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Detecting Periodic Components in a White Gaussian Time Series

By Shean-Tsong Chiu

Rice University

SUMMARY

A family of tests for periodic components in a white Gaussian series is proposed. The test is
based on a statistic which is proportional to the ratio of the maximum periodogram to the
trimmed mean of the periodograms. The asymptotic distribution of the statistic is obtained. It is
shown that the test proposed and Fisher’s test have the same asymptotic powers at the alterna-
tive hypotheses that the series contains a single periodic component at a non-zero Fourier fre-

quency. The tests are applied to detect the eigenfrequencies of the Earth. The proposed test

detects some peaks which Fisher’s test fails to detect.

Keywords: Detecting periodic components; Fourier transform; Periodogram; Eigenvibration of the

Earth.

1. Introduction

In this study, we consider the situation where we have T consecutive observations
X(t),t=0,1,...,T-1 on a time series. We are interested in detecting periodic components in
the series. The periodogram has been used to search for hidden periodicities and, naturally, it
became a tool for testing the presence of periodic components. Fisher (1929) introduced a test for
periodicity, which is based on the periodograms at the Fourier frequencies; the te;t statistic 1s the
ratio of the maximum of the periodograms to the total sum of the periodograms. Fisher also gave
the exact distribution of the test statistic under the null hypothesis that the series is a white
Gaussian series. The asymptotical distribution of the test statistics was given in Bloomfield
(1976). Fisher’s test was used in Nowroozi (1965), (1966) for detecting the eigenfrequencies of the

Earth. The test was also mentioned in many books concerning time series analysis. Hartley (1949)
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proposed a test based on the ratio of the maximum periodograms to the residual sum of squares,

where the residuals are obtained by fitting a sinusoidal wave to the series.

In practice, we might suspect that the series consists of several periodical components; in
this case, the periodogram will have multiple peaks. Multiple peaks could also be caused by the
leakages from nearby peaks, by the harmonics of a fundamental frequency or by a decaying
sinusoidal wave such as the eigenvibration of the Earth (Bolt and Brillinger (1979)). In these
situations, we are often not satisfied just with rejecting the null hypothesis of no periodic com-
ponent but are also interested in detecting all significant peaks in the periodograms. As indicated
by Whittle (1954), Fisher’s test is quite conservative in detecting multiple peaks. Shimshoni

(1971) also observed that the method was unable to detect some periodic components in the study

of the eigenvibrations of the Earth.

For detecting the presence of multiple peaks, various methods were proposed and studied.
Some of the methods were developed for testing the outliers in exponential samples. We remark
that these two testing problems are closely related. Whittle (1954) suggested removing the
significant periodic components from the series and applying Fisher’s test to the residual séries. It
might not be easy to do so when the periodic components are not pure sinusoid waves, such as in
the case of sinusoid waves with non-constant amplitudes or phases. Shimshoni (1971) suggested
using the ratio of the r-th largest periodogram to the sum of periodograms. The main difficulties
of this approach are: (1) This method implicitly assumes that the frequencies of the periodic com-
ponents are at the Fourier frequencies; this is usually not true in practice. (2) The number of the
periodic components must be known. (3) If the number of the periodical components is smaller
than r, then this test will have very small chance to reject the null hypothesis even when the
series does contain some significant periodic components. Lewis and Fieller (1979) studied another
test which is based on the ratio of the sum of the r biggest periodograms to the total sum of the
periodograms. This test will reject the null hypothesis when there is only one huge peak in the
periodograms. Therefore, the test is not able to tell us which peaks are significant. Another disad-

vantage of this test is that it loses significant amounts of power when the number of periodic com-
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ponents contained in the series is different from r.

Likes (1966) and Kabe (1970) studied the test statistic which is the ratio of the difference
between the biggest and the r-th biggest periodograms to the biggest periodogram. Siegel (1980)
proposed a method based on the sum of the periodograms (normalized by the total sum of
periodograms) which are bigger than a portion of the critical value of Fisher’s test. One must
select a proper portion in order to apply this test. The best choice is dependent on (and is sensi-

tive to) the number of periodic components in the series. These two methods also share some of

the difficulties of the tests mentioned earlier.

