Model Development for Piezoceramic Nanopositioners

Ralph C. Smith*, Andrew Hatch* and Tathagata De†

*Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695
†Electrical Engineering Department, Iowa State University, Ames, IA 50011

Abstract

In this paper, we develop nonlinear constitutive equations and resulting system models quantifying the nonlinear and hysteretic field-displacement relations inherent to piezoceramic elements employed in present nanopositioner designs. We focus specifically on piezoceramic rods utilizing d_{33} motion and piezoceramic shells driven in d_{31} regimes, but the modeling framework is sufficiently general to accommodate a variety of drive geometries. In the first step of the model development, lattice-level energy relations are combined with stochastic homogenization techniques to construct nonlinear constitutive relations which accommodate the hysteresis inherent to piezoceramic compounds. Secondly, these constitutive relations are employed in classical rod and shell relations to construct system models appropriate for presently employed nanopositioner designs.

1. Introduction

Piezoceramic materials have been employed as actuators in scanning tunneling microscopes (STM) and atomic force microscopes (AFM) since their inception due to their high set point accuracy, large dynamic range, and relatively small temperature sensitivity [8]. More recent investigations have focused on the design of AFM stages for employment in applications ranging from nanoconstruction to the development of nuclear magnetic resonance microscopes (NMRM) with the goal of detecting single electron spins [6, 13, 20]. However, a fundamental challenge when employing piezoceramic actuators even at the low drive levels required for nanopositioning is the quantification and accommodation of hysteresis and constitutive nonlinearities inherent to the materials as depicted in Figure 1.

For certain drive regimes, the hysteresis and constitutive nonlinearities can be mitigated through either the drive electronics or feedback loops incorporated in the software. As detailed in [10, 11], the use of charge or current controlled amplifiers can essentially eliminate hysteresis. However, this mode of operation can be prohibitively expensive when compared with the more commonly employed voltage controlled amplifiers, and current control is ineffective if maintaining DC offsets as is the case when the x-stage of an AFM is held in a fixed position while a sweep is performed with the y-stage. For low scan rates, PID or robust control designs can be employed to accommodate hysteresis [4, 14]. However, at the high scan rates required for real-time product diagnostics or monitoring of biological processes, increasing noise-to-data ratios and diminishing high-pass characteristics of control filters preclude a sole reliance on feedback laws to eliminate hysteresis. This motivates the development of control designs which incorporate and approximately compensate for hysteresis through model inverses employed either in feedback or feedforward loops.

In this paper, we develop models for this purpose through a two step process. In the first step, Gibbs energy relations at the lattice level are minimized to provide models for the local average polarization generated by an applied field. The effects of material non-homogeneities, polycrystallinity, and variable effective fields are subsequently incorporated through stochastic homogenization techniques to provide macroscopic constitutive relations which quantify the nonlinear and hysteretic field-polarization and field-strain behavior of the materials. In the second step of the development, these constitutive relations are incorporated in classical rod and shell theory to provide system models which quantify the displacements generated by prototypical nanopositioning designs.

To place this modeling framework in context, we compare it with the domain wall model employed in

Figure 1. Quasistatic relation between the input field E and displacements generated by a PZT stacked actuator in an AFM stage.
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td></td>
<td>00-00-2003 to 00-00-2003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Development for Piezoceramic Nanopositioners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>7. Performing Organization Name(s) and Address(es)</th>
<th>8. Performing Organization Report Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>North Carolina State University, Center for Research in Scientific Computation, Raleigh, NC, 27695-8205</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Sponsoring/Monitoring Agency Name(s) and Address(es)</th>
<th>10. Sponsor/Monitor’s Acronym(s)</th>
<th>11. Sponsor/Monitor’s Report Number(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>see report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>see report</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
[15] and Preisach model developed in [16] for characterizing the hysteretic behavior of nanopositioners. For certain choices of the Gibbs energy, the local polarization model in the present theory is the same as the anhysteretic relation in the domain wall theory. At the macroscopic level, however, the two models differ significantly – from the perspective of implementation, the present theory guarantees the closure of biased minor loops whereas this is accomplished in the domain wall model only if a priori knowledge of turning points is available. Furthermore, it is illustrated in [18] that the present theory provides an energy basis for extended Preisach models which enforces deletion but not congruency. Through the energy derivation, the proposed theory inherits several of the advantages associated with extended Preisach frameworks while avoiding the disadvantages associated with temperature, frequency and stress-dependent parameters.

