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Due to the volume and power limitations of a small satellite, careful considera-

tion must be taken while designing an attitude control system for 3-axis stabilization.

Placing redundancy in the system proves difficult and utilizing power hungry, high

accuracy, active actuators is not a viable option. Thus, it is customary to find depend-

able, passive actuators used in conjunction with small scale active control components.

This document describes the application of Elastic Memory Composite materials in the

construction of a flexible spacecraft appendage, such as a gravity gradient boom. As-

sumed modes methods are used with Finite Element Modeling information to obtain

the equations of motion for the system while assuming free-free boundary conditions.

A discussion is provided to illustrate how cantilever mode shapes are not always the

best assumption when modeling small flexible spacecraft. A key point of interest is first

resonant modes may be needed in the system design plant in spite of these modes be-

ing greater than one order of magnitude in frequency when compared to the crossover

frequency of the controller. LQG/LTR optimal control techniques are implemented

to compute attitude control gains while controller robustness considerations determine

appropriate reduced order controllers and which flexible modes to include in the de-

sign model. Key satellite designer concerns in the areas of computer processor sizing,

material uncertainty impacts on the system model, and system performance variations

resulting from appendage length modifications are addressed.
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Chapter 1

Introduction

1.1 Small Satellites

The world entered a new stage in its technological advancement on October 4th,

1957. On this day, Russians launched the first man made satellite into orbit. Sputnik

was shaped like a basketball with a diameter of 2 meters and weighed only 84 kg

(see Figure 1.1). A month later, Sputnik II, weighing a total of 511 kg, placed a

dog named Laika in an orbit about the Earth. The mission was declared a failure

when the satellite experienced difficulty separating from its booster and overheated[123].

Seventeen months after the launch of Sputnik I, the United States launched Explorer

1. This light satellite, weighing only 14 kg, measured charged particles in the upper

atmosphere and discovered the Van Allen radiation belts[5].

These satellites were small for two reasons. First, the launch capability of existing

rockets had only been evolving for a few decades prior to the launch of Sputnik. In fact,

American scientists were surprised with how well the Russians could put heavy payloads

(1,500 kg) into orbit[186]. Program risk is the other reason for the use of small satellites.

The first launch attempt by the United States failed on December 6, 1957 when a Navy

Vanguard rocket exploded before leaving the launch pad. The failure may have been

catastrophic to the American’s race for space had they dedicated a majority of their

program funds to launching a larger version of Explorer 1.

Since the end of the 1950s, satellites have grown in mass and expense as larger
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Figure 1.1: Sputnik I

missions were attempted. Businesses emerged to take advantage of the remote sensing

and communication capabilities orbiting satellites offered. These businesses could offset

the added risk of launching larger satellites by adding advanced instruments capable of

producing better results than cheaper, smaller scale versions of the payloads. However,

advanced instruments consume additional power and the battery and solar array mass

increased accordingly. Primary structures, which carry most of the loads of the satellite,

also grew in mass and complexity to support the additional components. The Milstar

Satellite Communications System (shown in Figure 1.2) is an example of a large satel-

lite currently in use. This system provides secure, worldwide communications to high

priority military users to meet essential wartime requirements. Each Lockheed Martin

designed satellite weighs 4,536 kg and costs approximately $800 million[47].

A 45 year trend in small satellites is shown in Figure 1.3. This figure illustrates

the number of successful launches of small satellites with the mini, micro, and nano

classifications (see Table 1.1). Data is compiled from various sources presented by

Surrey Satellite Technology Ltd. (SSTL) and does not include nonfunctioning satellites

(e.g. orbital debris radar calibration spheres released by the Shuttle intended to provide
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Figure 1.2: Milstar Satellite Communications System

calibration for radar echoes).

