quick curing of primer applied to steel on receipt at the shipyard

b. Factor #2: Location of Work

- Plan work packages and schedules for off-yard vendor supplied items

 - planners should have these routed on arrival to provide for in-house SP&C. These items must be receipt inspected and SP&C processed as required
 - require vendor structural items to be primer coated prior to delivery as much as possible
- as much as practical require vendor outfitting items to be finished coated prior to delivery.

 o Plan work packages and schedules for in yard-work:
 - plan least number of handlings

 o Planners and SP&C personnel should collaborate on breakout size of units for most efficient SP&C work:
 - where to SP&C primer
 - where to SP&C intermediate
 - where to SP&C final
 - minimize travel to work in-yard location

 o Preconstruction operations
 - make use of in-shop capabilities

 o Blast and paint house

 o Prepare and paint after fabrication operations

 o Paint to' highest level possible while you are painting

c. Factor #3: Support

 o Plan work packages and schedules for:
 - minimizing support functions
 - maximizing use of SP&C capabilities
- insuring all SP&C support requirements are calculated in the work plans to preclude a problem from SP&C supervisors short-term schedule

- Preconstruction operations support considerations:
 - handling
 - transporting
 - utilities
 - temporary protection
 - cleanup
 - blast and coat houses generally include provisions for transporting subassemblies or modules throughout the fabrication and SP&C processes

- Factor #4: SP&C Specifications
 - Plan work packages and schedules for adherence to specifications as bid:
 - detail surface prep as bid
 - methods
 - inspection
 - follow on with proper coating
 - detail paint processes as bid
 - number of coats
 - method of application
 - film thickness
 - Preconstruction operations:
 - maximize controlled SP&C conditions to maintain specification and quality

- Factor #5: Time and Manpower
 - Plan work packages and Schedules for:
 - overall SP&C manpower requirements
 - determining skill levels mix
adherence to labor production rates bid on the job (or to better them)
- identify needs for training on new equipment or processes
 Schedule with manpower acquisition
- planners and operators must recognize that some short-term sacrifices must occasionally be made in time and manpower to support the team objective of overall shortest time and lowest manpower. These are management decisions and line supervisors/planners should not feel guilty at resulting higher cost

o Preconstruction operations:
 - plan crews for continuous and efficient in-shop operations
 the compatibility of scheduled time and estimated time is a measure of the total team experience and ability in many situations.
 this compatibility plus a recognized system of SP&C work in any given shipyard will do much to improve production and reduce costs

f. Factor #6: Minimizing Rework
 o Plan work packages and schedules for:
 performing as much work off-ship as possible
 painting to highest level of spec as possible at the earliest stage
 the planner’s job is to make efficient use of these facilities at all levels or points of SP&C planning.
- staging to avoid blocking other work
- plan each step of SP&C as close as permissible and practical to the completion of other trades' work, especially fitting, chipping, cutting, welding, straightening, piping, wiring, etc.
- monitor the status of other trades' work; see for yourself that other trades' work is ready for SP&C coating at the intermediate or final coat level

o Preconstruction operations:

- inspect work to be done before painting to insure other trades have finished their work, i.e. welders and fitters
- minimize handling and its associated damage to preserved and coated items

g. Factor #7: Material

o Plan material requirements and specifications to incorporate:

- proper SP&C specs for vendor provided items to match the SP&C specs done in the yard so material is compatible
- establish vendor paint delivery and service agreements for paint department-support to minimize paint inventory
- establish paint shop operating materials and equipment maintenance schedules
- work with procurement to insure vendor specifications are correct
establish level of material preservation for materials to be received
- plan processes for material preservation upon receipt for yard storage or processing

- Preconstruction operations:
 - check shelf-life dates
 - examine product data and safety sheets
 - try to establish production line type operations fully using blast and paint house, automated angle and sheet steel cleaning and coating equipment

h. Factor #8 Equipment

- Plan work packages and schedules for:
 - using equipment as bid
 - maximize use of automatic and latest technology to meet bid specification
 - planners match the processes and equipment to optimize work plans and schedules

- Preconstruction operations:
 - maximize in-shop work and automatic equipment
 - install paint equipment in other shop areas to minimize material and equipment handling

i. Factor #9: Handling and Storage

- Plan work packages and schedules for:
 - heavy lifts to be planned by experienced yard planners
coordinate SP&C planning around heavy lift (assembly or block lift) to assure final prep and inspection before movement
- integrate handling and storage of all items in yard with respect to SP&C concerns

o Preconstruction operations:

SP&C plan for handling and storage in and around SP&C spaces with SP&C personnel
- provide protection for items completed in pre-construction operations to preserve material condition

j. Factor #10: Inspection

o Plan work packages and schedules for:

 establish good inspection practices this stage (to spec & coating obj’s)
 - in-process inspection is the preferred inspection technique for all means and methods of SP&C operations
 - depend on in-process inspections by experienced inspectors (You or your counterparts). Keep formal inspections to the minimum - these disrupt work and serve no purpose (unless mandatory)
 specification review by qualified SP&C personnel required in work planning process the SP&C coating objective impacts when/where/how coatings are applied and must be considered in long- and short-term planning in relation to the SP&C system and to the service function of the paint/coating.
Preconstruction operations:

- inspect material received for meeting its SP&C spec
- inspect after processing
- material for storage or assembly operations
- establish inspection points in the shops or process lines as required

k. Factor #11: Disruption/Interference

- Plan work packages and schedules to:
 - minimize craft interference in the construction process (this is the best opportunity to integrate SP&C planning with other trades)

Preconstruction operations:

- generally, minimal trade interference at this level. Maximize trade productivity

1. Factor #13: Schedules

- Plan work packages and schedules for:
 - overall yard efficiency
 - module blast/coat schedule

short-term composite schedule made up by SP&C personnel to show SP&C loading and work flow from fabrication areas to erection time

points up the need for a SP&C team coordinator to make this a more efficient process in all shipyards
- shop manufacturing schedule
details items/units/components/subassemblies built in shops or on exterior building plattens, skids/areas
targets subassemblies to the blast/coat house or provides a means for SP&C operators to estimate when units are ready for SP&C processes

o Preconstruction operations:
 - follow schedules established in work plan to keep other trades on schedule

Progress check:

1. List and discuss the elements of preconstruction planning.

2. List and discuss the elements of preconstruction operations.

3. Describe the SP&C work planning factors as applied to preconstruction planning and operations.
Section III
SECTION III

OBJECTIVE

The purpose of this section of the course is to enable participants to discuss and describe the safety implications and practices and personnel needs necessary to carry through SP&C operations.

To accomplish this objective the following enabling objectives have been formulated.

Enabling Objectives

1. Be able to discuss and describe SP&C safety implications including gas chemistry.

2. Be able to discuss and describe SP&C shift change communication and coordination considerations.

3. Be able to discuss and describe the implications of worker qualifications to SP&C work planning.

4. Be able to discuss the planning factors involved in assembly level operations.

5. Be able to discuss the planning factors involved in block level operations.

6. Be able to discuss the planning factors involved in zone level operations.
SECTION 111

A. Special Considerations for Basic Planning

1. Safety conditions and gas chemistry
 a. Personnel health and welfare
 b. Overall production costs
 c. Work time loss
 d. Government regulations
 e. Unsafe Operations result in:
 o Injury
 o Delay of work
 o Liability
 o Loss of work
 o Claims against the yard
 - worker injury
 - non-performance of contract
 o Bad yard reputation in the industry
 f. Safety becomes more critical as the complexity of SP&C work increases with each construction stage
 o safety planning is required for each construction stage
 o safety planning (and supervision) responsibilities are involved at every construction stage

Viewgraph #1: Three Special Considerations for Basic Planning:

Safety conditions and gas chemistry for Basic Planning

Lecture on major topics and facts.
g. Responsibility
 o Foremen
 o Planners
 o Safety Engineers
 o Managers

h. The safety aspects of gas chemistry become more critical as the complexity of SP&C work increases. When SP&C work is being done on-ship and interior, it is the most critical environment for gas chemistry applications. Planning for gas chemistry support occurs at every level.

i. Conduct the exercise (See Appendix E, SP&C Safety Planning Exercise)

j. Opportunity for Questions

k. Summary

 Summarize main points where SP&C efficiencies may be realized.

l. Transition
Special Considerations for Basic Planning

2. **Shift Change Communication and Coordination**

 a. An important part of SP&C planning efficiency is the exchange of information between SP&C crews at the change of shift. Coordination must occur between SP&C foremen and foremen of other trades, and between off-going foremen and other key persons, both internal and external to the yard.

 b. The goal of effective shift change communication and coordination planning is to minimize loss of SP&C productivity.

 To attain this goal, the following objectives must result from near term planning:

 - Total project team coordination
 - People on time
 - Material in place at the right place
 - Proper specifications/work plan crew size
 - Contingency plan for change in conditions
 - Support arrangements (prior planning)
 - Proper equipment
 - Other trade interface (prior planning)
 - Inspection (overlapping)
c. The greatest demand for SP&C shift change communication and coordination is most often found in zone level construction stage:

- Heaviest volume of shift change information to be communicated
- Accuracy of information is important
- Heaviest volume of shift change coordination
- Heaviest demand on SP&C planners & supervisors
- Most frequent requirement for additional SP&C shifts

d. Demand for SP&C shift change communication and coordination is usually less in construction stages 4, 3, and 23 (operations), and nonexistent in stages 2A, & 1.

e. Conduct the exercise (See Appendix F, Shift Change Communication and Coordination Exercise)

f. Opportunity for Questions

g. Summary

Summarize main points where SP&C efficiencies may be realized

h. Transition
A. Special Considerations for Basic Planning

3. Worker Qualifications
 a. Worker qualifications impact SP&C efficiency in several ways:
 o Production rate
 o Inspection Quality
 o Training
 o Rework
 o Safety
 o Crew skill mix
 o Others

 b. We are going to discuss this area and capture the relevant SP&C planning considerations for our future use.

 c. Conduct the Group exercise (See Appendix G, Worker Qualifications Exercise)

 d. Opportunity for questions

 e. Summary
 Summarize main points where SP&C efficiencies may be realized

 f. Transition

Viewgraph #5: Worker Qualifications

Viewgraph #6: Worker Qualifications Exercise
CONSTRUCTION STAGE #3 ASSEMBLY LEVEL

B. Assembly Level Operations

1. Introduction

 a. Characteristics of assembly level operations:

 o Work transitions from SP&C controlled shops and spaces to open yard
 - Open yard
 - Spaces controlled by others

 o Small assemblies put together as subassemblies
 - Some work still done in shop

 o Subassemblies into sub-block level configurations

 o Increased coordination requirements

 o Complexity of operations increases for all shipyard trades

 o Planners schedule near term against
 - Other trades deadlines
 - Availability of personnel mix
 - Availability of materials
 - Availability of support, resources

 o More restricted opportunities to achieve SP&C efficiencies

 o Weather

 o Contingency plans required
b. The goal of SP&C planners and schedulers is to complete as much SP&C work to the closest to finished condition in accordance with specifications in this stage.

c. SP&C Efficiencies

- Opportunities exist despite increased complexity

 some SP&C controlled shop/space work
 spot opportunities arise from other trade/department mis-scheduling/holdups
 supervision is close

- Compared w/operational conditions of later construction stages, CS #3 allows greater efficiencies in most WPF's especially:

 minimizing rework
 support requirements
 other trades disruption/interruption

2. Conduct the exercise (See Appendix H, Worker Qualifications Exercise) Viewgraph #8: Assembly Level Operations Exercise

3. Opportunity for Questions

4. Summary

5. Transition
C. Block Level operations

1. Introduction
 a. Characteristics of block level operations:
 - Work remains in the open yard
 - Spaces controlled by others
 - On block
 - Erected hull
 - Assembly to Block level configurations
 - Near-term planning and scheduling
 - Based on work packages from production control
 - Increased safety requirements
 - Increased equipment & materials handling requirements
 - Increased appurtenances & access openings
 - Increased support requirements (lighting, ventilation, etc.)
 - Complexity of operations increases for all shipyard departments
 - Planners schedule near-term against:
 - other trades' deadlines
 - availability of personnel mix
 - availability of materials
 - availability of support resources
 - weather
b. The goal of SP&C planners and schedulers is to complete as much SP&C work closest to finished condition in accordance with specifications and construction stage constraints as possible.

c. SP&C efficiencies

- Opportunities exist despite increased complexity
 - Spot opportunities arise from other trades mis scheduling
 - Holdups
 - Coordination lines are shorter due to a need to interact with fewer trades supervisors and personnel
 - Supervision is closer

- Compared with operational conditions of later construction stage, CS #4 allows greater efficiencies in most WPF's, especially:
 - Minimizing rework
 - Support requirements
 - Other trades disruption/interruption.

2. Conduct the exercise (See Appendix I, viewgraph #10: Block Level Operations Exercise).

3. Opportunity for Questions

4. Summary

5. Transition
CONSTRUCTION STAGE #5 ZONE LEVEL

I. Zone Level Operations

1. Introduction

 a. Characteristics of zone level operations:

 o Work moves onboard the erected ship
 - spaces controlled by others
 - internal and external SP&C tasks
 - compartment environment
 - open deck environment
 - ship in water

 o Near-term planning and scheduling
 - based on work packages
 - from production control

 o Vast increase of temporary services (water, heat, elevators)

 o Some intermediate and remaining final coats

 o Heavy Rework

 o SP&C quality work important to sale of ship

 o Increased safety requirement

 o Increased equipment & materials handling requirements

 o Maximum spaces preparation & cleanup

 o Increased appurtenances & restricted access to spaces & surfaces

Viewgraph #11: Construction Stage #5 Zone Level
Most complex stage of construction for all trades

- Maximum disruption/interference from other trades
- Planners schedule through plan-of-the-day-meetings:
 Consider:
 - other trades’ deadlines/rework
 - availability of personnel mix
 - availability of materials
 - availability of support resources
 - weather

- Maximum coordination requirements
- SP&C contingency plans required
- Shift work
- Increased supervision requirements

b. The goal of SP&C planners and schedulers is to complete SP&C work to finished condition in accordance with specifications.

c. SP&C efficiencies

- Opportunities exist despite increased complexity:
 - spot opportunities arise when other trades Schedules are held up
 - daily plan-of-the-day meetings allow timely feedback
 - zone construction promotes supervisory visibility in his zone of work
 - effective contingency plans
Compared with operational conditions of other construction stages, zone construction is least effective in:

- handling and storage
- other trades disruption/interruption
- overall production

2. Conduct the Exercise (See Appendix J, Zone Level Operations Exercise)

3. Opportunity for Questions

4. Summary
 Do as much SP&C work as practical in early stages of construction

5. Transition

Viewgraph #12: Block Level Operations Exercise
E. **Foreman Work Planning Checklist**

1. **Introduction**

 a. The first line SP&C supervisor needs a checklist of planning factors and specific actions to take as he plans a variety of work assignments.

 b. The work planning checklist (Appendix N) provides the framework for the specific actions he should take as related to the work planning factors.

2. **Conduct a detailed discussion of Appendix N.**

 The discussion results in the detailed actions to be in each checklist item which are to be written down by the student in the student notes column.

 This will create a checklist in the supervisors own terms and within the operating structure of that shipyards policy and practices.

 (Note: This particular section of the instruction is particularly important and the instructor may wish to substitute it for any or all of the 3 preceding exercises (Appendices H, I, and J).)

3. **Opportunity for summary discussion on how the supervisor may use the information.**

4. **Transition**
Section IV
SECTION IV

A. SP&C Work Planning Exercise

1. Introduction

 a. Discuss participant accomplishments to this point.

 b. This exercise is combined participant grouping.

 c. Objective is to pull it all together now with an exercise in which top managers and SP&C supervisors, planners and schedulers apply the 13 WPFS to the concerns of SP&C in a case incident exercise.

 d. Distribute exercise materials.

 On completion of the exercise, these materials can be inserted in the Student Workbook in the space allotted for Appendix K.
<table>
<thead>
<tr>
<th>NARRATIVE</th>
<th>INSTRUCTOR NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Conduct the exercise (See Appendix K, SP&C Work Planning Exercise)</td>
<td>Viewgraph #1: SP&C Work Planning Exercise</td>
</tr>
<tr>
<td>3. Opportunity for Questions</td>
<td></td>
</tr>
<tr>
<td>4. summary</td>
<td></td>
</tr>
<tr>
<td>5. Transition</td>
<td>Announce course Closing administration</td>
</tr>
<tr>
<td>° complete evaluation</td>
<td></td>
</tr>
<tr>
<td>° receive certificates</td>
<td></td>
</tr>
<tr>
<td>° closing remarks</td>
<td></td>
</tr>
</tbody>
</table>
Section IV
SECTION V
Closing Administration

1. Transitional Statement

2. Complete Course Evaluation Sheets

3. "Award Course Completion Certificates (Local Forms)

4. Closing Remarks

Viewgraph: Course Title Viewgraph

Pass out Course Evaluation forms. 10" to complete forms.
WORK PLANNING FOR SHIPYARD SURFACE
PREPARATION AND COATING (SP&C)

EVALUATION

Name ____________________________ Date ____________________________

Shipyard__________________________ Position________________________

INSTRUCTIONS:

COMMENTS: Space is provided for your comments, suggestions, and explanations of ratings following each section.

SCALE RATINGS: Please evaluate each aspect of the Course listed below by marking the 5 point scale to the right of each item. Mark the box to indicate your evaluation. Please do not split ratings.

PARTICIPANT’S OBJECTIVES

Indicate your objectives in attending this course

1. __
2. __
3. __
 a. To what degree were your objectives satisfied?
 ______ Outstanding ______ Excellent ______ Good ______ Fair ______ Poor

COURSE CONTENT

Indicate how useful each item of content was to you.

<table>
<thead>
<tr>
<th>low</th>
<th>med</th>
<th>high</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

1. Shipyard Organization Exercise

2. Management Planning Exercise

3. SP&C Safety Planning (H.O. #2 issued by instructor during discussion).

4. SP&C Shif- Change Communication and Coordination

5. SP&C Worker Qualifications

6. Assembly Level Operations: work planning Factor and Elements Identification

7. Block Level Operations: Work Planning Factor and Elements Identification
COURSE CONTENT (cont.)
Indicate how useful each item of content was to you.

<table>
<thead>
<tr>
<th>Item</th>
<th>Low</th>
<th>Med</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Zone Level Operations: Work Planning Factor and Elements Identification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. SP&C Planning Exercise</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Appendix L, 13 SP&C Work Planning Factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Instructor-led discussions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Participant-led discussions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOPIC COVERAGE
Which topics should have received more time? Please cite.

2.
3.

Which topics should have received less time? Please cite.

2.
3.

COURSE DEVELOPMENT

<table>
<thead>
<tr>
<th>Item</th>
<th>Low</th>
<th>Med</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Student Workbook</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Learning Environment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Feedback Instrument (this form)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OVERALL RATING:

How would you rate the course as a whole?

Comments:

What was the most effective part of the course for you? Why?

What was the least effective part of the course for you? Why?
APPENDIX A

HOW TO USE THE INSTRUCTOR GUIDE

This Instructor Guide will provide you with all the information required to prepare for and instruct in this workshop.

Self-Introductions and Administrative Concerns:

1. **Introductions.**

As an introduction to the workshop, display the workshop title and your name on a viewgraph or other visual aid. Tell the participants your job title, something about your expertise, and why you were chosen to conduct the workshop. Display and explain the objectives of the workshop. Follow this by calling the participants’ attention to the Objectives of Sections I, II and III of the Student Workbook. Allow time for participants to read over each set of objectives as they are introduced. Then have the participants complete the participant self-introduction worksheets found in their notebooks. When ready, have participants introduce themselves to the entire group. Collect the participant introduction worksheets, and explain that you will use the information to provide instruction and answer questions focused on the apparent requirements of the group. Carried out in this sequence, the self-introductions should move more quickly. The participants will have the instructor’s self-introduction to follow as a role model and will have had a quick orientation to the course through reading the objectives. This will help participants focus their statements of expectations and questions.

2. **Administrative Concerns.**

Next, make any administrative announcements and answer any questions. Be sure participants are aware of the location and use of such things as: coffee mess, restrooms, telephone, and the like. Finally, go over the workshop agenda, contents of the student workbook (SWB), and emphasize that the workshop, to be successful, requires the input of every subject matter expert present. Remind participants that each is expert in some important aspect of the shipyard’s
planning and operations. If you know the expertise of any participant, cite that as an example of expertise available in the workshop.

3. Reading Assignment. There is one “take home” assignment in this workshop. At the end of the first day, require participants to read over in detail the contents of Handout #1, Thirteen SP&C Work Planning Factors. This assignment is necessary to facilitate the following day’s individual and group exercises.

Each Section within this Instructor Guide contains the following:

1. Learning Objectives. These objectives are written to support the workshops instructional goals relative to the topics of the section.

2. Content. The basic material of this course has been developed by persons with career experience in shipyard SP&C and management planning. This should be especially evident as you work with the Thirteen SP&C Work Planning Factors. The course content is drawn mainly from the Thirteen SP&C Work Planning Factors, and from discussions with subject matter experts. The main processes of the course are the exercises. These are contained in the Appendices. All information required to prepare for and conduct the exercises is provided in the Appendixes. In most cases an introduction and outline for each exercise will be found within the sections of this Instructor Guide. The outlines should be personalized by the instructor.

3. Content of Appendix B. The presentation methods and techniques contained in Appendix B should be helpful even to experienced instructors. They are intended mainly to support instructors who have not used these methods for some time and require some review. The sections called; “Discussion Group Leader’s Guide”, and “Questioning Techniques” should be provided as soon as possible to persons selected to lead small group discussions.

4. SP&C Work Planning Factor #12, Safety.

WPF #12, Safety is covered entirely in Appendix E. There is no need to discuss it at length in Section I.
Instructor Preparation, Personalizing the Instructor Guide, and comments on Discussion Groups.

1. **Instructor Preparation.** The successful instructor will accomplish all tasks in preparing to deliver this workshop.

 a. Read the Training Plan
 b. Review Appendix B: Presentation Methods especially on Conducting Discussion Group Activities, and Questioning Techniques
 c. Review Appendix L: 13 SP&C Work Planning Factors. These Factors are the heart of this course.
 d. Personalize the workshop outline
 e. Conduct at least one (two to three are preferable) self-rehearsals of each element and activity of the workshop in the environment in which the workshop will be presented. Use of a tape recorder is suggested.
 f. Review Student Workbook to become familiar with content and intended application of the materials.
 g* Ensure sufficient copies of instructional materials are available for distribution to each participant (e.g.: H.O. #2, Appendix E, and H.O. #3, Appendix K).
 h. Inspect the training environment at least twice: 24 & 36 hours before presenting the workshop (you don’t want any surprises on day #1).
 i* Review the content of the Appendices and ensure all supporting materials and equipment are available on site and ready to be moved into the training environment.
 j. Identify and brief prospective discussion group leaders as soon as the audience for the course is known.
 k. Prepare instructor’s self-introduction viewgraph.

2. **Personalizing the Instructor Guide.** The Instructor Guide is laid out in a sentence fragment outline which provides topics, objectives and discussion points, along with notes to instructor. Space is provided between entries for the instructor to personalize each discussion point by noting important
supporting points, and examples> and specific questions to be put to the group. Further, the instructor is able to personalize the Instructor Guide to his shipyard and its practices by lining through inaccurate and inappropriate terms and phrases, and writing in those familiar to personnel of his specific shipyard. In order to allow the instructor maximum freedom in this regard, rigid note-taking outlines have been omitted from the Student Workbook.

3. Discussion Groups.

a. For purposes of this course, Discussion Group Leaders should be identified before the course begins and provided with the pertinent exercise materials and a short briefing.

b. Because the first day's exercises include the management planning exercise, and because one of the purposes of the course is to accustom top managers and SP&C supervisory personnel to working together, both managers and SP&C personnel should be involved as discussion group leaders. To ensure course unity, members of other trades should also be asked to volunteer or should be assigned as discussion group leaders.

c. To ensure equitable representation of management, SP&C, and other trades, Discussion Group Leaders should be changed for the second day's exercises. All leaders should be changed to avoid any appearance of poor individual performance. This means that the second day's leaders will require briefing and a materials package for overnight review.

d. It may help matters to publish the list of leaders for each day, to let the group as a whole know how the discussion leaders are selected, and to ask for the cooperation of all to ensure that objectives of the course are met. The above describes an ideal situation. These decisions rest, finally, with the instructor.
e. Discussion Group Leaders should be briefed on the material to be covered, given time to review it, to clarify any questions, and to ensure all materials are complete.

f. Leaders should be cautioned to avoid discussing the forthcoming exercises with or within hearing of the group in general. Misconceptions can arise in such cases and cause the expenditure of greater time in lengthy explanations than is affordable.

g. The professionalism of the persons selected can no doubt be depended on to ensure that the discussion groups get off to a good start on the first day. The instructor should, however, keep all concerned mindful of time available, and require that leaders prepare a quick introduction and establish a pace that will provide a group product within the allotted time.
APPENDIX B

Presentation Methods and Tips to the Instructor

1. The contents of this Appendix have been selected and are provided as a study resource for the instructor to assist his orientation to the presentation methods and techniques applicable to this course. While the information may not be needed by some instructors from shipyard training departments, the case may arise in which the person designated as instructor has not conducted training for some time and/or does not have appropriate refresher resources at hand.

2. The following methods/techniques are covered:
 a. Discussion Group*
 b. Discussion Group Leader’s Guide
 c. Question Period*
 d. Questioning Techniques
 e. Case Study*
 f. Workshop*

3. The Discussion Group Leader’s Guide, and the Questioning Techniques should be copied and provided to participants selected to lead small group discussions.

DISCUSSION GROUP

A group of persons meet together to discuss informally and deliberate on a topic of mutual concern.

The Discussion Group May Be Used: 1. To develop a nucleus of leadership and teamwork for service. 2. To identify, explore, and seek solutions for problems and to develop plans of action. 3. To change attitudes through discussion and the examination of information.

Advantages: 1. Group discussion permits full participation. 2. It can establish consensus democratically. 3. It pools the abilities, knowledge, and experience of all to reach a common goal.

Limitations: 1. Group discussion is time-consuming, particularly if the group includes persons of widely different backgrounds. 2. A bossy leader or a few members may dominate the discussion. 3. Some persons will not participate fully.

Physical Requirements: 1. The group is usually seated around a large table (or tables arranged in a rectangle). Face-to-face discussion is essential. An informal and relaxed atmosphere will permit free discussion.

Procedure: 1. Should be governed by the group itself. Generally, the leader will preside and moderate the discussion. 2. A group may meet as long and as often as is necessary and convenient or specified. 3. A change of leaders may be made to utilize special individual abilities. For example, different leaders may be used in the deliberative, planning, and action phases of the group's work. 4. The group may appoint a recorder to keep track of its deliberations and to report on its progress from time to time.
Similar Methods and Techniques: The discussion group is considered as a specific method, but the discussion technique can be used as the primary or as a supplementary technique in almost all methods if size of the group permits. Twenty is considered about the maximum number of participants in a discussion group.

ARRANGEMENT FOR DISCUSSION GROUP

- Chairman or Moderator
- Group Members
- Table
- Chalkboard, Chart Stand, or Easel Pad

Alternative Arrangements: It is not necessary for a discussion group to be seated around a table, but the table top is very helpful if resource materials are being used. It is necessary that discussion group members be in a circular arrangement facing each other. Usually a chalkboard or other large recording surface is helpful.
Purpose. To provide guidance on conducting the guided discussion, and employing conference techniques which are applicable to this course.

The Guided Discussion. The difference between a lecture and a guided discussion is that a lecture deals primarily with a one-way communication of ideas (instructor to student) whereas a guided discussion lays heavy stress on getting students to participate in the learning activities 'with a free exchange of ideas (instructor to student/ student to student/student to instructor). In a guided discussion much more attention must be paid to student identification and discussion of the main ideas. For this reason, the primary emphasis in designing and leading a discussion must lie on the questions selected and the questioning technique employed by the discussion leader.

Discussion Group Leader Concerns.

1. The leader will encounter strong opinions, thoroughly grounded views on methods for getting things done. The leader’s objective is to get these views and methods out on the table and discussed positively. Each should be considered in order to identify its applicability to solving the problem or developing the idea at hand.
2. The leader must be conscious of the time, usually about thirty minutes, and allot sufficient time to identification of applicable inputs, their discussion, and formulation into a reportable solution. Affecting the consumption of time and thus the quality of the report, are the makeup of the discussion group itself, and the effective use of questioning techniques by the leader. Thus to control the group - keep the group on track to a quality report.

3. It is important to maintain the cooperation of all discussion group participants. The contributions and dignity of all participants must be acknowledged and maintained by the group leader. Participants should receive positive feedback for their inputs. If the atmosphere is kept informal and positive, discussion soon becomes a free interchange and mutual development of ideas.

If the leader projects annoyance with one or another of the less helpful types of participants, it will be quickly sensed by all and subsequent inputs may be inhibited.

To keep helpful participants in the discussion, leading questions (yes/no answers) may be a good approach. The participant is acknowledged, makes a contribution, and may at a minimum retain or gain a cooperative attitude.
4. The following illustration identifies the variety of “types” which may be encountered in the normal discussion group. The discussion group leader should try to identify the types of participants in his group so that the appropriate questioning techniques can be selected and used to stimulate and derive quality inputs to the group’s report.

An ideal seating arrangement of discussion group “types” and an overhead view of the flow of the discussion.
For the purposes of this course the discussion group leader may find it useful to designate persons in the group to review specific Sp&C Work planning Factors before the group meets. This gives the discussion group leader a ready source to bring into the discussion at particular points.

Checklist. Here's a checklist which should be helpful in preparing for and conducting your group discussion.

1. A successful Discussion Group Leader will accomplish the following in preparing for an conducting the discussion:

 1. Preparation of discussion material

 a. Rough out an outline of where the discussion should be directed. Include the following:

 o Introductory statement
 o Main points that must be covered
 o Questions, statements, examples designed to stimulate group participation on main ideas.
 o Follow-on measures designed to anticipate group reaction and response in order to carry the discussion forward.
Discussion Group Leader’s Guide (cont.)

- Examples/that are realistic and take into account the background and interests of the group.
- Possible subsummaries as well as transitions designed to tie ideas together.

b. Consider the direction you will give the person selected as group recorder. Brief the recorder before the discussion begins.

2. Preparation of participants and environment

a. Distribute advance material and ensure that group members have brought requisite materials to the table for reference.

b. Notify group members of time and place of discussion.

c. Ensure that the physical requirements of the discussion facility are prepared.

d. Identify additional requirements.

3. Lead/Conduct Group Discussion

a. Start discussion on time.

b. Ensure introduction immediately focuses discussion on the problem.
c. Use examples, questions, and discussion techniques to provoke participant discussion.

d. Discussion techniques:

(1) Keep the group on track.

(2) Avoid allowing one person to dominate discussion.

(3) Avoid leader domination of discussion.

(4) Attempt to get all members of the group to participate.

(5) Use questions, subsummaries and transitions to tie ideas together and ensure all necessary sides of the issue are covered.

(6) Use prepared and impromptu visual aids effectively.

(7) Obtain agreement on final conclusion (achieve if possible).

e. Guide the group recorder. Review the discussion group report with the recorder to clarify any questions before presenting the report to the overall group.

f. Summarize by:

(1) Identifying key areas covered and key areas not covered.

(2) Using group ideas to aid in summary.

