Optimization on Microcomputers
The Nelder-Mead Simplex Algorithm!

by

J. E. Dennis Jr.?
Daniel J. Woods?

Technical Report 85-9, December 1985

1This paper was presented at the ARO Workshop on Microcomputers in Delaware, June,
1985.

Mathematical Sciences Department, Rice University, Houston, Texas 77251. Research spon-
sored by NSF MCS81-16779, DOE DE-AS05-82ER13016, ARO DAAG-29-83-K-0035, and AFOSR
85-0243.

*Mathematical Sciences Department, Rice University, Houston, Texas 77251. Research spon-
sored by AFOSR. 85-0243.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
DEC 1985 2. REPORT TYPE 00-00-1985 to 00-00-1985
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Optimization on Microcomputers. The Nelder-Mead Simplex Algorithm | . -\ \+ numBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Computational and Applied M athematics Department ,Rice REPORT NUMBER
University,6100 Main Street M S 134,Houston, T X,77005-1892

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 11
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

In this paper we describe the Nelder-Mead simplex method for obtaining the
minimizer of a function. The Nelder-Mead algorithm has several properties that
make it a natural choice for implementation and utilization on microcomputers.
Stopping criteria for the method are presented as well as a brief discussion of the
convergence properties of the method. An algorithmic statement of the method
is included as an appendix.

1. Introduction. We consider the problem

mlznelgnlze f(z) (1.1)
where f:IR"—IR! and the problem is to be solved on a microcomputer. The
fact that a microcomputer is being used and that problem (1.1) is solvable
on this microcomputer leads us to make several assumptions about the
problem and the solution environment. First, we assume the amount of
storage is small and, therefore, the number of variables, i.e. n, is also small.
Additionally, we assume that computing derivatives of the function is not
feasible.

There are a class of methods, called direct search methods, see
Swann [6] or Brent [1], that attempt to solve problem (1.1) using only
function value information. One particular direct search method that is
used quite frequently is the Nelder-Mead simplex method presented by
Nelder and Mead [3]. Additional references and several modifications of the
algorithm are discussed in Parkinson and Hutchinson [5] and Olsson and
Nelson [4]. The original method of Nelder and Mead is best-suited for our
purposes.

The properties of the Nelder-Mead algorithm that make it appropriate
for our problem and environment are its robustness, its simplicity in
programming and its low overhead in storage and computation. We say the
algorithm is robust because it is very tolerant of noise in the function
values. Therefore, the function need not be computed exactly and it may

be possible to obtain an approximate function value using many fewer
floating point computations.

As we shall see in the following section, the algorithm is very simple to
program. Trial points are obtained wusing very simple algebraic
manipulations and these points are accepted or rejected based only on their
function values. Also, when the number of variables is small, this algorithm
is often competitive with much more complex algorithms that require a
great deal of overhead in storage and algebraic manipulations. The low
overhead and basic simplicity of this algorithm make it a natural choice for
use on microcomputers. An algorithmic specification of the method is given
in the Appendix.

2. Algorithm. At each iteration of the Nelder-Mead simplex algorithm,
n+1 points, denoted by z, 5, - -, 2,41, are used to compute trial steps.
We will often refer to certain of these points based on the order induced by
their function values, that is, at the k™ iteration we have

Xy, Xgy * 0, Xpqp, With f(x)) < f (%)< <f(xp41)- A trial step is
accepted or rejected based on the function value of the trial point and the
three function values f(x;), f(x,), and f(x,41)-

The n+1 points used at an iteration may be thought of as the vertices
of an n-dimensional simplex. In IR?, for example, three points determine a

triangle. We denote a simplex Sy, with vertices z, 25, - -+, 2,41, by
Sy =<z, Ty, -, Ty4> It is often the case that a specific vertex of a
k

specific simplex is referenced. Thus, the notation x; is used to indicate the
vertex of simplex S; that has the i*® lowest function value. In Figure 2.1

below, if f(z,;) =10.0, f(zy) =7.0, and f(z3) = 3.0, then we would have
X14—T3, XoZo, and Xg«2z;.