We consider two motivating geometries for the model development. The first encompasses PZT rods of the type employed in AFM stages having the design depicted in Figure 2(a). In this case, strains are generated through d_{33} mechanisms which translate to longitudinal rod displacements. Appropriate 1-D constitutive relations are developed in Section 2.1 and the corresponding system model is constructed in Section 3.1. The second geometry is comprised of a PZT shell in which longitudinal, or z, displacements are generated through d_{31} mechanisms – see Figure 2(b). The 2-D constitutive relations and system model for this case are respectively developed in Sections 2.2 and 3.2.

2. Constitutive Relations

When modeling the constitutive behavior of piezoceramic rods and shells, we assume linear stress-strain and strain-displacement relations in accordance with classical theory. Furthermore, both classical theory, [3, 9], and recent experiments have demonstrated that in the biased regimes used to obtain bidirectional strains, the relation between the polarization P and strains ε is approximately linear, and we retain that assumption throughout the development. At all drive levels, however, the map between applied voltages V or fields E and the polarization is nonlinear and hysteretic, and it is the quantification of these inherent properties which differentiates the proposed models from classical linear theory for piezoceramic rods and shells.

2.1. 1-D Constitutive Relations

The 1-D constitutive relations necessary for characterizing the strains generated by PZT rods follows from the general theory developed in [19] for quantifying the hysteresis and constitutive nonlinearities inherent to ferroelectric compounds. We summarize here those aspects of the theory pertinent to the development of PZT stages employed in nanopositioning devices.

![Figure 2. Actuator configurations employed for sample positioning in AFM. (a) Stacked actuators employed as x- and y-stages, and (b) cylindrical PZT transducer.](image)

It is illustrated in [19] that for stress-free, fixed temperature conditions, the piecewise quadratic Helmholtz energy relation

$$
\psi(P) = \begin{cases}
\frac{1}{2} \eta (P + P_R)^2 & , P \leq -P_I \\
\frac{1}{2} \eta (P - P_R)^2 & , P \geq P_I \\
\frac{1}{2} \eta (P_I - P_R) \left(\frac{P^2}{P_I} - P_R \right) & , |P| < P_I
\end{cases}
$$

(1)

quantifies the internal energy derived under the assumption that dipoles are either aligned with the applied field or diametrically opposite to it. As depicted in Figure 3, P_I and P_R respectively denote the inflection point and polarization at which the positive local minimum of ψ occurs. The point P_R is also the local remanence polarization at the domain level. Finally, the fact that η is the reciprocal of the slope in the E-P relation after switching can be utilized to determine initial parameter values when constructing the model for a given piezoceramic compound and application.

To incorporate elastic interactions and ferroelectric coupling, we also consider the extended Helmholtz re-
the local average polarization
relations to include thermal relaxation mechanisms.
details concerning the extension of the constitutive re-
we omit this case here and refer the reader to [19] for
level in the absence of thermal activation.

For operating regimes in which thermal relaxation
mechanisms are significant, the local average polariza-
tion at the lattice level is quantified by balancing the
thermal and Gibbs energies through the Boltzmann dis-
tribution
\[
\mu(G) = C e^{-G V/kT}
\]
where \(\mu\) specifies the probability of achieving an energy
level \(G\), \(C\) is a constant of integration, \(V\) is a reference
volume and \(k\) is Boltzmann’s constant. For brevity,
we omit this case here and refer the reader to [19] for
details concerning the extension of the constitutive re-
lations to include thermal relaxation mechanisms.