Figure 1.3 begins with two Sputnik satellites launched in 1957. The following

decade comprises a combination of US and Russian satellite and launch technological

advances. The decline during the 1970s results from efforts in launching heavy payloads

during the Apollo era and the race to the Moon. The increase in small satellite launches

during the 1980s and early 1990s stemmed from the communication industries taking

advantage of the global perspective benefits space offered. The Kosmos satellites formed

the Commonwealth of Independent States’ (CIS) military tactical communications con-

stellation. The Kosmos program contributed greatly to role small satellites played in

the communication industry during those two decades. However, the size of communi-

cation satellites grew as companies wanted larger systems to meet increasing customer

needs. The construction of massive satellites continued until several high profile failures

occurred in the early 1990s. The loss of the Mars Observer and the flaw in the Hubble

Space Telescope’s primary mirror forced government programs to start thinking ”faster,

better, cheaper”[96]. The multibillion dollar failures triggered the recent boom in small

satellites, such as the Globalstar constellation shown in Figure 1.4. The large increase
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Figure 1.3: Number of Small Satellites Successfully Launched

Table 1.1: Mass Classification of Small Satellites

Classification Wet Mass

Mini 100-500 kg

Micro 10-100 kg

Nano 1-10 kg

Pico < 1 kg
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Figure 1.4: The Globalstar Configuration

in small satellite usage also reflects businesses’ and universities’ growing contributions

to the utilization of space[135].

Today, the satellite industry is no longer exclusive to businesses and government

agencies. Universities are now using satellites as educational tools and platforms for

conducting advancements in research (see Figure 1.5). The decreased cost and com-

plexity of small satellites when compared with conventional satellites are what make

small satellites more appealing to academic institutions. Figure 1.6 shows how program

costs for a conventional satellite add up[235]. Component selection and traceability, for-

mal design review costs, infrastructure, and corporate overhead contribute to inflating

the costs of the conventional program.

Another benefit to university programs is the reduced development timeline of

small satellites. The schedule of a conventional program (3-5 years) is cumbersome in

an academic environment. A two-year schedule appeals to an undergraduate institution

where students complete the bulk of the advanced courses in the final two years of

the degree. In addition, the two-year schedule is beneficial to graduate programs. The

course work is completed in the first year and research credits are earned in the following

two or three years. Figure 1.7 illustrates a typical program timeline for a small satellite

with a pre-existing infrastructure, supporting faculty numbering 12, and approximately
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Figure 1.5: Distribution of Small Satellite Users[235]

Figure 1.6: Program Costs for a Typical Conventional Program
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40 students using similar designs from past successes[235].

Figure 1.7: Typical Small Satellite Program Timeline

Reduced budget costs and compact schedules are not the only two aspects of small

satellites which are desirable by academic institutions. Universities will assess mission

failure differently than how a commercial operation will. A business will experience a

loss of investment and time with each failed operation. While experiencing the same

loss, albeit on a smaller scale, a university gains the practical experience of designing,

building, testing, launching and operating a satellite. Experience is an effective edu-

cational tool for students. An orbital failure of a satellite still results in an academic

success for students. One of the mission statements from the United States Air Force

Academy’s (USAFA) Department of Astronautics, located in Colorado Springs, CO,

is to ”teach space by doing space.” Cadets that work in the Space Systems Research

Center (SSRC) are engaged in each phase of a small satellite’s evolution. A corporate

engineer designing a similar satellite may only participate in a single phase of satellite

development, such as the testing or operational phase.

Although small satellites provide the aforementioned advantages over their larger
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counterparts, several disadvantages exist as well. The compactness of a small satellite

limits the mass and volume of usable components. Reduced availability of space may ex-

clude the use of more sophisticated components. Compactness may also greatly increase

the acquisition costs of miniaturized devices to produce similar results. In addition, the

assembly of miniature components in a confined space presents difficulties with arrang-

ing and connecting components. Smaller exterior surface area of the satellite reduces

the size of solar arrays. Thus, power supplied to components is limited. Power budgets,

as well as efficient power usage, are becoming increasingly important. Certain aspects of

operations, such as payload functionality or attitude maneuver sequences, may become

impaired if component power consumption is greater than expected. Another strong

disadvantage of a small satellite is the difficulty in providing redundant systems within

the satellite. While redundancy may be provided for mission critical items such as CPU

memory or communication systems, it is often difficult to incorporate back up systems

for attitude control of the spacecraft. If a component ceases to perform as expected,

it may impair the mission or cause it to fail all together. Therefore, a small satellite

must rely on systems that are not ’power hungry’, do not occupy too much space, or

are fairly simplistic and reliable to mitigate risk.