Trial steps are generated by the operations of reflection, expansion,
contraction, and shrinkage. A reflected vertex is computed by reflecting the
worst, vertex, X,.j, through the centroid of the remaining vertices. Nelder
and Mead compute the reflected vertex as

T, = (1+0)r — ax,,q, (2.1)
where =1, and z is the centroid defined by
— 1 2
T = niglx,-.
The reflected vertex is accepted if f(x;)<f(z,)<f(x,), and the next
iteration begins with the simplex defined by <x;, xo, * - -, x,,, ,>. Note

that z, has not been ordered with respect to the other vertices.

If the reflected vertex has a lower function value than x;, i..,

f(z,)<[f(x;), then the trial step has produced a good point and the step is
expanded. The expansion vertex is computed as

g, ="z, + (1—)z, (2.2)

where y=2. The expansion vertex is accepted if f(z,)<f(x;), otherwise
the reflected vertex is accepted. Thus, if f(z,)<f(x,), then either the
reflected or expanded vertex is accepted and the next iteration begins.

Lo

T3

T

FIGURE 2.1

If the reflected vertex is not a better point than x,, i.e., f(x,)<f(=,),
then a contraction step is computed. If the worst vertex is at least as good

as the reflected vertex, i.e., f(x,,;)</f(z,), then the internal contraction
vertex is computed as

T, = Bx,41 + (1-0)z, (2.3)
otherwise, the external contraction vertex is computed as
i, = Bz, + (1-B)7F, (2.4)

where ﬁ=—;—. The contraction vertex is accepted if it has a lower function
value than x,,.

If both the reflection vertex and the contraction vertex are rejected,
then the simplex is shrunk. The shrinkage operation is performed by
replacing each vertex x;, except x,;, by the point halfway between x; and
x;. This may be written as

z; — Geitx) (2.5)

2
Finally, the values f(z;) are computed and sorted along with f(x;). This
order determines the simplex <x;, Xy, * ‘-, X,41> Wwith which the next

iteration commences.

If one envisions the simplex sitting on the surface defined by the
function, then the operations of the Nelder-Mead algorithm can be thought
of as the simplex tumbling down the surface. When the simplex has
reached a point where further tumbling is not possible, the simplex
contracts, or shrinks towards its lowest point, and the tumbling continues.
Figure 2.2 below, illustrates the various trial points for the 2-dimensional
simplex <x;, Xo, X3>.

FIGURE 2.2

There are several stopping criteria that have been proposed for this
algorithm. Nelder and Mead suggest halting the algorithm when the
standard error of the function values falls below some threshold value.
That is, the algorithm is halted when the following condition holds:

1 ntl 9

_7;;21 (f(z)=T) <&, (2.6)
where [is the average of the function values and €;>0 is some preset
value. Parkinson and Hutchinson [5] propose a stopping criterion based on
how far the simplex moves at an iteration. They suggest halting the
algorithm when the following condition is met:

L iy b ok
—Y xS = < e (2.7)
i=1
where |I-!! is the I, norm, €,>0, and zf*! is the " unordered point in the

k+1% simplex.

Stopping criteria (2.6) and (2.7) are very different. The algorithm is
halted in (2.6) based on function value information, while (2.7) uses vertex
information. Certain problems can arise with stopping criterion (2.6). For
example, if the function values are very close, then the algorithm halts
regardless of the size of the simplex. That is, the algorithm may halt when
the simplex is very large. For an example of this and additional difficulties
with stopping criterion (2.6), see Woods [7].

Objections to using (2.7) as the stopping criterion may also be raised.
The main objection to (2.7) is that the left-hand side of (2.7) for a shrinkage
step will be greater than the value for a contraction step, and we have
observed that shrinkage occurs frequently when the simplex is in a
neighborhood of a local minimizer. Woods [7] introduces the stopping
criterion

A R Tl S (28)
where A = max(1,)lx,!l) and €5>0. This is a measure of the relative size of

the simplex. Preliminary testing of (2.8) has indicated that it is a useful
stopping criterion for the Nelder-Mead algorithm.