For regimes in which thermal relaxation is negligible,
the local average polarization \(P\) at the lattice level is
determined by the necessary conditions
\[
\frac{\partial G}{\partial P} = 0 \quad , \quad \frac{\partial^2 G}{\partial P^2} > 0.
\]
This yields the piecewise linear relation
\[
[P(E, \varepsilon; E_c, \xi)](t) = \begin{cases}
\frac{E}{\eta - 2Y' \gamma \varepsilon} - \frac{p \eta \varepsilon}{\eta - 2Y' \gamma} & \varepsilon > \frac{\eta - 2Y' \gamma}{\eta - 2Y' \gamma} \\
\frac{E}{\eta - 2Y' \gamma \varepsilon} + \frac{p \eta \varepsilon}{\eta - 2Y' \gamma} & \varepsilon < \frac{\eta - 2Y' \gamma}{\eta - 2Y' \gamma}
\end{cases}
\]
for the respective cases \(\{\tau(t) = 0\}, \{\tau(t) \neq 0\text{ and }
E(\max \tau(t)) = -E_c\}, \{\tau(t) \neq 0\text{ and }
E(\max \tau(t)) = E_c\}. \) The local coercive field is given by
\[
E_c = \eta (P_R - P_l).
\]
The transition points \(\tau\) are specified by
\[
\tau(t) = \begin{cases} t \in (0, T_f) \mid E(t) = -E_c \text{ or } E(t) = E_c \end{cases}
\]
and
\[
[P(E, \varepsilon; E_c, \xi)](0) = \begin{cases}
\frac{E}{\eta - 2Y' \gamma \varepsilon} - \frac{p \eta \varepsilon}{\eta - 2Y' \gamma} & \varepsilon > \frac{\eta - 2Y' \gamma}{\eta - 2Y' \gamma} \\
\frac{E}{\eta - 2Y' \gamma \varepsilon} + \frac{p \eta \varepsilon}{\eta - 2Y' \gamma} & \varepsilon < \frac{\eta - 2Y' \gamma}{\eta - 2Y' \gamma}
\end{cases}
\]
denotes the initial dipole orientation for respective ini-
tial fields \(\{E(0) \leq -E_c\}, \{-E_c < E(0) < E_c\} \text{ or }
\{E(0) \geq E_c\}.

The local relation (6) quantifies the hysteretic relation
between \(E\) and \(P\) for homogeneous, single crystal
compounds having uniform effective field \(E_c = E\). To
extend this mesoscopic model to macroscopic regimes
involving nonhomogeneous, polycrystalline compounds
with variable effective fields, we consider certain param-
eters to be manifestations of underlying distributions
rather than constant values.

Effective field effects (see [1]) are incorporated by as-
suming that the field at the lattice level is normally
distributed about the applied field \(E\) with the density
\[
f(E_c) = c_1 e^{-((E_c - E)^2)^{1/6}}
\]
where \(c_1\) and \(b\) are positive constants. To incorporate
variations in the lattice structure, we assume that the
local coercive field \(E_c\), specified by (7), is either nor-
mally or lognormally distributed. In the former case,
it will exhibit a density \(f\) analogous to (8) whereas in
the latter case, it has the density
\[
f(E_c) = c_2 e^{-\ln(E_c/E_c)/2 b^2}
\]
where, if \(b\) is small compared with \(E_c\), \(E_c\) denotes a
mean coercive field at which dipoles switch.

The macroscopic polarization model is then
\[
P(E) = C \int_{-\infty}^{\infty} P(E, \varepsilon; E_c, \xi) f(E_c) \tilde{f}(E_c) dE_c dE_c
\]
where \(\tilde{P}\) is given by (6). It is detailed in [18] that the
formulation (9) provides an energy basis for certain
Preisach representations with the difference that tem-
perature and frequency dependencies are incorporated
in the kernel of (9) rather than the parameters as is the
case for Preisach models.