In the next section, we describe some basic notations and properties of the Fourier transform
and periodograms. Fisher’s test and its asymptotical distribution are reviewed in Section 3. In
Section 4, we propose a test statistic which is proportional to the ratio of the biggest periodogram
to the trimmed mean of the periodograms. The asymptotic distribution of the test statistic is also
derived. In Section 5, we derive the asymptotic power functions of the tests against the alterna-
tive hypothesis that the series contains a sinusoidal wave at one of the Fourier frequencies. We
show that, asymptotically, the test proposed has the same power as Fisher’s t,est. has. In Section
6, we apply the proposed test to detect the eigenfrequencies of the Earth’s free vibrations. We
show that our method can detect some of the peaks which Fisher’s method fails to detect. The

asymptotic results are supported by simulations.

In this research, we are concerned with the case that the underlying series is a white series.

The case of non-white series was considered in Hannan(1961) and Whittle(1952, 1954).

2. Basic notation and properties of periodogram

The data we consider here are a sequence of observations taken at equal time intervals. The

series consists of a deterministic series and a noise series:
X(t) = p+S(t)+e(t) t=0,1,...,T-1. (2.1)

Here ¢(t) is a white Gaussian series with means zero and variances o and the deterministic part

5(t) = é}lAkCOS(’M t+¢x) (2.2)
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consists of K sinusoidal waves at frequencies 4,70 with amplitudes A, and phases ¢,; the fre-
quencies are not necessarily the Fourier frequencies. Without loss of generality, we assume u=0.
We are interested in testing for the existence of S(¢). The null hypothesis can be formulated as
Hy: S(t)=0. X(t)is a Gaussian white series under H,.

The Fourier transform of the series X(¢) at frequency w is

d{f N w) = EX(t)exp(—iwt) . (2.3)

t=0
The Fourier transforms are usually evaluated by the fast Fourier transform at the Fourier fre-
quencies w;=2ny/T. The Fourier transforms at the Fourier frequencies are referred to as the
discrete Fourier transform of X(t). The Fourier transforms dfT) and d{¥) have corresponding

definitions. The periodogram of the series is defined by

¥ (w) = dw)df(~w)/(2x T). (24)

The periodograms I9w) and I°(w) are defined in a similar way. Under the null hypothesis,

IX(w) = I(w) and the periodograms Ix(wj) at the Fourier frequencies, w;=2n;/T,

J=12,...,(T/2)-1, where T is an even number (for odd T, j=1,2, .. .,[T/2]), are identi-
cally independently distributed according to the exponential distribution with mean A=0?/(27).

For the series with deterministic part S(t)5£0, d{Y(w) = d{P(w) + df7). 2I¥(w)/o® has a

noncentral chi-square distribution with two degree of freedom; the noncentrality parameter is

2I%(w)/o®. For detail discussion of the properties of the Fourier transform and periodograms, the

readers are referred to Brillinger (1975).

3. Fisher’s test and its asymptotic distribution

For testing the existence of periodic components, Fisher (1929) proposed a test based on the

test statistic

Fr = max I¥(w;)/ 3 (w;) (3.1)

1<j<n =1
Here n = (T/2)-1 for even T and n = (T-1)/2 for odd T. In that paper, Fisher gave the exact

distribution of F7 under the null hypothesis. Bloomfield (1976) derived the asymptotic



distribution of the statistic Zy = nFr - logn,

P(Zr<z) = exp{-exp(-z)} . (3.2)

Since A = n~'Y]I(w;) converges to ) in probability and X has variance of order n},

P(Z7<z) = P(Z'r<z) + O(n"?logn), (3.3)

where z is any fixed constant and Z'y= max{I¥(w;)/\} - logn. Also

P(Z'r <2) = 1-[l-exp(~)/n]* = exp{-exp(-z)} + O(n")). (3.4)

