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1 Introduction

In this paper we present results for approximation of parameter estimation problems governed

by nonlinear parabolic partial di�erential equations with delays. Motivated by a concrete

example for dioxin uptake and transport in a spatially distributed model of the liver, we for-

mulate an inverse problem in an operator theoretic setting for a least squares optimization

problem. A family of approximate optimization problems that are amenable to computation

is de�ned in terms of least squares optimization subject to �nite dimensional state space

constraints. We then give convergence arguments for approximate optimal parameters to

best least squares estimates for the original in�nite dimensional constrained problem. To

demonstrate applicability of our ideas, we point out that �nite element approximations in

Galerkin semi-discrete formulations based on piecewise linear spline elements satisfy all con-

ditions of the approximation framework. Included as a special case of our optimal parameter

convergence theory is the theory for convergence of numerical solutions to forward problems

for nonlinear parabolic distributed parameter systems with delays. We present sample nu-

merical results to demonstrate convergence properties in both forward simulation problems

and in inverse problems with noisy data.

2 Description and Well-Posedness of TCDD Model

2.1 The TCDD Model

In this section, we present a mathematical model (1) that has been developed [1, 2] to de-

scribe pharmacokinetic and pharmacodynamic properties of TCDD. A convection-dispersion

equation (1a), based on the work of Roberts and Rowland [3], characterizes the transport

of blood elements in the liver sinusoidal (blood) region. Throughout this discussion, the di-

mensionless spatial variable x takes values in the range [0; 1]; x = 0 corresponds to the liver

inlet, while x = 1 corresponds to the outlet. Uptake of dioxin into the hepatic cells, called

hepatocytes, is assumed to occur by passive di�usion. The model includes the dynamics

of TCDD-binding with two intracellular hepatic proteins, the Ah receptor (1c)-(1d) and an

inducible microsomal protein, CYP1A2 (1e)-(1f). The induction mechanism is described in

terms of the fractional occupancy of the Ah receptor at a previous time, t��r, to account for

the many intracellular processes which must occur before an increase in CYP1A2 concentra-

tion is realized. Elimination in the liver (by metabolism and biliary clearance) is assumed to

be a �rst order process. A well-mixed, combined venous/arterial blood compartment (1g),

which includes a loss due to the uptake and elimination of TCDD in the rest of the body,

completes the system. A circulatory lag, �c, accounts for the time delay in transport of blood

elements from the exit of the liver to the venous measurement location.
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The mathematical system under consideration is as follows:

(VB + VD
fuB

fuD

)
@CB

@t
= QDN

@
2
CB

@x2
�Q

@CB

@x
+ P (CuH

� fuBCB); (1a)

@CuH

@t
=

PfuB

VH
CB � (

P

VH
+ k3)CuH

� gAh(CuH
; CAh) (1b)

+ k
�1CAh�T � gPr(CuH

; CPr) + k
�2CPr�T ;

@CAh�T

@t
= gAh(CuH

; CAh)� k
�1CAh�T ; (1c)

@CAh

@t
= k

�1CAh�T � gAh(CuH
; CAh)� kd(Ah)CAh + ks(Ah); (1d)

@CPr�T

@t
= gPr(CuH

; CPr)� k
�2CPr�T ; (1e)

@CPr

@t
= k

�2CPr�T � gPr(CuH
; CPr)� kd(Pr)CPr + ks(Pr) (1f)

+ IPr
CAh�T (t� �r)

CAh(t� �r) + CAh�T (t� �r)
;

dCa

dt
(t) =

Qa

Va
(CB(t� �c; 1)� Ca(t)) + I(t)� keCa(t); (1g)

CB(t; 0) = Ca(t);

QCB(t; 1)�QDN

@CB

@x
(t; 1) = Aq2(t);

C(s; x) = �(x); s 2 [��r; 0];

(1h)

where C = [CB; CuH
; CAh�T ; CAh; CPr�T ; CPr; Ca]

T . In (1h), � and Aq2 are assumed known.

We remark that gAh and gPr in equations (1b)-(1f) are saturating nonlinearities (see

[2]) modi�ed from the usual product terms,

~gAh(y; z) = k+1yz; (2)

~gPr(y; z) = k+2yz; for y; z 2 R; (3)

arising from the law of mass action in chemical kinetics. Speci�cally, we assume that within a

certain range of concentrations the system behaves according to the nonlinearities prescribed

by (2) and (3) but eventually saturates; i.e., due to the availability of binding species,

we assume the rates of formation of Ah-TCDD complex and CYP1A2-TCDD complex are

bounded.

The summary given above, while brief, is included to provide the reader with a general

understanding of the complex dynamics of the system under investigation. The reader is

referred to the aforementioned works [1, 2, 4] for complete discussions.
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2.2 Well-Posedness

The mathematical model consists of a nonlinear system of partial di�erential equations with

delays and questions of well-posedness are of interest. A detailed general theory of existence,

uniqueness, and continuous dependence for systems which include the model above is given in

[2, 4]. The results, summarized below, were obtained using a weak or variational formulation

of the problem statement and are based on ideas from the work of Banks et al. [5] for nonlinear

hyperbolic systems.

The initial-boundary-value problem (1) can be restated in terms of a weak or vari-

ational formulation (see [2, 4] for details). In particular, we consider the state space V =

V �H
5
� R and H = H

6
� R, where V = H

1
L
(0; 1) and H = L2(0; 1). We de�ne

H
1
L
(0; 1) = f� 2 H

1(0; 1) j �(0) = 0g;

with V -norm

j�jV = j�
0

jH ; for all � 2 V:

The inner product in H is de�ned by

h�;  i
H
=

6X
k=1

h�k;  ki+ �7 7 for all �;  2 H;

where h�; �i denotes the usual L2 inner product:

hf; gi =

Z 1

0

f(�)g(�)d�:

We multiply the ith equation in (1) by a function �i in a \suitable" class of test

functions and integrate in space in the �rst six equations, followed by integration by parts

in the �rst equation (1a) only. The weak or variational formulation of the problem (1) can

be written in operator theoretic form { see [2, 4] for precise de�nitions of the operators and

nonlinear functions { as follows: we seek a solution y(t) 2 V satisfying

_y(t) +Ay(t) +AD(y(t� �c)) + g(y(t)) + gD(y(t� �r)) = F (t) in V�; (4a)

y(s) = y0(s); s 2 [��; 0]: (4b)

Theorem 1 Under certain mild assumptions (see [2, 4]) on the problem data, there ex-

ists a weak solution y of (4) with y 2 L2((0; T );V) \ C([0; T ];H) and _y 2 L2((0; T );V
�).