The elastic constitutive relation, in the absence of
internal damping, is determined from the equilibrium
conditions
\[
\frac{\partial G}{\partial \varepsilon} = 0 \quad , \quad \frac{\partial^2 G}{\partial \varepsilon^2} > 0
\]
which yields
\[
\sigma = Y P - Y P \gamma P.
\]
To incorporate Kelvin-Voigt damping, we posit that stress is proportional to a linear combination of strain, strain rate and polarization which yields the 1-D constitutive equation

\[\sigma = Y^P \varepsilon + c^P \dot{\varepsilon} - Y^P \gamma P \]

(10)

where \(c^P \) denotes the damping parameter at fixed polarization. In combination with (9), the constitutive relation (10) quantifies the material behavior in operating regimes dominated by uniaxial dynamics as is the case for PZT rods employed in the \(x \)- and \(y \)-stages of several present AFM designs.

2.2. 2-D Constitutive Relations

The constitutive behavior of a PZT shell employed for nanopositioning differs from that of the rod in two fundamental aspects: (i) the longitudinal actuation is due to \(d_{31} \) rather than \(d_{33} \) mechanisms, and (ii) longitudinal and circumferential stresses and strains are coupled due to the curvature (e.g., see [2]). The nature of the actuation simply yields a different electromechanical coupling coefficient which we denote by \(\beta \) in this case. To designate the coupled material behavior, we let \(\varepsilon_x, \sigma_x \) and \(\varepsilon_{\theta}, \sigma_{\theta} \) respectively denote the normal strains and stresses in the longitudinal and circumferential directions and we denote shear strains and stresses by \(\varepsilon_{x\theta} \) and \(\sigma_{x\theta} \). Finally, we let \(\nu \) denote the Poisson ratio for the material.

To simplify the discussion, we consider the development of constitutive relations in the absence of internal damping and refer the reader to [2, 7, 15] for the extensions necessary to incorporate Kelvin-Voigt damping. With \(Y^P \) again denoting the Young’s modulus, appropriate 2-D constitutive equations are

\[\sigma_x = \frac{Y^P}{1 - \nu^2} (\varepsilon_x + \nu \varepsilon_{\theta}) - \frac{Y^P \beta}{1 - \nu} P(E) \]

\[\sigma_{\theta} = \frac{Y^P}{1 - \nu^2} (\varepsilon_{\theta} + \nu \varepsilon_x) - \frac{Y^P \beta}{1 - \nu} P(E) \]

\[\sigma_{x\theta} = \sigma_{\theta x} = \frac{Y^P}{2(1 + \nu)} \varepsilon_{x\theta} \]

\[P(E) = C \int_{0}^{\infty} \int_{-\infty}^{\infty} P(E, \varepsilon; E_c, \xi) f(E_c) \hat{f}(E_c) dE_c dE_c \]

(11)

with \(P \) specified in (6). These relations are employed when constructing the shell models in Section 3.2.

3. System Models

It was noted in Section 1 that two actuator geometries commonly employed for nanopositioning are piezoceramic rods and piezoceramic shells. In this section, we construct system models for these configurations based on the 1-D and 2-D constitutive relations developed in Section 2.

3.1. Stacked Actuator

When modeling the stacked actuator employed in the \(x \)- and \(y \)-stages of an AFM, we make the assumption that the cross-sectional area \(A \) is small compared with the length \(\ell \) and we consider only longitudinal displacements \(u \) having the spatial coordinate \(x \). In accordance with present stage design, one end of the rod is assumed fixed while the other encounters resistance due to the connecting mechanisms. We assume that this contribution can be modeled as a damped elastic system with mass \(M_L \), stiffness \(k_L \) and damping coefficient \(c_L \). The density of the stacked actuator is denoted by \(\rho \) and the Young’s modulus and Kelvin-Voigt damping coefficients are again denoted by \(Y^P \) and \(c^P \).