So we can write (3.2) more precisely,

P(Zr<z) = exp{-exp(-2)} + O(n"V2logn). (3.5)

Let ~I(c;.:‘,-)=1)((w,-)/ X be the normalized periodograms, then nFy = max?(w,—). We see that
Fisher’s test statistic is proportional to the maximum of the normalized periodograms. When the
series contains periodic components, the periodograms at frequencies close to the frequencies of
these components have large magnitude and these periodograms can be viewed as outliers in an
exponential sample. From this, it is easy to understand the weakness of Fisher’s test. Fisher’s test
uses the sample mean to normalize the periodograms; however, the sample mean is sensitive to
outliers. The sample mean tends to be larger than the true mean when the series contains periodic
components; therefore, ~I(u)_,-) tends to be smaller than J(w;)/X. So, the power of Fisher’s test will
be smaller than the power of the test based on the maximum of I(w;)/X. This suggests that we

consider tests based on the maximum of periodograms normalized by a robust estimate of X.

4. The proposed test and its asymptotical distribution

The test proposed here based on the test statistic

2 f
Rr(B) = ./bf.-- (4.1)
i=1
where n is defined in Section 3, and I, <I,< - - - <I, are the order statistics of the periodo-

grams. f is a constant between 0 and 1 which determines the proportion of periodograms
trimmed. In most case, §=0.9 or 0.95 will give good result. The performance of the test is not

very sensitive to the choice of 8. Letting f=1, we obtain Fisher’s test as an extreme case. In the



following discussion, we assume 0<A<1 and use the notation Ry instead of Rr(8). The denomi-

nator in (4.1) is proportional to the trimmed mean

= [nA S0 (4.2)

im1
It is well known (cf Lehmann (1983)) that A4 converges in mean square to

J; e(ﬂ)%exp(—:r /A)dz = e, (4.3)

where &(f) = -log(1-8) and ¢ = B+(1-B)log(1-B). Therefore, )A\ﬂ/c is an asymptotically unbiased

estimate of A. The exact unbiased factor can be found in Kimber (1983).
Following the argument of the last section and letting ~ZT = c[nB|Rr - logn, we have

P(Zr <z) = exp{-exp(-z)} + O{(nB)logn} (4.9)

asymptotically. This shows that Z; and ~ZT have the same asymptotic distribution in the null

case.
Similarly, we can obtain the asypmtotic distribution of
UT(T) = In~r+1/21€r (45)
i=1
which is
P{nUr(r)-log(n-r+1)<z} = exp{-exp(~z)} + O {n~2log(n-r+1)}. (4.6)

The test Up(r) was used for testing the existence of r periodic components Shimshoni (1971).
The exact null distribution of Ur(r) was derived in Grenander and Rosenblatt (1957). However,
from the argument in Section 3, it is clear that we should at least exclude the r-1 biggest

periodograms from the denominator of (4.5). This leads us to consider

VT(')=In—r+l/“§lIi: (4.7)

=1

which has asymptotic distribution

P{nVz(r)-log(n-r+1)<z} = exp{-exp(-z)} + O{(n-r+1)"2log(n-r+1)}. (4.8)
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5. Asymptotic power functions of the tests

In this section we derive the asymptotic power functions of the tests described in the previ-
ous sections. Without lost of generality, we assume A==1 in the following discussion. We first

consider the alternatives

H,: S(t)=acos(yt). (5.1)
Here =2mjy/T, 1<jo<n is an arbitrary integer. The discrete Fourier transform of $(t) is
equal to a7 /2 at frequency ~, and is equal to O at other frequencies. This implies that the
periodograms at frequencies other than 7, have the same distribution under both hypotheses.
Under the alternative hypothesis, H,, 2I* (7%) has a noncentral chi-square distribution with 2
degrees of freedom and the noncentrality parameter 24 =2a2T /8x. The asymptotic power func-

tions of the tests are obtained in the following theorem. Because I, increases at rate logn, we let

A increase at rate logn.