Remember, reports may not be fully developed and discussed in the time available, but the group leader must get the best he can from his group. The group must cooperate to get out the best solution they can - one presentable to their peers.
QUESTION PERIOD

The question period is an organized follow-up session to a formal presentation in which members of the audience direct questions to the program participants.

The Question Period May Be Used:
1. To get the total audience involved in the activities.
2. To call for clarification of points made in the formal presentations.
3. To give members of the audience an opportunity to ask for information of interest to them and not covered by the speakers.

Advantages:
1. Provides a feedback link between speakers and audience in presentations, and provides for some audience participation.
2. Gives a reflection of audience agreement with the speakers.
3. Encourages the members of the audience to pay close attention to the remarks of the speakers.
4. Psychologically it is good for the members of the audience to know they have the opportunity to participate, but do not have to do so.

Limitations:
1. If the group is large, even with portable microphones, it is physically difficult to handle questions and answers so all can hear.
2. Time for the question and answer period is usually limited, and it is often treated as an incidental part of the overall program.
3. The period comes at the close of the session when audience members are often tired or anxious to adjourn the meeting.
4. A few members of the audience may dominate the discussion.
5. Many members are timid and will not participate.

Physical Requirements:
1. Roving or portable microphones if the group is large.
2. Writing materials if questions are to be submitted in written form.
Procedure: 1. Chairman or Instructor or moderator informs audience that question period will be used and explains the procedure, before the formal presentations.

2. Floor men move roving microphones around, or collect written questions and carry to instructor or moderator.

3. Instructor or speaker reads or repeats the question (if necessary) and responds.

Similar Methods and Techniques: The question and answer period is handled very much like an audience reaction team, a listening team, or a forum.

ARRANGEMENT FOR QUESTION PERIOD

Alternative Arrangements: The diagram shown here is for a question period following the lecture or speech. The arrangement would be different for other types of presentations. Also, in large groups portable microphones may be handed to the questioner, or the questioner may move to a microphone located in an aisle.
QUESTIONING TECHNIQUES

The power of a question lies in the requirement of an answer so that the group individually and collectively is stimulated to think and motivated to discuss.

Basic characteristics of a good question

1. Must have a specific purpose
2. Have relationship to what is already known
3. Be understood by group
4. Emphasize one point
5. Require a definite answer
6. Discourage guessing
7. Encourage creative thinking
8. Use why, where, when, what, who and how

Important factors in using questions

Three important factors that affect the level of stimulation and motivation are:

1. Framing the question
2. Choosing the right type of question
3. Directing the question

1. Framing the question:
 - Be Brief
 - Cover a single point.
 - Be directly related to the topic
 - Develop thinking from a constructive point of view
 - Use the words that are easy for you to use
 - Use words that have meaning to the group
 - In most cases, phrase to avoid “yes” and “no” answers (closed questions)

2. Choosing the right type question:

 The right type of question is dependent upon what the leader wants.
 Several categories of questions are:
 - Factual questions
 - Used to get information
 - Also helps broaden the discussion
 - Example: How might your supervisor benefit from this training?
 - Leading questions
 - Used to suggest an answer and get group to analyze
 - Also helps broaden the discussion
 - Example: How might your supervisor benefit from this training?
Clarifying questions

Used to challenge old ideas and develop new ones
To avoid snap judgement
Help find real causes or answers
Example: What you’re saying then is that you have no trouble with discipline, is that right?

Hypothetical questions

Used to suggest or introduce leader’s ideas into the discussion
To test conclusion
Example: What might happen if you were given charge of the department and could plan for the department?

Alternative question

To make a decision between two or more points
To comparatively evaluate suggested solutions
Example: Are the best supervisors strict, easy or neither?

Overhead (General)

Directed at the entire group
Used to promote group thinking
Example: So what can be done about it?

Re-Directed

Directed at leader, but returned to the group
Used to promote group activity
Example: That’s a good question, Dick. How would you answer that in terms of your job, Helen?

3. Directing the question:

1. Direct questions to the group as a whole, not to individuals
2. If no response, then select individuals to respond
3. Allow sufficient time for a reply
4. Do not hesitate to restate a question if group expression shows confusion
5. Encourage members of the group to question one another
CASE STUDY

The case study is a detailed account of an event or a series of related events that may be presented to an audience orally, in written form, on film, or in a combination of these forms.

The Case Study is Used:

1. To present in detail to a group a problem with which the group is concerned.
2. To present and study the solution of a problem similar to one confronting the group.
3. To teach the problem-solving process.

Advantages:

1. Gives a detailed accounting of the case under study.
2. Helps the learner to see various alternative solutions to the problem.
3. Helps people develop analytical and problem-solving skills.

Limitations:

1. Some individuals may not see the relevance of the case being studied to their own situation or the group’s problem.
2. A considerable amount of time and thought is often required to develop the study.
3. Some group members are stimulated to overparticipation while others may assume a non-participatory role.

Physical Requirements:

1. Physical requirements vary with the type of presentation. If visual aids are required in a presentation, the room should be suitable for this kind of presentation. If the case study is a written one, a large table and chairs may be all that is necessary.

Procedure:

1. Materials are put into the hands of the participants in advance if the case study is in written form and to be read before the meeting.
2. Appropriate techniques to use during the presentation and discussion are selected, and parts rehearsed, if necessary.
3. The chairman, Instructor or moderator introduces the topic, explains what the case Study is, and the responsibility of each individual. He then guides the discussion and other activity.
Similar Methods and Techniques:

1. Written materials, film, the dramatic skit and speech may be used to present the case to the group. Group discussion is used to carry out the second part of the case study.

ARRANGEMENT FOR CASE STUDY

![Diagram of case study arrangement]

- **Participants**
- **Leader**
- **Chalkboard or Easel Pad**

TABLE
The workshop is a group (10 to 25 persons) sharing a common interest or problem meeting together to improve their individual proficiency, to solve a problem, or to extend their knowledge of a subject through intensive study, research, and discussion.

The Workshop May Be Used:

1. To identify, explore, and seek solution of a problem.
2. To permit extensive study of a situation including its background and social or philosophical implications.

Advantages:

1. Provides the opportunity for preparation for specific vocational, professional, or community service functions.
2. Permits a high degree of individual participation.
3. Provides for group determination of goals and methods.

Limitations:

1. Requires a lot of time from participants and staff.
2. Requires a high proportion of staff to participants.
3. May require special facilities or materials.
4. Participants must be willing to work both independently and cooperatively.

Physical Requirements:

1. A room large enough to provide comfortable seating for all around a large table (or tables arranged in a rectangle) with extra space for use of resource materials.
2. Library or other resource materials for research.
3. Chalkboard or other device for recording ideas and notes.

Procedures:

1. Arrangements for physical facilities made well in advance of the workshop.
2. Resource persons and resource materials lined up well in advance.
3. Workshop is conducted.
4. Evaluation and follow-up as needed.

Similar Methods and Techniques:

The workshop is structured similar to clinics and institutes. A series of short workshops on related problems may be incorporated into the program of a convention, institute, short course, or conference.
ARRANGEMENT FOR WORKSHOP

If the group is too large or if a large conference table is not available, the group should be arranged in a semicircle.
APPENDIX C

EXERCISE I, SHIPYARD PLANNING ORGANIZATION REVIEW

Purpose:

1. Provides all participants with a functional description of the Shipyard’s planning organization.

2. **Product:**

 Annotated shipyard functional organization chart.

3. **Instructional Strategy:**

 - **Method:** Lecture, Instructor-led group discussion
 - **Media:** Viewgraphs, or chalk/white board, or easel pad, worksheets, solution handout.
 - **Participant Assignment:** Review organization chart, identify omissions, inaccuracies. Contribute to general discussion session. Complete own notes.

4. **Resources Required:**

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shipyard organization chart mock-up</td>
<td>Pencil</td>
</tr>
<tr>
<td>Chalk/white board; easel pad(s)</td>
<td>Eraser</td>
</tr>
<tr>
<td>Chalk markers</td>
<td>Shipyard organization chart (blank) handout</td>
</tr>
<tr>
<td>Viewgraph (blank/mock-up)</td>
<td></td>
</tr>
<tr>
<td>Viewgraph pen(s)</td>
<td></td>
</tr>
<tr>
<td>O/H projector</td>
<td></td>
</tr>
</tbody>
</table>
5. References:

 - Instructor Guide, Section I
 - Shipyard organization manual.
 - Departmental Standard Operating Procedures (SOP’s)

6. Instructions:

A. Preparation

1. Obtain current copies of shipyard organization manual & chart, and departmental SOP’S.

2. Review chart to identify pertinent department functions, responsibilities, lines of authority.

3. If a suitable chart exists reproduce it as a handout. Signal the areas having the greatest importance to ship construction planning. If a suitable chart does not exist, develop one.

4. Prepare Instructor copy of shipyard organization with list of departmental functions, responsibilities and authorities.
 - Emphasize: Departments having planning responsibilities for ship construction.
 - Identify functions, responsibilities, authority.
 - Identify points of departmental interaction re: planning.
o Identify points of intra-departmental interaction re: planning and operations.
o List of departments.

5. Prepare list of questions about organization, functions, responsibilities, authorities. Get answers to questions until information to complete.

6. Create viewgraph and/or easel pad illustration of Shipyard Organization.

7. Rehearse with these materials in the training environment.

B. Presentation Strategy

1. Show viewgraph (example organization)

2. Suggest that participants are no doubt familiar with their organization -- especially own departments and offices, their own functions, responsibilities, and authorities.

3. State purpose of this part of the presentation: to review the shipyard’s organization in general, but to limit discussion to those departments having planning functions, responsibilities, authority related to ship construction.

4. Hand out copies of the prepared organization chart.

 o Ask participants to identify any discrepancies and note corrections as the discussion proceeds.

5. Discuss the general organization very briefly, using viewgraph.

 o State which departments have planning and operations functions, responsibilities, authority.
o Restate which departments have functions, responsibilities, authority (who, what, why, when, where, how, how much).

o Get participant input from management side, SP&C and at least one other trade if represented.

7. Summarize, pointing out corrections and the fact that all participants have same minimum organizational data and an annotated organization chart to employ throughout remainder of the workshop.
EXAMPLE SHIPYARD ORGANIZATION

APPENDIX D
EXERCISE II. MANAGEMENT PLANNING WORKSHOP:
(RESPONDING TO SHIP CONSTRUCTION RFP)

1. **Purpose:** Provide top management and SP&C supervisors opportunity to work together to identify the SP&C Work Planning Factors that apply in Construction Stage #1 Management Planning, and to develop a planning aid for their shipyard.

2. **Product:** List of SP&C Construction Stage #1, Management Planning, input requirements to assist design planners.

3. **Instructional Strategy:**
 - **Method:** Participant-led small group discussion with report
 - **Media:** Viewgraphs, or chalk/white board, or easel pad; worksheet
 - **Participant Assignment:** Participate in small group discussion and report preparation; complete own worksheet; contribute to overall discussion.

4. **Resources Required:**

 Instructor
 - Viewgraph example of Exercise worksheet
 - Overhead projector

 Participant
 - Pencil
 - Exercise II (Appendix D)
 - H.O. #1, 13 SP&C Work Planning Factors (Appendix L)
4. **Resources Required: (cont.)**

Instructor

- Viewgraph pens
- Chalk/White board & markers
- Guide for Discussion Group Leaders (Appendix B)
- Exercise II, (Appendix D)

Participant

- Viewgraph pens
- Chalk/White board & markers
- Guide for Discussion Group Leaders (Appendix B)
- Exercise II, (Appendix D)

5. **References:**

- Instructor Guide, Section II.A.
- Appendix D, Worksheets #1 & #2, Supporting Data Sheet 1
- Appendix L, (H.O. #1) 13 SP&C Work Planning Factors

6. **Process:**

A. Preparation

1. **Review:**
 - Instructor Guide, Section II.A.
 - Appendix D, Management Planning Exercise Materials
 - Appendix L, SP&C Work Planning Factors, Handout III
2. Identify and relate each part of the exercise
3. Review suggested presentation strategy (below).
4. Prepare planning aid visual for use in presentation: viewgraph or predraw easel pad sheets.
5. Personalize introduction, content, summary, and transition.
6. Complete an instructor’s copy of the worksheet (suggest at least one element per WPF).
7. Rehearse with exercise materials in the training environment.
8. Xerox sufficient copies of materials for participant use.
B. Presentation Strategy

1. Provide advance notice of this exercise by passing out a seating chart at the break preceding this exercise.

2. Introduce the exercise (show viewgraph)

3. Provide following exercise instructions
 - General
 Designate group leader or, each group elect own leader and recorder (3")
 Refer to Student workbook, Section IIA.
 One worksheet: Read Management Planning Exercise Workshop scenario along with instructor.
 Be prepared to report the table group’s findings when asked.
 Will have use of lectern and easel pad, overhead projector or chalkboard.
 Time: 45"

 0 Worksheet Completion
 - Column 1: Completed.
 - column 2: List the WPF elements which generate SP&C recommendations or information inputs to the Design Plan
 column 3: Indicate who has responsibility to provide required input
 column 4: Indicate the recommendation or information required.

4. Read workshop requirement to participants. Have participants follow by reading the requirement to themselves (silently).
 - Demonstrate completion for one element under one WPF
 - Ask for questions related to requirement
 - Start exercise by stating, “You should be ready to report after 30” from NOW.”
5. After 25" designate one table group to report.
 - Have other groups complete lists and prepare to add to the report.

6. Facilitate and guide report and discussions to draw out improvements and additions to the designated report.
APPENDIX D
EXERCISE II., MANAGEMENT PLANNING:
SPECIFIC WORK PLANNING
FACTOR/ELEMENT IDENTIFICATION

BACKGROUND

Your yard has received a Request for Proposal (RFP) which seeks bidders for the construction of 118 foot cutters for the U.S. Coast Guard. These new cutters are required to replace the Coast Guard’s current fleet of 82 and 95 footers by the 1990s.

REQUIREMENTS

Given the information in Data Sheet #1, and Appendix L, 13 SP&C Work Planning Factors, complete the Exercise Worksheet #2 as instructed. The result should be a listing of SP&C Design Plan input requirements and information which incorporates all known and achievable efficiencies of which your yard is capable with respect to SP&C ship construction operations.
APPENDIX D
EXERCISE II., MANAGEMENT PLANNING:
SPECIFIC WORK PLANNING
FACTOR/ELEMENT IDENTIFICATION

Data Sheet #1

SUPPORTING DATA SHEET

Multi-Mission U.S. Coast Guard Cutter for 1990’s

1. Design Requirements

- Length: 118 foot
- Displacement: 157 tons
- Beam: 22 foot
- Sustained Speed: 30 knots
- Manning: 16

2. Proposed Cost $10,000,000 each.

- Begin prototype construction 1990
- Test prototype 1991
- Begin production 1992

3. Other Characteristics:

- Conventional Steel Monohull
- Convertible to armed patrol craft in wartime
 - The main deck aft of the deck house to be flat for easy outfitting w/missile or gun mounts
- Galley and crew compartments consolidated below amidships
- Deck house of aluminum (single component) attached to steel deck
<table>
<thead>
<tr>
<th>Work Planning Factor</th>
<th>Cs #1 - Specific Elements</th>
<th>Responsibility</th>
<th>Recommendation/Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Physical Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Specs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Time/Manpower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Minimizing Rework</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Handling/Storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Inspection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Disruption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Schedules</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX E
APPENDIX E
Exercise III. A.1., SP&C SAFETY PLANNING

1. **Purpose:** Identify and list SP&C safety long-term planning requirements, operations requirements, associated planning responsibilities, and SP&C efficiencies.

2. **Product:** Lists of SP&C safety planning requirements, operations requirements, responsibilities, associated planning responsibilities and SP&C efficiencies. The resulting lists to be used by participants as job aids in future planning team efforts.

3. **Instructional Strategy:**
 - Method: Lecture, Instructor-led group discussion
 - Media: Viewgraphs, or chalk/white board, or easel pad, worksheets, solution sheets.
 - Participant Assignment: Complete worksheets, participate in discussion.

4. **Resources Required:**
 - **Instructor**
 - Viewgraph Examples III.A.1.a & b
 - Overhead projector
 - Viewgraph pen
 - Chalk/white board & markers
 - H.O. #2, "A Solution" Handout
 - Instructor Guide Appendix L, 13 SP&C Work Planning Factors (H.O. #1)
 - **Participants**
 - Pencil
 - Exercise III.A.1 (Appendix E (-))
 - H.O. #1, 13 Work Planning Factors (Appendix L)
5. **References:**
 - Instructor Guide, Section III.A.1
 - Instructor Guide, Appendices B & E
 - Instructor Guide, Appendix L, 13 SP&C Work Planning Factors

6. **Process:**

 A. Preparation

 1. **Review:**
 - Instructor Guide, Section III.A.1.
 - H.O. #1, 13 SP&C Work Planning Factors
 - Exercise III.A.1 (Appendix E)
 - Review presentation methods (Appendix B)
 - Guided discussion
 - Question techniques
 2. Identify and relate each part of the exercise and supporting materials
 3. Review suggested presentation strategy (below)
 4. Prepare viewgraphs of associated worksheet(s) for use in presentation or, predraw easel pad sheets.
 5. Personalize the introduction, content, summary, and transition.
 6. Prepare 3 x 5 cards with assigned requirement for each participant.
 7. Identify and designate a recorder to assist instructor in the exercise
 8. Rehearse with exercise materials in the training environment.
 9. Xerox sufficient copies of Solution Handout #III.A.1 for trainee use.

 B. Presentation Strategy

 1. Introduce the exercise
 2. Provide following exercise instructions:
 - General

 Refer to Student Workbook, Section III.A.1.
Participants to receive 3 x -5 cards with assignments on them.

Review worksheets with participants.

Demonstrate completion of one requirement, WS #1 III.A.1.a, (brief illustration, some detail).

Participants to be prepared to report findings during group discussion phase.

Will have 10" to complete assigned requirements.

will receive “A Solution” sheet for further discussion.

Time 45"

Worksheet Completion - III.A.1.a.

Column 1: Already complete
Column 2: Already complete
Column 3: Indicate which position holder(s)/department(s) in the yard has responsibility for planning
Indicate Planning and Scheduling requirement and process.
Column 4: Indicate how SP&C efficiency can be achieved

Worksheet Completion - III.A.1.b.

Column 1: Already completed
Column 2: Already completed
Column 3: Indicate location(s) of the work
Column 4: Indicate which position holder(s)/department(s) in the yard have responsibility for planning
Column 5: Indicate how SP&C efficiency can be achieved

Demonstrate completion of element of the worksheet

Answer any questions related to these instructions
3. Pass out assigned requirements.
 o Start exercise time by stating “You should be ready to report after 10” from NOW.”

4. After 10” begin discussion by asking for responses to WS # III A.1.a, Column 3 & 4 requirements.
 o List abbreviated responses on viewgraph

5. Facilitate and guide the discussion to draw out appropriate inputs on each requirement.
 o Synthesize inputs on viewgraph
 o Watch time

6. Hand out prepared “A solution” for comparison and discussion.
 o Discuss a few major differences only.
 o Watch time
<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>UNIQUE REQUIREMENT/CONCERNS</th>
<th>RESPONSIBILITY FOR PLANNING (DESCENDING ORDER)</th>
<th>SPC EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NAME/PLAN</td>
<td>Concern that prospective contracts may require the use of materials such as paints or chemicals that have not been previously used or approved for use by the shipyard (Your Company). Example - Use of SP&C type anti-fouling paints which contain highly toxic "tin" chemicals or similar products. 2. Concern where new, untried, or not previously approved materials, methods, or techniques are a firm part of the prospective contract. Then management planning must provide coverage in the bid for research, development, training, and other compensatory measures. 3. Concern that prospective contracts may require the use of products that do not conform to EPA clean water or clean air regulations.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SP&C Long-Term Safety Planning Exercise

Worksheet III A.1.a (cont.)

<table>
<thead>
<tr>
<th>Stages</th>
<th>Requirement/Concerns</th>
<th>Responsibility For Planning (Descending Order)</th>
<th>SP&C Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. PRECONSTRUCTION</td>
<td>1. Concern that existing and projected new facilities be compatible with the basic projected ship construction method and planned processes and work flow.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. PLANNING:</td>
<td>2. Concern for SP&C trades compliance with the various Government regulatory agency requirements:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- EPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- OSHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Clean Air</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Clean Water</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Toxic Waste Control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Worksheet III.A.1.b

SP&C SAFETY PLANNING FOR OPERATIONS EXERCISE

<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>UNIQUE REQUIREMENT/CONCERNS</th>
<th>1N-YARD/B & P HOUSE/ON-SHIP</th>
<th>RESPONSIBILITY FOR PLANNING</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
</table>

II. B. OPERATIONS:

1. Concern for acceptable facilities to accommodate preconstruction SP&C operations:

 Example - The blasting and coating of steel plates and shapes by steel fab shop when steel first arrives in shipyard.

2. Concern for handling, storage and use of dangerous SP&C materials - paints, solvents, chemicals, cleaners etc. - especially when SP&C work is done by personnel not fully trained for this.

III. ASSEMBLY OPERATIONS

1. Concern for the compatibility of SP&C operation in or adjacent to the various manufacturing shop operations:

 - Pipe shop
 - Hanger shop
 - Ventilation shop
 - Foundation shop
 - Switchboard shop

 These shops generate hot work (fire sparks, etc., while SP&C operations must be shielded from such conditions.
SP&C SAFETY PLANNING FOR OPERATIONS EXERCISE

Worksheet III .A.1.b (cont.)

<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>UNIQUE REQUIREMENT/CONCERNS</th>
<th>IN-YARD/B & P HOUSE/ON-SHIP</th>
<th>RESPONSIBILITY FOR PLANNING</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
</table>

III. ASSEM-

1. **Concern for the Health and Welfare Level of the Interrelated trades personnel (mfg. shop people and SP&C people)**

 - Existing or forthcoming facilities must provide for the protection of mfg. shop hazards SP&C generated hazards.

2. **Environmental Concerns. Whether SP&C operations are in the manufacturing shop or outside (adjacent to) weathers temperature humidity are of concern for SP&C operations and SP&C personnel.**
SP&C SAFETY PLANNING FOR OPERATIONS EXERCISE

Worksheet III .A.1.b (cont.)

<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>UNIQUE REQUIREMENT/CONCERNS</th>
<th>IN-YARD/B & P HOUSE/ON-SHIP</th>
<th>RESPONSIBILITY FOR PLANNING</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iv.</td>
<td>1. SP&C safety Planning Concerns:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLOCK LEVEL</td>
<td>- Location of unit in yard.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPERATIONS:</td>
<td>- Size and configuration</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Access openings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Staging Condition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Temporary Services (Lights, air, ventilation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Protection required for personnel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Type and extent of other trades activities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- In the general area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- In the particular space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- In adjacent areas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- In adjacent spaces</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. When SP&C work is scheduled:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Time of Year, (Weather)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Time of Week, (Regular week or off shift)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Time of day, shift</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v.</td>
<td>1. Location of SP&C job on-ship:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZONE (ON-SHIP OPERATIONS)</td>
<td>- Deck-frame-space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Configuration of space</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Access routes to space</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Worksheet III .A.1.b (cont.)

<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>UNIQUE REQUIREMENT/CONCERNS</th>
<th>IN-YARD/B & P HOUSE/ON-SHIP</th>
<th>RESPONSIBILITY FOR PLANNING</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Status of ship construction at time of SP&C job.</td>
<td>Temporary openings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Temporary services (Lights, vent., compt. air, sanitary systems).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protection required for machines etc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other trades' level of work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other trades' type of work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other trades' unfinished work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Impact on Personnel from SP&C work:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP&C trades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support Trades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other trades</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ship's crew</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Impact on productivity from SP&C work:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SP&C trades own productivity is reduced on ship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support trades' productivity is reduced</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other trades' productivity reduced by SP&C application and curing time delays.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
H.O. #2
SP&C Safety Planning
EXERCISE SOLUTION
<table>
<thead>
<tr>
<th>STAGE</th>
<th>REQUIREMENT/CONECNS</th>
<th>RESPONSIBILITY FOR PLANNING (DESCENDING ORDER)</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MANAGEMENT PLANNING</td>
<td>1. Concern that prospective contracts may require the use of materials such as paints or chemicals that have not been previously used or approved for use by the shipyard (Your Company). Example - Use of SP&C type anti-fouling paints which contain highly toxic "tin" chemicals - or similar products.</td>
<td>Vice President for Contracts: - Estimators - Bid Task Group - Research and testing department - Contract Planning</td>
<td>Balanced impact on SP&C efficiency as long as approved products are used but SP&C efficiency will fluctuate from positive to negative in relation to the more preferred or less preferred approved products. Example: Water based inorganic zinc paint is more safety efficient to use than solvent based inorganic zinc.</td>
</tr>
<tr>
<td></td>
<td>2. Concern where new, untried, or not previously approved materials, methods, or techniques are a firm part of the prospective contract. Then management planning must provide coverage in the bid for research, development, training, and other compensatory measures.</td>
<td>Vice President for Contracts: - Estimators - Contract Planners - Research and Development - Safety Dept. - SP&C trades</td>
<td>SP&C safety efficiency would generally experience a negative impact. The degree of negative effect would relate to the type and extent of compensatory measures.</td>
</tr>
<tr>
<td></td>
<td>3. Concern that prospective contracts may require the use of products that do not conform to EPA clean water or clean air regulations.</td>
<td>Vice President for Contracts: - Estimators - Contract planners - Bid Task Group - Research Dept. - Safety Dept.</td>
<td>SP&C safety efficiency would generally experience a negative impact. The degree of negative effect would relate to the type and extent of compensatory measures.</td>
</tr>
</tbody>
</table>
II. PRECONSTRUCTION

A. PLANNING:

1. Concern that existing and projected new facilities be compatible with the basic projected ship construction method and planned processes and work flow.

2. Concern for SP&C trades compliance with the various Government regulatory agency requirements:
 - EPA
 - OSHA
 - Clean Air
 - Clean Water
 - Toxic Waste Control

<table>
<thead>
<tr>
<th>STAGE</th>
<th>REQUIREMENT/CONCERNS</th>
<th>RESPONSIBILITY FOR PLANNING (DESCENDING ORDER)</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>II.</td>
<td>1. Concern that existing and projected new facilities be compatible with the basic projected ship construction method and planned processes and work flow.</td>
<td>Vice President for Construction: Construction Task Group Project Manager Construction Supt. Purchasing Division Procurement Material control Safety Dept. Steel fabrication Dept. SP&C trades</td>
<td>Assuming sufficient and high quality facilities then SP&C safety efficiency will vary in direct proportion to the quality of preconstruction planning. SP&C Safety effect will, overall, be in direct proportion to the % of construction work accomplished prior to on-ship; i.e., before CS #5, Zone Level work.</td>
</tr>
</tbody>
</table>

H.O. #2

III A.1.a (cont.)
III.A.1.b CONSTRUCTION

UNIY Requirement/Concerns

I. PRECONSTRUCTION

B. OPERATIONS: In-yard or Blast/Paint house

1. Concern for acceptable facilities to accommodate preconstruction SP&C operations:

<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>REQUIREMENT/CONCERNS</th>
<th>IN-YARD/B & P HOUSE/ON-SHIP</th>
<th>RESPONSIBILITY FOR PLANNING</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. PRECONSTRUCTION</td>
<td>II. OPERATIONS:</td>
<td>Design Purchasing Dept.</td>
<td>Preconstruction coating may or may not be applied to SP&C quality standards which could result in negative efficiency by requiring later rework on the part of SP&C trades.</td>
<td></td>
</tr>
<tr>
<td>B. OPERATIONS:</td>
<td>- Concern for qualified SP&C operators in shop or area that may not be under SP&C trades control.</td>
<td>Facilities Eng. Steel Fab. Dept. SP&C trades</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example - The blasting and coating of steel plates and shapes by steel fab shop when steel first arrives in shipyard.</td>
<td>Design Purchasing Dept.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Concern for handling, storage and use of dangerous SP&C materials - paints, solvents, chemicals, cleaners etc. especially when SP&C work is done by personnel not fully trained for this.</td>
<td>Mat. Control D pt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In-Yard or Blast/Paint house or on-ship</td>
<td>Plant Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mfg. shops</td>
<td>Safety Dept.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In-Yard or Blast/Paint Houses</td>
<td>Shop Users</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mfg. Shop Supt.</td>
<td>SP&C trades</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. ASSEMBLY OPERATIONS

1. Concern for the compatibility of SP&C operation in or adjacent to the various manufacturing shop operations:

<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>REQUIREMENT/CONCERNS</th>
<th>IN-YARD/B & P HOUSE/ON-SHIP</th>
<th>RESPONSIBILITY FOR PLANNING</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. ASSEMBLY OPERATIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. PRECONSTRUCTION</td>
<td>II. OPERATIONS:</td>
<td>Design Purchasing Dept.</td>
<td>Preconstruction coating may or may not be applied to SP&C quality standards which could result in negative efficiency by requiring later rework on the part of SP&C trades.</td>
<td></td>
</tr>
<tr>
<td>B. OPERATIONS:</td>
<td>- Concern for qualified SP&C operators in shop or area that may not be under SP&C trades control.</td>
<td>Facilities Eng. Steel Fab. Dept. SP&C trades</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Example - The blasting and coating of steel plates and shapes by steel fab shop when steel first arrives in shipyard.</td>
<td>Design Purchasing Dept.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Concern for handling, storage and use of dangerous SP&C materials - paints, solvents, chemicals, cleaners etc. especially when SP&C work is done by personnel not fully trained for this.</td>
<td>Mat. Control D pt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In-Yard or Blast/Paint house or on-ship</td>
<td>Plant Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mfg. shops</td>
<td>Safety Dept.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>In-Yard or Blast/Paint Houses</td>
<td>Shop Users</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mfg. Shop Supt.</td>
<td>SP&C trades</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Pipe shop
- Hanger shop
- Ventilation shop
- Foundation shop
- Switchboard shop

These shops generate hot work (fire sparks, etc., while SP&C operations must be shielded from such conditions. |
<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>UNIQUE REQUIREMENT/CONCERNS</th>
<th>IN-YARD/B & P HOUSE/ON-SHIP</th>
<th>RESPONSIBILITY FOR PLANNING</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. ASSEM-BLY LEVEL OPERATIONS</td>
<td>2. Concern for the Health and Welfare of the Interrelated trades personnel (mfg. shop people and SP&C people)</td>
<td>Mfg. shop</td>
<td>Facilities Eng.</td>
<td>SP&C safety effect must be well planned - or it will be overshadowed by manufacturing shop operations.</td>
</tr>
<tr>
<td></td>
<td>- Existing or forthcoming facilities must provide for the protection of mfg. shop hazards VS SP&C generated hazards.</td>
<td>Blast/Paint house In-yard</td>
<td>Mfg. shop trades Safety Dept.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Environmental Concerns. Whether SP&C operations are in the manufacturing shop or outside (adjacent to) weather, temperature humidity are of concern for SP&C operations and SP&C personnel.</td>
<td>Mfg. shop In-yard On-ship</td>
<td>Facilities Eng. Mfg. shop trades</td>
<td>SP&C safety effect is in proportion to the quality of planning and to nature on outside work.</td>
</tr>
</tbody>
</table>
SP&C SAFETY PLANNING FOR OPERATIONS

IV. BLOCK LEVEL OPERATIONS:

SP&C safety Planning Concerns:
- Location of unit in yard.
- Size and configuration
- Access openings
- Staging Condition
- Temporary Services (Lights, air, ventilation)
- Protection required for personnel

2. Type and extent of other trades activities
- In the general area
- In the particular space
- In adjacent areas
- In adjacent spaces.