Furthermore, the solution is unique and depends continuously on the data (y0; F ).

This result was obtained by �rst establishing well-posedness for the system

_y(t) +Ay(t) + g(y(t)) = F (t) in V�; (5a)

y(s) = y0; (5b)
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and then showing that the result could be extended to delay systems of the form (4) by the

method of steps [6] used in the study of delay di�erential equations. It was thus noted that

the system (1), or more generally, (4), could be theoretically and conceptually treated by

investigations of the abstract system (5).

3 Parameter Estimation and Convergence of Galerkin

Approximations

The mathematical model summarized in Section 2.1 contains a number of physiological, bi-

ological, and modeling parameters, including permeability coe�cients, rate constants, 
ow

rates, and the dispersion coe�cient. If this model is to be used for simulation of the dis-

tribution and elimination of TCDD in animals, values for these parameters must be known.

Although some values can be measured explicitly, others must be estimated from experimen-

tal data. Thus, a method to estimate the so-called "unknown" parameters is needed.

Based on the theoretical development described in Section 2.2, and since the model

(1) is a special case of (4), which can be investigated via (5), we consider the following class

of abstract nonlinear parameter dependent parabolic systems evolving in a real separable

Hilbert space:

_y(t) +A(q)y(t) + g(q)(y(t)) = F (t; q) (6a)

y(0) = y0: (6b)

In this case the unbounded operator A, the nonlinear operator g, and the forcing term F

are all assumed to be dependent on some parameter q, in contrast to the "parameter free"

representation given in (5).

The results presented here are based on the general parameter estimation formulation

and results of Banks and Kunisch [7]. In this general estimation formulation of the system in

(5), we consider (6) where the linear operator A, the nonlinear term g, and the input F have

all been parameterized by a vector parameter q that must be estimated from experimental

data. In this case q takes on values from an admissible parameter set Q, which may be

an in�nite dimensional set. Given a data set of observations w = fwig
K

i=1 corresponding

to measurements taken at time ti, we seek to solve the general least squares parameter

estimation problem

min
q2Q

J(q; w) =

KX
i=1

jCy(ti; � ; q)� wij
2
;

where fy(ti; � ; q)g are the parameter dependent solutions of (6) and j � j is an appropriately

chosen Euclidean norm. The observation operator C may take many di�erent forms (see [7])
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depending on the type of data collected. For example, if wi is the concentration at a point

z and time ti, then C involves function evaluation in space.

This minimization problem involves an in�nite dimensional state space H and an

admissible parameter set Q. The parameter space is generally in�nite dimensional as certain

of the unknown parameters (for example, the exit 
ux q2(t) discussed in Section 2) involve

spatial and/or temporal dependence. We proceed as in the works of Banks et al. [7, 8, 9]. Let

H
N be a �nite dimensional subspace of H and QM be a sequence of �nite dimensional sets

approximating Q. We then can formulate a family of �nite dimensional estimation problems,

with �nite dimensional state spaces and �nite dimensional parameter sets, as follows: �nd

q 2 Q
M which minimizes

J
N (q; w) = jCy

N(ti; � ; q)� wij
2
; (7)

where yN(t; q) 2 HN is the solution to the �nite dimensional approximation of (6) given by:

h _yN ; �i
V
�;V + hA(q)y

N
; �i

V
�;V + hg(q)(y

N); �i = hF (t; q); �i
V
�;V (8a)

y
N(0) = P

N
y0; (8b)

for all � 2 HN , where PN is the orthogonal projection of H onto HN .

A sequence of parameter estimates f�qN;Mg results from the solution of these approx-

imate estimation problems (7){(8). The question we address in this section is when one

can guarantee that this sequence converges to a solution of the original in�nite dimensional

parameter estimation problem. A general unifying framework for least-squares minimization

problems for �rst and second order systems has been presented in [10]. Conditions guaran-

teeing convergence for hyperbolic problems have been presented in [9] for linear systems and

were extended in [8] to treat a nonlinear case. We adapt these results to a certain class of

nonlinear parabolic systems which includes the TCDD model.

In Section 2.2 we outlined general well-posedness results which con�rmed conditions

under which the system (5) (or (6) without considering the parameter dependence) has

a unique weak solution. In this section we state precise conditions under which (6), as

well as the �nite dimensional problem (8), have a unique weak solution for each q 2 Q.

We also detail the assumptions on the general parameter identi�cation problem which are

used in the convergence result, and state an abstract su�cient condition, given in [9], for

the convergence of the sequence of solutions f�qN;Mg of the �nite dimensional estimation

problems to a solution of the original in�nite dimensional problem. Finally, we show that

these conditions are satis�ed for a general class of nonlinear parabolic systems which includes

the TCDD model.
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3.1 Formulation of the Problem

We assume the general state space setting detailed in [2]; that is, there is a sequence of real

separable Hilbert spaces V;H;V� forming a Gelfand triple [11] satisfying

V ,! H ' H
�

,! V
�

;

where we assume that the embedding V ,! H is dense and continuous with

j�j
H
� kj�j

V
for � 2 V: (9)

We denote by h�; �i
V
�;V the usual duality product [9, 11], which is the extension by

continuity of the inner product in H, denoted h�; �i. The norm in H will be denoted j � j. The

operator A(q) is de�ned (under the assumptions below) in terms of an associated sesquilinear

form �(q) : V � V ! R; that is, A(q) 2 L(V;V�) and hA(q)�;  i
V
�;V = �(q)(�;  ).

We make the following standing assumptions to establish our parameter estimation

convergence results. It should be noted that these assumptions are the same as those pre-

sented in [2] (however in [2] they are denoted by A10){A60)), except that we now require

them to be satis�ed uniformly for all q 2 Q. Thus, well-posedness of a weak solution is

guaranteed, under the conditions of Theorem 1 stated in Section 2 and Theorem 2.2.1 in [2],

for all q 2 Q. Our standing assumptions are:

A1) The form �(q) is V-bounded: for all �;  2 V there exists a positive constant 
1
(independent of q) such that

j�(q)(�;  )j � 
1j�jVj jV (10)

for every q 2 Q.