1.2 Gravity Gradient Stabilization

The Attitude Determination and Control Subsystem (ADCS) has traditionally

been too large and expensive for use in small satellites. Key aspects of payload require-

ments depend upon strict pointing requirements and attitude knowledge. The payload

mission may be jeopardized if the ADCS subsystem fails in meeting pointing and atti-

tude knowledge requirements. To reduce the probability of a satellite failing its mission,

redundant and sophisticated components are utilized to ensure the ADCS is not a sin-

gle point of failure for the satellite. This poses a problem for small satellites requiring

attitude control. In fact, a common approach with early small satellites was to provide
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Table 1.2: Attitude Control Actuator Accuracies[69]

Actuator Classification Accuracy

Spin Passive ±0.1◦

Magnetic Rods Passive ±5◦

Gravity Gradient Passive ±5◦

Nutation Damper Passive ±3◦

Magnetic Torquers Active ±0.1◦

Thrusters Active ±0.1◦

Reaction/Momentum Wheels Active ±0.01◦

Control Moment Gyros Active ±0.001◦

no stabilization at all.

Passive stabilization techniques offered a way of providing some control while

staying in compliance with the satellite’s power and mass requirements. Spin, magnetic

rods, and gravity gradient fall into the passive category since no energy or control

actuators are required for operation (although some stored energy is required during

the initial spin-up phase or deployment of the boom). These systems operate in open

loop (i.e. no control feedback information is provided from attitude sensors). Once

the satellite is in the desired attitude, it will exhibit typical pointing performance of

±10◦. Active control systems, (i.e. magnetorquers, reaction wheels, momentum wheels,

thrusters), employ actuators to generate a control torque to the satellite. Active systems

require attitude sensors to provide position and rate information to close the loop of

the control system. By using feedback information to fine tune the control system,

performance values of active control will be at least an order of magnitude smaller than

passive systems. Table 1.2 lists various attitude control actuators, their classification as

passive or active, and typical accuracy values.

While passive systems were used in the early prototypes of small satellites (be-

tween 1957 and 1980), active systems are seeing more use in supplementing passive
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Figure 1.8: Structural Drawing of UoSAT-1

components. When a gravity gradient boom is carried, a pitch wheel can be used in

momentum bias mode or a yaw wheel in zero-momentum bias. The most common con-

trol system for current small satellites is a combination of gravity gradient boom and

magnetorquers. This control scheme allows the satellite to have yaw pointing control

while remaining nadir pointing. The first small satellite to use this control configuration

was UoSAT-1 (OSCAR-9), an amateur satellite built and operated by the University of

Surrey in the early 1980s (see Figure 1.8)[218].

Gravity gradient stabilization is not a new concept. D’Alembert and Euler’s ce-

lestial mechanics work in 1749 first discussed gravitational gradient effects of an axially

symmetric ellipsoid in an inverse square field. 30 years later Lagrange used this infor-

mation to explain the librations of the Moon[159]. Uneven mass distribution within the

Moon’s crust results in a gravity gradient stabilized attitude with respect to the Earth.

Astronomers have observed this gravity gradient stabilized attitude for many years and

have termed the unseen 50% as the ’dark side’ of the Moon. Actually, due to the lon-

gitudinal, latitudinal, and diurnal components of the Moon’s apparent libration, over a
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Figure 1.9: Gravity Gradient Stabilization with a Momentum Wheel

period of time an Earth based observer is able to view 59% of the Moon’s surface[176].