3. When SP&C work is scheduled:
- Time of Year, (Weather)
- Time of Week, (Regular week or off shift)
- Time of day, (shift)

v. 1. Location of SP&C job on-ship:
- Deck-frame-space
- Configuration of space
- Access routes to space

<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>UNIQUE REQUIREMENT/CONCERNS</th>
<th>IN-YARD/B & P HOUSE/ON-SHIP</th>
<th>RESPONSIBILITY FOR PLANNING</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV.</td>
<td>SP&C safety Planning Concerns:</td>
<td>In-Yard</td>
<td>Design</td>
<td>SP&C effect is directly related to the caliber and degree of planning.</td>
</tr>
<tr>
<td>BLOCK LEVEL OPERATIONS:</td>
<td>- Location of unit in yard.</td>
<td></td>
<td>Project Manager</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Size and configuration</td>
<td></td>
<td>Construction Supt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Access openings</td>
<td></td>
<td>Support Trades</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Staging Condition</td>
<td></td>
<td>SP&C trades</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Temporary Services (Lights, air, ventilation)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Protection required for personnel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Type and extent of other trades activities</td>
<td>In-Yard</td>
<td>Construction - Supv.</td>
<td>SP&C safety efficiency prefer to exclude other trades for max. effect. Next, exclude hot work and limit other trades</td>
<td></td>
</tr>
<tr>
<td>- In the general area</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- In the particular space</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- In adjacent areas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- In adjacent spaces.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. When SP&C work is scheduled:</td>
<td>In-Yard</td>
<td>Construction Supv.</td>
<td>SP&C safety effect can be controlled by planning for:</td>
<td></td>
</tr>
<tr>
<td>- Time of Year, (Weather)</td>
<td></td>
<td>Schedule project planners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Time of Week, (Regular week or off shift)</td>
<td></td>
<td>SP&C trades</td>
<td>- Best weather</td>
<td></td>
</tr>
<tr>
<td>- Time of day, (shift)</td>
<td></td>
<td></td>
<td>- Daytime work (usually)</td>
<td></td>
</tr>
<tr>
<td>v. 1. Location of SP&C job on-ship:</td>
<td>On-Ship</td>
<td>Design</td>
<td>SP&C safety effect is a function of these planning concerns</td>
<td></td>
</tr>
<tr>
<td>ZONE (ON-SHIP OPERATIONS)</td>
<td>- Deck-frame-space</td>
<td>Project Planners</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Configuration of space</td>
<td>Construction Supv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Access routes to space</td>
<td>Construction Planner:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SP&C trades</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Construction Unique Stage Requirement/Concerns

2. **Status of ship construction at time of SP&C job.**
 - Temporary openings
 - Temporary services (Lights, vent. compt. air, sanitary systems).
 - Protection required for machines etc.
 - Other trades' level of work
 - Other trades' type of work
 - Other trades unfinished work

3. **Impact on Personnel from SP&C work:**
 - SP&C trades
 - Support Trades
 - Other trades
 - Ship's crew

4. **Impact on productivity from SP&C work:**
 - SPLC trades own productivity is reduced on ship
 - Support trades' productivity is reduced
 - Other trades' productivity reduced by SP&C application and curing time delays.

In Summary - it is more efficient for SP&C work to be accomplished as much as practical prior to CS #5, on-ship work.
APPENDIX F
Exercise III. A.2, SP&C SHIFT CHANGE
COMMUNICATION AND COORDINATION

1. **Purpose**: Identify and list SP&C Shift Change Communication and Coordination requirements (on-ship and off-ship), and associated planning.

2. **Product**: A list of SP&C Shift Change Communication and Coordination considerations relevant to this shipyard which may be used by participants as a job aid in future planning team efforts.

3. **Instructional Strategy**:
 - **Method**: Lecture, Instructor - led group discussion
 - **Media**: Viewgraphs, or chalk/white board, or easel pad, worksheets.
 - **Participant Assignment**: Complete worksheets, participate in discussion

4. **Resources Required**:

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewgraph Examples III.A.2.a & b</td>
<td>Pencil</td>
</tr>
<tr>
<td>Overhead Projector</td>
<td>Exercise III.A.2 (Appendix F)</td>
</tr>
<tr>
<td>Viewgraph pen</td>
<td>H.O. #1, 13 SP&C Work Planning Factors</td>
</tr>
<tr>
<td>Chalk/White board & markers</td>
<td>Exercise III.A.2 (Appendix F)</td>
</tr>
<tr>
<td>H.O. #1, 13 SP&C Work Planning Factors</td>
<td>Handout #1, 13 SP&C Work Planning Factors (Appendix L)</td>
</tr>
<tr>
<td>Instructor Guide, Appendix L</td>
<td></td>
</tr>
<tr>
<td>13 SP&C Work Planning Factors (H. O. #1)</td>
<td></td>
</tr>
</tbody>
</table>
5. References:
 o I.G. Section III.A.2.
 o I.G. Appendixes B & E
 o I.G., Appendix L. 13 SP&C Work Planning Factors, (H.O. #1)

6. Process:

 A. Preparation

 1. Review:
 o Instructor Guide, Section III.A.2
 o Exercise III.A.2 (Appendix F)
 o H.O. #1, 13 SP&C Work Planning Factors
 o Presentation methods (Appendix B)
 Guided Discussion
 Questioning Techniques
 2. Identify and relate each part of the exercise and supporting materials
 3. Review suggested presentation strategy (below)
 4. Prepare viewgraphs of associated worksheet(s) for use in presentation or, predraw easel pad sheets.
 5. Personalize introduction, content, summary, and transition.
 6. Complete an instructor copy of each worksheet (suggest two items under each heading)
 7. Identify and designate a recorder to assist instructor in the exercise.
 8. Rehearse with exercise materials in the training environment.
 9. Xerox sufficient copies of materials for trainee use.

 B. Presentation Strategy

 1. Introduce the exercise'
 2. Provide following exercise instructions:
 o General
 Continue with same group arrangement used for III.A.1, Safety Planning Exercise.
 Refer to Student Workbook, Section III.A.2
Review worksheets
Refer SWB; Appendix L, (13 SP&C Work Planning Factors) and identify shift change communication and coordination concerns
Complete two exercise worksheets III.A.2.a (on-ship) and III.A.2.b (off-ship)
Be prepared to report findings during group discussion phase
No solution sheet will be handed out
Time: 35”

0 Worksheet Completion
column 1: State the communication/coordination requirement
column 2: indicate when the requirement/responsibility is carried out
Column 3: Indicate who has responsibility to initiate and follow-up
Column 4: State how SP&C shift change communication and coordination efficiency can be improved

0 Ask for questions related to these instructions.
0 Start exercise time by stating “You should be ready to report after 20” from NOW (10” per worksheet).

3. After 20” facilitate and guide discussion to draw out findings.
0 Synthesize each response
0 Recorder lists responses on prepared viewgraph worksheet outlines or other visual aid
<table>
<thead>
<tr>
<th>Shift Change C/C Requirement</th>
<th>When Occuring</th>
<th>c/c Responsibility</th>
<th>How SP&C Efficiency can be improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Coordination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shift Change Communication and Coordination Exercise

Off-SHIP

<table>
<thead>
<tr>
<th>Shift Change C/C Requirement</th>
<th>When Occuring</th>
<th>c/c Responsibility</th>
<th>How SP&C Efficiency can be improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Coordination			
APPENDIX G
EXERCISE III.A.3, SP&C WORKER QUALIFICATIONS

1. **Purpose:** Identify and list SP&C efficiency problems in given categories, which are worker qualification associated.

2. **Product:** A list of SP&C Worker Qualification problems which impact efficiency in given categories and possible solutions relevant to this shipyard. The list to be used by participants as a job aid in future planning team efforts.

3. **Instructional Strategy:**
 - **Method:** Lecture, Instructor-led group discussion
 - **Media:** Viewgraph, or chalk/white board, or easel pad, worksheet
 - **Participant Assignment:** Complete worksheet, participate in discussion

4. **Resources Required:**

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewgraph Example Exercise</td>
<td>Pencil</td>
</tr>
<tr>
<td>Worksheet III.A.3.b</td>
<td>Exercise III.A.3.</td>
</tr>
<tr>
<td>Overhead projector</td>
<td>(Appendix G)</td>
</tr>
<tr>
<td>Chalk/White board & markers</td>
<td>H.O. #1, 13 SP&C Work Planning Factors</td>
</tr>
<tr>
<td>Viewgraph pen</td>
<td>(Appendix L)</td>
</tr>
<tr>
<td>Exercise IIIA..3 (Appendix F)</td>
<td></td>
</tr>
</tbody>
</table>

5. **References:**
 - Instructor Guide, Section 111.A.3
 - Instructor Guide, Appendix B
 - Instructor Guide, Appendix G
 - Instructor Guide, Appendix L, 13 SP&C Work Planning Factors,
6. **Process:**

 A. Preparation

 1. **Review:**
 - Instructor Guide, Section III.A.3
 - Appendix L, 13 SP&C Work Planning Factors, (H.O. #1)
 - Exercise III.A.3 (Appendix G)
 - Presentation Methods (Appendix B)
 - Guided Discussion
 - Questioning Techniques
 2. Identify and relate each part of the exercise and supporting materials
 3. Be prepared to answer the questions and provide own shipyard examples.
 4. Review suggested presentation strategy (below)
 5. Prepare viewgraph of associated worksheet for use in presentation or, predraw easel pad sheets.
 6. Prepare viewgraph listing the discussion questions & answers
 7. Personalize introduction, content, summary, and transition.
 8. Identify and designate a recorder to assist instructor during the exercise.
 9. Rehearse with exercise materials in the training environment.
 10. Xerox sufficient copies of materials for trainee use.

 B. Presentation

 1. Introduce the exercise
 2. Provide following exercise instructions:
 - General
 - Continue with same group arrangement used for III.A.2, (Shift Change Communication and Coordination Exercise)
 - Refer to Student workbook, Section III.A.3
 - Two worksheets, III.A.3.a, Worker Qualification Exercise Requirement and Worksheet
Review worksheet requirement with participants
Acknowledge space limitations on Worksheet. Suggest abbreviated notes.
Be prepared to provide inputs when called upon
Time 30"

Worksheet Completion

column 1: Indicate the Construction Stage during which the problem usually occurs
Column 2: Identify the related "WPF elements
Column 3: State the Worker Qualification problems
Column 4: Indicate how SP&C Planning and Scheduling efficiency can be improved

- Demonstrate completion of one problem identification
- Ask for questions related to these instructions

3. Start exercise time by stating "You should be ready to report after 15" from **NOW.**

4. After a few minutes handout 3 x 5 cards requiring specific discussion question(s) be answered when called on. All participants to receive one of the discussion questions.

5. Facilitate and guide report and discussion to draw out findings and answers.
 - Get answers to the discussion questions
 - Ask if there are "other" areas of SP&C Efficiency in this yard affected by Worker Qualifications?
 - Synthesize each response
 - Reorder lists responses on prepared viewgraph worksheet outline
1. Worker qualifications impact SP&C efficiency in several ways:
 - Production rate
 - Estimated/Actual rates
 - Inspection Quality
 - Training
 - Rework
 - Safety
 - Crew skill mix
 - Others? Which?

2. Consider the following questions and organize your responses to them on the accompanying worksheet.
 - Do we have any problems w/SP&C efficiency in any of the above areas because of unqualified workers?
 - Which areas?
 - What type of problem?
 - What procedures are involved?
 - What are the supervisor’s controls?
 - Who plans?
 - Can we realize any of the following efficiencies for our yard?
 - Always have one or more backup people trained or in-training for each spot on your team. An ideal gang would be composed of:
 - 35% long-time reliable
 - 35% experienced mechanics
 - 30% new people in training.
<table>
<thead>
<tr>
<th>When Problem Occurs (CS #)</th>
<th>Problem Area (WPF)</th>
<th>Problem Statement</th>
<th>How SP&C Efficiency can be improved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX H

EXERCISE III.B., ASSEMBLY LEVEL OPERATIONS:
WORK PLANNING FACTOR AND ELEMENTS IDENTIFICATION

1. **Purpose:** Identify the specific elements of SP&C Work Planning Factors that associate them with Construction Stage #3, Assembly Level Operations and identify ways to improve SP&C efficiency.

2. **Product:** A list of SP&C Work Planning Factors and efficiencies associated specifically with Construction Stage #3, Assembly Level Operations relevant to this shipyard. The list may be used by participants as a job aid in future planning team efforts.

3. **Instructional Strategy:**
 - **Method:** Participant-led small group discussion with report
 - **Media:** Viewgraph, or chalk/white board, or easel pad, worksheet
 - **Participant Assignment:** Participate in small group discussion and report preparation; complete own worksheet; contribute to overall discussion.

4. **Resources Required:**

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewgraph example of Exercise worksheet</td>
<td>Pencil</td>
</tr>
<tr>
<td>Overhead projector</td>
<td>Exercise III.B (Appendix H)</td>
</tr>
<tr>
<td>Viewgraph pens</td>
<td>H.O. #1, 13 SP&C Work Planning Factors (Appendix L)</td>
</tr>
<tr>
<td>Exercise III.B (Appendix.H)</td>
<td></td>
</tr>
<tr>
<td>Guide for Discussion Group Leaders, Appendix B</td>
<td></td>
</tr>
</tbody>
</table>
5. References:

 o Instructor Guide, Section III.B.
 o Instructor Guide, Appendix B
 o Instructor Guide, Appendix H
 o Instructor guide, Appendix L, 13 SP&C Work Planning Factors (H.O. #1)

6. Process:

 A. Preparation

 1. Review:

 o Instructor Guide, Section III.C.
 o Appendix L, 13 SP&C Work Planning. Factors H.O. #1
 o Appendix I, Exercise Worksheet III.C.

 2. Identify and relate each part of the exercise and supporting materials

 3. Review suggested presentation strategy (below)

 4. Prepare viewgraph of associated worksheet for use in presentation or, predraw easel pad sheets.

 5. Personalize introduction, content, summary, and transition.

 6. Complete an Instructor copy of the Worksheet (suggest at least one element per WPF)

 7. Prepare WPF assignments to pass out to each small group (5 x 5 cards)

 8. Rehearse with exercise materials in the training environment.

 9. Xerox sufficient copies of materials for trainee use.

NOTE: Since some WPFS have more CS #3 related elements than others, care must be taken to ensure balanced distribution among table groups.
B. Presentation Strategy

1. Introduce the exercise
2. Provide following exercise instructions:
 o General

 Continue with same table groups established for Exercise II, Management Planning
 Refer to Student Workbook, Section III.B.
 One worksheet, Work Planning Factor and Elements Identification, CS #3, Assembly Level Operations
 Review worksheet assigned WPFS & identify CS #3 - specific elements
 Refer H.O. #1, analyze pertinent content
 Be prepared to report the table group’s findings when asked
 Will have use of lectern and overhead projector or chalk/white board, easel pad
 Time: 20” - 30”

0 Worksheet Completion

 column 1: Check the WPFs that are CS #3 specific
 column 2: List CS #3 - specific elements of the WPF
 column 3: Indicate how SP&C near-term planning and scheduling efficiency can be improved

 o Demonstrate completion of one element under one WPF
 o Ask for questions related to these instructions
 o Start exercise time by stating, “You should be ready to report after 15” from NOW.”

3. Pass out WPF assignments
4. After 10” designate one table group to report. Have other groups complete list and prepare to add to the report.
4. Facilitate and guide report and discussion to draw out improvements and additions to the designated report.
Worksheet EXERCISE III. B., ASSEMBLY LEVEL OPERATIONS
III. B
SPECIFIC WORK PLANNING
FACTOR/ELEMENT IDENTIFICATION
CONSTRUCTION STAGE #3 ASSEMBLY LEVEL

<table>
<thead>
<tr>
<th>Work Planning Factor</th>
<th>Cs #3 - Specific Elements</th>
<th>How SP&C Efficiency can be improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Physical Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Specs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Time / Manpower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Minimizing Rework</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Handling/Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Disruption Interference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Schedules</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX I

EXERCISE III. C., BLOCK LEVEL OPERATIONS: WORK PLANNING FACTOR AND ELEMENTS IDENTIFICATION

1. **Purpose:** Identify the specific elements of SP&C Work Planning Factors that associate them with Construction Stage #4, Block Level Operations and identify ways to improve SP&C efficiency.

2. **Product:** A list of SP&C Work Planning Factors and efficiencies associated specifically with Construction Stage #4, Block Level Operations relevant to this shipyard. The list may be used by participants as a job aid in future planning team efforts.

3. **Instructional Strategy:**
 - **Method:** Participant-led small group discussion with report
 - **Media:** Viewgraph, or chalk/white board, or easel pad, worksheet
 - **Participant Assignment:** Participate in small group discussion; complete own worksheet; contribute to overall discussion.

4. **Resources Required:**
 - **Instructor**
 - Viewgraph of Exercise Worksheet
 - Overhead Projector
 - Viewgraph pens
 - Exercise III.C. (Appendix I)
 - **Participant**
 - Pencil
 - Exercise III.C. (Appendix I)
 - H.O. #1, 13 SP&C Work Planning Factors (Appendix L)
 - H.O. #1, 13 SP&C WPFS (Appendix L)
 - Guide for Discussion Group Leaders (Appendix B)
5. **References:**

- Instructor guide, Section III.C
- Instructor guide, Appendix B
- Instructor Guide, Appendix I
- Instructor Guide, Appendix L

6. **Process:**

 A. Preparation

 1. **Review:**
 - Instructor Guide, Section III.C.
 - Appendix L, 13 SP&C Work Planning Factors, H.O. #1
 - Appendix I. Exercise Worksheet III.
 2. Identify and relate each part of the exercise and supporting materials.
 3. Review suggested presentation strategy (below)
 4. Prepare viewgraph of associated worksheet for use in presentation or, predraw easel pad sheets.
 5. Personalize introduction, content, summary, and transition.
 6. Complete an Instructor copy of the Worksheet (suggest at least one element per WPF).
 7. Prepare WPF assignments to pass out to each small group (3 x 5 cards)
 8. Rehearse with exercise materials in the training environment.
 9. Xerox sufficient copies of materials for trainee use.

 NOTE: Since some WPFS have more CS #4 related elements than others, care must be taken to ensure balanced distribution of effort among table groups.

 B. Presentation Strategy

 1. Introduce the exercise
2. Provide following exercise instructions:

 o General
 Continue with same table groups established for
 III.B., Assembly Level Operations
 Refer to Student Workbook, Section III.C.
 One worksheet, Work Planning Factor and Elements
 Identification, Block Level Operations
 Review worksheet assigned WPFS & identify CS #3 -
 specific elements
 Refer H.O. #1, Analyze pertinent content
 Be prepared to report the table group’s findings when
 asked.
 Will have use of lectern and overhead projector or
 chalk/white board, easle pad
 Time: 45”

 o Worksheet Completion

 Column 1: Check the WPFS that CS #4 specific.
 Column 2: List CS #4 specific elements of the WPF
 Column 3: Indicate how SP&C near-term Planning and
 Scheduling efficiency can be improved

 o Demonstrate completion of one element under one WPF
 o Ask for questions related to these instructions

3. Pass out WPF assignments
 o Start exercise time by stating “You should be ready to
 report after 30” from NOW.

4. After 25” designate one table group to report. Have other
 groups complete lists and prepare to add to the report.

5. Facilitate and guide report and discussion to draw out
 improvements and additions to the designated report.
CONSTRUCTION STAGE #4 BLOCK LEVEL

<table>
<thead>
<tr>
<th>Work Planning Factor</th>
<th>CS #4 Specific Elements</th>
<th>How SP&C Efficiency can be improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Physical Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Specs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Time/Manpower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Minimizing Rework</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Handling/Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Disruption Interference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Schedules</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX J

EXERCISE III.D., ZONE LEVEL OPERATIONS:
WORK PLANNING FACTOR AND ELEMENTS IDENTIFICATION

1. **Purpose:** Identify the specific elements of SP&C Work Planning Factors that associate them with Construction Stage #5, Zone Level Operations.

2. **Product:** A list of SP&C Work Planning Factors associated specifically with Construction Stage #5, Zone Level Operations relevant to this shipyard. The list may be used by participants as a job aid in future planning team efforts.

3. **Instructional Strategy:**
 - **Method:** Participant-led small group discussion w/report
 - **Media:** Viewgraphs, or chalk/white board, or easel pad, worksheet
 - **Participant Assignment:** Participate in small group discussion, complete own worksheet contribute to overall discussion.

4. **Resources Required:**
 - **Instructor**
 - Viewgraph example of Exercise
 - Worksheet SWB III.D
 - Overhead projector
 - Viewgraph pens
 - Exercise III.D. (Appendix J)
 - **Participant**
 - Pencil
 - H.O. #1, 13 SP&C Work Planning Factors (Appendix L)
 - Guide for Discussion
 - Group Leaders (Appendix B)
5. References:

- Instructor Guide, Section III.D.
- Instructor Guide, Appendix B
- Instructor Guide, Appendix J
- Instructor Guide, Appendix L, 13 SP&C Work Planning Factors, H.O. #1

6. Process:

A. Preparation

1. Review:
 - Instructor Guide, Section III.D.
 - Appendix L, 13 SP&C Work Planning Factors, (H.O. #1)
 - Appendix J, Exercise Worksheet III.D.
2. Identify and relate each part of the exercise and supporting materials
3. Review suggested presentation strategy (below)
4. Prepare viewgraph of associated worksheet for use in presentation or, predraw easel pad sheets.
5. Personalize introduction, content, summary, and transition.
6. Complete an Instructor copy of the Worksheet (suggest at least one element per WPF).
7. Prepare WPF assignments to pass out to each small group (3 x 5 cards).
8. Rehearse with exercise materials in the training environment.
9. Xerox sufficient copies of materials for trainee use.

NOTE: Since some WPFS have more CS #5 related elements than others, care must be taken to ensure balanced distribution among table groups.

B. Presentation Strategy

1. Introduce the exercise
2. Provide following exercise instructions:
 o General
 Continue with same table groups established for
 III.C., Block Level Operations Exercise
 Refer to Student workbook, Section III.D.
 One worksheet, Work Planning Factor and Elements
 Identification, CS #5, Zone Level Operations
 Review worksheet assigned WPFS & identify CS #5 -
 specific elements
 Refer H.O. #1, analyze pertinent content
 Be prepared to report the table group’s findings when
 asked.
 Will have use of lectern and overhead projector or
 chalk/white board, easel pad.
 Time: 45"

 0 Worksheet Completion

 column 1: Check the WPFS that CS #5 specific.
 Colmn 2: List CS #5 specific elements of the WPF
 column 3: Indicate how SP&C near-term Planning and
 Scheduling efficiency can be improved

 o Demonstrate completion of one element under one WPF
 0 Ask for questions related to these instructions

3. Pass out WPF assignments
 o Start exercise time by stating “You should be ready to
 report after 25” from NOW.

4. After 20” designate one table group to report. Have other
 groups complete lists and prepare to add to the report.

5. Facilitate and guide report and discussion to draw out
 improvements and additions to the designated report.
<table>
<thead>
<tr>
<th>Work Planning Factor</th>
<th>CS #5 Specific Elements</th>
<th>How SP&G Efficiency can be improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Physical Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Specs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Time/Manpower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Minimizing Rework</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Handling/Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Disruption Interference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Schedules</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX K
EXERCISE IV, SP&C WORK PLANNING

1. **Purpose:** Provide a joint planning experience in which both managers and SP&C supervisors apply the 13 SP&C Work Planning Factors to a case incident and develop a plan for accomplishing ship construction work.

2. **Product:** List of planning considerations and actions related to a ship construction case incident.

3. **Instructional Strategy:**
 - **Method:** Small group discussion with report
 - **Media:** Viewgraphs, or chalk/white board, or easel pad, case study
 - **Participant Assignment:** Participate in small group planning session, complete own notes, contribute to general discussion session.

4. **Resources Required:**

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewgraph Examples</td>
<td>Pencil</td>
</tr>
<tr>
<td>Overhead projector</td>
<td>Eraser</td>
</tr>
<tr>
<td>Viewgraph pen</td>
<td>Lined tablet paper</td>
</tr>
<tr>
<td>Exercise IV, (Appendix K)</td>
<td>Exercise IV worksheets and Data Sheet (Appendix K)</td>
</tr>
<tr>
<td>Instruction for Guide Appendix B</td>
<td>H.O. #l, 13 Work Planning Factors (Appendix L)</td>
</tr>
<tr>
<td>Instructor Guide Appendix L, 13 SP&C Work Planning Factors</td>
<td></td>
</tr>
</tbody>
</table>
5. **References**
 - Instructor Guide, Section IV
 - Instructor Guide, Appendix B
 - Instructor Guide, Appendix K
 - Instructor Guide, Appendix L
 - Supporting Data Sheet

6. **Process**

 A. Preparation

 1. **Review:**
 - Instructor Guide, Section IV
 - H.O. #1, 13 SP&G Work Planning Factors
 - Exercise IV (Appendix K)
 - Review presentation methods (Appendix B)
 - Guided discussion
 - Question techniques

 2. Identify and relate each part of the exercise and supporting materials

 3. Review suggested presentation strategy (below)

 4. Prepare viewgraphs for use in presentation or, predraw easel pad sheets

 5. Personalize the introduction, content, summary, and transition.

 6. Identify and designate a recorder to assist instructor in the exercise

 7. Rehearse with exercise materials in the training environment

 8. Xerox sufficient copies of Solution Handout #3 for participant use.

 B. Presentation Strategy

 1. Establish discussion groups by integrating returning top management personnel into existing groups, or constitute entirely new groups. Ensure top managers are divided among the groups.
2. Provide each discussion group with the Handout #3, Exercise IV, SP&C Work Planning Exercise.
3. Allow time for the trainees to read through Handout #3
4. State process for completing the requirements.
5. Remain available to answer questions from any table.
6. At appropriate time 5" before discussion group report, designate most advanced group to present its solution.
7. Have designated group leader present findings (product) from lectern.
8. At conclusion of designated presentation, ask for questions/inputs from the entire group.
 o Have group fill in any blank spots
 o Remind participants to make notes
 o Ask if there is a better way
 o Ask if anyone’s solution differs.
9. Go on to second requirement. Repeat system used for first requirement, but 5" before time to report, select a different group to present the report.
10. When appropriate, summarize results of the two exercises:
 o Mention objectives achieved by group
11. Time: Approximately 2 Hrs.
12. Announce next sequential activity
 o Complete evaluations
 o Award certificates
 o Check out
APPENDIX K
EXERCISE IV, SP&C WORK PLANNING

BACKGROUND

You work for Shipyard "A.B.C." located on the Mid-Atlantic seaboard. A.B.C. is building six (6) UNO-99 class ships for an allied Navy. These are your hulls, numbers: 101-102-103-104-105-106. A.B.C. has some subassembly work being performed by a vendor "D.E.F.". These subassemblies include six (6) complete bow units for hulls 101-106. The total interior coatings on the Bow Unit for H-103 have been rejected due to unsatisfactory application during the past winter. A.B.C. has agreed to accept shipment and correct the coating problem after arrival of Bow at A.B.C. yard. D.E.F. Co. will be back charged accordingly.
APPENDIX K
EXERCISE IV. SP&C WORK PLANNING EXERCISE

FIRST REQUIREMENT

Develop complete SP&C Planning to remove all the rejected coating from the interior of Bow Unit H-103; reprepare and recoat all areas to comply with specifications. See supporting Data Sheet.

A. Specifically you should project/list:

1. Planned method to accomplish this (include safety planning)

2. SP&C labor required
 o People per gang
 o Gangs per shift
 o Shifts of work
 o Total SP&C labor (hours)

3. Support labor required
 o Identify trades
 o Number of shifts
 o Total support labor (Hours)

4. Identify where SP&C work is to be done
 o In-yard, blast house, on-blocks, on-ship

5. List materials required
 o Tons abrasive
 o Gallons paint (by type)
 o Other (list & estimate quantity)

6. List materials (residuals) and disposition of same
7. List equipment required in relation to your work plan
 - At the blast house
 - On-yard
 - On-blocks
 - On-ship

8. List personnel equipment required for SP&C operators

9. Identify overhead type support costs such as
 - Compressed air
 - Others

10. List Inspection Plan (ref: SP&C)
 - When
 - who
 - why

11. Submit information to cost department to prepare back charge
 billing to D.E.F. Co.
APPENDIX K
EXERCISE IV. SP&C WORK PLANNING
SECOND REQUIREMENT

Develop complete SP&C planning to prepare and coat the exterior underwater hull (Keel to D.L.L.) in preparation for launching. Consider a total underwater coating system including anti-fouling paint. See Supporting Data Sheet.

A. Specifically you should project:
1. Method to accomplish this and precautions
2. SP&C labor required
3. Support labor total hours
4. List materials required
 o Abrasives
 o Paint
 o Other
5. List clean up hours
 o SP&C trades
 o Others
6. List disposition of residuals
7. List equipment required
8. List inspection plan
 o who
 o When
 o why
1. This bow unit contains 6 compartments.
 - Windlass and rope handling room @ 10,000 Sq. Ft. area
 - Paint locker and carpenter shop @ 3,000 Sq. Ft. each
 - Boatswain stores @ 3,500 Sq. Ft. each
 - Chain locker @ 2,500 Sq. Ft. each
 - Fore peak tank @ 6,000 Sq. Ft. each

2. These hulls are 600 Ft. long x 80 Ft. Beam x 60 Ft. Deep. Deep load line (D.L.L.) = 30 Ft. (F.P. to A.p.). The underwater keel to D.L.L 110,000 Sq. Ft. (Approx.).

3. Paint specification requirements are:
 - All steel to be abrasive blasted and coated with one shop coat of inorganic zinc primer at one to two roils (D.F.T.)
Salt water tanks to be coated with one coat of epoxy primer @ 2 roils t .5 mil over intact shop primer. Follow this with one finish coat of red epoxy at a D.F.T of 6 roils t 1 mil for a total D.F.T. of 10 roils t 2 roils

Use DEVOE 201 primer or equal
Use DEVOE 230 red epoxy or equal

Storerooms and similar spaces to be coated with one coat DEVOE 201 primer (tie coat) at approximately 2 mil D.F.T. followed by one finish coat of alkyd resin paint (approved quality trade mark)

Exterior hull to be coated as follows

Keel to D.L.L.

Blast and apply 2 coats of DEVOE 201 primer @ 2 mil D.F.T. per coat. Apply one top coat of DEVOE 230 epoxy (red) at 8 roils D.F.T. Apply on coat DEVOE 2/3 anti-fouling @ 2 roils D.F.T. total thickness 14 roils + 2 roils

D.L.L. to Rail

Sweepblast existing shop primer. Apply one coat DEVOE 201 primer (tie coat) @ 2 roils D.F.T. followed by two coats silicone alkyd haze gray @ 2 roils each D.F.T. for total film of 7 roils D.F.T+ 1 mil.
Lay off and paint in name - hailing port, draft figures, and water line markings.

4. Schedule (Excerpts)

Bow Unit H-130 will arrive at A.B.C. shipyard Saturday 10-4-86 (via barge).

Revised erection schedule calls for start erection of Bow Unit H 103 no later than Monday, 10-20-86 and finish erection by Thursday, 10-30-86.
Start SP&C work on underwater hull on Monday, 10-13-86 (erection work finished except the Bow Unit).