A2) The form �(q) is strictly coercive on V: for all � 2 V there exists a positive constant

k1 (independent of q) such that

�(q)(�; �) � k1j�j
2
V

(11)

for all q 2 Q.

A3) The forcing term F (�; q) satis�es

F (�; q) 2 L2((0; T );V
�) (12)

for every q 2 Q.
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A4) The function g(q) is a continuous nonlinear mapping from H into H satisfying

jg(q)(�)j � 
j�j; � 2 H; (13)

for some positive constant 
 and for every q 2 Q.

A5) For any �;  2 V,

hg(q)(�)� g(q)( ); ��  i+ k1k
�1
j��  j

2
� 0; (14)

where k and k1 are the constants in (9) and (11).

A6) For any � 2 H the Fr�echet derivative of g exists and satis�es

g
0(q)(�) 2 L(H;H) with jg0(q)(�)j

L(H;H) �
~C3 (15)

for every q 2 Q.

The proofs of the following theorems can be found in [2] and [4].

Theorem 2 Under conditions A1){A6) the system (6) has a unique weak solution y 2

L2((0; T );H) for every y0 2 H. The weak solution depends continuously on the initial data

and satis�es

h _y(t); �i
V
�;V + �(q)(y(t); �) + hg(q)(y(t)); �i = hF (t; q); �i

V
�;V (16)

for all � 2 V and almost all t 2 (0; T ). Moreover, _y 2 L2((0; T );V
�).

For the TCDD model, the convexity condition A5) on the nonlinearity g(q) is not

satis�ed. Weakening this condition on g, we established well-posedness for the TCDD model

by requiring greater regularity on the forcing term F .

Theorem 3 Suppose V embeds in H compactly. Let F1(� ; q) 2 L2((0; T );H) and F2(� ; q) 2

H
1((0; T );V�). Under assumptions A1), A2), A4), and A6) with y0 2 V and F = F1 +

F2, there exists a weak solution y of (6) with y 2 L2((0; T );V) \ C([0; T ];H) and _y 2

L2((0; T );V
�). Furthermore, the solution is unique and depends continuously on the data

(y0; F ).
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3.2 The General Parameter Estimation Problem

We turn to the least squares minimization problem described previously: �nd q 2 Q which

minimizes

J(q; w) =

KX
i=1

jCy(ti; � ; q)� wij
2
; (17)

where fy(ti; � ; q)g are the parameter dependent solutions of (6) evaluated at time ti and

w = fwig
K

i=1 corresponds to measurements taken at time ti. The operator C is a continuous

linear operator from its domain F(J;H) to the observation space W, where J is a Borel

measurable subset of the maximal interval of observations (0; ~T ]. For example, if we have

discrete-discrete observations

w = fw(ti; xj)g
j=1;:::;l
i=1;:::;r 2 W = R

r�l
;

then

C = f (ti; xj)g
j=1;:::;l
i=1;:::;r;

where the natural choice for the function space F(J;H) is C(J; C(0; 1)): We once again

consider Galerkin type approximations to (6) and, as discussed in the introduction to this

section, de�ne a family of approximating parameter estimation problems.

The approximate parameter identi�cation problems we consider entail minimization

of (7). As in [8, 9], we make the following assumptions for the in�nite dimensional spaces

H, Q and for the �nite dimensional subspaces HN , QM :

B1) The sets Q and Q
M lie in a metric space ~Q with metric d. The subspaces Q and

Q
M are compact in this metric and there exists a mapping iM : Q ! Q

M such that

Q
M = i

M(Q). Furthermore, for each q 2 Q, iM(q) ! q in ~Q with the convergence

uniform in q 2 Q.

B2) The �nite dimensional subspaces HN satisfy HN
� V.

B3) For each  2 V, j � P
N
 j

V
! 0 as N !1.

We further assume that the operators A(q) and g(q) as well as the forcing term F depend

continuously on q 2 Q; that is, we assume that the following conditions are satis�ed:

C1) j�(q)(�;  )� �(~q)(�;  )j � d1(q; ~q)j�jVj jV ; for every �,  2 V, where d1(q; ~q) ! 0 as

d(q; ~q)! 0.

C2) jg(q)(�)� g(~q)(�)j � d2(q; ~q)j�j; for all � 2 H, where d2(q; ~q)! 0 as d(q; ~q)! 0.

C3) The mapping q ! F (�; q) is continuous from Q to L2((0; T );V
�).

8



Under the conditions of Theorem 2 or Theorem 3 and C1){C3), the theory of parame-

ter dependence of solutions to ordinary di�erential equations [12, Theorem 6.3.1] guarantees

that the mapping q ! y
N(t; q) is continuous for each t. Furthermore, under condition B1)

we know that a solution f�qN;Mg to the approximate parameter identi�cation problem (7){(8)

exists. A general su�cient condition for the convergence of f�qN;Mg to �q, a solution to the

in�nite dimensional minimization problem, is given in Theorem 5.1 of [9]:

Theorem 4 To obtain convergence of at least a subsequence of f�qN;Mg to a solution �q min-

imizing (17) subject to (6), it su�ces, under assumption B1), to argue that for arbitrary

sequences fqN;Mg in QM with qN;M ! q 2 Q, we have

Cy
N(t; qN;M)! Cy(t; q): (18)

Note that condition (18) involves convergence of the original sequence of Galerkin approxi-

mations, which is a stronger result than the subsequential convergence obtained in Chapter

2 of [2] and a computationally important distinction.

3.3 Convergence Results

We show in this section that the convergence criterion of Theorem 4 holds under the general

conditions stated above. Without loss of generality, we suppress the double index notation

on the parameter qN;M . This is possible due to the assumptions in B1) { see [7, 9].