Theorem. The power function of the test Ry and Fr against the alternatives H, with

A=B+logn=a>T /87 are, asymptotically;

a+(1-a)P{I*(70)>nf o}, (5.2)
where a is the level of significance of the tests, nf;=-log(~log(1-a))+logn and 2I*(v,) has a non-

central chi-square distribution with two degrees of freedom and noncentral parameter 2A .

Proof. Let f; and 7o be the respective critical values of the test Fz and Ry at significance level

a, then nfy = nfo+0(n"%logn) and 74c [n ] = roc [n B+ 0 {(n By %logn}, where

nfo=nfo+ O(nlogn) = roe [nB] = -log{-log(1-a)}. (5.3)

Since
P{IX(v)<s} > P{I{(y)<B+logn-s} =1 + O(1/n), (5.4)
for any fixed constant s, the probability that I(7) has a rank (among all periodograms) smaller

then {n ] is of order O(1/n) and

P(%]LX= %’1{) = 1+0(1/n). (5.5)

=1 i=1



-8-

From the same argument in deriving the asymptotic null distributions, we have

P(Rr > 7o) = PUX > roc[nB] = nfo) + O(n/logn). (5.8)

Since P{If=1I(v)}=1/n is negligible, (5.6) is equal to

P{I > nfo| I£I ()} + P{IX(70)> nfo and I¥<nfo| L#I(w)} + O(n™logn).  (5.7)
Conditional on I{5£I(), the distribution of I is equal to the distribution of the maximum of
n-1 variables. So, the first conditional probability in (5.7) is equal to a+O({1/n). The second

conditional probability is equal to

f f P{Ix ()>nfo | I(w)=r}filr|2)fo(2)drdz, (5.8)
where f,(r|z) is the conditional density of I‘() given If=z and I(v)#I;, and f,(z) is the

density of If. Now (5.8) is equal to

n, logn
foordo 1>{1X(»70)>nf0 | I(vo)=r}f1(r | 2)f A2)drdz + O(1/n), (5.9)
f f P{IX w0)>nfo | I{(0)=r}f1(r)f2(z)drdz + O(n"/logn),
where f,(r) is the unconditional density of I¢(y). The last equation holds because

fir]2) = fi(r) + O(1/n) when z>logn. Therefore, the power function of the test Ry is equal

to

a + (1=a)P{IX(v0)> nfo} + O(n " logn). (5.10)
The power of Fisher’s test is

P(Fr>fo) = P{IX>(n-1)f o+ f oI X (1)} + O(n%logn). (5.11)

Since E[IX(v))>=0 {(logn )?}, (5.11) is equal to

P(Fr> o) = P(X>nfo) + O(n/logn). (5.12)
Therefore, the test Ry and Fisher’s test have the same asymptotic power indicated in the

theorem.

We now consider the problem of detecting r periodic components. We define the critical
bound of a test (Fr, Ry or V) at significance level o as the product of the denominator of the

test and the critical value of the test at significance value &. We say that a test detects a peak at



significance level o if the periodogram at the peak is bigger than the critical bound of the test at
significance level a. According to these definitions, Fr (or Ry) will reject the null hypothesis if
and only if the test detect any peak in the periodogram. The test Viy(r) will reject the null

hypothesis if and only if Vr(r) can detect at least r peaks. The alternatives we now consider are

r
H: 5(t) = Y] a;cos(;t), (5.13)

i=1
where r is a fixed number and ~;,¥=1,...,r are distinct non-zero Fourier frequencies.
Without loss of generality, we can assume a;> - - - >a,. Similar to the discussion in the proof,

it is easy to see that the probability of detecting the r-th peak is a+(1-a)P{I*(~,)>nf,}, which
is not affected by the r—1 biggest peaks. In order to compare the probability with the power of
the test Vr(r), we assume a;, . .., a,; are big enough, such that the probability of missing the
r—1 peaks is negligible. Supposing 4,27 /87 = B,+logn, we can show that the power of the test

Vr(r) is also asymptotically equal to a+(1-a)P{I*(v,)>nf,}.