Launching, on Saturday, 11-8-86

No re-docking scheduled after launching.
APPENDIX K
EXERCISE IV. SP&C WORK PLANNING EXERCISE

FIRST REQUIREMENT

USE THESE SHEETS TO LIST DATA FOR FIRST REQUIREMENT.

1. Planned method to accomplish this (include safety planning)
EXERCISE IV. SP&C WORK PLANNING EXERCISE

FIRST REQUIREMENT

2. SP&C labor required
 - People per gang
 - Gangs per shift
 - Shifts of work
 - Total SP&C labor (hours)

3. Support labor required
 - Identify trades
 - Number of shifts
 - Total support labor (Hours)

4. Identify where SP&C work is to be done
 - In-yard
 - blast house
APPENDIX K
EXERCISE IV. SP&C WORK PLANNING EXERCISE

FIRST REQUIREMENT

4. Identify where SP&C work is to be done (cont.)
 - On-blocks
 - On-ship

5. List materials required
 - Tons abrasive
 - Gallons paint (by type)
 - Other (list & estimate quantity)

6. List materials (residuals) and disposition of same

7. List equipment required in relation to your work plan
 - At the-blast house
APPENDIX K
EXERCISE IV. SP&C WORK PLANNING EXERCISE

FIRST REQUIREMENT

7. List equipment required in relation to your work plan (cont.)

 o On-yard

 o On-blocks

 o On-ship

8. List personnel equipment required for SP&C operators
APPENDIX K
EXERCISE IV. SP&C WORK PUNNING EXERCISE

FIRST REQUIREMENT

9. Identify overhead type support costs such as
 - Compressed air
 - Others

10. List Inspection Plan (ref: SP&C)
 - When
 - who
 - why
APPENDIX K
EXERCISE IV. SP&C WORK PLANNING EXERCISE

FIRST REQUIREMENT

11. Submit information to cost department to prepare back charge billings to D.E.F. c o .
APPENDIX K
EXERCISE IV. SP&C WORK PLANNING
SECOND REQUIREMENT

USE THESE SHEETS TO LIST DATA FOR SECOND REQUIREMENT

1. Method to accomplish this and precautions

2. SP&C labor required

3. Support labor total hours

4. List materials required
 o Abrasives
4. List materials required (cont.)
 - Paint
 - Other

5. List clean up hours
 - SP&C trades
 - Others
6. List disposition of residuals

7. List equipment required

8. List inspection plan
 o who
 o When
 o why
APPENDIX L
Appendix L

Thirteen SP&C Work Planning Factors

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL DESCRIPTION</td>
<td>(of the item to receive SP&C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Affects - Handling, transportation - Quantity of labor and material - Schedules and work location</td>
<td>For off-ship SP&C work - put primer coat on small pieces/plates/brackete/foundatlona/pipe hangera/nuta/bolts/washera doors/hatches, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHAPE AND APPURTENANCES</td>
<td>Affects - Handling, positioning - Ventilation, Staging, lighting, access</td>
<td>Put intermediate coat(s) on intermediate size PCS subassemblies, modules, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEIGHT</td>
<td>Affects - Handlings (liftings) movings</td>
<td>Put final coats on large pre-erection assemblies and aux. items such as masts/king posts/smokestacks/elevators</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPENINGS</td>
<td>Affects - Ventilation, lighting accessibility/protection/staging/number workers/cleanup/curing</td>
<td>Generally more opening preferred except "In-yard" requires more protection to blank the excess openings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE MATERIAL</td>
<td>Whether Mild, HY-80 Steel, S.T.S. Aluminum Stainless Steel, other</td>
<td>Put primer on as soon as structural erection is complete in area</td>
</tr>
<tr>
<td></td>
<td>Affects - Selection of SP&C extent of protection type of blast media</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CURRENT MATERIAL CONDITION</td>
<td>New steel, w/wo millscale, Rusty old paint, Toxic/non-toxic, Crease, 011, Special contaminations</td>
<td>Impacts type clearing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impacts type personnel protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impacts cleanup and disposition of residuals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Impacts degree of disruption to</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOTE</td>
<td>All plate to be blasted and coated 3/4 mil with pre-erection primer</td>
<td></td>
</tr>
<tr>
<td>Location (where the SP&C work will be performed)</td>
<td>Details</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>OFF-YARD</td>
<td>Vendor or supplier items that may arrive already coated - partially coated or not coated at all. Planner from design or purchasing should have these routed on arrival to provide for in-house SP&C. These items must be receipt inspected and SP&C processed as required. Requires vendor structural items to be primer coated prior to delivery as much as possible. Require vendor outfitting items to be finished coated prior to delivery as much as possible.</td>
<td></td>
</tr>
<tr>
<td>IN-YARD</td>
<td>Units that are fabricated and SP&C processed - generally outside and exposed to the environment - affects community environment, clean water, fumes and fall out noise - protection - Affects company environment offices/trades/etc. Exterior environment impacts SP&C efficiency and quality. Minimize in-yard SP&C work Utilize a combination of preconstruction primer and subassembly units done in Blast Houses. Planners and SP&C Personnel should collaborate on break out size of units for most efficient SP&C work Where to SP&C Primer Where to SP&C Intermediate Where to SP&C final</td>
<td></td>
</tr>
<tr>
<td>IN-SHOP</td>
<td>Units that are SP&C coated in a Blast House - metal finishing paint shop or similar in house company facility. Generally the preferred SP&C method for total cost control when proficiently planned and processed. Employ computers and blast shop coordinators to regulate the short-term work flow - avoid peaks and valleys and provide priority to the most critical units in support of various project schedules, consistent with production line flow schedules.</td>
<td></td>
</tr>
</tbody>
</table>

This location is ideal for parts, pieces and small to medium size subassemblies or modules. There is some trade-off in total quality due to the mandatory rework of structural make-up of component parts.
Appendix L
Thirteen SP&C Work Planning Factors

LOCATION (cont.)

<table>
<thead>
<tr>
<th>On-Ship, External</th>
<th>SP&C Work performed on the exterior surfaces of ships - superstructure, decks, side shell, bottom</th>
<th>The location of the ship at the time of SP&C work must not be overlooked for toxicity. Test sample existing paint/coatings for toxicity. Check application of power tool cleaning. Apply a test patch of SP&C (recoating)</th>
</tr>
</thead>
</table>
| | SP&C methods, & materials coating/methods & materials, cleanup/methods & materials, staging, support functions | **Impacts** - environmental staging access **Use portable air compressors for higher air pressure**
| | | - faster cutting
| | | - uses less grit |

<p>| On-Ship, Interior | SP&C work performed on the interior surfaces of: ships tanks/voids machinery/spaces/bilges storerooms hotel spaces | Impacts - access ventilation lighting staging level of Manning method of SP&C work Use airless spray paint equipment vs. atomizing or other application tools. Strive for SP&C work packages that schedule a block of work (tanks (compts) (spaces) or area at one time to minimize support functions and disruption. |</p>
<table>
<thead>
<tr>
<th>SUPPORT Functions usually supplied by in-house service trades other than the SP&C trade personnel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HANDLING Does the subject SP&C work require lifting/turning/moving/hanging? If so, size and type of handling equipment. Number of moves what service trade support is required? required.</td>
</tr>
<tr>
<td>Does the subject SP&C work require transporting? If so, what type of transportation is required? To and from blast house. To temp. storage before or after SP&C processing. To other yard locations for SP&C.</td>
</tr>
<tr>
<td>UTILITY SERVICES Compressed air for power cleaners, blast equipment, paint spray pumps, grinders, etc. Services readily available for SP&C schedule.</td>
</tr>
<tr>
<td>Air Gas Water Gas Electric Power Lighting Set up and operation by SP&C personnel. Set up by support personnel.</td>
</tr>
<tr>
<td>For cleaners, vacuum machines Fixed lighting to work by.</td>
</tr>
</tbody>
</table>
| VENTILATION For personal health, comfort, safety Time to perform SP&C Safety of personnel.
For confined space explosion protection. Other trade support.
For coating/drying/curing. |
| Natural or forced ventilation. |
| STAGING Type and quantity For access and maneuvering.
When and how to set up/initiate Blocking other work.
When and how to take down/remove Necessary to SP&C operations and Inspection. |
| Minimize temporary stage construction - use fixed staging - a lifters cranes with personnel floats, etc., whenever you can.
Never enter any tank or space that has just been opened until gas tester or safety rep clears apace for entry and designates type of personnel protection require. |
SUPPORT (cont.)

<table>
<thead>
<tr>
<th>Category</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLEANUP</td>
<td>What type cleanup Impacts schedule length What area or space and when? What magnitude? Impacts equipment repaired Toxic or not? What disposal of residuals?</td>
</tr>
<tr>
<td>Chemist</td>
<td>When required - why? Impacts schedule time for confined spaces, for tanks just opened, and highly flammable coatings. Who calls/alerts?</td>
</tr>
<tr>
<td>Gas Tester</td>
<td>What is the authority level of chemist - of gas tester?</td>
</tr>
<tr>
<td>Safety Engr.</td>
<td>When is each required - why? Impacts schedule time and quality Who calls/contacts each - why?</td>
</tr>
<tr>
<td>Lab Services</td>
<td>Authority/responsibility of each?</td>
</tr>
<tr>
<td>VENDOR REPS.</td>
<td>Involved for quality and safety enhancement of the coating work. Impacts quality, schedule time, and potential rework.</td>
</tr>
<tr>
<td>Paint Supplier</td>
<td>Communication with vendors, suppliers, and equipment reps. who communicates need for either/each</td>
</tr>
<tr>
<td>Equipment Supplier</td>
<td>SP&C operators work with supply rep. Authority/responsibility of each</td>
</tr>
</tbody>
</table>
SP&C SPECIFICATIONS

SOURCES OF SPECIFICATIONS OR SP&C INSTRUCTIONS

- **Customer detail specifications**
- **Engineering** - SP&C instructions taken from known as “Paint Schedule” (paint blueprint)
- **SP&C work package data** taken from above two sources

TYPE OF COATING REQUIRED AND ITS IDENTIFICATION

<table>
<thead>
<tr>
<th>Generic Family</th>
<th>Epoxy, Inorganic Zinc, Urethane, Latex (water base), coal tar compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
<td>Combustible, Flammable, Highly Flammable, Non-Toxic, Toxic, Poisonous, Non-Combustible, Non-Flammable</td>
</tr>
</tbody>
</table>

Coating characteristics are obtained from:
- Product Data Sheets
- Safety Data Sheets

Both should be supplied by paint vendor or manufacturer.

METHOD OF APPLICATION

- **Brush/roll/spray/dip/flow:** combination of above.
- Spray application is considered the current basic application method - supported by brush touch up and brush coating of welds, etc.

Impacts rate of production, cure time, equipment, and manpower.

NUMBER OF COATS

- Generally two or more coats required.
- At least one prime coat and one top coat

Two coat systems expand less initial application labor than three coat systems and expedite items through blast paint rooms.

Two coat systems are quicker, but usually require more touch-up and more rework so that the three coat system often proves best even at the frame total dry rolls.

Do not start mixing and coating without reviewing product data sheets and safety data sheets.

Always check the shelf life date on paint can - use only known good paint to avoid costly problems.

Use airless spray coating as the prime equipment supported by atomizing spray; brush/roller touch-up work.

Use three coat system where permissible on most off-shore work.
- This gives flexibility to job
- Potential for reduced rework
- Overall lower cost and better quality
Thirteen SP&C Work Planning Factors

<table>
<thead>
<tr>
<th>FILM THICKNESS</th>
<th>Recommended wet film thickness is obtained from product data sheet; is important to monitor at application to ensure that each coat dries to specified dry film thickness to end up with specified total dry film. A typical epoxy system may require: 2 Dry Mils of primer, 10 Dry Mils of top coat, 17 Dry Mils total.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPACTS</td>
<td>Impacts quality, control, application time, potential rework, and equipment required. Explore your options and apply same thickness on 3 coats: 2 Dry Mils of primer, 6 Dry Mils intermediate coat, 4 Dry Mils top coat (later).</td>
</tr>
<tr>
<td>DRIED</td>
<td>Drying/curing impact when/where/how long it takes to do a specific job. Provide accelerated curing environment in blast paint houses - heat, ventilation, humidity control.</td>
</tr>
<tr>
<td>DRYING/CURING</td>
<td>Drying generally refers to time between coats. Curing refers to completion of chemical reactions and/or drying and ready for intended service function. Long dry/cure can bog down blast house operations.</td>
</tr>
<tr>
<td>WHO/WHEN/WHERE</td>
<td>Inspections may be formal or informal, in-process or upon completion. Required inspections influence quality and progress of SP&C work. Unnecessary inspections generate confusion, overlap and rework, and contribute to higher costs. Make maximum use of your in progress inspections. Minimize formal planned inspections and keep those near end of job.</td>
</tr>
<tr>
<td>INSPECTION</td>
<td>Coatings serve a variety of purposes. The SP&C objective impacts when/where/how coatings are applied and must be considered in long and short-term planning in relation to the SP&C system and to the service function of the paint/coating. Use wet and dry film gages.</td>
</tr>
<tr>
<td>COATING OBJECTIVES</td>
<td>Purposes - corrosion protection, cosmetic anti-fouling, weather resistance. Sanitation or a combination of these. Monitor total film thickness. Too thick is worse than too thin because it consumes excess material and generates re-work thus using more labor - resulting in higher costs overall.</td>
</tr>
</tbody>
</table>
Appendix L
Thirteen SP&C Work Planning Factors

SP&C SPECIFICATIONS (cont.)

<table>
<thead>
<tr>
<th>Surface Preparation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>All surface prep falls under one of these classes: manual cleaning, power cleaning, blasting, chemical cleaning or combinations thereof.</td>
</tr>
<tr>
<td>Blast Media</td>
<td>Sand, metal shot, metal grit, Black Beauty resin grit, etc.</td>
</tr>
<tr>
<td>Profile/Anchor Pattern</td>
<td>Dries the spec or paint system require specific profile, anchor pattern?</td>
</tr>
<tr>
<td>Options</td>
<td>Does the spec or system allow any options such as use of mechanical needle guns in lieu of blasting on small areas?</td>
</tr>
</tbody>
</table>

Methods influence when/where/why SP&C work can or cannot be accomplished.

Utilize efficient methods that meet minimum spec. required.

Blast profile should be in accord with product data sheet or as rule of thumb 1/4 to 1/3 of the first coat thickness (dry film).

Example: If you wish to apply 3 mils dry film of a given primer that is listed at 50% solids, then you need a 1 mil profile (anchor pattern) on which you apply 5 wet mils of paint that will dry to 3 mils for a well bonded primer.

Use the needle gun option where permissible to avoid spot blasting on large units and on ship.
Thirteen SP&C Work Planning Factors

5 TIME/MANPOWER

<table>
<thead>
<tr>
<th>Factor</th>
<th>Description</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANPOWER PLANNING</td>
<td>Objective - accomplish acceptable SP&C Impacts schedule and cost of job in the shortest practical time with minimum manpower used and minimum rework required.</td>
<td>Planners and operators must recognize that some short-term sacrifices must occasionally be made in time and manpower to support the team objective of overall shortest time and lowest manpower. These are management decisions and line supervisors/planners should not feel guilty at resulting higher costs.</td>
</tr>
<tr>
<td>ALLOTED TIME PER SCHEDULE</td>
<td>Planners allow target times to process designated sizeable units of work through fixed operations.</td>
<td>Planners should communicate with SP&C reps who attend planning meetings.</td>
</tr>
<tr>
<td>AVAILABLE MANPOWER</td>
<td>Planners should communicate with each other as well as SP&C operators to look at total target work load and project manpower needs.</td>
<td>Availability of manpower is more a planning problem between SP&C supervisors and dept. heads.</td>
</tr>
<tr>
<td>SPACE RESTRICTIONS</td>
<td>Affects the type of equipment used and number of workers used at a time, thus controls elapsed time to do job and influences total manhours.</td>
<td>Impacts SP&C facilities - blast/coat houses - etc. and work planned for inside.</td>
</tr>
<tr>
<td>LABOR SKILLS LEVEL</td>
<td>Affects the elapsed time of job in relation to the average skill of the operations and impacts the total cost in similar manner.</td>
<td>Impacts production rate</td>
</tr>
<tr>
<td>SP&C OPERATORS ESTIMATED TIME</td>
<td>The SP&C operators - foremen and his support elements must recompile all input work from several sources to determine his weekly and daily work plan, thus producing his estimated time on specific tasks/units.</td>
<td>Training is a full-time part of SP&C operations. Each foreman should constantly have a percentage of new people blended in</td>
</tr>
<tr>
<td>AND LABOR TO COMPLETE</td>
<td></td>
<td>SP&C operators should keep a log of estimated times vs. actual times to complete each SP&C work packages. These should then be made available to and/or discussed with long-term planners, schedulers and estimators.</td>
</tr>
</tbody>
</table>

Planners and operators must recognize that some short-term sacrifices must occasionally be made in time and manpower to support the team objective of overall shortest time and lowest manpower. These are management decisions and line supervisors/planners should not feel guilty at resulting higher costs.

Always have one or more backup people trained or in training for each spot on your team. An ideal gang would be composed of:

- 35% long-time reliables
- 35% experienced mechanics
- 30% new people in training
TIME/MANPOWER (cont.)

<table>
<thead>
<tr>
<th>SCHEDULE TIME</th>
<th>ESTIMATED TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled time is generally a broader target or guide established at earlier planning levels. Estimated time is a short-term detail time estimate that needs to be as accurate as possible and feed back to planning meeting so as to make on course corrections in schedules, both current and future schedules.</td>
<td></td>
</tr>
<tr>
<td>Impacts overall SP&C schedule performance when scheduled time and estimated times are significantly different.</td>
<td></td>
</tr>
<tr>
<td>The compatibility of scheduled time and estimated time is a measure of the total team experience and ability in many situations.</td>
<td></td>
</tr>
<tr>
<td>This compatibility plus a recognized system of SP&C work in any given shipyard will do much to improve production and reduce costs.</td>
<td></td>
</tr>
<tr>
<td>If the planners schedule and time coincides with the SP&C operators schedules and time then output should he on schedule. Of course, the above rarely exists because the SP&C operators have to deal with SP&C planning coming from several sources, such as project managers, different fabrication shops, different planners, etc., and the lack of standard units of SP&C work.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix L

Thirteen SP&C Work Planning Factors

MINIMIZING SP&C REWORK

<table>
<thead>
<tr>
<th>OPTIONS:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>As preconstruction primer when steel arrives in shipyard</td>
</tr>
<tr>
<td>(2)</td>
<td>Small subassembly units/pieces on the yard</td>
</tr>
<tr>
<td>(3)</td>
<td>Subassembly/modules/pieces in the blast and paint shop</td>
</tr>
<tr>
<td>(4)</td>
<td>Large subassembly units prior to on-ship erection</td>
</tr>
<tr>
<td>(5)</td>
<td>Post-erection/on-ship application</td>
</tr>
</tbody>
</table>

A. The costliest part of SP&C blast work is the removal and disposition of blasting residuals. Therefore, the prime objective is to avoid or at least minimize blasting on ship.

B. Application of an accepted preconstruction primer-applied at the time of receipt of steel in the yard is a desired step when it is permissible within the spec. and management system.

c. Consider the use of a preconstruction Primer in some cases as a preservative and color assist to other trades even if it must be blasted off to use the spec. primer.

<table>
<thead>
<tr>
<th>OPTIONS:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Small subassembly units/pieces on yard</td>
</tr>
<tr>
<td>(2)</td>
<td>Subassembly/modules/pieces in the blast and paint house</td>
</tr>
<tr>
<td>(3)</td>
<td>Large subassembly units prior to on-ship erection</td>
</tr>
<tr>
<td>(4)</td>
<td>Post-erection/on-ship application</td>
</tr>
</tbody>
</table>

A. Application of intermediate coat(s) should be considered for small subassemblies done in blast and paint houses or for large subassembly units processed prior to erection on ship.

Accomplish as much off-chip SP&C work as permissible and practical within the specification and system constraints.

Plan each step of SP&C as close as permissible and practical to the completion of other trades work, especially fitting, chipping, cutting, welding, straightening, piping, wiring, etc.

Monitor the status of other trade work; see for yourself that other trades work is ready for SP&C coating at the intermediate or final coat level.

Use light colors of primer and intermediate coats where the system permits to highlight and help correct unfinished structural/outfitting prior to application of the final coat; and to improve illumination in construction areas and spaces.
Thirteen SP&C Work Planning Factors

6 MINIMIZING SP&C REWORK (cont.)

<table>
<thead>
<tr>
<th>OPTIONS:</th>
<th>A. Final coat(s) should be applied to most non-structural components off-ship in paint chop or blast/paint houses.</th>
<th>B. Final coat(s) to structural components should be applied off-ship to large subassembly units or on-ship after completion of other work depending on spec. and system requirements. This is a foremen's/planner's consideration, but not their decision.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Small subassembly units/pieces on yard</td>
<td>(5) When "quality" and/or "coating integrity" is the priority consideration then and only then should on-ship SPEC operations considered as the best choice for the bulk of SP&C work. (This eliminates patching in of make-up seams, joints, etc. - permits full continuously covered coats of primer, intermediate and final painting.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix L
Thirteen SP&C Work Planning Factors

MATERIAL

For Surface Preparation - Part of SP&C: Impacts:

1. Abrasive steel shot
2. Abrasive steel grit
3. Combination of (1) & (2) above
4. White sand
5. Synthetic abrasive (byproduct of other industrial operations)
6. Aluminum oxide
7. Sandpaper and similar mfg. abrasives
8. Chemical cleaners - citric acid, phosphoric acid, etc; soap type cleaners
9. Masking tape, etc.

For Painting or Coating Part

1. Alkyd resin paints
2. Vinyl resin paints
3. Inorganic zinc coatings
4. Epoxy resin coatings
5. Polyurethane paints
6. Coatings - coal tar products
7. Latex (water base) paints
8. Other similar paints, coatings
9. Solvent cleaners
10. Solvent thinners
11. Masking tape

NOTE: Refer to safety heading on sheet () of these considerations

SAFETY

Is this a new material or one I am familiar with/have used before?

Is there a safety data sheet, and who has it?

Now do I check the safety data sheet?

SP&C personnel have limited options to decide on the use of cleaning or coating materials - the choices are locked in earlier. You DO HAVE and MOST USE the option of communicating back through your bosses and/or counter parts relative to materials that do not perform well and the need for better performing materials.

Always insist on at. product data and safety sheets. Review these for each SP&C job.

Always check the shelf life date - insist on newly packaged coatings.

Get control of and maintain a 3 to 5 day supply of SP&C materials for your gang.

Who else is using same type material in same or close by area? Watch this for performance clues and for material supply control.
Thirteen SP&C Work Planning Factors

EQUIPMENT

<table>
<thead>
<tr>
<th>Type for SP&C Support Operations (Examples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fork lift</td>
</tr>
<tr>
<td>Front-end loaders</td>
</tr>
<tr>
<td>Cranes</td>
</tr>
<tr>
<td>Conveyors</td>
</tr>
<tr>
<td>Grit-hoppers</td>
</tr>
<tr>
<td>Air compressors</td>
</tr>
<tr>
<td>Air drivers</td>
</tr>
<tr>
<td>Dehumidifiers</td>
</tr>
<tr>
<td>Manlifters</td>
</tr>
<tr>
<td>Rail cars</td>
</tr>
<tr>
<td>Tractor-trailers</td>
</tr>
<tr>
<td>Trucks</td>
</tr>
<tr>
<td>Aux - heaters</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type for Cleaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrasive blast equipment</td>
</tr>
<tr>
<td>- Automatic</td>
</tr>
<tr>
<td>- Manual</td>
</tr>
<tr>
<td>- Fixed portable</td>
</tr>
<tr>
<td>- Pneumatic/centrifugal types</td>
</tr>
<tr>
<td>- Vacu/veyors/vacuum cleaners</td>
</tr>
</tbody>
</table>

As a rule of thumb for discussion of equipment:

- Centrifugal abrasive wheels will predominate in small blast machines and small blast grit recycling rooms.
- Manually operated blast nozzles with expendable abrasives (non-recycling) usually prevail for off-ship exterior work and all on-ship blasting work.

Portable air compressors generally provide cleaner and higher pressure air for blasting, thus they reduce:

- Elapsed time
- Labor time
- Blasting material consumed per unit of work output.

- Examples:
 - Dehumidifiers
 - Manlifters
 - Rail cars
 - Tractor-trailers
 - Trucks
 - Aux - heaters
Appendix L
Thirteen SP&C Work Planning Factors

8 EQUIPMENT (cont.)

<table>
<thead>
<tr>
<th>TYPE FOR COATING</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray paint</td>
<td>- Airless spray paint pump type equipment will perform better on viscous coatings and those to be applied in thicker wet films like 6 or more wet film mils per coat.</td>
</tr>
<tr>
<td></td>
<td>- Air/airless</td>
</tr>
<tr>
<td></td>
<td>- Electrostatic</td>
</tr>
<tr>
<td></td>
<td>- (Combination</td>
</tr>
<tr>
<td>Brush/roll (power or manual)</td>
<td>- A combination of airless and low pressure atomizing spray equipment works better on interior compts. and machine spaces working in and around obstructions, such as, pipes, cable runs, electronic consoles, machinery, furniture, etc.</td>
</tr>
<tr>
<td>Dip or flow coating</td>
<td>- A combination of airless spray and atomizing spray equipment is the best overall painting equipment; supported by roller/brush, etc.</td>
</tr>
<tr>
<td></td>
<td>Insist on spray operators using "wet film" thickness gages - put on the desired thickness at one time without excess and without rework.</td>
</tr>
</tbody>
</table>

H.0. #1
Appendix L
Thirteen SP&C Work Planning Factors

HANDLING AND STORAGE OF SP&C UNITS/ PIECES OFF-SHIP

<table>
<thead>
<tr>
<th>HANDLING</th>
<th>Referring to the unit that is to be SP&C processed</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT is to be handled</td>
<td>Identification of SP&C unit by code number or by detail description in case of smaller parts/pieces.</td>
</tr>
<tr>
<td>WHY is it to be handled</td>
<td>For SP&C processing on-yards in-shop or for movement to storage or on ship as part of SP&C processing.</td>
</tr>
<tr>
<td>Lifting</td>
<td>Lifting - turning or moving to allow desired processing of SP&C work.</td>
</tr>
<tr>
<td>WHO is to handle it</td>
<td>Internal SP&C operations or requires service support assistance.</td>
</tr>
<tr>
<td>ROUTING AND SCHEDULE</td>
<td>From fabrication to SP&C process</td>
</tr>
<tr>
<td></td>
<td>Step #1 can be primer or interim</td>
</tr>
<tr>
<td></td>
<td>Step #2 can be interim or storage/time of travel</td>
</tr>
<tr>
<td></td>
<td>Final</td>
</tr>
<tr>
<td></td>
<td>Step #1 can be final</td>
</tr>
<tr>
<td></td>
<td>The routing would be targeted at the planning level, but detail schedule would tail to SP&C operations.</td>
</tr>
</tbody>
</table>
HANDLING & STORAGE SP&C UNITS (cont.)

STORAGE

Units may be stored at the completion of fabrication with no coating or with residual preconstruction primer.

Units may be SP&C primed after fab. and stored at this point.

Units may be SP&C primed and part top coated - then stored awaiting additional assembly or erection.

This determination is a function of the system and where specific units fit in - the SP&C operations must know the system and fit of the pieces even if they can't change the system.

Length of time in storage should be considered to avoid rust and corrosion of uncoated units and to avoid deterioration of partly coated units after fab. and part top coated - then stored awaiting additional assembly or erection.

Units should be protected against surface film contaminations during storage or be thoroughly cleaned at end of storage or before additional recoating.

Certain coating systems may not be suspended for storage or other reasons at the primer or intermediate coat level, but at be continued thru final coat application within time constraints. The product data sheets will caution on this and it should always be respected. However, lower temperatures can extend recoat time and higher temperature can reduce recoat time. Judge accordingly.

Check with paint lab personnel for added assurances.

Store units or places:

- inside where practical
- in position that allows runoff of water. Drill drain holes if runoff can't be relied on
- away from salt water flooding or salt water spray or mist
- with spacer pieces between flat faces/surfaces
Appendix L
Thirteen SP&C Work Planning Factors

10 Inspection

<table>
<thead>
<tr>
<th>Specification Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection of work performed at any of several levels affects the following concerns:</td>
</tr>
<tr>
<td>Does spec. require specific inspection?</td>
</tr>
<tr>
<td>Who conducts inspections?</td>
</tr>
<tr>
<td>Who witnesses inspections?</td>
</tr>
<tr>
<td>who accepts/rejects?</td>
</tr>
</tbody>
</table>

NOTE: Spec./owner/customer used - in process interchangeably here.

Depend on in-process Inspections by experienced inspectors - you or your counterparts

Keep formal inspections to the minimum. These disrupt work and serve no purpose (unless mandatory).

The most effective Inspection system is composed of:

- in-process monitoring that includes wet roll, thickness reading and dry mil. readings after each coat followed by one thorough final inspection of each unit/area/tank/compartment, etc. at completion of major coating work

<table>
<thead>
<tr>
<th>Internal Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the point vendor/representative Inspection?</td>
</tr>
<tr>
<td>Does the dept. supt. require Inspections by department-trained inspectors, independent of production personnel?</td>
</tr>
</tbody>
</table>

Inspection, or the right to witness in-process operations?

Impacts the scheduling of inspection services.

<table>
<thead>
<tr>
<th>Foreman's Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you, the foreman, faithfully inspect and accurately evaluate the production accomplishments of your gang?</td>
</tr>
</tbody>
</table>

This, when faithfully and accurately done, is the best level of SP&C work inspection.
Appendix L

Thirteen SP&C Work Planning Factors

<table>
<thead>
<tr>
<th>DISRUPTION/INTERFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERATED BY SP&C</td>
</tr>
<tr>
<td>Delay/slow downs/cancellation/damage to other trades or other work functions as a result of SP&C operations.</td>
</tr>
<tr>
<td>Applicable SP&C operations on-and off-ship. The most damaging aspects occurring on-ship and on the adjacent dock areas.</td>
</tr>
<tr>
<td>SP&C BLAST OPERATIONS (CLEANING)</td>
</tr>
<tr>
<td>Generates hazards to others in form of dust/flying abrasives/noise.</td>
</tr>
<tr>
<td>SP&C preparatory operation involve clean up/cover up to area/unit, etc. that generate displacement, move over disruptions for other trades before and after actual blasting and coating operations.</td>
</tr>
<tr>
<td>Blocks access routes due to masking and closure protective measures.</td>
</tr>
<tr>
<td>Plan SP&C operation for off shift times, after normal work hours or on weekends.</td>
</tr>
<tr>
<td>Precludes other to protect the surfaces being processed.</td>
</tr>
<tr>
<td>Utilize blast and coat rooms effectively thru a planned/agreed system.</td>
</tr>
<tr>
<td>SP&C COATING OPERATIONS (PAINTING)</td>
</tr>
<tr>
<td>Generates flammable/explosive/toxic/irritating fumes.</td>
</tr>
<tr>
<td>Precludes other work due to personal health/safety/well-being of others</td>
</tr>
<tr>
<td>Generates wet (painted)/slippery/keep off surfaces that preclude other work even if nonflammable/nontoxic coating is used.</td>
</tr>
<tr>
<td>Precludes or strictly limits access and movement thru or within the area/shop/bldg./space/compartment/dry dock or open decks.</td>
</tr>
<tr>
<td>Reduce rework. Do it right and once only.</td>
</tr>
<tr>
<td>Coating must cure to be:</td>
</tr>
<tr>
<td>- back free from dust. etc.</td>
</tr>
<tr>
<td>- fume free to avoid fire or explosion</td>
</tr>
<tr>
<td>- dry hard to permit walking on without damage to the coating</td>
</tr>
<tr>
<td>- dry firm to remove protection/covering to release surfaces for continuation of other work.</td>
</tr>
<tr>
<td>Make use of approved accelerated curing techniques heat/humidity/ventilation control.</td>
</tr>
<tr>
<td>Generates delays that tie up facilities/areas/spaces/ compartments. While waiting for coatings to cure.</td>
</tr>
<tr>
<td>Utilize approved “fast cure” versions of available coatings.</td>
</tr>
</tbody>
</table>
General Note:

Safety must be a totally integrated part of any and all SP&C operations. Safety demands and deserves to be a topic unto itself and is mentioned for limited consideration to show that it must never be neglected or left out. This is not an attempt to provide training in SP&C safety.