Theorem 5 Assume that the conditions of Theorem 3 are satis�ed, along with B1){B3) and

C1){C3). Let qN be any sequence in QN such that qN ! q 2 Q. Then

y
N(t; qN)! y(t; q) in H

uniformly on [0; T ], and

y
N(t; qN)! y(t; q) in V

for almost all t > 0, where yN satis�es

h _yN(t); �i
V
�;V + �(qN)(yN(t); �) + hg(qN)(yN(t)); �i = hF (t; qN); �i

V
�;V (19a)

y
N(0) = P

N
y0; (19b)

for all � 2 HN , and y satis�es

h _y(t); �i
V
�;V + �(q)(y(t); �) + hg(q)(y(t)); �i = hF (t; q); �i

V
�;V (20a)

y(0) = y0; (20b)

for all � 2 V.
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Proof: We note, by the results of Theorem 3, that y(t) 2 H for all t � 0 and y(t) 2 V

almost everywhere. By the triangle inequality, we obtain

jy
N(t; qN)� y(t; q)j � jyN(t; qN)� P

N
y(t; q)j+ jPN

y(t; q)� y(t; q)j (21)

for each t 2 [0; T ]. Assumption B3) states that for each  2 V, j �PN
 j

V
! 0 as N !1,

which of course implies j � P
N
 j

H
! 0 for � 2 H. Since fy(t) : t 2 [0; T ]g is compact in

H, the convergence

jP
N
y(t; q)� y(t; q)j

H
! 0

is uniform on [0; T ]. Hence, we need only show

jy
N(t; qN)� P

N
y(t; q)j

H
! 0 as N !1

uniformly on [0; T ] to obtain the desired convergence in H. The desired convergence in V

follows in the same manner from (21) by arguing

jy
N(t; qN)� P

N
y(t; q)j

V
! 0 as N !1

for almost every t > 0.

Proceeding as in [8], we de�ne

y
N = y

N(t; qN); (22)

y = y(t; q); (23)

�N = y
N(t; qN)� P

N
y(t; q) = y

N
� P

N
y; (24)

from which it follows that

�N

t
= y

N

t
�

d

dt
P
N
y (25)

= y
N

t
� P

N
yt: (26)

Note for all � 2 HN ,

h�N

t
; �i

V
�;V = hy

N

t
�

d

dt
P
N
y; �i

V
�;V

= hy
N

t
� yt + yt �

d

dt
P
N
y; �i

V
�;V

= hy
N

t
; �i

V
�;V � hyt; �iV�;V + hyt �

d

dt
P
N
y; �i

V
�;V :

Now by (19a) and (20a) we have,

h�N

t
; �i

V
�;V = hF (t; qN); �i

V
�;V � �(qN)(yN ; �)� hg(qN)(yN); �i

10



� hF (t; q); �i
V
�;V + �(q)(y; �) + hg(q)(y); �i

+ hyt �
d

dt
P
N
y; �i

V
�;V

= hyt �
d

dt
P
N
y; �i

V
�;V + hF (t; q

N)� F (t; q); �i
V
�;V

� �(qN)(yN ; �) + �(q)(y; �) + �(qN)(y � P
N
y; �)

� �(qN)(y � P
N
y; �) + hg(q)(y)� g(qN)(yN); �i;

= hyt �
d

dt
P
N
y; �i

V
�;V + hF (t; q

N)� F (t; q); �i
V
�;V

� �(qN)(yN � P
N
y; �) + �(q)(y; �)� �(qN)(y; �)

+ �(qN)(y � P
N
y; �) + hg(q)(y)� g(qN)(yN); �i;

by adding and subtracting �(qN)(y � P
N
y; �). Rearranging terms and using the de�nition

of �N we obtain the equation

h�N

t
; �i

V
�;V + �(qN)(�N

; �) = hyt �
d

dt
P
N
y; �i

V
�;V + hF (t; q

N)� F (t; q); �i
V
�;V

+ �(q)(y; �)� �(qN)(y; �) + �(qN)(y � P
N
y; �)

+ hg(q)(y)� g(qN)(yN); �i;

which holds for all � 2 HN . Now, choosing � = �N
2 H

N and recalling that h�N

t
;�N

i
V
�;V =

1
2
d

dt
j�N

j
2, we have

1

2

d

dt
j�N

j
2 + �(qN)(�N

;�N) = hyt �
d

dt
P
N
y;�N

i
V
�;V (27)

+ hF (t; qN)� F (t; q);�N
i
V
�;V + �(q)(y;�N)

� �(qN)(y;�N) + �(qN)(y � P
N
y;�N)

+ hg(q)(y)� g(qN)(yN);�N
i:

Let L(t) represent the left side of equation (27),

L(t) =
1

2

d

dt
j�N(t)j2 + �(qN)(�N (t);�N(t));

and R(t) represent the right side,

R(t) = hyt(t)�
d

dt
P
N
y(t);�N(t)i

V
�;V + hF (t; q

N)� F (t; q);�N(t)i
V
�;V

+ �(q)(y(t);�N(t))� �(qN)(y(t);�N(t)) + �(qN)(y(t)� P
N
y(t);�N(t))

+ hg(q)(y(t))� g(qN)(yN(t));�N(t)i;

which hold almost everywhere. Integrating L from 0 to t and using A2) and the initial

condition

�N(0) = y
N(0)� P

N
y(0) = y

N(0)� P
N
y0 = 0;

11



we obtain the inequality

Z
t

0

L(s)ds =

Z
t

0

f

1

2

d

ds
j�N(s)j2 + �(qN)(�N (s);�N(s))gds

�

1

2
j�N(t)j2 + k1

Z
t

0

j�N (s)j2
V
ds

for all t � 0.

We next integrate R from 0 to t:

Z
t

0

R(s)ds (28)

=

Z
t

0

fhys(s)�
d

ds
P
N
y(s);�N(s)i

V
�;V + hF (s; q

N)� F (s; q);�N(s)i
V
�;V

+ �(q)(y(s);�N(s))� �(qN)(y(s);�N(s)) + �(qN)(y(s)� P
N
y(s);�N(s))

+ hg(q)(y(s))� g(qN)(yN(s));�N(s)igds:

The �rst term under the integral on the right side of equation (28) is identically zero. To

see this, note that for any � 2 HN ,

hyt �
d

dt
P
N
y; �i

V
�;V = h

d

dt
(y � P

N
y); �i

V
�;V

=
d

dt
hy � P

N
y; �i

V
�;V

=
d

dt
hy � P

N
y; �i

H
;

since y � P
N
y 2 H. Recall that PN is the orthogonal projection of H onto HN , so that

(I � P
N)y is orthogonal to elements in HN . Therefore, d

dt
h(y � P

N
y); �i

H
� 0 for any

� 2 H
N .

To treat the second term under the integral, we use the inequality 2ab � a
2 + b

2:

Z
t

0

hF (s; qN)� F (s; q);�N(s)i
V
�;Vds �

1

2�

Z
t

0

jF (s; qN)� F (s; q)j2
V
�ds

+
�

2

Z
t

0

j�N(s)j2
V
ds; (29)

which holds for any � > 0.