Remark 1. For the sake of comparison, we only consider the alternatives of pure sinusoidal waves
at Fourier frequencies. However, as shown in the next section, the test Ry is much better than
the tests Fr and Vr in situations where the periodic components are not at Fourier frequencies

and that the amplitudes or phases are not constant.

Remark 2. Vz(r) might accept the null hypothesis while there are some (<r) peaks bigger than

the critical values. This will cause a lot of confusion in interpreting the result.

8. Detecting the Eigenvibrations of the Earth

The example we used here is the time series obtained by the long-period pendulums at the
Grotta Gigante, Trieste, following the 1960 Chile earthquake (Bolt & Marussi (1962)). The sam-
pling interval is 2 minutes and the length of the series is 2548. Bolt and Brillinger (1979) modeled
the periodic components as exponentially decaying sinusoidals. 16 sets of estimates of the eigenfre-
quencies, damping constants, amplitudes and phases were obtained. The first 1200 values of the

series are plotted in Figure 1. It shows that most of the vibrations die out after 20 hours. We
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compute the periodograms of the first 600 observations. The critical bounds at significance level
0.01 of the tests Fir, Ry and Vr are also computed. The results are shown in Figure 2. The
heights of the four horizontal lines in the plot correspond (from top to bottom) to the critical
bounds of the tests Fr, Vr(8), Ry(0.8) and R7(0.9). We see that the tests Ry(0.8) and R1(0.9)
both detect 8 peaks, while Fr only detects 4 peaks. The 8 peaks detected by Ry were also
confirmed in Bolt and Brillinger (1979). There are only 6 peaks bigger than the critical value of
Vr(8), so the null hypothesis of no periodic components is accepted at significant level 0.01, and
we are not able to make inference based on Vr(8) about the significances of the peaks which are
bigger than the critical bound of V7(8). The nice feature we mentioned earlier that the test Ry
is not sensitive to the value 8 used is also demonstrated in Figure 2. We see that the critical

bounds of Rr(0.8) and R7(0.9) are very close.

We also compute the periodograms of the first 1024 observations and plot them in Figure 3.
The periodograms at very low frequencies become dominant; this might be expected from Figure
1. The low frequency components are primarily caused by tidal effects. The top and bottom lines
in Figure 3 correspond to the critical bounds of Fy and R7(0.9), respectively. In this case, both
tests detect the peak at very low frequency. However, Ry still detects the same 8 peaks detected
earlier while Fr fails to detect any of these peaks. This shows a big advantage of the test Ry in

that the ability of detecting a particular peak is not affected much by the presence of other peaks.

Remark 3. We should point out that Nowroozi (1966) has removed tidal effects before computing
the periodograms. So, Fisher’s test was not affected by the low frequency component. The low

frequency components might not be easy to remove in some cases.

Remark 4. The test Ry failed to detect some peaks which were found in Bolt and Brillinger
(1979). The failure is caused by the fact that periodic components are decaying. Currently, there
is no test designed for detecting decaying sinusoidal waves. A test procedure which takes the

damping factor into consideration might be more powerful in detecting decaying sinusoidal waves.
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7. Discussion

In this paper, we proposed a method for testing the existence of periodic components in a
white Gaussian series. This test procedure can also be used to detect the outliers in an exponential
sample. Some of the advantages of the proposed test were discussed in previous sections. One
small disadvantage is that we only obtained an approximation for the the exact null distribution.
We have shown that the error caused by using the asymptotic distribution is of order n~'/Z%logn.
The size of the series encountered in practice is often quite large and the approximation becomes
very accurate. Asymptotic approach has an advantage in that the asymptotic distribution is easy

to find and it is easy to compute critical values and p-values.
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Figure 1. The first 1200 observations of the series, the sampling interval is 2 minutes.

Figure 2. The Periodograms of the first 600 observations, the heights of the horizontal lines

correspond to the critical bounds of the tests Fr, Vr(8), Rr(0.8) and Rr(0.9).

Figure 3. The periodograms of the first 1024 observations (in logl0 scale), the horizontal lines

correspond to the critical bounds of the tests Fr and R(0.9).
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