Impacts of unsafe operations:
- Injury
- Delay
- Liability
- Loss of work
- Claims

The life you save has a very high probability of being your own; in SP&C operations more than most other shipbuilding functions.

Put safety first; mixed right in with performance, production, quality control, etc.

"Do it right for once-only and safely."

WHAT/WHO

Your personal safety
Your personnel (your gang)
Your fellow employees
Your work area/shop/yerd/ship
Your shipyard/company
Your community/environment
Your materials
Your equipment

- the first line supervisor has the prime responsibility
- the planners have associate responsibility
- the safety engineers have joint responsibility
- the managers have leadership responsibility

Safety is everybody's business

SP&C HAZARDS

Flying Particles
- abrasive grit
- abrasive shot
- abrasive other

Dust
- nuisance
- irritating
- toxic
SAFETY (cont.)

High pressure air/fluids
- hose rupture
- nozzle exhaust

high pressure air from blast or paint equipment.

Fire (explosion)
Fumes
- nuisance
- irritating
- toxic
- oxygen displacing

Falls
- from staging/ladders
- from personnel lift equipment

Chemicals

Affects From
- burns From chemicals used as cleaners
- blisters From chemicals being blasted off
- irritants (eyes) From paints/coats containing chemicals
- irritants (respirator) From solvents/thinners
- irritants (skin)
<table>
<thead>
<tr>
<th>SCHEDULES</th>
<th>CONTRACT SCHEDULES</th>
<th>Management Developed. These target the start and finish of contract</th>
<th>"The beginning and end" of specific jobs</th>
<th>No detail concern for SP&C personnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASTER SCHEDULE</td>
<td>A management tool that details:</td>
<td>- Key events</td>
<td>This schedule sets the time frames for other more detail/supporting schedules.</td>
<td>SP&C personnel can estimate their broad scope of work from this.</td>
</tr>
<tr>
<td>MAIN EVENTS SCHEDULE</td>
<td>Details main events in sequencing order</td>
<td>Erection/launching/outfitting/compartment completion/testing/train trail/delivery</td>
<td>Details SP&C of biles in machinery spaces</td>
<td>Generates iteration of SP&C activity with other craft activity at specified times.</td>
</tr>
<tr>
<td>SHOP MFC. SCHEDULE</td>
<td>Details items/units/components/sub-assemblies built in shops or on exterior building plattens, skids/areas</td>
<td></td>
<td>Details SP&C for some tanks</td>
<td>Details SP&C completion dates on compts/math. spaces, etc., but leaves details to later planning</td>
</tr>
<tr>
<td>MODULE BLAST/COAT SCHEDULE</td>
<td>Short-term composite schedule made up by SP&C personnel to show SP&C loading and work flow from fabrication areas to erection time</td>
<td></td>
<td>This varies widely from yard to yard and from time to time within the same yard.</td>
<td>Points up the need for a SP&C coordinator team to make this a more efficient process in all shipyards.</td>
</tr>
</tbody>
</table>
Appendix L
Thirteen SP&C Work Planning Factors

13 SCHEDULES (cont.)			
NULL ERECTION SCHEDULE	Schedules completion of structural work off-ship for erection units and the date of erection of these units on the ship.	Provides the control dates for some SP&C work that is to be done off-ship prior to erection.	60% of all SP&C coating should be completed prior to erection and 90+2 of all blasting for SP&C should be complete.
LAUNCHING SCHEDULE	Shows details of structural completion and proposed staging removal prior to ship launching	Provides SP&C dates for underwater work and for exterior hull painting (dress up) prior to launching.	Underwater SP&C operations may be decided by spec-management or project level. Final economics is a function of proposed system and how long between launch and delivery.
DOCKING SCHEDULE	Proposed redocking times between launching and delivery	Provides one or more optional times for underwater SP&C work in whole or in part.	
OUTFITTING SCHEDULE	Provides target SP&C dates by showing completion of external sections/tanks/compts/machinery spaces	Additional short-term schedules are provided by project/depts. to detail SP&C operation.	
SP&C TANKS	Provides hydro testing of tanks before launch	These are areas where the SP&C foreman can end should make real contributions by direct participation or by indirect representation at or to the planning meetings that schedule and re-schedule these SP&C operation.	Eliminate rework at each opportunity, but do not hesitate to repeat your ideas, suggestions or complaints that may contribute to better performance in SP&C operations.
SP&C MACH. SPACES	SP&C operators have input into these schedules thru planning meetings to detail start and finish times for each compartment/tank/area	Instrumental in SP&C supervisors estimating number of workers required to comply with scheduled number of compartments.	Foremen/plannere/mat. supervisors/equipment supervisors and similar SP&C personnel can and should play a significant part in long-term scheduling by feeding their ideas and needs through their superiors and back to the long-term planning sources. This can results in more meaningful schedules across the board and reduce total costs of SP&C operations.
SP&C EXTERIOR	Breaks exterior of ship into sections For SP&C work		
COMPARTMENT COMPLETION SCHEDULE	Targets number of compts. to be completed per week or month and on certain Navy work it targets the compartments/spaces that are turned over to the ship's crew for living and (operational purposes and/or		
INTRODUCTION VIEWGRAPHS
WORK PLANNING
FOR
SHIPYARD
SURFACE PREPARATION
AND
COATING
(SP&C)
INTRODUCTION

WORK PLANNING FOR SHIPYARD SURFACE PREPARATION AND COATING (SP&C)

INTRODUCTION WORKSHEET

Instructions: Please use this worksheet to organize a short self-introduction

<table>
<thead>
<tr>
<th>NAME:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SHIPYARD DEPARTMENT:</td>
<td></td>
</tr>
<tr>
<td>POSITION/TITLE:</td>
<td></td>
</tr>
<tr>
<td>LOCATION:</td>
<td></td>
</tr>
</tbody>
</table>

Shipyard planning experience:

<table>
<thead>
<tr>
<th>Experience</th>
<th>Types of planning experience</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific expectations from this Workshop:

Specific Questions you want answered:
COURSE OBJECTIVES

1. The purpose of this course is to provide the background information and skills necessary to improve the general ability of SP&C supervisors to effectively plan and schedule near term Surface Preparation and Coating work on new ship construction.

2. A desired second outcome of this course is to increase the shipyard management’s knowledge of the effects of near term detailed surface preparation and coating planning on overall shipyard production efficiency.

3. Therefore, the outcomes of this course will be an improved exchange of SP&C work planning information and ideas between shipyard top management, SP&C supervisors and cognizant craft planners and schedulers.
SCOPE
AND
OVERVIEW
HISTORICAL BACKGROUND

SP&C Planning

- Last on ship’s completion list
- Difficult to manage
 - Inefficient and complex
- Too much on-board work
U.S. SHIPYARDS NOT COMPETITIVE

• Labor Intensive Workforce
• Low productivity
• Antiquated systems and processes
• Antiquated industrial equipment and facilities
• Potential for in-process changes and alterations
HULL BLOCK CONSTRUCTION SYSTEM

- Japanese lead the world in this system
- Varying degrees of the Hull Block Construction Method now in U.S. shipyards
- Traditional system survives, in whole or in part in the U.S.
NATIONAL SHIPBUILDING RESEARCH PROGRAM

Sponsor of the effort to improve the shipyard industry SP&C process
• Concerned that SP&C now represents 10% - 20% of ship construction costs
• Concerned that painter's work still controlled by the design and production methods which are decided by others in the planning process
• This training package is a result of that concern
APPROACH TO SP&C WORK PLANNING

A. Prepare and paint as early as possible
B. Do as much under controlled conditions as possible
C. Use blast and paint houses
D. Use end of other shops (pipe shop paint section)
E. Paint final coats only after all other work is done - to preclude rework
F. Maximum down-hand work
G. It may be cheaper to move the paint than the item to be painted (cost trade off)
H. Inspect, before you paint, and after
I. Plan blasters and painters work in relation to other trades in the construction process
J. The Zone Approach permits and encourages most outfitting SP&C work to be accomplished earlier under more efficient conditions
 ● Safer
 ● Cleaner
 ● Tools and materials delivered to work sites quickly and economically
K. Plan early and stick to your plan
BENEFITS DERIVED

- Reduce blast and paint time
- Minimize on-board work
- Simplify SP&C Planning and Scheduling
- Avoid interferences between trades
- Achieve greater efficiency of handling equipment and material
- Improve safety
- Improve working environment
- Improve Productivity
- Improve Quality
SHIPYARD ORGANIZATION
13 WORK PLANNING FACTORS

1. Physical Description
2. Location
3. Support
4. SP&C Specification
5. Time/Manpower
6. Minimizing
7. Material
8. SP&C Equipment
9. Handling and Storage
10. Inspection
11. Disruption/Interference
12. Safety
13. Schedules
(VPF) #1. PHYSICAL DESCRIPTION
(painted item)

- Size
- Shape
- Openings
- Appurtenances
- Materials Types
- Materials Conditions
(WPF) #2. LOCATION
(Where work is to be performed)

. Off-yard
 ● In-yard
 ● On-ship
 - External
 - Interior
(WPF) #3. SUPPORT

- Handling
- Transporting
- Utility Services
- Ventilation
- Staging
- Temporary Protection
- Cleanup
- Chemist
- Gas tester
- Safety
- Lab Services
- Vendor Representatives
 - Paint Supplier
 - Equipment Supplier
(WPF) #4. SP&C SPECIFICATIONS

- Film thickness
- Drying/Curing
- Inspection

Coating Objectives

- Sources of Specifications or SP&C Instructions
- Type of Coating required and Coating Identification
- Method of Application
- Number of Coats
- Surface Preparation
(VPF) #5. TIME/ MANPOWER

- Manpower Planning
- Allotted Time Per Schedule
- Available Manpower
- Space Restrictions
- Labor Skills Level
- SP&C Operators Estimated Time and Labor to Complete
- Schedule Time vs. Estimated Time
(WPF) #6. MINIMIZING SP&C REWORK

- When to Apply Primer
- When to Apply Intermediate Coat
- When to Apply Final Coats
(WPF) #7. MATERIAL

- Materials for Surface Preparation
- Materials for Painting or Coating
- Material Safety
(WPF) #8. SP&C EQUIPMENT

● Support Operations
 - Forklift
 - Air Compressors

● Cleaning
 - Abrasive blast equipment
 - Pneumatic/Centrifugal
 - Vacuum cleaners

● Coating
 - Sprayers
 - Brush/Roll (power/manual)
(VIPF) #9. HANDLING AND STORAGE

- Handling Units to be Processed
- Routing and Scheduling
- Storage
(VPF) #10. INSPECTION

. Routine Inspection Requirements

- Specification Inspection Requirements
- Foreman's Inspections
(WPF) #11. DISRUPTION / INTERFERENCE
 (By SP&C)

- Generated by SP&C
- Generated by other trades
- SP&C Blast Operations
- SP&C Coating Operations
- SP&C Curing (Drying time)
(WPF) #12. SAFETY

- What
- Who
- SP&C Hazards
 - Dust
 - Flying particles
 - High Pressure
 - Fire
 - Fumes
 - Falls
 - Chemicals
(WPF) #13 SCHEDULES

- Contract Schedules
- Master Schedule
- Main Events Schedule
 - Shop Manufacturing Schedule
- Module Blast/Coat Schedule
- Hull Erectors Schedule
 - Launching Schedule
- Docking Schedule
- Outfitting Schedule
- Trials Schedule
- Delivery Schedule

- Most Important but least significant amount of work
FIVE STAGES OF NEW SHIP CONSTRUCTION

1. Management Planning (Design Plan)
2. Pre-Construction Planning and Operations
3. Assembly
4. Block Level Operations
5. Zone Level Operations
CONSTRUCTION STAGE #: MANAGEMENT- PLANNING

• Initiated by opportunity to bid (RFP)
 - New Ship Construction
 - Repair Package
 Involves
 - Developing a Bid Work Plan
 - Determining Specifications
 - Developing the cost
 - Determining the methods for construction
 - Make/Buy decisions

• Results in
 - Cost-effective competitive bid
 Hull erection plan providing known efficiency opportunity parameters
 - Work plan to follow when contract awarded
CONSTRUCTION STAGE #2: PRE-CONSTRUCTION PLANNING AND OPERATIONS

- Initiated by contract award
- Involves
 - Work Planning refinements
 - Schedules (master through detail)
 - Project Planning
- Results in
 - Work Packages
 - Schedules detailed
 - Manpower planning
 - Material ordering & receipt
 - Raw materials preparation, coat, and storage
 - Accurate/Appropriate SP&C specifications
 - Optimum integration of trades and schedules to minimize interference requirements
 - Yard ready to operate
 - Shop fabrication of raw materials
 - Work commenced on schedule
CONSTRUCTION STAGE #3: ASSEMBLY
LEVEL OPERATIONS

- Initiated by work package and short term schedules
- Involves
 - Off-ship environment
 - Yard/Shop joining fabricated parts
 - Joining parts assemblies into subassemblies
 - Meeting two week schedules
 - Least handling
 - Larger surfaces
 - Use cost-effective Blast/Paint houses
 - Easier access
 - Most down hand painting
- Results in
 - SP&C Assemblies ready for block level
 - Surfaces protected to intermediate holding
 - Some final materials coating
 - Feedback to top management on meeting production rates and schedules
CONSTRUCTION STAGE #4: BLOCK LEVEL OPERATIONS

- Initiated by: Work packages and short term schedules

- Involves
 - Off ship environment
 - Yard/Shop fabrication
 - Joining assemblies into blocks
 - Less easy access to SP&C work
 - More disruption/interference
 - More safety and equipment concerns by supervision
 - Less down hand work
 - Greater coordination between trades planners

- Results
 - Greater percentage final outfitting and painting
 - Greater potential for rework
 - Feedback to top management on production rate and schedule performance
CONSTRUCTION STAGE #5: ZONE
LEVEL OPERATIONS

- Initiated by: Work packages and short-term schedules
- Involves
 - On ship SP&C environment
 - Max disruption/interference
 - Max space preparation/cleanup
 - Max safety requirements
 - Max equipment handling manually
 - Max restricted access
 - Max coordination
 - Final Coats
 - Touch up (Cosmetics)
 - Testing -
 - Inspecting
 - Bottom wet
 - Trial schedules
 - Most rework intensive
 - Most costly SP&C work environment

Results
- Ship ready for trials
- Ship ready for delivery
- Ship delivery area ready
SECTION II VIEWGRAPHS
MANAGEMENT PLANNING

- Purpose
- Characteristics
- Inputs
- Outputs
PIANNING CONSIDERATIONS

● In-Yard
 - Primer coat
 - Intermediate coat
 - Final coat

● On-Ship
 - Final coat
APPLICABLE WORK PLANNING FACTORS

1. Physical Description
4. SP&C Specifications
5. Time/Manpower
6. Minimizing SP&C Rework
7. Material
8. SP&C Equipment
9. Handling and Storage
10. Inspection
13. Schedules
PLANNING CORE FIVE

. Main Event schedule
 - Shop Manufacturing schedule
 - Hull Erection schedule
 - Outfitting schedule
. Compartment Completion schedule
 - 60% of SP&C completed prior to erection
 - 90% of blasting should be complete
MANAGEMENT PLANNING

WORKSHOP
PRECONSTRUCTION

PLANNING AND OPERATIONS
APPLICABLE WORK PLANNING FACTORS

1. Physical Description
2. Location
3. Support
4. SP&C Specifications
5. Time/Manpower
6. Minimizing SP&C Rework
7. Material
8. SP&C Equipment
9. Handling and Storage
10. Inspection
11. Disruption/Interference
12. Schedules
SECTION III VIEWGRAPHS
THREE SPECIAL CONSIDERATIONS

L SAFETY CONDITIONS AND GAS CHEMISTRY
SAFETY PLANNING

EXERCISE
THREE SPECIAL CONSIDERATIONS

II. SHIFT CHANGE COMMUNICATION AND COORDINATION
SHIFT CHANGE COMMUNICATION AND

COORDINATION EXERCISE
THREE SPECIAL CONSIDERATIONS

III. WORKER QUALIFICATIONS
WORKER QUALIFICATIONS

EXERCISE
CONSTRUCTION #3

ASSEMBLY LEVEL OPERATIONS
CONSTRUCTION STAGE #3

ASSEMBLY LEVEL OPERATIONS

EXERCISE
CONSTRUCTION STAGE #4

BLOCK LEVEL OPERATIONS
CONSTRUCTION STAGE #4

BLOCK LEVEL OPERATIONS

EXERCISE
CONSTRUCTION STAGE #5

ZONE LEVEL OPERATIONS
CONSTRUCTION STAGE #5

ZONE LEVEL OPERATIONS

EXERCISE
SECTION IV VIEWGRAPHS
SP&C WORK PLANNING

EXERCISE
APPENDIX N

FOREMAN WORK PLANNING CHECKLIST

1. **Purpose:** To develop a personalized checklist for use by the SP&C supervisor

2. **Product:** Detailed notes and actions for the SP&C Supervisor which he can use in his yard during the work planning process.

3. **Instructional Strategy:**
 - **Method:** Instructor lead discussion of all items listed in Appendix N
 - **Media:** Viewgraphs (as applicable to topics), easel pad, Appendix N
 - **Participant Assignment:** Participate in group discussion, write down applicable actions in Student Notes Column

4. **Resources Required:**
 - **Instructor**
 - Viewgraphs (as applicable)
 - Overhead projector
 - Appendix N
 - **Participant**
 - Pencil
 - Appendix N
 - Appendix L

5. **References:**
 - Instructor Guide, Section III.E.
 - Instructor Guide, Appendix L
 - Instructor Guide, Appendix N
6. Process:

A. Preparation

1. Review:
 o Instructor Guide, Section III.E.
 o Appendix L
 o Appendix N
2. Relate each item of Appendix N to Appendix L WPF’S
3. Review suggested presentation strategy (below)
4. Personalize the checklist to the yard terminologies
5. Develop prompting questions to draw out detailed action items
6. Xerox sufficient copies of materials for trainee use.

B. Presentation Strategy

1. Introduce the discussion objectives and emphasize the importance of each supervisor having a good checklist
2. Discuss the first item and take notes on specific actions which develop from discussion. Use the easel to write down a synopsis of the action items to demonstrate a sample of the student notes
3. Briefly summarize the checklist importance at the end of the discussions.
FOREMAN WORK PLANNING CHECKLIST

Checklist

General - For each work assignment:

A. Make sure all work package documentation is complete and the work to be accomplished is understood.

1. Are specifications complete?

2. Are there special safety considerations?

 a. Gas chemistry for confined spaces?

 b. Flammable materials?

 c. High or dangerous places for men to work?

3. What is the schedule for work?

Student Notes
4. What other trade assistance is required?

5. Walk the job down.

B. Evaluate the work to be done using the 13 work planning factors.

1. WPF-1 - Physical Description
 a. What size and shape?
 b. What type material?
 c. What condition is it in?

2. WPF-2 - Location
FOREMAN WORK PLANNING CHECKLIST (Continued)

<table>
<thead>
<tr>
<th>Checklist</th>
<th>Student Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Where is the work to be done?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) In-yard</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) In-shop or Blast and Paint House</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) On Board Ship</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Internal Space</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) External Space</td>
<td></td>
</tr>
</tbody>
</table>

What problems are created by location?
FOREMAN WORK PLANNING CHECKLIST (Continued)

Checklist

<table>
<thead>
<tr>
<th>Checklist</th>
<th>Student Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>c. Special Considerations</td>
<td></td>
</tr>
<tr>
<td>(1) Tanks</td>
<td></td>
</tr>
<tr>
<td>(2) Voids</td>
<td></td>
</tr>
<tr>
<td>(3) Machinery Space</td>
<td></td>
</tr>
<tr>
<td>(4) Bilge</td>
<td></td>
</tr>
<tr>
<td>(5) Hotel Spaces</td>
<td></td>
</tr>
<tr>
<td>(6) Underwater Bottoms</td>
<td></td>
</tr>
</tbody>
</table>
3. WPF-3 - SUPPORT

a. What Support Services/Trades are required?

(1) Handling - Riggers

(2) Transporting

(3) Utility Services

(4) Air, electricity, Lights, Water, Heat

(5) Ventilation

(6) Staging
<table>
<thead>
<tr>
<th>Checklist</th>
<th>Student Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7) Temporary Protection</td>
<td></td>
</tr>
<tr>
<td>(8) Clean-up</td>
<td></td>
</tr>
<tr>
<td>(9) Waste removal</td>
<td></td>
</tr>
<tr>
<td>(10) Chemist/Gas Tester</td>
<td></td>
</tr>
<tr>
<td>(11) Safety Engineer/Lab Semites</td>
<td></td>
</tr>
<tr>
<td>(12) Vendor Reps</td>
<td></td>
</tr>
<tr>
<td>(13) Paint Supplier</td>
<td></td>
</tr>
<tr>
<td>(14) Equipment Supplier</td>
<td></td>
</tr>
<tr>
<td>Checklist</td>
<td>Student Notes</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>b. When are these services required?</td>
<td></td>
</tr>
</tbody>
</table>

4. WPF-4 SP&C - Specifications

a. What Surface Preparation Specification is the work to conform to?

 (1) Method

 (2) Blast media

 (3) Profile/Pattern

 (4) Optimal methods
b. What Paint Specification is the work to conform to?

 (1) Type of coating system

 (2) Method of application

 (3) Number of coats

 (4) Thickness of each coat

 (5) Cure and dry time

 (6) Method of quality inspection

 (7) Objective of the coating
<table>
<thead>
<tr>
<th>Checklist</th>
<th>Student Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. WPF-5 - Time/Manpower</td>
<td></td>
</tr>
<tr>
<td>a. What size crew is required to meet schedule?</td>
<td></td>
</tr>
<tr>
<td>(1) Special skills</td>
<td></td>
</tr>
<tr>
<td>(2) Crew skill mix</td>
<td></td>
</tr>
<tr>
<td>(3) Alternative work plan</td>
<td></td>
</tr>
<tr>
<td>b. Any space restrictions for crew?</td>
<td></td>
</tr>
<tr>
<td>c. Can the work be done on time?</td>
<td></td>
</tr>
</tbody>
</table>
d. Will the space be ready for the crew on time?

6. WPF-6 - Minimizing Rework

a. Will other trades be out of the way?

b. Is there work below, above, or on adjoining bulkheads?

c. Are primer, intermediate, and final coats being applied correctly and on time?

7. WPF-7 - Material

3. Is the material called for the correct SP&C material?
b. Check self-life dates

c. Is the quantity of material enough for your job?

d. Is the material new and you need instruction is proper use?

8. WPF-8 - Equipment

a. Is the equipment available?

b. Is it well maintained?

c. Is it safe?
<table>
<thead>
<tr>
<th>Checklist</th>
<th>Student Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. Are there enough pieces, or feet of hose?</td>
<td></td>
</tr>
<tr>
<td>e. Is there power or air for equipment?</td>
<td></td>
</tr>
<tr>
<td>f. Are operators trained for equipment use?</td>
<td></td>
</tr>
</tbody>
</table>

9. WPF-9 - Handling and Storage

a. What items need to be handled because of size, weight, shape, etc.?	
b. What support services are required?	
c. When must it be handled?	
FOREMAN WORK PLANNING CHECKLIST (Continued)

<table>
<thead>
<tr>
<th>Checklist</th>
<th>Student Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. Who coordinates heavy lifts?</td>
<td></td>
</tr>
<tr>
<td>e. When SP&C for storage what specs are called out?</td>
<td></td>
</tr>
<tr>
<td>f. Can you coat over the storage coat with intermediate or finish coats without removing the storage coats?</td>
<td></td>
</tr>
</tbody>
</table>

10. WPF-10 - Inspection

a. What specs are being inspected?	
b. Who, when, where, and how will the inspection be done?	
c. The foreman should inspect first?	
11. **WPF-11 - Disruption/Interference**

 a. Does your work plan have the potential for being disrupted?

 b. Are other workers going to interfere?

 c. Talk to other foremen around the space you are to work in.

 d. Do you have an alternative work plan?

 e. What is the weather? Rain, cold, wind, humidity, heat?
<table>
<thead>
<tr>
<th>Checklist</th>
<th>Student Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. WPF-12 - Safety</td>
<td></td>
</tr>
<tr>
<td>a. Are your materials and equipment safe to work with?</td>
<td></td>
</tr>
<tr>
<td>b. Is your work area safe to work in?</td>
<td></td>
</tr>
<tr>
<td>c. Will others be in danger because of your work?</td>
<td></td>
</tr>
<tr>
<td>d. Do you need to call a safety inspector to approve a procedure, structure, or material?</td>
<td></td>
</tr>
<tr>
<td>e. Is protective clothing called for?</td>
<td></td>
</tr>
</tbody>
</table>
FOREMAN WORK PLANNING CHECKLIST (Continued)

<table>
<thead>
<tr>
<th>Checklist</th>
<th>Student Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. WPF-13 - Schedules</td>
<td></td>
</tr>
<tr>
<td>a. Can you meet the schedule called for?</td>
<td></td>
</tr>
<tr>
<td>b. What is the impact if you cannot meet the schedule?</td>
<td></td>
</tr>
<tr>
<td>c. Procedures for overtime, extra shift work, extra crews?</td>
<td></td>
</tr>
</tbody>
</table>
SHIP PRODUCTION COMMITTEE
FACILITIES IMPROVEMENTS
OUTFITTING AND PRODUCTION AIDS
INDUSTRIAL ENGINEERING FOR SHIPBUILDERS
SHIPBUILDING STANDARDS THE NATIONAL
DESIGN/PRODUCTION INTEGRATION SHIPBUILDING
COMPUTER AIDS FOR SHIPBUILDING RESEARCH
SURFACE PREPARATION AND COATINGS PROGRAM
FLEXIBLE AUTOMATION
TECHNOLOGY TRANSFER
EDUCATION AND TRAINING
WELDING
REAPS

WORK PLANNING FOR SHIPYARD SURFACE
PREPARATION AND COATING (SP&C)

STUDENT WORKBOOK

U.S. DEPARTMENT OF TRANSPORTATION
Maritime Administration

in Cooperation with
National Steel and Shipbuilding Company
San Diego, California
Table of Contents

<table>
<thead>
<tr>
<th>Front Matter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td>i</td>
</tr>
<tr>
<td>Scope & Overview</td>
<td>III</td>
</tr>
<tr>
<td>Course Objectives</td>
<td>iv</td>
</tr>
<tr>
<td>Note to Student</td>
<td>v</td>
</tr>
<tr>
<td>Definitions</td>
<td>vi</td>
</tr>
<tr>
<td>Bibliography</td>
<td>viii</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Introduction</th>
<th>0-1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section I</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>I-1</td>
</tr>
<tr>
<td>A. Historical Background</td>
<td>I-3</td>
</tr>
<tr>
<td>B. Approach to SP&C Work Planning</td>
<td>I-3</td>
</tr>
<tr>
<td>C. Shipyard Planning Organization</td>
<td>I-5</td>
</tr>
<tr>
<td>D. Thirteen SP&C Work Planning Factors - An Overview</td>
<td>I-5</td>
</tr>
<tr>
<td>E. The Five Stages of Work Planning in the Ship Construction Process</td>
<td>I-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section II</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>II-1</td>
</tr>
<tr>
<td>A. Pre-award Management Planning and SP&C Planning Factor Utilization</td>
<td>II-1</td>
</tr>
<tr>
<td>B. Preconstruction Planning and Operations</td>
<td>II-16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section III</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>III-1</td>
</tr>
<tr>
<td>A. Special Considerations for Basic Planning</td>
<td></td>
</tr>
<tr>
<td>1. Safety Conditions and Gas Chemistry</td>
<td>III-3</td>
</tr>
<tr>
<td>2. Shift-Change Communication and Coordination</td>
<td></td>
</tr>
</tbody>
</table>
B. Construction Stage #3, Assembly Level Operations

<table>
<thead>
<tr>
<th>III-6</th>
</tr>
</thead>
</table>

c. Construction Stage #4, Block Level Operations

<table>
<thead>
<tr>
<th>III-8</th>
</tr>
</thead>
</table>

D. Construction Stage #5, Zone Level Operations

<table>
<thead>
<tr>
<th>IIII-10</th>
</tr>
</thead>
</table>

SECTION IV

An SP&C Work Planning Exercise

<table>
<thead>
<tr>
<th>IV-1</th>
</tr>
</thead>
</table>

SECTION V

Closing Administration

<table>
<thead>
<tr>
<th>V-1</th>
</tr>
</thead>
</table>

APPENDICES

A. How To Use the Student Workbook

<table>
<thead>
<tr>
<th>A-1</th>
</tr>
</thead>
</table>

B. Discussion Group Leader’s Guide (To be issued)

<table>
<thead>
<tr>
<th>B-1</th>
</tr>
</thead>
</table>

c. Exercise I, Shipyard Planning Organization Review

<table>
<thead>
<tr>
<th>C-1</th>
</tr>
</thead>
</table>

D. Exercise II, Management Planning Workshop

<table>
<thead>
<tr>
<th>D-1</th>
</tr>
</thead>
</table>

E. Exercise III.A.1., SP&C Safety Planning

<table>
<thead>
<tr>
<th>E-1</th>
</tr>
</thead>
</table>

F. Exercise III.A.2., SP&C Shift Change Communication and Coordination

<table>
<thead>
<tr>
<th>F-1</th>
</tr>
</thead>
</table>

G. Exercise III.A.3., SP&C Worker Qualifications

<table>
<thead>
<tr>
<th>G-1</th>
</tr>
</thead>
</table>

H. Exercise III.B., Assembly Level Operations: Work Planning Factor and Elements Identification

<table>
<thead>
<tr>
<th>H-1</th>
</tr>
</thead>
</table>

I. Exercise III.C., Block Level Operations: Work Planning Factor and Elements Identification

<table>
<thead>
<tr>
<th>I-1</th>
</tr>
</thead>
</table>

J. Exercise III.D., Zone Level Operations: Work Planning Factor and Elements Identification

<table>
<thead>
<tr>
<th>J-1</th>
</tr>
</thead>
</table>

K. Exercise IV, SP&C Work Planning

<table>
<thead>
<tr>
<th>K-1</th>
</tr>
</thead>
</table>

L. H.O. #1, Thirteen SP&C Work Planning Factors

<table>
<thead>
<tr>
<th>L-1</th>
</tr>
</thead>
</table>

M. Not Required

<table>
<thead>
<tr>
<th>M-1</th>
</tr>
</thead>
</table>

N. Foreman Work Planning Checklist

<table>
<thead>
<tr>
<th>N-1</th>
</tr>
</thead>
</table>
STUDENT WORKBOOK

SCOPE AND OVERVIEW

<table>
<thead>
<tr>
<th>Topic</th>
<th>Suggested Hours of Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>SECTION I</td>
<td></td>
</tr>
<tr>
<td>A. Historical Background</td>
<td>1/2</td>
</tr>
<tr>
<td>B. Approach to SP&C Work Planning</td>
<td>1/2</td>
</tr>
<tr>
<td>C. Shipyard Planning Organization</td>
<td>3/4</td>
</tr>
<tr>
<td>D. Thirteen SP&C Work Planning Factors – An Overview</td>
<td>3/4</td>
</tr>
<tr>
<td>E. The Five Stages of Work Planning in the Ship Construction Process</td>
<td>1/2</td>
</tr>
<tr>
<td>SECTION II</td>
<td></td>
</tr>
<tr>
<td>A. Pre-Award Management Planning and SP&C Planning Factor Utilization</td>
<td>3/4</td>
</tr>
<tr>
<td>B. Management Planning Workshop</td>
<td>1</td>
</tr>
<tr>
<td>C. Preconstruction Planning and Operations</td>
<td>3/4</td>
</tr>
<tr>
<td>SECTION III</td>
<td></td>
</tr>
<tr>
<td>A. Special Considerations for Basic Planning</td>
<td>3/4</td>
</tr>
<tr>
<td>1. Safety Conditions and Gas Chemistry (w/exercise)</td>
<td>3/4</td>
</tr>
<tr>
<td>2. Shift Change Communication/Coordination (w/exercise)</td>
<td>1/2</td>
</tr>
<tr>
<td>3. Worker Qualifications (w/exercise)</td>
<td>1/2</td>
</tr>
<tr>
<td>B. Assembly level operations (w/exercise)</td>
<td>1/2</td>
</tr>
<tr>
<td>C. Block level operations (w/exercise)</td>
<td>1/2</td>
</tr>
<tr>
<td>D. Zone level operations (w/exercise)</td>
<td>1/2</td>
</tr>
<tr>
<td>E. Foreman Work Planning Checklist</td>
<td>1</td>
</tr>
<tr>
<td>SECTION IV</td>
<td></td>
</tr>
<tr>
<td>A. An SP&C Work Planning Exercise</td>
<td>2</td>
</tr>
<tr>
<td>SECTION V</td>
<td></td>
</tr>
<tr>
<td>A. Closing Administration</td>
<td>1/2</td>
</tr>
</tbody>
</table>

Total Hours 13 1/2
1. The purpose of this course is to provide the background information and skills necessary to improve the general ability of SP&C supervisors to effectively plan and schedule near-term surface preparation and coating work on ship construction.