For the third and fourth terms, we use Assumption C1) and the same technique as

in the previous argument to obtain

Z
t

0

f�(q)(y(s);�N(s))� �(qN)(y(s);�N(s))gds

12



�

Z
t

0

j�(q)(y(s);�N(s))� �(qN)(y(s);�N(s))jds

�

Z
t

0

d1(q; q
N)jy(s)j

V
j�N (s)j

V
ds

�

d
2
1(q; q

N)

2�

Z
t

0

jy(s)j2
V
+
�

2

Z
t

0

j�N(s)j2
V
ds: (30)

Now, using the assumption that �(q) is uniformly V-bounded for all q 2 Q, we obtain

an upper bound on the �fth term by arguing

Z
t

0

�(qN)(y(s)� P
N
y(s);�N(s))ds

� 
1

Z
t

0

jy(s)� P
N
y(s)j

V
j�N(s)j

V
ds

�



2
1

2�

Z
t

0

jy(s)� P
N
y(s)j2

V
ds+

�

2

Z
t

0

j�N (s)j2
V
ds: (31)

Finally, we must obtain a bound on the nonlinear terms. We �nd

Z
t

0

hg(q)(y(s))� g(qN)(yN(s));�N(s)ids

�

Z
t

0

jhg(q)(y(s))� g(qN)(y(s)) + g(qN)(y(s))� g(qN)(yN(s));�N(s)ijds

�

Z
t

0

jhg(q)(y(s))� g(qN)(y(s));�N(s)ijds (32)

+

Z
t

0

jhg(qN)(y(s))� g(qN)(yN(s));�N(s)ijds:

To treat the �rst term on the right side of (32), we use the Cauchy-Schwarz inequality, (9),

and condition C2), which states that g depends continuously on the parameter q, to obtain

Z
t

0

jhg(q)(y(s))� g(qN)(y(s));�N(s)ijds

�

Z
t

0

jg(q)(y(s))� g(qN)(y(s))jj�N(s)jds

�

Z
t

0

d2(q; q
N)jy(s)jj�N(s)jds

�

k
2
d
2
2(q; q

N)

2�

Z
t

0

jy(s)j2
V
ds+

k
2
�

2

Z
t

0

j�N(s)j2
V
ds: (33)

13



The last term in inequality (32) can be estimated by

Z
t

0

jhg(qN)(y(s))� g(qN)(yN(s));�N(s)ijds

=

Z
t

0

jhg(qN)(y(s))� g(qN)(PN
y(s))

+g(qN)(PN
y(s))� g(qN)(yN(s));�N(s)ijds

�

Z
t

0

jhg(qN)(y(s))� g(qN)(PN
y(s));�N(s)ijds

+

Z
t

0

jhg(qN)(PN
y(s))� g(qN)(yN(s));�N(s)ijds;

and is treated as in Section 2.2.5 of [2] when proving uniqueness of solutions. That is,

Z
t

0

jhg(qN)(y(s))� g(qN)(PN
y(s));�N(s)ijds

�

Z
t

0

jh

Z 1

0

g(qN)0(�y(s) + (1� �)PN
y(s))[y(s)� P

N
y(s)]d�;�N(s)ijds

� ~C3

Z
t

0

jy(s)� P
N
y(s)jj�N(s)jds

�

k
2 ~C2

3

2�

Z
t

0

jy(s)� P
N
y(s)j2

V
ds+

k
2
�

2

Z
t

0

j�N (s)j2
V
ds; (34)

where we have used (9) and condition A6). Similarly,

Z
t

0

jhg(qN)(PN
y(s))� g(qN)(yN(s));�N(s)ijds

�

Z
t

0

jh

Z 1

0

g(qN)0(�PN
y(s) + (1� �)yN(s))[PN

y(s)� y
N(s)]d�;�N(s)ijds

� ~C3

Z
t

0

jP
N
y(s)� y

N(s)jj�N(s)jds

= ~C3

Z
t

0

j�N(s)j2ds: (35)

Combining (29){(31) and (33){(35), we obtain the inequality

1

2
j�N(t)j2 + [k1 � (3 + 2k2)

�

2
]

Z
t

0

j�N(s)j2
V
ds

�

1

2�

Z
t

0

jF (s; qN)� F (s; q)j2
V
�ds+

d
2
1(q; q

N)

2�

Z
t

0

j(y(s)j2
V
ds

14



+


2
1

2�

Z
t

0

jy(s)� P
N
y(s)j2

V
ds+

k
2
d
2
2(q; q

N)

2�

Z
t

0

jy(s)j2
V
ds

+
k
2 ~C2

3

2�

Z
t

0

jy(s)� P
N
y(s)j2

V
ds+ ~C3

Z
t

0

j�N(s)j2ds (36)

� �
N(t) + �

Z
t

0

j�N (s)j2ds:

� �
N(T ) + �

Z
t

0

j�N(s)j2ds:

Note that �N(T ) ! 0 as N ! 1 by conditions B3) and C3), the assumption qN ! q, and

the result that y 2 L2((0; T );V). Choosing � > 0 so that k1 � (3 + 2k2) �
2
> 0, ignoring

the second term on the left side of the inequality (36), and applying Gronwall's lemma, we

obtain the desired result

j�N(t)j2 � �
N (T )e�T ; (37)

that is, �N
! 0 in C([0; T ];H) as N !1. Furthermore, ignoring the �rst term in the left

side of inequality (36) and using the result (37), we �nd

j�N
j
V
! 0

in L2(0; T ) and hence almost everywhere. Taken with the remarks at the beginning of these

arguments, this establishes the results of the theorem.

3.4 Parameter Estimation for the TCDD Model

For the model presented in Section 2.1, each of the parameters lies in some compact subset

of Euclidean space, with the possible exception of the time-dependent boundary term, Aq2.

Our initial e�orts will involve a �xed parameterization of Aq2 represented in terms of a �nite

number of piecewise linear continuous basis elements, so that the problem is conceptually

equivalent to the constant parameter case in that the minimization occurs over a �nite

parameter set [7]. In this case, the parameter estimation problem will involve the �nite

dimensional approximating sets QM . For typical examples of admissible parameter sets

involving both Q and QM , the reader is referred to [7].