3. Convergence Properties. Although this algorithm is used
extensively, the convergence theory is not well-developed. The only
convergence results of which we are aware appear in Woods [7], for a
slightly modified version of the algorithm, and in the forthcoming paper of
Dennis and Woods [2], for the algorithm as stated here. The result of
Dennis and Woods states that if the algorithm is applied to a strictly

convex function and the level set of the function corresponding to the value
at the worst vertex of the initial simplex is bounded, then the algorithm will
converge to a connected set of points, all of which have the same function
value. Additionally, each convergent subsequence of the sequence of
simplices generated by the algorithm converges to a totally degenerate
simplex, i.e., a single point.

Unfortunately, the convergence theory does not provide the desired
result of convergence to the minimizer of the strictly convex function. In
fact, Dennis and Woods show that this is not necessarily true under their
assumptions. They show this by the following example:

EXAMPLE 3.1 : Let ¢; =(0,32)7, ¢, =(0,—32)7, and consider the
strictly convex function f(x)=%max{”x—c1=:2, lz—cy %Y. The level
sets of this function are displayed in Figure 3.1 as is the initial simplex,
So = <X1, Xq, X3> = <(8, 0)T, (—8, —4)T, (—16,10)T>. It should be
obvious from the figure that both the reflected and contracted vertices are
rejected at this iteration and the simplex is shrunk. If the simplex were to
shrink at every iteration, then the Sequence of simplices would converge to
the totally degenerate simplex S = <x;, x;, X;>>, which is not a local
minimizer.

Dennis and Woods show that the algorithm can be made to converge to
any point (a,O)T depending upon the choice of the initial simplex. When
o740, the algorithm does not converge to the minimizer which is (O,O)T.

FIGURE 3.1

4. Conclusions. The Nelder-Mead simplex algorithm is very well-suited
for use on microcomputers. It is robust, easy to program and requires very
little storage and information for execution. Although convergence
properties for the algorithm are not well understood, the algorithm is used
in many applications.

REFERENCES

1] R. P. BRENT, Algorithms for Minimization Without Derivatives,
Prentice-Hall, Englewood Cliffs, N.J., 1973.

[2] J. E. DENNIS JR., D. J. WOODS, Convergence Properties of the
Nelder-Mead Simplex Algorithm, in preparation.

8] J. A. NELDER, R. MEAD, A simplex method for function
minimization, The Computer Journal (1965), Vol. 7, p 308.

[4] D. M. OLSSON, L. S. NELSON, Nelder-Mead simplex procedure for
function minimization, Technometrics (1975), Vol. 17, p. 45.

[5] J. M. PARKINSON, D. HUTCHINSON, An investigation into the
efficitency of variants of the simplex method, Numerical Methods for
Non-linear Optimization, (F.A. Lootsma, ed.), p. 115, Academic Press,
London and New York, 1972.

[6] W. H. SWANN, Direct search methods, Numerical Methods for
Unconstrained Optimization, (W. Murray, ed.), p. 13, Academic Press,
London and New York, 1972.

[7] D. J. WOODS, An Interactive Approach for Solving Multi-Objective
Optimization Problems, Available as Technical Report 85-5,

Mathematical Sciences Department, Rice University, Houston, TX.
77251, 1985.

Appendix. We now present an algorithmic statement of the Nelder-Mead
simplex method. For simplicity, we have introduced the temporary
variables zF and z!. In an implementation of the algorithm pointers to the
corresponding vertices would be used. Various stopping criteria for the
algorithm are discussed in Section 2.

Algorithm A-1: Nelder-Mead Simplex Algorithm

Given Sy with vertices <xy, X, " * *, X, 41>, set a=l1, ﬂ=%, ~N=2.
Fork=1,2, -
set z; =x;, 1=1, ---,n
- 1 2
compute z = — Y x,
n

i=1
compute z, = (1+0)T — X, 4
of =1,
i (f(a,) </ (x,)) then
if (f(z;) </f(x))) then
compute z, = vz, + (1—)z
if (f(z,) </(x)) then z* =g,
else set 2! =x,,,
if (f(z,) < f(z')) then z' =uz,
compute z, = Bz’ + (1—-B)z
it (f(z,) < f(x,)) then z* =gz,

xXy+x;
else z; = 12 L forj=2, ---,n
k X1+Xy, 41
2t =
2
Check the stopping criterion.
Sort f(z1), f(22)y * -+ [(za), f(a*) to
obtain S = <xy, Xg, * ", Xp 41>