Force balancing along the stacked actuator yields the relation

\[\rho A \frac{\partial^2 u}{\partial t^2} = \frac{\partial N}{\partial x} \]

(12)

where the resultant \(N = \int_A \sigma dA \) is given by

\[N = c^P A \frac{\partial u}{\partial x} + c_D A \frac{\partial^2 u}{\partial x \partial t} - c^P A \gamma P(E) \]

once the linear relation \(\varepsilon = \frac{\partial u}{\partial x} \) is employed for the strains. The nonlinear and hysteretic map between input fields \(E \) and the polarization \(P \) is specified by (9). The fixed-end condition yields \(u(t, 0) = 0 \) and balancing forces at \(x = \ell \) yields

\[N(t, \ell) = -k_L u(t, \ell) - c_L \frac{\partial u}{\partial t}(t, \ell) - M_L \frac{\partial^2 u}{\partial t^2}(t, \ell) \]

Finally, initial conditions are taken to be \(u(0, x) = \frac{\partial u}{\partial t}(0, x) = 0 \).

The relation (12) along with the boundary conditions provides a strong form of the stacked actuator model. For numerical implementation, it is advantageous to reduce smoothness requirements on approximating elements through consideration of a weak form of the model obtained either through Hamiltonian principles or integration by parts. Details regarding the derivation of a weak form for an analogous magnetostrictive rod, and a description of the resulting ODE system obtained through a finite element discretization of this weak model, are provided in [5].

The performance of the model is illustrated in Figure 4 where the model prediction is compared with quasi-static AFM data collected at 0.28 Hz. For the model construction, normal densities \(f \) and \(\hat{f} \) were employed when quantifying the coercive and effective field distributions. It is observed that the model accurately quantifies the hysteresis loss and hence will eliminate the delay associated with uncompensated hysteresis in present control designs.

3.2. Cylindrical Actuators

Secondly, we consider the development of a model for the cylindrical transducer depicted in Figure 2(b).
We focus on the actuator employed for \(z \)-displacements since real-time control of this component is required to maintain constant forces between the sample and micro-cantilever. The mass of the shell employed for \(x-y \) translation is combined with the mass of the sample to provide an inertial force acting on the free end of the \(z \)-actuator.

For modeling purposes, we assume that the shell has length \(\ell \), thickness \(h \), and radius \(R \). The axial direction is specified along the \(z \)-axis and the longitudinal, circumferential and transverse displacements are respectively denoted by \(u, v \) and \(w \). The density and Young’s modulus are respectively designated by \(\rho \) and \(Y_P \), and the region occupied by the middle surface of the shell is specified by \(\Gamma_0 = [0, \ell] \times [0, 2\pi] \). We consider the case in which the bottom edge of the shell \((x = 0) \) is clamped and the opposite end \((x = \ell) \) is acted upon only by the inertial force associated with the combined mass \(m \) of the \(x-y \) actuator and the sample. Finally, we simplify the discussion by considering the model development in the absence of internal damping. The extensions necessary to incorporate Kelvin-Voigt damping can be incorporated by assuming that stress is a linear combination of strain, strain rate and polarization as detailed in [2, 15].