We state without proof that conditions A1){A4), A6), and C1){C3) hold for the

TCDD model. This statement follows from proofs and arguments given in [2]. For the state

spaces V and H, conditions B2){B3) are satis�ed for the choice of piecewise linear continuous

basis elements for the �nite dimensional subspace HN . Therefore, this example falls into the

framework of the theoretical results presented in this section.

Finally, we note that the TCDD model includes two time delays, �c and �r, with

�c � �r. A solution to the parameter identi�cation problem is guaranteed over each delay
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interval of length �c, and is continued forward in time by the method of steps. For a complete

discussion, the reader is referred to [2].

4 Numerical Results

In this section, we discuss our numerical results. First, we outline the techniques used in

obtaining a numerical solution for the initial-boundary-value problem (1) and discuss some

of the simulated solutions. Then we show how we can use the simulations for the forward

problem to solve the parameter estimation (or inverse) problem described in Section 3.

4.1 Forward Problem

Here, we present an overview of the numerical methods used to obtain our simulations. All

coe�cient matrices, functions, vectors, etc. are as described in [2]. The values for the system

parameters are as given in [2]; in particular, �c = 1 minute is the circulatory delay, �r = 6

hours is the induction delay, and DN = 5:0 is the dispersion number, unless otherwise noted.

Our numerical scheme is based on the weak formulation [4] of problem (1) described in

Section 2.

For ease of notation, we de�ne

y = [CB; CuH
; CAh�T ; CAh; CPr�T ; CPr; Ca]

T = [y1; : : : ; y7]
T
:

Finite Element Formulation

Let 0 = x0 < x1 < : : : < xN = 1 be a uniform partition of the interval [0; 1] into N

subintervals of length h = 1=N . We take as basis elements the standard piecewise linear

continuous functions, �j; j = 0; : : : ; N , de�ned by

�j(x) =

8<
:

x�xj�1

h
; xj�1 � x � xj;

xj+1�x

h
; xj � x � xj+1;

0; 0 � x � xj�1 or xj+1 � x � 1:

We de�ne the Galerkin �nite element approximations by

y
N

1 (t; x) =
P

N

j=1 �
1
j
(t)�j(x);

y
N

i
(t; x) =

P
N

j=0 �
i

j
(t)�j(x);

(38)

for i = 2; : : : ; 6, where the basis elements, �j, are as described above and yN
i
is the approxi-

mation for yi.
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Next we substitute the �nite element approximations (38) into the weak form of the

equations. Let yN(t) 2 RN+5(N+1)+1 be such that

y
N(t) = [�1(t); �2(t); : : : ; �6(t); y7(t)]

T
:

The �nite dimensional system we obtain, in terms of the time-dependent coe�cients of the

Galerkin approximations, is given by

M
N _yN(t) = A

N
y
N(t) + GN

p
(yN(t)) + FN(t) +AN

D
y
N(t� �c) + G

N

s
(yN(t� �r)); (39)

where the matricesMN and AN are elements of R(N+5(N+1)+1)�(N+5(N+1)+1) and the vector-

valued functions GNp, F
N , AN

D
, and GN

s
are elements of RN+5(N+1)+1 (see [2] for details).

The initial condition, yN0 , for the semi-discrete problem (39) is taken as the L2 pro-

jection of the original initial condition, �, onto the �nite element space.

4.1.1 General Algorithm

In this section we present an overview of the general algorithm used in our forward problem

simulations. To see the e�ects of the protein induction delay, �r, we seek solutions on the

interval from zero to twenty-four hours. We have assumed that no TCDD is present in the

system on the interval [-6,0] hours. By making this assumption, we can ignore the induction

delay term, GN
s
, over the �rst induction delay interval [0, �r].

The semi-discrete problem (39) we consider is then

M
N _yN(t) = A

N
y
N(t) + GN

p
(yN(t)) + FN(t) +AN

Dy
N(t� �c) + G

N

s(y
N(t� �r));(40a)

y
N(s) = y

N

0 (s); s 2 [��c; 0]: (40b)

The entries in the coe�cient matrices MN and AN , consisting of certain combinations of

inner products of basis elements and their derivatives, were calculated analytically rather

than using a numerical integration scheme. The nonlinear vector function GN
p

was treated

in a similar manner. However, the nonlinear vector function GN
s

was calculated using the

numerical integration scheme quad in MATLAB (The MathWorks, Inc., Natick, MA). In

the following simulations, we take N = 16; simulations computed with other values of N are

presented in [2] and suggest convergence for N = 16.

The \method of steps" [6] for ordinary di�erential equations is used to computation-

ally solve the problem (40) on successive circulatory delay intervals of length �c, and again

on successive induction delay intervals of �r. We �rst �nd the solution over the �rst delay

interval [0; �r], where there is no protein induction and we can ignore the induction delay

term, GN
s
. Then we �nd the solution over each subsequent induction delay interval; on these

intervals, the protein induction has begun and we must include GN
s
. In order to evaluate
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y
N(t � �c) and y

N(t � �r) at a particular time t, we store the computed solution through-

out the previous delay intervals and then interpolate (assuming a variable step integration

routine is used) to �nd the value of the solution at times t� �c and t� �r. Here, for ease of

computation, we assume that the �nal time T is an integer multiple of the induction delay

�r and the induction delay is an integer multiple of the circulatory delay �c. More details

regarding the general algorithm are given in [2].

4.1.2 Implementation

The computer code for the forward problem was written in MATLAB version 5.1 (The

MathWorks, Inc., Natick, MA) and computations were carried out on a Sun Sparc Ultra 10

workstation. The MATLAB routine ode15s, which is a variable order, variable step method

based on numerical di�erentiation formulas, was used for time stepping. The relative and

absolute error tolerances were set to 1� 10�6. Since this is a variable step method, at time

t the solution over the previous delay interval had to be interpolated in order to determine

the value of the solution at times t� �c and t� �r. In order to �nd the value of the solution

at time t � �c, MATLAB's interpolation routine interp1 was used with the spline option.

This method �ts the data with cubic splines between data points, so that each segment of

the curve �t has at least the same �rst and second derivatives as the ones adjoining it. The

maximum order of the integrator was set to two in order for it to match the range of accuracy

of both the interpolation routine and the �nite element approximations. In order to �nd the

value of the solution at time t� �r, linear interpolation was used.