2. A desired second outcome of this course is to increase the shipyard management’s knowledge of the effects of near-term detailed surface preparation and coating planning on overall shipyard production efficiency.

3. A third outcome of this course is to increase the SP&C planner’s knowledge and awareness of the safety implications and practices, and personnel needs necessary to carry through SP&C operations.

4. Lastly, a desired outcome is an improved exchange of SP&C work planning information and ideas between shipyard top management, SP&C supervisors and cognizant craft planners and schedulers.
A NOTE TO THE STUDENT

This student workbook provides all the information needed for participation in the course, with the exception of some materials that will be provided to you as handouts as the course progresses. There is a large amount of material to be covered in a short period of time.

The basic material of this course has been developed by persons with career experience in shipyard SP&C and management planning. This should be especially evident as you work with the Thirteen SP&C Work Planning Factors. You are encouraged to participate to the fullest throughout the course. Ask questions of the instructor to clarify any point not understood and contribute to the products of the large and small group discussion sessions. It is very important that you add your expertise to that of the group, and that you consider the expertise provided by others. This course is directed toward the exchange of ideas that will help your ship construction planning process toward the development and execution of competitively priced bids built on the yard’s identifiable potential for more efficient operations. Efficiency can mean more work for your shipyard, and the continuation and enhancement of your career path.

Certainly, all trades - not Surface Preparation and Coating alone - have much to contribute to the shipyard’s productivity. This course focuses on SP&C. Now is the opportunity for your contribution.

Please refer to Appendix A, "How to Use The Student Workbook", and familiarize yourself with the remainder of the workbook.
SURFACE PREPARATION AND COATING (SP&C): The surface preparation of all materials for a ship and their coating for preservation, appearance, and other functions (e.g., anti-fouling).

NEAR-TERM PLANNING: Generally, the lowest level of planning and scheduling (two week schedule) or to the first level of trades supervision (Foreman).

WORK PLANNING: The means of performing the necessary steps to prepare for and accomplish SP&C tasks, it includes:

1. Determining where, when, and who will perform the work (planning and scheduling)
2. Acquisition of the required materials and equipment to perform the work
3. Scheduling SP&C craftsmen to perform the work
4. Integrating SP&C trades work with work planned for other trades

ASSEMBLY: The second level of construction (the first level is parts fabrication). The joining of two or more component parts to make up a system or an assembly (i.e., deck, sides, and ribs, etc.)

BLOCK: A group of assemblies jointed to form an independent section of the vessel (bow, stern, deck house, etc.). Blocks are completed as far as practical (piping, ventilation, electrical, surface preparation and coating) and then joined (or via grand blocks) to form the complete vessel.

GRAND BLOCK: A relatively large block assembly made from 2 or more blocks.

ZONE: An identifiable space or group of spaces of the assembled vessel, providing for work and control purposes.

PLANNERS: Individuals whose primary job function is to plan work accomplishment through equipment, processes, or manpower applications.
SCHEDULERS: Individuals whose primary job function is to schedule work accomplishment through the various planned processes in the most efficient manner.

SP&C SUPERVISORS: Trades foremen and higher supervisors who are responsible for planning and scheduling SP&C work.

SP&C OPERATIONS: Trades performance of surface preparation and coating work tasks, e.g.; blasting, cleaning, painting, etc.

SCHEDULERS: Individuals whose primary job function is to schedule work accomplishment through the various planned processes in the most efficient manner.

SP&C SUPERVISORS: Trades foremen and higher supervisors who are responsible for planning and scheduling SP&C work.

SP&C OPERATIONS: Trades performance of surface preparation and coating work tasks, e.g.; blasting, cleaning, painting, etc.

1. Integrated Hull Construction, Outfitting and Painting (IHOP), U.S. Department of Transportation, Maritime Administration, May, 1983.

INTRODUCTION
STUDENT WORKBOOK
INTRODUCTION

Please review and complete the accompanying self-introduction form. The instructor will ask you to hand it in on completion of the introductions.
INSTRUCTIONS

Please use this worksheet to organize a short self-introduction.

NAME: __

SHIPYARD __

DEPARTMENT: ___________________________________

POSITION/TITLE: ________________________________

LOCATION: ______________________________________

Shipyard planning experience:

<table>
<thead>
<tr>
<th>Experience</th>
<th>Types of planning experience</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific expectations from this Workshop:

Specific Questions you want answered:
section I
The purpose of this section of the course is to provide the background information and skills necessary to improve the general ability of SP&C supervisors to effectively plan and schedule near-term surface preparation and coating work on ship construction.

In order to meet this objective, the following enabling objectives have been formulated to provide guidance.

Enabling Objectives:

1. Given the necessary background information, be able to state and describe the importance of the 13 SP&C work planning factors.

2. Given information on the practical application of SP&C be able to discuss the benefits derived for work planning in SP&C.

3. Given the 13 SP&C work planning factors, be able to associate the appropriate work planning factor(s) with each of the five stages of construction.

4. Given information on SP&C work planning, be able to describe the advantages of long range planning of SP&C work to overall yard efficiency.

5. Given information on SP&C work planning, be able to analyze the impact of shipyard practices on SP&C work planning.
STUDENT WORKBOOK

SECTION I

A. This section is comprised of a background lecture, an exercise in which the shipyard’s organization is defined, a discussion of the Thirteen SP&C Work Planning Factors, and the five stages of work planning in the ship construction process.

B. Participants require only paper, pencil and eraser.

c. During the exercise, the instructor will provide handout materials for participant use.

D. Use this section to collect Section I related notes and materials.

E. For the exercise, see Appendix C (Shipyard Organization Exercise). Appendix L, 13 SP&C Work Planning Factors applies.
STUDENT WORKBOOK
SECTION I

Use this workbook space to retain your lined tablet notes related to Section I.
Section II
STUDENT WORKBOOK
SECTION II
OBJECTIVES

OBJECTIVE

The purpose of this section is to increase the shipyard management’s knowledge of the effects of near-term detailed surface preparation and coating planning on overall shipyard production efficiency.

In order to meet this objective, the following enabling objectives have been formulated to provide guidance.

Enabling Objectives:

1. Given information about planning factors, be able to discuss and describe the SP&C off-ship and shipboard work schedule and production impacts related to management planning.

2. Given inputs on work planning factor information about manpower and schedules describe and discuss how SP&C planning will minimize rework requirements.

3. Given information about preconstruction planning and operations be able to describe and discuss the overall impacts of applicable work planning factors to preconstruction and planning operations.
STUDENT WORKBOOK
SECTION II

A. This section is comprised of a discussion of pre-award management planning, a management planning exercise, and a discussion of preconstruction planning and operations. On completion of the exercise, management level participants will break away temporarily from the workshop. They will return to participate in the Section IV exercise.

B. Participants require paper, pencil and eraser.

c. Use this section to collect Section II related notes and materials.

D. For the exercise, see Appendix D, (Management Planning Workshop).
STUDENT WORKBOOK
SECTION II

Use this workbook space to retain your lined tablet notes related to Section II.
Section III
OBJECTIVE

The purpose of this section of the course is to enable participants to discuss and describe the safety implications and practices and personnel needs necessary to carry through SP&C operations.

To accomplish this objective the following enabling objectives have been formulated.

Enabling Objectives

1. Be able to discuss and describe SP&C safety implications including gas chemistry.

2. Be able to discuss and describe SP&C shift change communication and coordination considerations.

3. Be able to discuss and describe the implications of worker qualifications to SP&C work planning.

4. Be able to discuss the planning factors involved in assembly level operations.

5. Be able to discuss the planning factors involved in block level operations.

6. Be able to discuss the planning factors involved in zone level operations.
A. This section is comprised of several lecture/discussions and exercises.

B. Participants require paper, pencil and eraser.

c. During the exercises, the instructor may provide handout materials for participant use.

D. Use this section to collect Section III related notes and materials.

E. For the exercises, see the following appendixes:

E SP&C Safety Planning (H.O. #2 issued by instructor during discussion).
F SP&C Shift Change Communication and Coordination
G SP&C Worker Qualifications
H Assembly Level Operations: Work Planning Factor and Elements Identification
I Block Level Operations: Work Planning Factor and Elements Identification
J Zone Level Operations: Work Planning Factor and Elements Identification
N Foreman Work Planning Checklist

F. Appendix L, 13 SP&C Work Planning Factors, applies
Use this workbook space to retain your lined tablet notes related to Section III.
Section IV
STUDENT WORKBOOK
SECTION IV

A. This case incident exercise provides opportunity for management level planners and SP&C supervisors, and planners to work together in the application of the 13 SP&C Work Planning Factors to two ship construction cases.

B. Participants require paper, pencil, and eraser.

c. During the exercise, the instructor will provide the case incident and associated materials (H.O. #3) to participants.

D. Use this Section and Appendix K to collect exercise related notes and materials.

E. For the exercise, Appendix L, 13 SP&C Work Planning Factors, applies.
STUDENT WORKBOOK
SECTION IV

Use this workbook space to retain your lined tablet notes related to Section IV.
Section IV
STUDENT WORKBOOK
SECTION V

Use this workbook space to retain your lined tablet notes related to Section V.
WORK PLANNING FOR SHIPYARD SURFACE
PREPARATION AND COATING (SP&C)

EVALUATION

Name___ Date_________________________

Shipyard____________________________________ Position_______________________

INSTRUCTIONS:

COMMENTS: Space is provided for your comments, suggestions, and explanations
of ratings following each section.

SCALE RATINGS: Please evaluate each aspect of the Course listed below by
marking the 5 point scale to the right of each item. Mark the box to indicate
your evaluation. Please do not split ratings.

PARTICIPANT’S OBJECTIVES

Indicate your objectives in attending this course

1. __
2. __
3. __
 a. To what degree were your objectives satisfied?
 ______ Outstanding ______ Excellent ______ Good ______ Fair ______ Poor

COURSE CONTENT

Indicate how useful each item of content was to you.

 low med high
 1 2 3 4 5

1. Shipyard Organization Exercise
2. Management Planning Exercise
3. SP&C Safety Planning (H.O. #2 issued by instructor
during discussion).
4. SP&C Shift Change Communication and Coordination
5. SP&C Worker Qualifications
6. Assembly Level Operations: Work Planning Factor and
 Elements Identification
7. Block Level Operations: Work Planning Factor and
 Elements Identification
COURSE CONTENT (cont.)
Indicate how useful each item of content was to you.

<table>
<thead>
<tr>
<th>Item</th>
<th>Low</th>
<th>Med</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Zone Level Operations: Work Planning Factor and Elements Identification</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9. SP&C Planning Exercise</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10. Appendix L, 13 SP&C Work Planning Factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Instructor-led discussions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Participant-led discussions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOPIC COVERAGE
Which topics should have received more time? Please cite.

1.

2.

3.

Which topics should have received less time? Please cite.

1.

2.

3.

COURSE DEVELOPMENT

<table>
<thead>
<tr>
<th>Item</th>
<th>Low</th>
<th>Med</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Student Workbook</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2. Learning Environment</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3. Feedback Instrument (this form)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OVERALL RATING:

How would you rate the course as a whole?

Comments:

What was the most effective part of the course for you? Why?

What was the least effective part of the course for you? Why?
This student workbook provides all the information needed for participation in the course, with the exception of some materials that will be provided to you as handouts as the course progresses.

Composition of the Student Workbook:

1. The Student Workbook is divided into Front Matter, Sections, and Appendices.

a. Important in the Front Matter are the Course Objectives, Definitions, and the Bibliography.

b. The sections contain the Section Objectives. These divided spaces should be used also for accumulating your section-related course notes.

c. Appendix B provides space to collect a Discussion Group Leader’s Guide. The Guide will be issued to those selected to guide a small group through the exercises.

d. Appendices C through K contain the exercises, their instructions and worksheets.

e. Appendix L. Please familiarize yourself with the contents of this workbook especially Appendix L, 13 SP&C Work Planning Factors. These Factors are the heart of this course. You will be asked to study it closely in order to facilitate quality inputs and the pace of the course.

f. Equipment. The only equipment you need for this course is a pencil and paper for your notes, and perhaps a ruler. Other materials will be provided by the instructor.
2. Now scan the workbook materials to get an idea of the course/section objectives, and general direction of the course. You will no doubt see a number of points at which your own expertise will come into play.
APPENDIX B
Use this space to retain the Discussion Group Leader’s Guide if it is issued to you.
EXERCISE I, SHIPYARD PLANNING ORGANIZATION REVIEW

Purpose:

1. Provides all participants with a functional description of the Shipyard’s planning organization.

2. **Product:**

 Annotated shipyard functional organization chart.

3. **Instructional Strategy:**

 - **Method:** Lecture, Instructor-led group discussion
 - **Media:** Viewgraphs, or chalk/white board, or easel pad, worksheets, solution handout.
 - **Participant Assignment:** Review organization chart, identify omissions, inaccuracies. Contribute to general discussion session. Complete own notes.

4. **Resources Required:**

 - **Participant**
 - Pencil
 - Eraser
 - Shipyard organization chart handout

5. **References:**

 - Shipyard organization manual.
 - Departmental Standard Operating Procedures (SOP’S)
6. **Instructions:**

- Review shipyard organization chart handout
- Identify discrepancies
 - Inaccuracies
 - Omissions
- Provide inputs to general group discussion
- Annotate own organization chart handout
STUDENT WORKBOOK
APPENDIX D
EXERCISE II., MANAGEMENT PLANNING WORKSHOP :
(RESPONDING TO SHIP CONSTRUCTION RFP)

1. Purpose: Provide top management and SP&C supervisors opportunity to work together to identify the SP&C Work Planning Factors that apply in Construction Stage #1 Management Planning, and to develop a planning aid for their shipyard.

2. Product: List of SP&C Construction Stage #1, Management Planning, input requirements to assist design planners.

3. Instructional Strategy:
 - Method: Participant-led small group discussion with report
 - Media: Viewgraphs, or chalk/white board, or easel pad; worksheet
 - Participant Assignment: Participate in small group discussion and report preparation; complete own worksheet; contribute to overall discussion.

4. Resources Required:
 - Participant
 - Pencil
 - Exercise II (Appendix D)
 - H.O. #1, 13 SP&C Work Planning Factors (Appendix L)

5. References:
 - Supporting Data Sheet 1
 - Student Workbook, Appendix L, 13 SP&C Work Planning Factors (H.O. #1)
6. **Instructions:**

- Review assignment
- Complete Worksheet

<table>
<thead>
<tr>
<th>Column 1: Completed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column 2: List the WPF elements which generate SP&C recommendations or information inputs to the Design Plan</td>
</tr>
<tr>
<td>Column 3: Indicate who has responsibility to provide required input</td>
</tr>
<tr>
<td>Column 4: Indicate the recommendation or information required.</td>
</tr>
</tbody>
</table>
APPENDIX D
EXERCISE II., MANAGEMENT PLANNING:
SPECIFIC WORK PLANNING
FACTOR/ELEMENT IDENTIFICATION

Worksheet #1

BACKGROUND

Your yard has received a Request for Proposal (RFP) which seeks bidders for the construction of 118 foot cutters for the U.S. Coast Guard. These new cutters are required to replace the Coast Guard’s current fleet of 82 and 95 footers by the 1990s.

REQUIREMENTS

Given the information in Data Sheet #1, and Appendix L, 13 SP&C Work Planning Factors, complete the Exercise Worksheet #2 as instructed. The result should be a listing of SP&C Design Plan input requirements and information which incorporates all known and achievable efficiencies of which your yard is capable with respect to SP&C ship construction operations.
APPENDIX D
EXERCISE II., MANAGEMENT PLANNING:
SPECIFIC WORK PLANNING
FACTOR/ELEMENT IDENTIFICATION
Data Sheet #1

SUPPORTING DATA SHEET

Multi-Mission U.S. Coast Guard Cutter for 1990’s

1. Design Requirements
 - Length: 118 foot
 - Displacement: 157 tons
 - Beam: 22 foot
 - Sustained Speed: 30 knots
 - Manning: 16

2. Proposed Cost $10,000,000 each.
 - Begin prototype construction 1990
 - Test prototype 1991
 - Begin production 1992

3. Other Characteristics:
 - Conventional Steel Monohull
 - Convertible to armed patrol craft in wartime
 The main deck aft of the deck house to be flat for easy
 outfitting w/missile or gun mounts
 - Galley and crew compartments consolidated below amidships
 - Deck house of aluminum (single component) attached to steel deck
CONSTRUCTION STAGE #1 MANAGEMENT PLANNING

<table>
<thead>
<tr>
<th>Work Planning Factor</th>
<th>CS #1 - Specific Elements</th>
<th>Responsibility</th>
<th>Recommendation/Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Physical Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Location</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Specs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Time/Manpower</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Minimizing Rework</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Equipment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Handling/Storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Inspection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Disruption Interference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Safety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Schedules</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **Purpose:** Identify and list SP&C safety long-term planning requirements, operations requirements, associated planning responsibilities, and SP&C efficiencies.

2. **Product:** Lists of SP&C safety planning requirements, operations requirements, responsibilities, associated planning responsibilities and SP&C efficiencies. The resulting lists to be used by participants as job aids in future planning team efforts.

3. **Instructional Strategy:**
 - **Method:** Lecture, Instructor-led group discussion
 - **Media:** Viewgraphs, or chalk/white board, or easel pad, worksheets, solution sheets.
 - **Participant Assignment:** Complete worksheets, participate in discussion.

4. **Resources Required:**
 - **Participants**
 - Pencil
 - Exercise III.A.1 (Appendix E (-))
 - H.O. #1, 13 Work Planning Factors (Appendix L)

5. **References:**
 - Student Workbook, Appendix L, 13 SP&C Work Planning Factors (H.O. #1)
6. Instructions:
 - Review assignment
 - Complete Worksheet - III.A.1.a.
 - Column 1: Already complete
 - Column 2: Already complete
 - Column 3: Indicate which position holder(s)/department(s) in the yard has responsibility for planning
 - Indicate Planning and Scheduling requirement and process.
 - Column 4: Indicate how SP&C efficiency can be achieved
 - Complete Worksheet - III.A.1.b.
 - Column 1: Already completed
 - Column 2: Already completed
 - Column 3: Indicate location(s) of the work
 - Column 4: Indicate which position holder(s)/department(s) in the yard have responsibility for planning
 - Column 5: Indicate how SP&C efficiency can be achieved
<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>RESPONSIBILITY FOR PLANNING (DESCENDING ORDER)</th>
<th>SP&c EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. MANAGEMENT PLANNING</td>
<td>1. Concern that prospective contracts may require the use of materials such as paints or chemicals that have not been previously used or approved for use by the shipyard (Your Company). Example - Use of SP&C type anti-fouling paints which contain highly toxic "tin" chemicals - or similar products. 2. Concern where new, untried, or not previously approved materials, methods, or techniques are a firm part of the prospective contract. Then management planning must provide coverage in the bid for research, development, training, and other compensatory measures. 3. Concern that prospective contracts may require the use of products that do not conform to EPA clean water or clean air regulations.</td>
<td></td>
</tr>
</tbody>
</table>
SP&C Long-Term Safety Planning Exercise

Worksheet III A.1.a (cont.)

<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>UNIQUE REQUIREMENT/CONCERNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>II. PRECONSTRUCTION</td>
<td>1. Concern that existing and projected new facilities be compatible with the basic projected ship construction method and planned processes and work flow.</td>
</tr>
<tr>
<td>A. PLANNING:</td>
<td>2. Concern for SP&C trades compliance with the various Government regulatory agency requirements:</td>
</tr>
<tr>
<td></td>
<td>- EPA</td>
</tr>
<tr>
<td></td>
<td>- OSHA</td>
</tr>
<tr>
<td></td>
<td>- Clean Air</td>
</tr>
<tr>
<td></td>
<td>- Clean Water</td>
</tr>
<tr>
<td></td>
<td>- Toxic Waste Control</td>
</tr>
</tbody>
</table>

Responsibility for Planning (Descending Order)
SP&C SAFETY PLANNING FOR OPERATIONS

EXERCISE

<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>UNIQUE REQUIREMENT/CONCERNS</th>
<th>IN-TANK & P F HOUSE/ON-SHIP</th>
<th>RESPONSIBILITY FOR PLANNING</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
</table>

II. OPERATIONS:

PRECONSTRUCTION (cont.):

1. Concern for acceptable facilities to accommodate preconstruction SP&C operations;

B. OPERATIONS:

- Concern for qualified SP&C operators in shop or area that may not be under SP&C trades control.

Example - The blasting and coating of steel plates and shapes by steel fab shop when steel first arrives in shipyard.

2. Concern for handling, storage and use of dangerous SP&C materials - paints, solvents, chemicals, cleaners etc. - especially when SP&C work is done by personnel not fully trained for this.

III. ASSEMBLY OPERATIONS

1. Concern for the compatibility of SP&C operation in or adjacent to the various manufacturing shop operations:

 - Pipe shop
 - Hanger shop
 - Ventilation shop
 - Foundation shop
 - Switchboard shop

 These shops generate hot work (fire sparks, etc., while SP&C operations must be shielded from such conditions.
SP&C SAFETY PLANNING FOR OPERATIONS EXERCISE

Worksheet III.A.I.b (cont.)

<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>UNIQUE REQUIREMENT/CONCERNS</th>
<th>IN-YARD/B & P HOUSE/ON-SHIP</th>
<th>RESPONSIBILITY FOR PLANNING</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. ASSEMBLY LEVEL OPERATIONS (cont.)</td>
<td>2. Concern for the Health and Welfare of the Interrelated trades personnel (mfg. shop people and SP&C people)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Existing or forthcoming facilities must provide for the protection of mfg. shop hazards vs SP&C generated hazards.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Environmental Concerns. Whether SP&C operations are in the manufacturing shop or outside (adjacent to) weather, temperature humidity are of concern for SP&C operations and SP&C personnel.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SP&C SAFETY PLANNING FOR OPERATIONS

EXERCISE

Worksheet III.A.1.b (cont.)

<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>UNIQUE REQUIREMENT/CONCERNS</th>
<th>IN-YARD/B & P HOUSE/ON-SHIP</th>
<th>RESPONSIBILITY FOR PLANNING</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
</table>

Iv. 1. SP&C safety Planning Concerns:

BLOCK LEVEL - OPERATIONS:

- Location of unit in yard.
- Size and configuration
- Access openings
- Staging Condition
- Temporary Services (Lights, air, ventilation)
- Protection required for personnel

2. Type and extent of other trades activities

 - In the general area
 - In the particular space
 - In adjacent areas
 - In adjacent spaces.

3. When SP&C work is scheduled:

 - Time of Year, (Weather)
 - Time of Week, (Regular week or off shift)
 - Time of day, (shift)

v. 1. Location of SP&C job on-ship:

ZONE (ON-SHIP OPERATIONS)

- Deck-frame-space
- Configuration of space
- Access routes to space
<table>
<thead>
<tr>
<th>CONSTRUCTION STAGE</th>
<th>UNIQUE REQUIREMENT/CONCERNS</th>
<th>IN-YARD/B & P HOUSE/ON-SHIP</th>
<th>RESPONSIBILITY FOR PLANNING</th>
<th>SP&C EFFICIENCY</th>
</tr>
</thead>
</table>
| 2. Status of ship construction at time of SP&C job. | - Temporary openings
- Temporary services (Lights, vent., compt. air, sanitary systems).
- Protection required for machines etc.
- Other trades' level of work
- Other trades' type of work
- Other trades' unfinished work | | | |
- Support Trades
- Other trades
- Ship's crew | | | |
| 4. Impact on productivity from SP&C work: | - SP&C trades own productivity is reduced on ship
- Support trades' productivity is reduced
- Other trades' productivity reduced by SP&C application and curing time delays. | | | |
STUDENT WORKBOOK
APPENDIX F
Exercise III. A.2, SP&C SHIFT CHANGE
COMMUNICATION AND COORDINATION

1. Purpose: Identify and list SP&C Shift Change Communication and Coordination requirements (on-ship and off-ship), and associated planning.

2. Product: A list of SP&C Shift Change Communication and Coordination considerations relevant to this shipyard which may be used by participants as a job aid in future planning team efforts.

3. Instructional Strategy:
 - Method: Lecture, Instructor - led group discussion
 - Media: Viewgraphs, or chalk/white board, or easel pad, worksheets.
 - Participant Assignment: Complete worksheets; participate in discussion

4. Resources Required:
 Participant
 - Pencil
 - Exercise III.A.2 (Appendix F)
 - H.O. #1, 13 SP&C Work Planning Factors (Appendix L)

5. References:
 - Student Workbook, Appendix F
 - Student Workbook, Appendix L. 13 SP&C Work Planning Factors, (H. 0. #1)
6. **Instructions:**
 - o Review Assignment
 - o Worksheet Completion
 - Column 1: State the communication/coordination requirement
 - Column 2: indicate when the requirement/ responsibility is carried out
 - Column 3: Indicate who has responsibility to initiate and follow-up
 - Column 4: State how SP&C shift change communication and coordination efficiency can be improved
Shift Change Communication and Coordination Exercise

On-Ship

<table>
<thead>
<tr>
<th>Shift Change C/C Requirement</th>
<th>When Occurring</th>
<th>c/c Responsibility</th>
<th>How SP&C Efficiency can be improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Coordination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shift Change Communication and Coordination Exercise

Off-SHIP

<table>
<thead>
<tr>
<th>Shift Change C/C Requirement</th>
<th>When Occuring</th>
<th>c/c Responsibility</th>
<th>How SP&C Efficiency can be improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Coordination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX G
1. **Purpose:** Identify and list SP&C efficiency problems in given categories, which are worker qualification associated.

2. **Product:** A list of SP&C Worker Qualification problems which impact efficiency in given categories and possible solutions relevant to this shipyard. The list to be used by participants as a job aid in future planning team efforts.

3. **Instructional Strategy:**
 - **Method:** Lecture, Instructor-led group discussion
 - **Media:** Viewgraph, or chalk/white board, or easel pad, worksheet
 - **Participant Assignment:** Complete worksheet, participate in discussion

4. **Resources Required:**
 - **Participants**
 - Pencil
 - Exercise III.A.3. (Appendix G)
 - H.O. #1,13 SP&C Work Planning Factors (Appendix L)

5. **References:**
 - Appendix G
 - Student Workbook, Appendix L, 13 SP&C Work Planning Factors, (H.O. #1)
6. **Instructions:**

- Review assignment
- Complete Worksheet

- Column 1: Indicate the Construction Stage during which the problem usually occurs
- Column 2: Identify the related WPF elements
- Column 3: State the Worker Qualification problems
- Column 4: Indicate how SP&C Planning and Scheduling efficiency can be improved
SWB Worksheet

III. A.3. a

WORKER QUALIFICATION
EXERCISE

REQUIREMENT SHEET

1. Worker qualifications impact SP&C efficiency in several ways:
 - Production rate
 - Estimated/Actual rates
 - Inspection Quality
 - Training
 - Rework
 - Safety
 - Crew skill mix
 - Others? Which?

2. Consider the following questions and organize your responses to them on the accompanying worksheet.
 - Do we have any problems w/SP&C efficiency in any of the above areas because of unqualified workers?
 Which areas?
 - What type of problem?
 - What procedures are involved?
 - What are the supervisor’s controls?
 - Who plans?
 - Can we realize any of the following efficiencies for our yard?

 Always have one or more backup people trained or in-training for each spot on your team. An ideal gang would be composed of:

 35% long-time reliable
 35% experienced mechanics
 30% new people in training.
SWB Worksheet

111. A.3. b

WORKER QUALIFICATION EXERCISE

<table>
<thead>
<tr>
<th>When Problem Occurs (CS #)</th>
<th>Problem Area (WPF)</th>
<th>Problem Statement</th>
<th>How SP&C Efficiency can be improved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

G-4
APPENDIX H
EXERCISE III. B., ASSEMBLY LEVEL OPERATIONS:
WORK PLANNING FACTOR AND ELEMENTS IDENTIFICATION

1. **Purpose:** Identify the specific elements of SP&C Work Planning Factors that associate them with Construction Stage #3, Assembly Level Operations and identify ways to improve SP&C efficiency.

2. **Product:** A list of SP&C Work Planning Factors and efficiencies associated specifically with Construction Stage #3, Assembly Level Operations relevant to this shipyard. The list may be used by participants as a job aid in future planning team efforts.

3. **Instructional Strategy:**
 - **Method:** Participant-led small group discussion with report
 - **Media:** Viewgraph, or chalk/white board, or easel pad, worksheet
 - **Participant Assignment:** Participate in small group discussion and report preparation; complete own worksheet; contribute to overall discussion.