As detailed in [2], force and moment balancing yield the Donnell-Mushtari shell equations

\[
R\rho h \frac{\partial^2 u}{\partial t^2} - R \frac{\partial N_x}{\partial x} - \frac{\partial N_{x\theta}}{\partial \theta} = 0
\]

\[
R\rho h \frac{\partial^2 v}{\partial t^2} - \frac{\partial N_\theta}{\partial \theta} - R \frac{\partial N_{x\theta}}{\partial x} = 0
\]

\[
R\rho h \frac{\partial^2 w}{\partial t^2} - R \frac{\partial^2 M_x}{\partial x^2} - \frac{1}{R} \frac{\partial^2 M_\theta}{\partial \theta^2} - 2 \frac{M_{x\theta}}{\partial x\partial \theta} + N_\theta = 0
\]

where \(N_x, N_\theta \) and \(N_{x\theta} \) are general force resultants and \(M_x, M_\theta \) and \(M_{x\theta} \) are moment resultants. The boundary conditions at the fixed end \(x = 0 \) are taken to be

\[
u = v = w = \frac{\partial w}{\partial x} = 0,
\]

and the conditions

\[
N_x = -m \frac{\partial^2 u}{\partial t^2}, \quad N_{x\theta} + \frac{M_{x\theta}}{R} = 0
\]

\[
Q_x + \frac{1}{R} \frac{\partial M_x}{\partial \theta} = 0, \quad M_x = 0
\]

are enforced at \(x = \ell \). The first resultant condition incorporates the inertial force due to the mass of the piezoceramic cylinder employed for \(y-z \) translation along with the mass of the sample.

The force and moment resultants are specified by integrating the stress relations (11), or the product of the stress and moment arm, through the thickness of the shell. In the absence of shear stresses, this yields

\[
N_x = \frac{Y_P h}{1 - \nu^2}(e_x + \nu e_\theta) - \frac{Y_P h \beta}{1 - \nu} P(E)
\]

\[
N_\theta = \frac{Y_P h}{1 - \nu^2}(e_\theta + \nu e_x) - \frac{Y_P h \beta}{1 - \nu} P(E)
\]

\[
N_{x\theta} = \frac{Y_P h}{2(1 + \nu)} e_{x\theta}
\]

and

\[
M_x = \frac{Y_P h^3}{12(1 - \nu^2)} (\kappa_x + \nu \kappa_\theta) - \frac{Y_P h^3 \beta}{12(1 - \nu)} P(E)
\]

\[
M_\theta = \frac{Y_P h^3}{12(1 - \nu^2)} (\kappa_\theta + \nu \kappa_x) - \frac{Y_P h^3 \beta}{12(1 - \nu)} P(E)
\]

\[
M_{x\theta} = \frac{Y_P h^3}{24(1 + \nu)} \tau.
\]

The midsurface strains and changes in curvature are given by

\[
e_x = \frac{\partial u}{\partial x}, \quad \kappa_x = -\frac{\partial^2 w}{\partial x^2}
\]

\[
e_\theta = \frac{1}{R} \frac{\partial v}{\partial \theta} + \frac{w}{R}, \quad \kappa_\theta = -\frac{1}{R^2} \frac{\partial^2 w}{\partial \theta^2}
\]

\[
e_{x\theta} = \frac{\partial v}{\partial x} + \frac{1}{R} \frac{\partial u}{\partial \theta}, \quad \tau = -\frac{2}{R} \frac{\partial^2 w}{\partial x\partial \theta}
\]

As with the stacked actuator, it is advantageous to consider a weak form of the model when developing approximation techniques. Details regarding this development can be found in [2, 7].
4. Concluding Remarks

In this paper, we have developed 1-D and 2-D constitutive relations quantifying the nonlinear and hysteresis behavior of PZT transducers employed in present nanopositioner designs. These constitutive relations are then combined with classical rod and shell theory to provide models which quantify the displacements generated by stacked and cylindrical PZT actuators. This provides a design tool for future actuator design as well as a framework amenable to inversion as a prelude to control design employing approximate inverse filters to compensate for the hysteresis and constitutive nonlinearities inherent to the materials [12].

Acknowledgments

This research was supported in part by the Air Force Office of Scientific Research under the grant AFOSR-F49620-01-1-0107, the NSF grants CMS-0099764 and CMS-0201560, and the DARPA MOSAIC Program through the grant 1000-G-CF980.

References