4.1.3 Model Simulations

First we focus on the solutions on the time interval from zero to twelve hours, in order

to see the e�ect of the delayed induction of CYP1A2. In these simulations we consider a

special case of the original model to facilitate the computation of simulated solutions and to

make the e�ects of the induction delay term more pronounced. We use a special case of the

boundary condition at x = 1; we set v = 0 and q2(t) = 0 in our original boundary condition

vCB(t; 1) + Ca(t)�D
@CB

@x
(t; 1)) = q2(t);

to obtain
@CB

@x
(t; 1) = 0:

This condition permits computation of simulated solutions over longer time intervals without

error accumulation so that qualitative properties can be demonstrated. Since it is a special

case of our original boundary condition, the theory discussed previously still holds. In

addition, we set IPr, the maximum induction rate of CYP1A2, equal to 434:6 nmol/L/hr
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which is ten times the rate suggested by the literature [13]. This is done to magnify the e�ects

of the induction delay in our computed solutions. Preliminary computational investigations

on the qualitative behavior of the system without these changes are discussed in [14] and [2].

In particular, the behavior of the system on the time interval from zero to six hours and the

dependence of the solution on the dispersion number, DN , and the circulatory delay, �c, are

presented.

During the time interval from zero to six hours (when t < �r), the protein CYP1A2

is present only at a basal level. After six hours (t = �r) however, there is a dose-dependent

induction of CYP1A2. This induction is represented in the model by the induction term

G
N

s
(y(t � �r)). Since the model incorporates the binding of CYP1A2 with TCDD, as well

as the other dynamics of TCDD interaction in the liver, we expect that the inclusion of the

induction term in the model a�ects in a nonnegligible way the solutions of the system. We

compare the simulated solutions with and without the induction term to study the nature

of these e�ects.

First we consider the concentration of available CYP1A2 in the hepatocytes, denoted

CPr (Figure 1). We note a sharp increase, followed by a gradual decline, in CPrdue to the

beginning of the induction of CYP1A2 and its subsequent binding with TCDD. The e�ect of

this binding can also be seen in CPr�T , the concentration of CYP1A2-TCDD complex in the

hepatocytes (Figure 2). Here we note an initial period of adjustment to the elevated levels

of CYP1A2, and then an increase in CPr�T due to the binding of CYP1A2 with TCDD. In

addition, the binding of TCDD results in a relative decrease in the concentration of unbound

TCDD in the hepatocytes, CuH
(Figure 3). Since there is a decrease in the concentration of

unbound TCDD in the hepatocytes, unbound TCDD in the liver blood di�uses into the

hepatocytes, where the CYP1A2 is produced; this results in a relative decrease of both CuB
,

the concentration of unbound TCDD in the liver blood, and CB, the total concentration of

TCDD in the liver blood (Figures 4 and 5). Furthermore, the induction of CYP1A2 indirectly

a�ects the concentration of the Ah receptor, the other protein with which dioxin binds. We

note that the relative decrease in CuH
causes a relative increase in CAh, the concentration

of available Ah receptor protein in the hepatocytes, and a relative decrease in CAh�T , the

concentration of Ah receptor-TCDD complex in the hepatocytes (Figures 6 and 7).

4.2 Inverse Problem

As we mentioned at the beginning of Section 3, our model contains many physiological,

biological, and modelling parameters. When we computed the forward problem simulations,

we set these parameters using values given in the literature. In order to use this model

to simulate the disposition and elimination of TCDD in a speci�c animal, we must know

the values for the parameters for the animal in question. Many of these values must be

estimated from experimental data. In Section 3, we discussed the theory behind such a
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parameter estimation problem; here we provide numerical results for a problem of this type.

For a demonstration example, we estimate the value of the axial dispersion number DN , a

parameter that is not directly measurable and hence one that will not generally be available

from experimental literature. We do this holding all other parameter values �xed. Since

we do not have access to experimental data, we use the solution for the arterial blood

concentration Ca from the forward problem simulations as our data. This means that, in the

context of Section 3, the observation operator C is the dot product of the solution at time t

with the unit row vector in R1�(N+5(N+1)+1) with a one in the last component.

4.2.1 General Algorithm

In this section, we de�ne our notation and outline the general algorithm used in our simula-

tions. Our goal is to �nd the value for DN that minimizes the di�erence (in the least squares

sense) between Ca(t;DN), the DN -dependent solution from the forward problem, and our

data. We let Ca(ti;DN) be the simulated solution of Ca at time ti, with ti in the time interval

from zero to three hours. We denote the vector of data points or observations by Ĉa, and

we let (Ĉa)i, the value of Ca observed at time ti, be the ith component of Ĉa. Finally, C
�

a
is

the simulated solution of Cawith DN = D
�

N
= 5:0; i.e., we take D�

N
= 5:0 as the true value

in our simulated data.

The general algorithm consists of de�ning a least squares cost function and choosing

an initial value (or values) for DN , the parameter to be estimated, which are then used in

an optimization routine. Here we use a Nelder Mead optimization routine [15]. Since Nelder

Mead is a simplex search algorithm, we are required to choose an initial simplex for DN ,

which in our case can be thought of as an ordered pair of initial values.

4.2.2 Implementation and Data Creation

The algorithm and inverse problem feasibility was tested with both noise free data and

data containing various levels of random noise. The necessary computer code was written

in MATLAB version 5.1, and the computations were carried out on a Sun Sparc Ultra 10

workstation. In the Nelder-Mead simplex search algorithm for the optimization [15], we set

the termination tolerance at 10�4 when no noise was present in the data and at 10�3 in the

presence of noise.

In a lab setting, we would expect to see noisy data due to such factors as measurement

error, human error, and environmental e�ects. Since we did not have experimental data for

Ca, we use three types of simulated data in our inverse problem: data without noise, data

with uniformly distributed random noise, and data with normally distributed random noise.

We compared our ability to estimate the value of the parameter when we added 1% relative

error and 5% relative error so we could demonstrate the e�ect of the magnitude of the noise

20



on our ability to estimate the parameter correctly. All three data sets were derived from

C
�

a
(t), the simulated solution with the \correct" value DN = D

�

N
= 5:0. Below we describe

how the data sets were created.

The data without noise is simply the original time domain solution C�

a
(t) (Figure 8).