4. **Resources Required:**
 - **Participant**
 - Pencil
 - Exercise III.B (Appendix H)
 - H.O. #1, 13 SP&C Work Planning Factors (Appendix L)
5. References:
 - Student Workbook, Appendix H
 - Student Workbook, Appendix L, 13 SP&C Work Planning Factors (H. O. #1)

6. Instructions for:
 - Review assignment
 - Complete Worksheet
 - column 1: Check the WPFS that are CS #3 specific
 - column 2: List CS #3 specific elements of the WPF
 - column 3: Indicate how SP&C near-term planning and scheduling efficiency can be improved
Specific Work Planning

CONSTRUCTION STAGE #3 ASSEMBLY LEVEL

<table>
<thead>
<tr>
<th>Work Planning Factor</th>
<th>CS #3 - Specific Elements</th>
<th>How SP&C Efficiency can be improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Physical Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Specs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Time / Manpower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Minimizing Rework</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Handling/Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Disruption Interference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Schedules</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **Purpose:** Identify the specific elements of SP&C Work Planning Factors that associate them with Construction Stage #4, Block Level Operations and identify ways to improve SP&C efficiency.

2. **Product:** A list of SP&C Work Planning Factors and efficiencies associated specifically with Construction Stage #4, Block Level Operations relevant to this shipyard. The list may be used by participants as a job aid in future planning team efforts.

3. **Instructional Strategy:**
 - **Method:** Participant-led small group discussion with report
 - **Media:** Viewgraph, or chalk/white board, or easel pad, worksheet
 - **Participant Assignment:** Participate in small group discussion; complete own worksheet; contribute to overall discussion.

4. **Resources Required:**
 - **Participant**
 - Pencil
 - Exercise III.C. (Appendix I)
 - H.O. #1, 13 SP&C Work Planning Factors (Appendix L)
5. References:

° Student Workbook, Appendix I
° Student Workbook, Appendix L, 13 SP&C Work Planning Factors, (H.0, #1)

6. Instructions

° Review Requirement
° Complete Worksheet

- Column 1: Check the WPFs that CS #4 specific.
- Column 2: List CS #4 specific elements of the WPF
- Column 3: Indicate how SP&C near-term Planning and Scheduling efficiency can be improved
CONSTRUCTION STAGE #4. BLOCK LEVEL

<table>
<thead>
<tr>
<th>Work Planning Factor</th>
<th>CS #4 Specific Elements</th>
<th>How SP&C Efficiency can be improved</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Physical Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Location</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Specs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Time/Manpower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Minimizing Rework</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Material</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Handling/Storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Disruption Interference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Safety</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Schedules</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **Purpose:** Identify the specific elements of SP&C Work Planning Factors that associate them with Construction Stage #5, Zone Level. Operations.

2. **Product:** A list of SP&C Work Planning Factors associated specifically with Construction Stage #5, Zone Level Operations relevant to this shipyard. The list may be used by participants as a job aid in future planning team efforts.

3. **Instructional Strategy:**
 - **Method:** Participant-led small group discussion w/report
 - **Media:** Viewgraphs, or chalk/white board, or easel pad, worksheet
 - **Participant Assignment:** Participate in small group discussion, complete own worksheet, contribute to overall discussion.

4. **Resources Required:**
 - **Participant**
 - Pencil
 - Exercise III.D. (Appendix J)
 - H.O. #1, 13 SP&C Work Planning Factors (Appendix L)

5. **References:**
 - Student Workbook, Appendix L, 13 SP&C Work Planning Factors, (H.O. #1)
6. Instructions:

° Review assignments
° Complete Worksheet

- column 1: Check the WPFs that are CS #5 specific.
- column 2: List CS #5 specific elements of the WPF
- column 3: Indicate how SP&C near-term Planning and Scheduling efficiency can be improved
Construction Stage #5 Zone Level

Work Planning Factor	**CS #5 Specific Elements**	**How SP&C Efficiency can be improved**
1. Physical Description | | |
2. Location | | |
3. Support | | |
4. Specs | | |
5. Time/Manpower | | |
6. Minimizing Rework | | |
7. Material | | |
8. Equipment | | |
9. Handling/Storage | | |
10. Inspection | | |
11. Disruption Interference | | |
12. Safety | | |
13. Schedules | | |
1. **Purpose:** Provide a joint planning experience in which both managers and SP&C supervisors apply the 13 SP&C Work Planning Factors to a case incident and develop a plan for accomplishing ship construction work.

2. **Product:** List of planning considerations and actions related to a ship construction case incident.

3. **Instructional Strategy:**
 - **Method:** Participant-led small group discussion w/report
 - **Media:** Viewgraphs, or chalk/white board, or easel pad, case incident
 - **Participant Assignment:** Participate in small group planning session, complete own notes, contribute to general discussion session.

4. **Resources Required:**
 - **Participant**
 - Pencil
 - Eraser
 - Lined tablet paper
 - Exercise IV worksheets and Data Sheet, Data Collection Sheets (Appendix K)
 - H.O. #1, 13 SP&C Work Planning Factors (Appendix L)
 - H.O. #3, Exercise IV Requirements, Worksheets, Data Collection Sheets

K-1
5. **References**
 - Student Workbook, Appendix K
 - Student Workbook, Appendix L, 13 SP&C Work Planning Factors (H.O. #1)
 - Supporting Data Sheet

6. **Instructions:**
 - Review Handout #3
 - Contribute planning inputs during small group discussion
 - Complete Data Collection Sheets
 - Participate in general group discussion
 - Complete notes during general group discussion
STUDENT WORKBOOK

APPENDIX L

H.O. #1

THIRTEEN SP&C WORK PLANNING FACTORS
Thirteen SP&C Work Planning Factors

PHYSICAL DESCRIPTION

<table>
<thead>
<tr>
<th>Factor</th>
<th>Affects</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Handling, transportation</td>
<td>Quantity of labor and material Schedules and work location</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Size data comes from SP&C Spec. Drawings, groups, shop mfg. orders or similar instructions included in work packages. Needs to be considered early in the planning process.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For off-ship SP&C work put primer coat on small pieces plates/beams/brackets/foundations/pipe hangers/nuts/bolts/washers doores/hatches, etc.</td>
</tr>
</tbody>
</table>

SHAPE AND APPURTENANCES

<table>
<thead>
<tr>
<th>Affects</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handling, positioning</td>
<td>Impacts decision on how and where SP/C is best accomplished and SP/C efficiency</td>
</tr>
<tr>
<td>Ventilation, Staging, lighting, access</td>
<td>Generally more opening preferred except 'In-yard' requires more protection to blank the excess openings</td>
</tr>
<tr>
<td></td>
<td>Put intermediate coat(s) on intermediate size PCS subassemblies, modules, etc.</td>
</tr>
</tbody>
</table>

WEIGHT

<table>
<thead>
<tr>
<th>Affects</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handlings (liftings)</td>
<td>Important to off-ship work (N.A. to on ship work.)</td>
</tr>
<tr>
<td></td>
<td>Put final coats on large pre-erection subassemblies and aux. items such as masts/king posts/smokestacks/elevators</td>
</tr>
</tbody>
</table>

OPENINGS

<table>
<thead>
<tr>
<th>Affects</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilation, lighting accessibility/protection/staging/number workers/cleanup/curing</td>
<td>Generally more opening preferred except 'In-yard' requires more protection to blank the excess openings</td>
</tr>
<tr>
<td></td>
<td>Put final coats on per compartment completion schedule</td>
</tr>
</tbody>
</table>

TYPE MATERIAL

<table>
<thead>
<tr>
<th>Affects</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection of SP&C extent of protection type of blast media</td>
<td>Determines the types of SP&C process and length of time to perform it.</td>
</tr>
<tr>
<td>New steel, w/wo millscale, Rusty old paint, Toxic/non-toxic, Crease, Oil, Special contaminations</td>
<td>Impacts type cleaning</td>
</tr>
<tr>
<td></td>
<td>Impacts type personnel protection</td>
</tr>
<tr>
<td></td>
<td>Impact type cleanliness and disposition of residuals</td>
</tr>
<tr>
<td></td>
<td>* NOTE - All plate to be blasted and coated 3/4 mil with pre-erection primer</td>
</tr>
</tbody>
</table>

CURRENT MATERIAL CONDITION

<table>
<thead>
<tr>
<th>Affects</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crease, Oil, Special contaminations</td>
<td>Impacts degree of disruption to</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCATION (where the SP&C work will be performed)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td>OFF-YARD</td>
<td></td>
</tr>
<tr>
<td>Vendor or suppliers items</td>
<td></td>
</tr>
<tr>
<td>that may arrive already</td>
<td></td>
</tr>
<tr>
<td>coated - partially coated</td>
<td></td>
</tr>
<tr>
<td>or not coated at all.</td>
<td></td>
</tr>
<tr>
<td>Planners from design or purchasing</td>
<td></td>
</tr>
<tr>
<td>should have these routed on arrival</td>
<td></td>
</tr>
<tr>
<td>to provide for in-house SP&C. These</td>
<td></td>
</tr>
<tr>
<td>items must be receipt inspected and</td>
<td></td>
</tr>
<tr>
<td>SP&C processed as required.</td>
<td></td>
</tr>
<tr>
<td>Require vendor structural items to be</td>
<td></td>
</tr>
<tr>
<td>primer coated prior to delivery as much as</td>
<td></td>
</tr>
<tr>
<td>possible.</td>
<td></td>
</tr>
<tr>
<td>Require vendor outfitting items to be</td>
<td></td>
</tr>
<tr>
<td>finished coated prior to delivery as much as</td>
<td></td>
</tr>
<tr>
<td>practical.</td>
<td></td>
</tr>
<tr>
<td>Units that are fabricated and SP&C processed</td>
<td></td>
</tr>
<tr>
<td>- generally outside and exposed to the</td>
<td></td>
</tr>
<tr>
<td>environments</td>
<td></td>
</tr>
<tr>
<td>- affects community</td>
<td></td>
</tr>
<tr>
<td>environment, clean water, fumes and fall out</td>
<td></td>
</tr>
<tr>
<td>noise - protection</td>
<td></td>
</tr>
<tr>
<td>- Affects company environment</td>
<td></td>
</tr>
<tr>
<td>offices/trades/etc.</td>
<td></td>
</tr>
<tr>
<td>Exterior environment impacts</td>
<td></td>
</tr>
<tr>
<td>SP&C efficiency and quality</td>
<td></td>
</tr>
<tr>
<td>Minimize in-yard SP&C work</td>
<td></td>
</tr>
<tr>
<td>Utilize a combination of preconstruction</td>
<td></td>
</tr>
<tr>
<td>primer and subassembly units done in Blast</td>
<td></td>
</tr>
<tr>
<td>Houses.</td>
<td></td>
</tr>
<tr>
<td>Planners and SP&C Personnel</td>
<td></td>
</tr>
<tr>
<td>should collaborate on break out size of units</td>
<td></td>
</tr>
<tr>
<td>for most efficient SP&C work</td>
<td></td>
</tr>
<tr>
<td>Where to SP&C Primer</td>
<td></td>
</tr>
<tr>
<td>Where to SP&C Intermediate</td>
<td></td>
</tr>
<tr>
<td>Where to SP&C final</td>
<td></td>
</tr>
<tr>
<td>IN-YARD</td>
<td></td>
</tr>
<tr>
<td>Units that are SP&C coated in a Blast House</td>
<td></td>
</tr>
<tr>
<td>- metal finishing paint shop or similar in</td>
<td></td>
</tr>
<tr>
<td>company facility</td>
<td></td>
</tr>
<tr>
<td>Generally the preferred SP&C method for</td>
<td></td>
</tr>
<tr>
<td>total cost control when</td>
<td></td>
</tr>
<tr>
<td>proficiently planned and processed.</td>
<td></td>
</tr>
<tr>
<td>Employ computers and blast shop coordinators</td>
<td></td>
</tr>
<tr>
<td>to regulate the short-term work flow - avoid</td>
<td></td>
</tr>
<tr>
<td>peaks and valleys and provide priority to the</td>
<td></td>
</tr>
<tr>
<td>most critical units in support of various</td>
<td></td>
</tr>
<tr>
<td>project schedules, consistent with production</td>
<td></td>
</tr>
<tr>
<td>line flow schedules.</td>
<td></td>
</tr>
<tr>
<td>This location is ideal for parts, pieces and</td>
<td></td>
</tr>
<tr>
<td>small to medium size subassemblies or</td>
<td></td>
</tr>
<tr>
<td>modules.</td>
<td></td>
</tr>
<tr>
<td>There is some trade-off in total</td>
<td></td>
</tr>
<tr>
<td>quality due to the mandatory rework</td>
<td></td>
</tr>
<tr>
<td>of structural make-up of component parts.</td>
<td></td>
</tr>
</tbody>
</table>
Appendix I
Thirteen SP&C Work Planning Factors

2 LOCATION (cont.)

<table>
<thead>
<tr>
<th>ON-SHIP, EXTERNAL</th>
<th>SP&C work performed on the exterior surfaces of ships - superstructure, decks, side shell, bottom</th>
<th>The location of the ship at the time SP&C work must not be overlooked for toxicity. Check application of power tool cleaning. Apply a test patch of SP&C (recoating)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affects</td>
<td>SP methods, & materials coating/methods & materials, cleanup/methods & materials, staging, support functions</td>
<td>Use portable air compressors for higher air pressure - faster cutting - uses less grit</td>
</tr>
<tr>
<td>Impacts</td>
<td>environmental</td>
<td>staging</td>
</tr>
<tr>
<td>ON-SHIP, INTERIOR</td>
<td>SP&C work performed on the interior surfaces of: ships, tanks/voids, machinery/spaces/bilges, storerooms, hotel spaces</td>
<td>Impacts - access</td>
</tr>
<tr>
<td>Use airless spray paint equipment vs. atomizing or other application tools, Strive for SP&C work packages that schedule a block of work (tanks) (compts) (spaces) or area at one time to minimize support functions and disruption.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix L

Thirteen SP&C Work Planning Factors

<table>
<thead>
<tr>
<th>SUPPORT</th>
<th>Functions usually supplied by in-house service trades other than the SP&C trade personnel.</th>
</tr>
</thead>
</table>

HANDLING

- **Does the subject SP&C work require lifting/turning/moving/hanging? If so, what service trade support is required?**
- **Size and type of handling equipment. Number of moves required.**
- **To and from blast house**
- **To temp. storage before or after SP&C processing**
- **To other yard locations for SP&C**

<table>
<thead>
<tr>
<th>UTILITY SERVICES</th>
<th>Compressed air for power cleaners, blast equipment, paint spray pumps, grinders, etc.</th>
<th>Services readily available for SP&C schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>Gas to heat buildings/units/shops</td>
<td>Set up and operation by SP&C personnel</td>
</tr>
<tr>
<td>Water</td>
<td>For cleaners, vacuum machines</td>
<td>Set up by support personnel</td>
</tr>
<tr>
<td>Gas</td>
<td>Portable lights</td>
<td></td>
</tr>
<tr>
<td>Electric</td>
<td>Fixed lighting to work by</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>For personal health, comfort, safety</td>
<td>Time to perform SP&C</td>
</tr>
<tr>
<td>Lighting</td>
<td>For confined space explosion protection</td>
<td>Safety of personnel</td>
</tr>
<tr>
<td></td>
<td>For coating/drying/curing</td>
<td>Other trade support</td>
</tr>
<tr>
<td></td>
<td>Natural or forced ventilation</td>
<td></td>
</tr>
</tbody>
</table>

VENTILATION

- Type and quantity
- For access and maneuvering
- Blocking other work
- Necessary to SP&C operations and inspection
- Utilize upside down position to minimize scaffolding requirements.
- Tie staging to drydock NOT ships hull. Consider permanent scaffold clips to remain with ship.
<table>
<thead>
<tr>
<th>TEMPORARY PROTECTION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What to protect and how?</td>
<td>Service trades required?</td>
</tr>
<tr>
<td>Who installs protection?</td>
<td>Impacts time for erection and removal</td>
</tr>
<tr>
<td>Who removes protection - when?</td>
<td>Impacts cleaning/blasting work space</td>
</tr>
<tr>
<td></td>
<td>Impacts painting and cure time</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLEANUP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What type cleanup</td>
<td>Impacts schedule length</td>
</tr>
<tr>
<td>What area or space and when?</td>
<td></td>
</tr>
<tr>
<td>What magnitude?</td>
<td>Impacts equipment repaired</td>
</tr>
<tr>
<td>Toxic or not?</td>
<td></td>
</tr>
<tr>
<td>What disposal of residuals?</td>
<td>Utilize processes, positions, and locations to minimize cleanup</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemist</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>When required - why?</td>
<td>Impacts schedule time for confined spaces, for tanks just opened, and highly flammable coatings.</td>
</tr>
<tr>
<td>Who calls/alerts?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gas Tester</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>What is the authority level of chemist - of gas tester?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Safety Engr.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>When is each required - why?</td>
<td>Impacts schedule time and quality</td>
</tr>
<tr>
<td>Who calls/contacts each - why?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab Services</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Authority/responsibility of each?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VENDOR REPS.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Involved for quality and safety enhancement of the coating work.</td>
<td>Impacts quality, schedule time, and potential rework.</td>
</tr>
<tr>
<td></td>
<td>Communication with vendors, suppliers, and equipment reps.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paint Supplier</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Who communicates need for either/each</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equipment Supplier</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SP&C operators work with supply rep.</td>
<td>Authority/responsibility of each</td>
</tr>
<tr>
<td>SOURCES OF SPECIFICATIONS OR SP&C INSTRUCTIONS</td>
<td>Customer detail specifications</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Engineering - SP&C instructions taken from known as "Paint Schedule" (paint blueprint)</td>
<td>SP&C work package data taken from above two sources</td>
</tr>
<tr>
<td>TYPE OF COATING REQUIRED AND ITS IDENTIFICATION</td>
<td>GENERIC FAMILY - Alkyd resin, Vinyl, Epoxy, Inorganic Zinc, Urethane, Latex (water base), coal tar compounds</td>
</tr>
<tr>
<td>Coating characteristics are obtained from:</td>
<td></td>
</tr>
<tr>
<td>• Product Data Sheets</td>
<td></td>
</tr>
<tr>
<td>• Safety Data Sheets</td>
<td></td>
</tr>
<tr>
<td>Both should be supplied by paint vendor or manufacturer.</td>
<td></td>
</tr>
<tr>
<td>METHOD OF APPLICATION</td>
<td>Brush/roll/spray/dip/flow; combination of above. Spray application is considered the current basic application method - supported by brush touch up and brush coating of welds, etc.</td>
</tr>
<tr>
<td>NUMBER OF COATS</td>
<td>Generally two or more coats required.</td>
</tr>
<tr>
<td>- At least one prime coat and one top coat</td>
<td>Two coat systems expend less initial application labor than three coat systems and expedite items thru blast paint rooms.</td>
</tr>
<tr>
<td></td>
<td>Two coat systems are quicker, but usually require more touch-up and more rework so that the three coat system often proves best even at the same total dry mils.</td>
</tr>
<tr>
<td></td>
<td>- Overall lower cost and better quality</td>
</tr>
</tbody>
</table>
| **FILM THICKNESS** | Recommended wet film thickness is obtained from product data sheet; is important monitor at application to ensure that each coat dries to specified dry film thickness to end up with specified total dry film. | Impacts quality, control, application time, potential rework, and equipment required. | Explore your options and apply same thickness on 3 coats:
- 2 Dry Mils of primer
- 3 Dry Mils intermediate coat
- 4 Dry Mils top coat (later) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DRIYING/CURING</td>
<td>Drying generally refers to time between coats before next coat. Curing refers to completion of chemical reactions and/or drying and ready for intended service function.</td>
<td>Drying/curing impact when/where/how long it takes to do a specific job.</td>
<td>Provide accelerated curing environment in blast paint houses – heat, ventilation, humidity control</td>
</tr>
<tr>
<td>INSPECTION</td>
<td>Inspections may be formal or informal, in-process or upon completion.</td>
<td>Required inspections influence quality and progress of SP&C work. Unnecessary inspections generate confusion, overlap and rework, and contribute to higher costs.</td>
<td>Make maximum use of your in progress inspections.</td>
</tr>
</tbody>
</table>
| **COATING OBJECTIVES** | Coatings serve a variety of purposes
- Purposes: corrosion protection, cosmetic anti-fouling, weather resistance, sanitation or a combination of these. | The SP&C objective impacts when/where/how coatings are applied and must be considered in long and short-term planning in relation to the SP&C system and to the service function of the paint/coating. | Use wet and dry film gages to monitor total film thickness
Too thick is worse than too thin because it consumes excess material and generates re-work thus using more labor – resulting in higher costs overall. |
<table>
<thead>
<tr>
<th>Method</th>
<th>All surface prep falls under one of these classes: manual cleaning, power cleaning, blasting, chemical cleaning or combinations thereof.</th>
<th>Methods influence when/where/why SP&C work can or cannot be accomplished.</th>
<th>Utilize efficient methods that meet minimum spec. required.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blast Media</td>
<td>Sand, metal shot, metal grit, Black Beauty resin grit, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profile/Anchor</td>
<td>Does the spec or paint system require specific profile, anchor pattern?</td>
<td>Media used impacts production rate.</td>
<td>Blast profile should be in accord with product data sheet or as rule of thumb 1/4 to 1/3 of the first coat thickness (dry film). Example: If you wish to apply 3 mils dry film of a given primer that is listed at 50% solids, then you need a 1 mil profile (anchor pattern) on which you apply 5 wet mils of paint that will dry to 3 mils for a well bonded primer. Use the needle gun option where permissible to avoid spot blasting on large units and on ship.</td>
</tr>
<tr>
<td>Anchor Pattern</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td>Does the spec or system allow any options such as use of mechanical needle guns in lieu of blasting on small areas?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TIME/HANPOWER

MANPOWER PLANNING

Objective – accomplish acceptable SP&C in the shortest practical time with minimum manpower used and minimum rework required. **Impacts schedule and cost of job.**

ALLOTED TIME PER SCHEDULE

Planners allow target times to process designated sizeable units of work through fixed operations. **Planners should communicate with SP&C reps who attend planning meetings.**

AVAILABLE MANPOWER

Planners should communicate with each other as well as SP&C operators to look at total target work load and project manpower needs. Availability of manpower is more a planning problem between SP&C supervisors and dept. heads.

SPACE RESTRICTIONS

Affects the type of equipment used and number of workers used at a time, thus controls elapsed time to do job and influences total manhours. Impacts SP&C facilities – blast/coat houses – etc. and work planned for inside.

LABOR SKILLS LEVEL

Affects the elapsed time of job in relation to the average skill of the operations and impacts the total cost in similar manner. **Impacts production rate**

Training is a full-time part of SP&C operations. Each foreman should constantly have a percentage of new people blended in SP&C operators should keep a log of estimated times vs. actual times to complete each SP&C work packages. These should then be made available to and/or discussed with long-term planners, schedulers and estimators.

SP&C OPERATORS ESTIMATED TIME AND LABOR TO COMPLETE

The SP&C operators – foremen and his support elements must recompile all input work from several sources to determine his weekly and daily work plan, thus producing his estimated time on specific tasks/units. Foreman work plan impacts overall schedule if different from the planner's work estimate.

Planners and operators must recognize that some short-term sacrifices must occasionally be made in time and manpower to support the team objective of overall shortest time and lowest manpower. These are management decisions and line supervisors/planners should not feel guilty at resulting higher costs.

Always have one or more backup people trained or in training for each spot on your team. An ideal gang would be composed of:

- 35% long-time reliable
- 35% experienced mechanics
- 30% new people in training
Appendix L
Thirteen SP&C Work Planning Factors

5 TIME/HANPOWER (cont.)

SCHEDULE TIME vs. ESTIMATED TIME

Scheduled time is generally a broader target or guide established at earlier planning levels. Estimated time is short-term detail time estimate that needs to be as accurate as possible and feed back to planning meeting so as to make on course corrections in schedules, both current and future schedules.

If the planners schedule and time coincides with the SP&C operators schedules and time then output should be on schedule. Of course, the above rarely exists because the SP&C operators have to deal with SP&C planning coming from several sources, such as project managers, different fabrication shops, different planners, etc., and the lack of standard units of SP&C work.

Impacts overall SP&C schedule performance when scheduled time and estimated times are significantly different.

The compatibility of scheduled time and estimated time is a measure of the total team experience and ability in many situations.

This compatibility plus a recognized system of SP&C work in any given shipyard will do much to improve production and reduce costs.
Appendix L
Thirteen SP&C Work Planning Factors

<table>
<thead>
<tr>
<th>WHEN TO APPLY PRIMER</th>
<th>OPTIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) As preconstruction primer when steel arrives in shipyard</td>
<td></td>
</tr>
<tr>
<td>(2) Small subassembly units/pieces on the yard</td>
<td></td>
</tr>
<tr>
<td>(3) Subassembly/modules/pieces in the blast and paint shop</td>
<td></td>
</tr>
<tr>
<td>(4) Large subassembly units prior to on-ship erection</td>
<td></td>
</tr>
<tr>
<td>(5) Post-erection/on-ship application</td>
<td></td>
</tr>
</tbody>
</table>

A. The costliest part of SP&C blast work is the removal and disposition of blasting residuals. Therefore, the prime objective is to avoid or at least minimize blasting on ship. (1) Accomplish as much off-ship SP&C work as permissible and practical within the specification and system constraints.

B. Application of an accepted preconstruction primer applied at the time of receipt of steel in the yard is a desired step when it is permissible within the spec. and management system. (2) Plan each step of SP&C as close as permissible and practical to the completion of other trades work, especially fitting, chipping, cutting, welding, straightening, piping, wiring, etc.

C. Consider the use of a preconstruction primer in some cases as a preservative and color assist to other trades even if it must be blasted off to use the spec. primer. (3) Monitor the status of other trades work; see for yourself that other trades work is ready for SP&C coating at the intermediate or final coat level.

WHEN TO APPLY INTERMEDIATE COAT

<table>
<thead>
<tr>
<th>OPTIONS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Small subassembly units/pieces on yard</td>
</tr>
<tr>
<td>(2) Subassembly/modules/pieces in the blast and paint shop</td>
</tr>
<tr>
<td>(3) Large subassembly units prior to on-ship erection</td>
</tr>
<tr>
<td>(4) Posterection/on-ship application</td>
</tr>
</tbody>
</table>

A. Application of intermediate coat(s) should be considered for small subassemblies done in blast and paint houses or for large subassembly units processed prior to erection on ship. (4) Use light colors of primer and intermediate coats where the system permits to highlight and help correct unfinished structural/outfitting prior to application of the final coat; and to improve illumination in construction areas and spaces.
Appendix I
Thirteen SP&C Work Planning Factors

6 MINIMIZING SP&C REWORK (cont.)

<table>
<thead>
<tr>
<th>WHEN TO APPLY FINAL COAT(S)</th>
<th>OPTIONS:</th>
<th>(5) When "quality" and/or "coating integrity" is the priority consideration then and only then should on-ship SP&C operations be considered as the best choice for the bulk of SP&C work. (This eliminates patching in of make-up seams, joints, etc. – permits full continuously covered coats of primer, intermediate and final painting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Small subassembly units/pieces on yard</td>
<td>A. Final coat(s) should be applied to most non-structural components off-ship in paint shop or blast/paint houses.</td>
<td></td>
</tr>
<tr>
<td>(2) Subassembly/modules in blast and paint shop</td>
<td>B. Final coat(s) to structural components should be applied off-ship to large subassembly units or on-ship after completion of other work depending on spec. and system requirements. This is a foreman's/planner’s consideration, but not their decision.</td>
<td></td>
</tr>
<tr>
<td>(3) Large subassemblies prior to on-ship erection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Post-erection on-ship application</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix I
Thirteen SP&C Work Planning Factors

7 MATERIAL

For Surface Preparation - Part of SP&C: Impacts:

(1) Abrasive steel shot
(2) Abrasive steel grit
(3) Combination of (1) & (2) above
(4) White sand
(5) Synthetic abrasive (byproduct of other industrial operations)
(6) Aluminum oxide
(7) Sandpaper and similar mfg. abrasives
(8) Chemical cleaners - citric acid, phosphoric acid, etc; soap type cleaners
(9) Masking tape, etc.

For Painting or Coating Part

(1) Alkyd resin paints
(2) Vinyl resin paints
(3) Inorganic zinc coatings
(4) Epoxy resin coatings
(5) Polyurethane paints
(6) Coatings - coal tar products
(7) Latex (water base) paints
(8) Other similar paints, coatings
(9) Solvent cleaners
(10) Solvent thinners
(11) Masking tape

SP&C personnel have limited options to decide on the use of cleaning or coating materials - the choices are locked in earlier. You DO HAVE and MUST USE the option of communicating back through your bosses and/or counter parts relative to materials that do not perform well and the need for better performing materials.

Always insist on mat. product data and safety sheets. Review these for each SP&C job.

Always check the shelf life date - insist on newly packaged coatings.

Get control of and maintain a 3 to 5 day supply of SP&C materials for your gang.

Who else is using same type material in same or close by area? Watch this for performance clues and for material supply control.

NOTE: Refer to safety heading on sheet () of these considerations

SAFETY

Is this a new material or one I am familiar with/have used before?

Is there a safety data sheet, and who has it?

How do I check the safety data sheet?
Appendix I
Thirteen SP&C Work Planning Factors

EQUIPMENT

| Type forSP&C Support Operations (Examples) | Proper equipment use requires trained operators. | Minimize | Start/stop operations
|--|---|----------|
| Fork lift
| Front-end loaders
| Cranes
| Conveyors
| Grit-hoppers
| Air compressors
| Air dryers
| Dehumidifiers
| Manlifters
| Rail cars
| Tractor-trailers
| Trucks
| Aux - heaters | | Set up time
| | | Repair/breakdown thru effective PM
| | | Plan equipment utilization
| | | Maintain equipment inventory

Type for Cleaning

<table>
<thead>
<tr>
<th>Abrasive Blast Equipment</th>
<th>Other Type Cleaning</th>
</tr>
</thead>
</table>
| Automatic
| Manual
| Fixed portable
| Pneumatic/centrifugal types
| Vacu/veyors/vacuum cleaners | Power wheels - sanders
| Power chippers/scalers/needle guns
| Chemical (Dip-wipe-etc.)
| Manual/sand blast | Portable air compressors generally provide cleaner and higher pressure air for blasting, thus they reduce:
| | elapsed time
| | labor time
| | blasting material consumed per unit of work output. |

As a rule of thumb for discussion of equipment:

- centrifugal abrasive wheels will predominate in small blast machines and small blast grit recycling rooms
- manually operated blast nozzles with expendable abrasives (non-recycling) usually prevail for off-ship exterior work and all on-ship blasting work
Appendix L
Thirteen SP&C Work Planning Factors

<table>
<thead>
<tr>
<th>Equipment (cont.)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray paint</td>
<td>Airless spray paint pump type equipment will perform better on viscous coatings and those to be applied in thicker wet films like 6 or more wet film mils per coat.</td>
</tr>
<tr>
<td>- Air/airless</td>
<td>A combination of airless spray and atomizing spray equipment is the best overall painting equipment; supported by roller/brush, etc.</td>
</tr>
<tr>
<td>- Electrostatic</td>
<td>Insist on spray operators using "wet film" thickness gages—put on the desired thickness at one time without excess and without rework.</td>
</tr>
<tr>
<td>- Combination</td>
<td></td>
</tr>
<tr>
<td>Brush/roll (power or manual)</td>
<td>A combination of airless and low pressure atomizing spray equipment works better on interior compts. and machine spaces working in and around obstructions, such as, pipes, cable runs, electronic consoles, machinery, furniture, etc.</td>
</tr>
<tr>
<td>Dip or flow coating</td>
<td></td>
</tr>
</tbody>
</table>
Handling and Storage of SP&C Units/Pieces Off-Ship

<table>
<thead>
<tr>
<th>Handling</th>
<th>Referring to the unit that is to be SP&C processed</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is to be handled</td>
<td>Identification of SP&C unit by code number or by detail description in case of smaller parts/pieces.</td>
</tr>
<tr>
<td>Why is it to be handled</td>
<td>For SP&C processing on-yards in-shop or for movement to storage or on ship as part of SP&C processing.</td>
</tr>
<tr>
<td>Who is to handle it</td>
<td>Lifting - turning or moving to allow desired processing of SP&C work. Internal SP&C operations or requires service support assistance.</td>
</tr>
<tr>
<td>Routing and Schedule</td>
<td>From fabrication to SP&C process</td>
</tr>
</tbody>
</table>

Step #1 can be primer or interim
Step #2 can be interim or storage/final
Step #3 can be final

The routing would be targeted at the planning level, but detail schedule would fall to SP&C operations.
Appendix L
Thirteen SP&C Work Planning Factors

9 HANDLING & STORAGE SP&C UNITS (cont.)

STORAGE

Units may be stored at the completion of fabrication with no coating or with residual preconstruction primer.