We added uniformly distributed random noise to the original time domain solution so that

the \data" Ĉau (Figures 9 and 10) was given by (Ĉau)i = (1 + �i)C
�

a
(ti). In this case, the

�i were uniformly distributed random numbers that were appropriately scaled and shifted,

depending on the magnitude of the noise, so that �i 2 [�:01; :01] for 1% relative error and

�i 2 [�:05; :05] for 5% relative error. The random numbers were generated by the MATLAB

function rand, which outputs uniformly distributed random numbers from 0 to 1. We added

normally distributed random noise to the original solution to create Ĉan (Figures 11 and 12)

in a similiar fashion, so that (Ĉan)i = (1 + �i)C
�

a
(ti). Here, the �i were normally distributed

random numbers with mean 0 and variance 1 that were scaled accordingly, so that with 99:7%

certainty �i 2 [�:01; :01] for 1% relative error and �i 2 [�:05; :05] for 5% relative error. The

MATLAB function randn generated these normally distributed random numbers.

4.2.3 Model Simulations

Using the data and methods described previously, we performed numerous inverse problem

calculations to investigate our ability to estimate the value of the parameter DN . We con-

sidered several di�erent situations: using \correct" data and a range of initial conditions,

using the data with uniformly distributed random noise adding 1% and 5% relative error,

and using the data with normally distributed random noise adding 1% and 5% relative error.

We �nd that when we use the data set without noise, we are able to recover the true

value ofDN (D�

N
= 5:0) with at least four decimal places of accuracy and obtain cost function

values on the order of 10�5. This is true for initial estimates for DN with components in the

range [4:5; 5:5]. Since there is no noise in the data, these results are what we would expect

and completely typical of many inverse problem calculations using data without noise. In

Table 1 we present typical �ndings.

Initial Simplex Converged Value True Value Cost Function

x0
�DN D

�

N
J

(4:5; 4:51) 5:0000 5:0 4:7301� 10�5

(5:5; 5:51) 5:0000 5:0 4:7301� 10�5

Table 1: Results for data without noise.

When we use the data with noise, we �nd that we are still able to solve the inverse

problem successfully. Even with up to �fty percent error in our initial estimate, the converged

values �DN obtained from the optimization routine are, at worst, equal to D�

N
with error on
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the order of 10�3 and at best, are equal D�

N
with at least four decimal places accuracy. The

values of the cost function range from � 153 to � 11; 609. Tables 2 and 3 illustrate some of

these results.

% Noise Initial Simplex Converged Value True Value Cost Function

x0
�DN D

�

N
J

1% (5:0; 5:01) 4:9990 5:0 4:5320� 102

1% (4:5; 4:51) 4:9990 5:0 4:5320� 102

1% (5:5; 5:51) 4:9990 5:0 4:7249� 102

5% (5:0; 5:01) 5:0034 5:0 1:1609� 104

5% (4:5; 4:51) 5:0034 5:0 1:1609� 104

5% (5:5; 5:51) 5:0034 5:0 1:1609� 104

Table 2: Results for data with uniformly distributed noise.

% Noise Initial Simplex Converged Value True Value Cost Function

x0
�DN D

�

N
J

1% (5:0; 5:01) 5:0000 5:0 1:5342� 102

1% (4:5; 4:51) 5:0000 5:0 1:5342� 102

1% (5:5; 5:51) 5:0000 5:0 1:5342� 102

1% (2:5; 2:51) 5:0000 5:0 1:5342� 102

1% (7:5; 7:51) 5:0000 5:0 1:5342� 102

5% (5:0; 5:01) 4:9998 5:0 3:8822� 103

5% (4:5; 4:51) 4:9998 5:0 3:8822� 103

5% (5:5; 5:51) 4:9998 5:0 3:8822� 103

Table 3: Results for data with normally distributed noise.

We �nd that we do a better job of recovering the true valueD�

N
when there is normally

distributed noise than when there is uniformly distributed noise, no matter what the percent

error. This is to be expected since the noise in the data is more likely to be \larger" with the

uniformly distributed noise. To see this more clearly, we can look at �i for any i, which we

described in the previous section when we discussed the creation of the data. We consider

the case with 1% relative error. For the uniformly distributed noise, it is equally likely that

�i is any number in [-.01, .01]. However, for the normally distributed noise, there is a 68%

chance that the random number generated by the routine is within one standard deviation

(in our case � = 1) from zero and a 99:7% chance that it is within three standard deviations

from zero. Here, that means that there is a 99:7% chance that �i 2 [�:01; :01] and a 68%

chance that �i 2 [�:0033; :0033]. So, it is likely that the normally distributed noise has a

smaller magnitude than the uniformly distributed noise.
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5 Concluding Remarks

The previous discussions provide a rigorous foundation for computational methods to in-

vestigate both forward simulations and inverse problems for nonlinear parabolic partial dif-

ferential systems with delays. In particular, the motivating TCDD spatially distributed

liver model can be treated using the computational framework presented here. The sample

computational results for this model demonstrate the applicability of our approach in the

investigation of both qualitative and quantitative properties of such models.
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Figure 1: The e�ect of the induction delay on the concentration of available CYP1A2 in the

hepatocytes.
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Figure 2: The e�ect of the induction delay on the concentration of CYP1A2-TCDD complex

in the hepatocytes.
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Figure 3: The e�ect of the induction delay on the concentration of unbound TCDD in the

hepatocytes.
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Figure 4: The e�ect of the induction delay on the concentration of unbound TCDD in the

liver blood.
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Figure 5: The e�ect of the induction delay on the total concentration of TCDD in the liver

blood.
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Figure 6: The e�ect of the induction delay on the concentration of available Ah receptor in

the hepatocytes.
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Figure 7: The e�ect of the induction delay on the concentration of Ah receptor-TCDD

complex in the hepatocytes.
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Figure 8: The computed solution for the concentration of TCDD in the arterial/venous blood

compartment (Ca) without noise.
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Figure 9: The computed solution for the concentration of TCDD in the arterial/venous blood

compartment (Ca) with 1% uniformly distributed random noise.
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Figure 10: The computed solution for the concentration of TCDD in the arterial/venous

blood compartment (Ca) with 5% uniformly distributed random noise.
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Figure 11: The computed solution for the concentration of TCDD in the arterial/venous

blood compartment (Ca) with 1% normally distributed random noise (99:7% certainty).
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Figure 12: The computed solution for the concentration of TCDD in the arterial/venous

blood compartment (Ca) with 5% normally distributed random noise (99:7% certainty).
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