Units may be SP&C primed after fab. and stored at this point.

Units may be SP&C primed and part top coated - then stored awaiting additional assembly or erection.

This determination is a function of the system and where specific units fit in - the SP&C operations must know the system and fit of the pieces even if they can’t change the system.

Length of time in storage should be considered to avoid rust and corrosion of uncoated units and to avoid deterioration of partly coated units. Units should be protected against surface film contaminations during storage or be thoroughly cleaned at end of storage or before additional recoating.

Certain coating systems may not be suspended for storage or other reasons at the primer or intermediate coat level, but must be continued thru final coat application within time constraints. The product data sheets will caution on this and it should always be respected. However, lower temperatures can extend recoat time and higher temperature can reduce recoat time. Judge accordingly. Check with paint lab personnel for added assurances.

Store units or pieces:
- inside where practical
- in position that allows runoff of water. Drill drain holes if runoff can't be relied on
- away from salt water flooding or salt water spray or mist
- with spacer pieces between flat faces/surfaces
Appendix L
Thirteen SP&C Work Planning Factors

<table>
<thead>
<tr>
<th>Inspection</th>
<th>Impacts based upon spec. are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspection of work performed at any of several levels affects the following concerns:</td>
<td></td>
</tr>
<tr>
<td>Does spec. require specific inspection? What type inspection?</td>
<td></td>
</tr>
<tr>
<td>Who conducts inspections? What criteria?</td>
<td></td>
</tr>
<tr>
<td>Who witnesses inspections? What documentation?</td>
<td></td>
</tr>
<tr>
<td>Who accepts/rejects? At what points?</td>
<td></td>
</tr>
<tr>
<td>NOTE: Spec./owner/customer used interchangeably here.</td>
<td></td>
</tr>
<tr>
<td>Does the yard management system require inspections?</td>
<td></td>
</tr>
<tr>
<td>Does the paint vendor/representative inspection? Inspection, or the right to witness in-process operations?</td>
<td></td>
</tr>
<tr>
<td>SPECIFICATION REQUIREMENTS</td>
<td></td>
</tr>
<tr>
<td>INTERNAL REQUIREMENTS</td>
<td></td>
</tr>
<tr>
<td>Does the dept. supt. require inspections by department-trained inspectors, independent of production personnel?</td>
<td></td>
</tr>
<tr>
<td>Foreman's Level</td>
<td></td>
</tr>
<tr>
<td>Do you, the foreman, faithfully inspect and accurately evaluate the production accomplishments of your gang?</td>
<td></td>
</tr>
<tr>
<td>Depends on in-process inspections by experienced inspectors — you or your counterparts</td>
<td></td>
</tr>
<tr>
<td>Keep formal inspections to the minimum. These disrupt work and serve no purpose (unless mandatory).</td>
<td></td>
</tr>
<tr>
<td>The most effective inspection system is composed of:</td>
<td></td>
</tr>
<tr>
<td>- in-process monitoring that includes wet mil. thickness readings and dry mil. readings after each coat followed by</td>
<td></td>
</tr>
<tr>
<td>- one thorough final inspection of each unit/area/tank/compartment, etc. at completion of major coating work</td>
<td></td>
</tr>
<tr>
<td>This, when faithfully and accurately done, is the best level of SP&C work inspection.</td>
<td></td>
</tr>
<tr>
<td>GENERATED BY SP&C</td>
<td>Delays/slow downs/cancellation/damage to other trades or other work functions as a result of SP&C operations. Applicable SP&C operations on- and off-ship. The most damaging aspects occurring on-ship and on the adjacent dock areas.</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>SP&C BLAST OPERATIONS (CLEANING)</td>
<td>Generates hazards to others in form of dust/flying abrasives/noise. SP&C preparatory operations involve clean up/cover up to area/unit, etc. that generate displacement, - move over disruptions for other trades before and after actual blasting and coating operations. Plan SP&C operations for off shift times, after normal work hours or on weekends. Utilize blast and coat rooms effectively thru a planned/agreed system.</td>
</tr>
<tr>
<td>SP&C COATING OPERATIONS (PAINTING)</td>
<td>Generates flammable/explosive/toxic/irritating fumes. Generates wet (painted)/slippery/keep off surfaces that preclude other work even if nonflammable/nontoxic coating is used. Precludes other work due to personal health/safety/well-being of others. Precludes or strictly limits access and movement thru or within the area/shop/bldg./space/compartment/dry dock or open decks. Reduce rework. Do it right and once only. Make use of approved accelerated curing techniques heat/humidity/ventilation control. Utilize approved "fast cure" versions of available coatings.</td>
</tr>
<tr>
<td>SP&C CURING OPERATIONS (DRIYING TIME)</td>
<td>Coating must cure to be: - tack free from dust, etc. - fume free to avoid fire or explosion - dry hard to permit walking on without damage to the coating - dry firm to remove protection/covering to release surfaces for continuation of other work. Generates delays that tie up facilities/areas/spaces/ compartments. While waiting for coatings to cure.</td>
</tr>
<tr>
<td>WHAT/WHO</td>
<td>IMPACTS OF UNSAFE OPERATIONS</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td>General Note:</td>
<td>Safety must be a totally integrated part of any and all SP&C operations. Safety demands and deserves to be a topic unto itself and is mentioned for limited consideration to show that it must never be neglected or left out. This is not an attempt to provide training in SP&C safety.</td>
</tr>
<tr>
<td></td>
<td>- Injury</td>
</tr>
<tr>
<td></td>
<td>- Delay</td>
</tr>
<tr>
<td></td>
<td>- Liability</td>
</tr>
<tr>
<td></td>
<td>- Loss of work</td>
</tr>
<tr>
<td></td>
<td>- Claims</td>
</tr>
<tr>
<td>Your personal safety</td>
<td></td>
</tr>
<tr>
<td>Your personnel (your gang)</td>
<td></td>
</tr>
<tr>
<td>Your fellow employees</td>
<td></td>
</tr>
<tr>
<td>Your work area/shop/yard/ship</td>
<td></td>
</tr>
<tr>
<td>Your shipyard/company</td>
<td></td>
</tr>
<tr>
<td>Your community/environment</td>
<td></td>
</tr>
<tr>
<td>Your materials</td>
<td></td>
</tr>
<tr>
<td>Your equipment</td>
<td></td>
</tr>
<tr>
<td>Dust</td>
<td>- nuisance</td>
</tr>
<tr>
<td></td>
<td>- irritating</td>
</tr>
<tr>
<td></td>
<td>- toxic</td>
</tr>
</tbody>
</table>

SP&C HAZARDS

<table>
<thead>
<tr>
<th>FLYING PARTICLES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- abrasive grit</td>
<td></td>
</tr>
<tr>
<td>- abrasive shot</td>
<td></td>
</tr>
<tr>
<td>- abrasive other</td>
<td></td>
</tr>
</tbody>
</table>
Appendix L
Thirteen SP&C Work Planning Factors

SAFETY (cont.)

<table>
<thead>
<tr>
<th>High pressure air/fluids</th>
<th>High pressure air from blast or paint equipment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- hose rupture</td>
<td></td>
</tr>
<tr>
<td>- nozzle exhaust</td>
<td>High pressure fluid from water blast or from airless spray equipments.</td>
</tr>
</tbody>
</table>

Fire (explosion)

Fumes

- nuisance
- irritating
- toxic
- oxygen displacing

Falls

- from staging/ladders
- from personnel lift equipment

Chemicals

<table>
<thead>
<tr>
<th>Affects</th>
<th>From</th>
</tr>
</thead>
<tbody>
<tr>
<td>- burns</td>
<td>From chemicals used as cleaners</td>
</tr>
<tr>
<td>- blisters</td>
<td>From chemicals being blasted off</td>
</tr>
<tr>
<td>- irritants (eyes)</td>
<td>From paints/coats containing chemicals</td>
</tr>
<tr>
<td>- irritants (respirator)</td>
<td>From solvents/thinners</td>
</tr>
<tr>
<td>- irritants (skin)</td>
<td></td>
</tr>
<tr>
<td>CONTRACT SCHEDULES</td>
<td>Management Developed. These target the start and finish of contract</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>MASTER SCHEDULE</td>
<td>A management tool that details:</td>
</tr>
<tr>
<td></td>
<td>- Key events</td>
</tr>
<tr>
<td></td>
<td>- Award of contract</td>
</tr>
<tr>
<td></td>
<td>- Lay keel</td>
</tr>
<tr>
<td></td>
<td>- Launch</td>
</tr>
<tr>
<td></td>
<td>- Deliver</td>
</tr>
<tr>
<td>MAIN EVENTS SCHEDULE</td>
<td>Details main events in sequencing order</td>
</tr>
<tr>
<td></td>
<td>Erection/launching/outfitting/compartment completion/testing/train trail/delivery</td>
</tr>
<tr>
<td>SHOP MFG. SCHEDULE</td>
<td>Details items/units/components/sub-asseblies built in shops or on exterior building plattens, skids/areas</td>
</tr>
<tr>
<td>MODULE BLAST/COAT SCHEDULE</td>
<td>Short-term composite schedule made up by SP&C personnel to show SP&C loading and work flow from fabrication areas to erection time</td>
</tr>
<tr>
<td></td>
<td>Points up the need for a SP&C coordinator team to make this a more efficient process in all shipyards.</td>
</tr>
</tbody>
</table>
Appendix L

Thirteen SP&C Work Planning Factors

<table>
<thead>
<tr>
<th>SCHEDULES (cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HULL ERECTION SCHEDULE</td>
</tr>
<tr>
<td>LAUNCHING SCHEDULE</td>
</tr>
<tr>
<td>DOCKING SCHEDULE</td>
</tr>
<tr>
<td>OUTFITTING SCHEDULE</td>
</tr>
</tbody>
</table>

- **SP&C TANKS**
 - Provides hydro testing of tanks before launch.

- **SP&C MACH. SPACES**
 - SP&C operators have input into these schedules thru planning meetings to detail start and finish times for each compartment/tank/area.

- **SP&C EXTERIOR**
 - Breaks exterior of ship into sections for SP&C work.

- **COMPARTMENT COMPLETION SCHEDULE**
 - Targets number of compartments to be completed per week or month and on certain Navy work it targets the compartments/spaces that are turned over to the ship's crew for living and operational purposes

- **COMPARTMENT TURNOVER SCHEDULE**
 - Eliminate rework at each opportunity, but do not hesitate to repeat your ideas, suggestions or complaints that may contribute to better performance in SP&C operations.

 Foremen/planners/mat. supervisors/equipment supervisors and similar SP&C personnel can and should play a significant part in long-term scheduling by feeding their ideas and needs through their superiors and back to the long-term planning sources. This can result in more meaningful schedules across the board and reduce total costs of SP&C operations.
STUDENT WORKBOOK
APPENDIX N
FOREMAN WORK PLANNING CHECKLIST

1. **Purpose:** To develop a personalized checklist for use by the SP&C supervisor

2. **Product:** Detailed notes and actions for the SP&C Supervisor which he can use in his yard during the work planning process.

3. **Instructional Strategy:**

 o **Method:** Instructor lead discussion of all items listed in Appendix N

 o **Media:** Viewgraphs (as applicable to topics), easel pad, Appendix N

 o **Participant Assignment:** Participate in group discussion, write down applicable actions in Student Notes Column

4. **Resources Required:**

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Participant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viewgraphs (as applicable)</td>
<td>Pencil</td>
</tr>
<tr>
<td>Overhead projector</td>
<td>Appendix N</td>
</tr>
<tr>
<td>Appendix N</td>
<td>Appendix L</td>
</tr>
</tbody>
</table>

5. **References:**

 o Instructor Guide, Section III.E.
 o Instructor Guide, Appendix L
 o Instructor Guide, Appendix N
6. Process:

A. Preparation

1. Review:
 o Instructor Guide, Section III.E.
 o Appendix L
 o Appendix N
2. Relate each item of Appendix N to Appendix L WPF’S
3. Review suggested presentation strategy (below)
4. Personalize the checklist to the yard terminologies
5. Develop prompting questions to draw out detailed action items
6. Xerox sufficient copies of materials for trainee use.

B. Presentation Strategy

1. Introduce the discussion objectives and emphasize the importance of each supervisor having a good checklist
2. Discuss the first item and take notes on specific actions which develop from discussion. Use the easel to write down a synopsis of the action items to demonstrate a sample of the student notes
3. Briefly summarize the checklist importance at the end of the discussions.
FOREMAN WORK PLANNING CHECKLIST

Checklist

General - For each work assignment:

A. Make sure all work package documentation is complete and the work to be accomplished is understood.

1. Are specifications complete?

2. Are there special safety considerations?
 a. Gas chemistry for confined spaces?
 b. Flammable materials?
 c. High or dangerous places for men to work?

3. What is the schedule for work?
4. What other trade assistance is required?

5. Walk the job down.

B. Evaluate the work to be done using the 13 work planning factors.

1. WPF-1 – Physical Description
 a. What size and shape?
 b. What type material?
 c. What condition is it in?

2. WPF-2 – Location
FOREMAN WORK PLANNING CHECKLIST (Continued)

Checklist Student Notes

a. Where is the work to be done?

(1) In-yard

(2) In-shop or Blast and Paint House

(3) On Board Ship

(4) Internal Space

(5) External Space

b. What problems are created by location?
FOREMAN WORK PLANNING CHECKLIST (Continued)

c. Special Considerations

(1) Tanks

(2) Voids

(3) Machinery Space

(4) Bilge

(5) Hotel Spaces

(6) Underwater Bottoms
FOREMAN WORK PLANNING CHECKLIST (Continued)

Checklist Student Notes

3. WPF-3 - SUPPORT

 a. What Support Services/Trades are required?

 (1) Handling - Riggers

 (2) Transporting

 (3) Utility Services

 (4) Air, electricity, Lights, Water, Heat

 (5) Ventilation

 (6) Staging
<table>
<thead>
<tr>
<th>Checklist</th>
<th>Student Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7) Temporary Protection</td>
<td></td>
</tr>
<tr>
<td>(8) Clean-up</td>
<td></td>
</tr>
<tr>
<td>(9) Waste removal</td>
<td></td>
</tr>
<tr>
<td>(10) Chemist/Gas Tester</td>
<td></td>
</tr>
<tr>
<td>(11) Safety Engineer/Lab Services</td>
<td></td>
</tr>
<tr>
<td>(12) Vendor Reps</td>
<td></td>
</tr>
<tr>
<td>(13) Paint Supplier</td>
<td></td>
</tr>
<tr>
<td>(14) Equipment Supplier</td>
<td></td>
</tr>
</tbody>
</table>
b. When are these services required?

4. WPF-4 SP&C - Specifications

a. What Surface Preparation Specification is the work to conform to?

 (1) Method

 (2) Blast media

 (3) Profile/Pattern

 (4) Optimal methods
FOREMAN WORK PLANNING CHECKLIST (Continued)

Checklist

b. What Paint Specification is the work to conform to?

(1) Type of coating system

(2) Method of application

(3) Number of coats

(4) Thickness of each coat

(5) Cure and dry time

(6) Method of quality inspection

(7) Objective of the coating
<table>
<thead>
<tr>
<th>Checklist</th>
<th>Student Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. WPF-5 - Time/Manpower</td>
<td></td>
</tr>
<tr>
<td>a. What size crew is required to meet schedule?</td>
<td></td>
</tr>
<tr>
<td>(1) Special skills</td>
<td></td>
</tr>
<tr>
<td>(2) Crew skill mix</td>
<td></td>
</tr>
<tr>
<td>(3) Alternative work plan</td>
<td></td>
</tr>
<tr>
<td>b. Any space restrictions for crew?</td>
<td></td>
</tr>
<tr>
<td>c. Can the work be done on time?</td>
<td></td>
</tr>
</tbody>
</table>
d. Will the space be ready for the crew on time?

6. WPF-6 - Minimizing Rework

a. Will other trades be out of the way?

b. Is there work below, above, or on adjoining bulkheads?

c. Are primer, intermediate, and final coats being applied correctly and on time?

7. WPF-7 - Material

a. Is the material called for the correct SP&C material?
<table>
<thead>
<tr>
<th>Checklist</th>
<th>Student Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Check self-life dates</td>
<td></td>
</tr>
<tr>
<td>c. Is the quantity of material enough for your job?</td>
<td></td>
</tr>
<tr>
<td>d. Is the material new and you need instruction is proper use?</td>
<td></td>
</tr>
</tbody>
</table>

8. WPF-8 - Equipment

a. Is the equipment available?	
b. Is it well maintained?	
c. Is it safe?	
FOREMAN WORK PLANNING CHECKLIST (Continued)

<table>
<thead>
<tr>
<th>Checklist</th>
<th>Student Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>d. Are there enough pieces, or feet of hose?</td>
<td></td>
</tr>
<tr>
<td>e. Is there power or air for equipment?</td>
<td></td>
</tr>
<tr>
<td>f. Are operators trained for equipment use?</td>
<td></td>
</tr>
</tbody>
</table>

9. WPF-9 - Handling and Storage

a. What items need to be handled because of size, weight, shape, etc.? |

b. What support services are required? |

c. When must it be handled? |
Checklist

<table>
<thead>
<tr>
<th>d.</th>
<th>Who coordinates heavy lifts?</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.</td>
<td>When SP&C for storage what specs are called out?</td>
</tr>
<tr>
<td>f.</td>
<td>Can you coat over the storage coat with intermediate or finish coats without removing the storage coats?</td>
</tr>
</tbody>
</table>

Student Notes

10. WPF-10 - Inspection

<table>
<thead>
<tr>
<th>a.</th>
<th>What specs are being inspected?</th>
</tr>
</thead>
<tbody>
<tr>
<td>b.</td>
<td>Who, when, where, and how will the inspection be done?</td>
</tr>
<tr>
<td>c.</td>
<td>The foreman should inspect first?</td>
</tr>
</tbody>
</table>
11. WPF-11 - Disruption/Interference

 a. Does your work plan have the potential for being disrupted?

 b. Are other workers going to interfere?

 c. Talk to other foremen around the space you are to work in.

 d. Do you have an alternative work plan?

 e. What is the weather? Rain, cold, wind, humidity, heat?
FOREMAN WORK PLANNING CHECKLIST (Continued)

<table>
<thead>
<tr>
<th>Checklist</th>
<th>Student Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. WPF-12 - Safety</td>
<td></td>
</tr>
<tr>
<td>a. Are your materials and equipment safe to work with?</td>
<td></td>
</tr>
<tr>
<td>b. Is your work area safe to work in?</td>
<td></td>
</tr>
<tr>
<td>c. Will others be in danger because of your work?</td>
<td></td>
</tr>
<tr>
<td>d. Do you need to call a safety inspector to approve a procedure, structure, or material?</td>
<td></td>
</tr>
<tr>
<td>e. Is protective clothing called for?</td>
<td></td>
</tr>
<tr>
<td>Checklist</td>
<td>Student Notes</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>13. WPF-13 - Schedules</td>
<td></td>
</tr>
<tr>
<td>a. Can you meet the schedule called for?</td>
<td></td>
</tr>
<tr>
<td>b. What is the impact if you cannot meet the schedule?</td>
<td></td>
</tr>
<tr>
<td>c. Procedures for overtime, extra shift work, extra crews?</td>
<td></td>
</tr>
</tbody>
</table>
WORK PLANNING FOR SHIPYARD SURFACE PREPARATION AND COATING (SP&c)
INTRODUCTION

WORK PLANNING FOR SHIPYARD SURFACE
PREPARATION AND COATING (SP&C)

INTRODUCTION WORKSHEET

Instructions: Please use this worksheet to organize a short self-introduction

NAME: __

SHIYARD
DEPARTMENT: __

POSITION/TITLE: __

LOCATION: ___

Shipyard planning experience:

<table>
<thead>
<tr>
<th>Experience</th>
<th>Types of planning experience</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specific expectations from this Workshop:

Specific Questions you want answered:

COURSE OBJECTIVES

1. The purpose of this course is to provide the background information and skills necessary to improve the general ability of SP&C supervisors to effectively plan and schedule near term Surface Preparation and Coating work on new ship construction.

2. A desired second outcome of this course is to increase the shipyard management’s knowledge of the effects of near term detailed surface preparation and coating planning on overall shipyard production efficiency.

3. Therefore, the outcomes of this course will be an improved exchange of SP&C work planning information and ideas between shipyard top management, SP&C supervisors and cognizant craft planners and schedulers.
SCOPE
AND
OVERVIEW
HISTORICAL BACKGROUND

SP&C Planning

- Last on ship’s completion list
- Difficult to manage
- Inefficient and complex
- Too much on-board work
U.S. SHipyards not Competitive

- Labor Intensive Workforce
- Low productivity
 - Antiquated systems and processes
 - Antiquated industrial equipment and facilities
 - Potential for in-process changes and alterations
HULL BLOCK CONSTRUCTION SYSTEM

- Japanese lead the world in this system
- Varying degrees of the Hull Block Construction Method now in U.S. shipyards
- Traditional system survives, in whole or in part in the U.S.
NATIONAL SHIPBUILDING RESEARCH PROGRAM

• Sponsor of the effort to improve the shipyard industry SP&C process

• Concerned that SP&C now represents 10% - 20% of ship construction costs

• Concerned that painter's work still control led by the design and production methods which are decided by others in the planning process

• This training package is a result of that concern
APPROACH TO SP&C WORK PLANNING

A. Prepare and paint as early as possible
B. Do as much under controlled conditions as possible
C. Use blast and paint houses
D. Use end of other shops (pipe shop paint section)
E. Paint final coats only after all other work is done - to preclude rework
F. Maximum down hand work
G. It may be cheaper to move the paint than the item to be painted (cost trade off)
H. Inspect, before you paint and after
I. Plan blasters and painters work in relation to other trades in the construction process
J. The Zone Approach permits and encourages most outfitting SP&C work to be accomplished earlier under more efficient conditions
 - Safer
 - Cleaner
 - Tools and materials delivered to work sites quickly and economically.
K. Plan early and stick to your plan
BENEFITS DERIVED

- Reduce blast and paint time
- Minimize on-board work
- Simplify SP&C Planning and Scheduling
- Avoid interferences between trades
- Achieve greater efficiency of handling equipment and material
- Improve safety
- Improve working environment
- Improve Productivity
- Improve Quality
SHIYARD ORGANIZATION
13 WORK PLANNING FACTORS

1. Physical Description
2. Location
3. Support
4. SP&C Specification
5. Time/Manpower
6. Minimizing
7. Material
8. SP&C Equipment
9. Handling and Storage
10. Inspection
11. Disruption/Interference
12. Safety
13. Schedules
(WPF) #1. PHYSICAL DESCRIPTION
(painted item)

- Size
- Shape
- Openings
- Appurtenances
- Materials Types
- Materials Conditions
(WPF) #2. LOCATION
(Where work is to be performed)

- Off-yard
- In-yard
- On-ship
 - External
 - Interior
(WPF) #3. SUPPORT

- Handling
- Transporting.
- Utility Services
- Ventilation
- Staging
- Temporary Protection
- Cleanup
- Chemist
- Gas tester
- Safety
- Lab Services
- Vendor Representatives
 - Paint Supplier
 - Equipment Supplier
(WPF) #4. SP&C SPECIFICATIONS

- Film thickness
- Drying/Curing
- Inspection
- Coating Objectives
- Sources of Specifications or SP&C Instructions
- Type of Coating required and Coating Identification
- Method of Application
- Number of Coats
- Surface Preparation
(WPF) #5. TIME/POWER

.Ź Manpower Planning .

.Ź. Al lotted Time Per Schedule

• Available Manpower

• Space Restrictions

• Labor Skills Level

.Ź SP&C Operators Estimated Time and Labor to Complete

• Schedule Time vs. Estimated Time
(WPF) #6. MINIMIZING SP&C REWORK

- When to Apply Primer
- When to Apply Intermediate Coat
- When to Apply Final Coats
(WPF) #7. MATERIAL

- Materials for Surface Preparation
- Materials for Painting or Coating
- Material Safety
(WPF) #8. SP&C EQUIPMENT

Ź Support Operations

- Forklift
- Air Compressors

● Cleaning

- Abrasive blast equipment
- Pneumatic/Centrifugal
- Vacuum cleaners

● Coating

- Sprayers
- Brush/Roll (power/manual)
HANDLING AND STORAGE

- Handling Units to be Processed
- Routing and Scheduling
- Storage
(WPF) #10. INSPECTION

- Routine Inspection Requirements
- Specification Inspection Requirements
- Foreman’s Inspections
(WPF) #11. DISRUPTION/INTERFERENCE
(By SP&C)

- Generated by SP&C
- Generated by other trades
- SP&C Blast Operations
- SP&C Coating Operations
- SP&C Curing (Drying time)
(WPF) #12. SAFETY

- What
- Who
- SP&C Hazards
 - Dust
 - Flying particles
 - High Pressure
 - Fire
 - Fumes
 - Falls
 - Chemicals
(WPF) #13 SCHEDULES

- Contract Schedules
 - Master Schedule
 - Main Events Schedule
 - Shop Manufacturing Schedule
 - Module Blast/Coat Schedule
- Hull Erectors Schedule
 - Launching Schedule
- Docking Schedule
- Outfitting Schedule
- Trials Schedule
- Delivery Schedule

- Most Important but least significant amount of work
FIVE STAGES OF NEW SHIP CONSTRUCTION

1. Management Planning (Design Plan)
2. Pre-Construction Planning and Operations
3. Assembly
4. Block Level Operations
5. Zone Level Operations
CONSTRUCTION STAGE #1: MANAGEMENT PLANNING

- **Initiated by opportunity to bid (RFP)**
 - New Ship Construction
 - Repair Package
- **Involves**
 - Developing a Bid Work Plan
 - Determining Specifications
 - Developing the cost
 - Determining the methods for construction
 - Make/Buy decisions
- **Results in**
 - Cost-effective competitive bid
 - Hull erection plan providing known efficiency opportunity parameters
 - Work plan to follow when contract awarded
CONSTRUCTION STAGE #2: PRE-CONSTRUCTION PLANNING AND OPERATIONS

- Initiated by contract award
- Involves
 - Work Planning refinements
 - Schedules (master through detail)
 - Project Planning
- Results in
 - Work Packages
 - Schedules detailed
 - Manpower planning
 - Material ordering & receipt
 - Raw materials preparation, coat, and storage
 - Accurate/Appropriate SP&C specifications
 - Optimum integration of trades and schedules to minimize interference requirements
 - Yard ready to operate
 - Shop fabrication of raw materials
 - Work commenced on schedule
CONSTRUCTION STAGE #3: ASSEMBLY
LEVEL OPERATIONS

Initiated by work package and short term schedules

Involves
- Off-ship environment
- Yard/Shop joining fabricated parts
- Joining parts assemblies into subassemblies
- Meeting two week schedules
- Least handling
- Larger surfaces
- Use cost-effective Blast/Paint houses
- Easier access
- Most down hand painting

Results in
- SP&C Assemblies ready for block level
- Surfaces protected to intermediate holding levels
- Some final materials coating
- Feedback to top management on meeting production rates and schedules
CONSTRUCTION STAGE #4: BLOCK LEVEL OPERATIONS

Initiated by: Work packages and short term schedules

• Involves
 - Off ship environment
 - Yard/Shop fabrication
 - Joining assemblies into blocks
 - Less easy access to SP&C work
 - More disruption/interference
 - More safety and equipment concerns by supervision
 - Less down hand work
 - Greater coordination between trades planners

Results
 - Greater percentage final outfitting and painting
 - Greater potential for rework
 - Feedback to top management on production rate and schedule performance
CONSTRUCTION STAGE #5: ZONE
LEVEL OPERATIONS

- **Initiated by:** Work packages and short-term schedules
- **Involves**
 - On ship SP&C environment
 - Max disruption/interference
 - Max space preparation/cleanup
 - Max safety-requirements
 - Max equipment handling manually
 - Max restricted access
 - Max coordination
 - Final Coats
 - Touch up (Cosmetics)
 - Testing
 - Inspecting
 - Bottom wet
 - Trial schedules
 - Most rework intensive
 - Most costly SP&C work environment

Results
- Ship ready for trials
- Ship ready for delivery
- Ship delivery area ready
MANAGEMENT PLANNING

- Purpose
- Ž Character sties
- Ž Inputs
- Ž outputs
PLANNING CONSIDERATIONS

● In-Yard
 - Primer coat
 - Intermediate coat
 - Final coat

Ž On-Ship
 - Final coat
APPLICABLE WORK PLANNING FACTORS

1. Physical Description
4. SP&C Specifications
5. Time/Manpower
6. Minimizing SP&C Rework
7. Material
8. SP&C Equipment
9. Handling and Storage
10. Inspection
13. Schedules
PLANNING CORE FIVE

- Main Event schedule
- Shop Manufacturing schedule
 - Hull Erection schedule
 - Outfitting schedule
- Compartment Completion schedule
 - 60% of SP&C completed prior to erection
 - 90% of blasting should be complete
MANAGEMENT PLANNING

WORKSHOP
PRECONSTRUCTION

PLANNING AND OPERATIONS
APPLICABLE WORK PLANNING FACTORS

1. Physical Description
2. Location
3. Support
4. SP&C Specifications
5. Time/Manpower
6. Minimizing SP&C Rework
7. Material
8. SP&C Equipment
9. Handling and Storage
10. Inspection
11. Disruption/Interference
13. Schedules
THREE SPECIAL CONSIDERATIONS

I. SAFETY CONDITIONS AND GAS CHEMISTRY
THREE SPECIAL CONSIDERATIONS

II. SHIFT CHANGE COMMUNICATION AND COORDINATION
SHIFT CHANGE COMMUNICATION

AND

COORDINATION EXERCISE
THREE SPECIAL CONSIDERATIONS

III. WORKER QUALIFICATIONS
WORKER QUALIFICATIONS

EXERCISE
CONSTRUCTION STAGE #3

ASSEMBLY LEVEL OPERATIONS

EXERCISE
CONSTRUCTION STAGE #4

BLOCK LEVEL OPERATIONS
CONSTRUCTION STAGE #4

BLOCK LEVEL OPERATIONS

EXERCISE
CONSTRUCTION STAGE #5

ZONE LEVEL OPERATIONS
CONSTRUCTION STAGE #5

ZONE LEVEL OPERATIONS

EXERCISE
EXAMPLE SHIPYARD ORGANIZATION

SOURCE: Integrated Hull Construction, Outfitting and Painting (IHOP), p.6;
U.S. Department of Transportation, Maritime Administration, May, 1983.