Gravity gradient stabilization of a satellite occurs when the minimum-inertia axis

locks in a vertical orientation with the orbiting body. This orientation is conventionally

accomplished through the use of a deployable boom with a tip mass at the end. Once

the boom is deployed, the tip mass will increase the moment of inertia in the directions

transverse to the boom[240]. This boom configuration allows passive control in both

the roll and pitch directions; therefore a communication or remote sensing payload

may remain nadir pointing. This boom configuration does not, however, provide yaw

control since the satellite is free to rotate about the vertical axis. Early research efforts

illustrated how a stable orientation is created when a momentum wheel with its angular

momentum is aligned along the positive orbit normal (shown in Figure 1.9)[223]. A

detailed discussion of the theoretical development for gravity gradient stabilization is

provided in Appendix A of this document.

Fairing limitations of launch vehicles requires the containment of boom systems

prior to launch. The basic idea of deploying gravity gradient booms while in orbit
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was initially developed and demonstrated in space as early as the 1960’s[160]. The

deployment process involves storing strain energy within a compact structure prior to

fitting the satellite to the launch vehicle. Once the satellite is on-orbit, an initiation

command is given by either ground based operators or an autonomous control system

contained within the satellite’s data handling system. This initiation command signals

the gravity gradient component to release the stored strain energy which deploys the

boom element to obtain its final, desired shape or configuration. Conventional boom

systems use telescopic sections (shown in Figure 1.10) or furlable overlapped tubing,

often referred to as Storable Tubular Extendible Member (STEM), as shown in Fig-

ure 1.11. The telescopic boom built by SSTL, known as STACER, has a heritage of

over 25 years. During this time, spacecraft and sounding rockets have utilized more than

600 STACER units[135]. Small satellite designers find STACER’s compact dimensions

while stowed (102 x 115 x 264 mm) and lightweight design (2.2 kg without tip mass)

very appealing. STACER’s telescopic section is spring loaded. Deployment is initiated

with dual redundant pyrotechnic bolt cutters. The ”pyro-cutters”, classified as ”Class

C” explosives, cut through a shear bolt to release the stored strain energy.

STEM booms use heat treated steel to deploy a rigidizable antenna. The boom

element is fabricated to a specified length and rolled like a sleeping bag. For longer

lengths, it is divided into segments that are joined by a thin lap joint. More recently,

AEC-Able Engineering developed the CoilAble boom (shown in Figure 1.12). The

CoilAble boom is fabricated as a helix and stored in a collapsed configuration inside the

deployment canister[116]. However, STEM’s tend to be heavy due to the use of either

beryllium copper or stainless steel.

Although these conventional booms do have significant flight heritage, they pos-

sess several unfavorable characteristics. The high amount of stored energy in springs and

the use of pyrotechnic bolt cutters generate survivability concerns for a launch vehicle.

Elaborate inhibit measures need to be applied during launch to ensure an early release
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Figure 1.10: Illustration of the STACER Telescopic Section Boom

Figure 1.11: Example of a STEM Boom [67]
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Figure 1.12: AEC-Able Engineering’s CoilAble Boom [49]
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does not occur. An early release could prove fatal not only to the satellite and launch

vehicle, but to other satellites sharing a ride on the same launch vehicle as well. Also,

human life may be at risk if the Space Shuttle is used to launch a satellite that utilizes

conventional type boom deployment systems. The STACER boom design suffers from

high packaged strain energy. This packaged strain energy limits the size of the boom to a

maximum diameter of 2” and produces low deployed stiffness and strength[36]. In addi-

tion, pyrotechnic release devices produce high shock and contamination, are hazardous

and costly to handle, and are not re-setable.

One alternative to using a traditional boom is to inflate a structure while on orbit.

Deployment tests of inflatable booms have been extensively conducted during the last

fifteen years. Haug and colleagues[85] utilized finite element methods to simulate the

deployment process of an inflatable antenna in 1991. Six years later, Tsoi’s thesis[226]

used these equations to simulate the deployment of inflatable booms which were both

folded and rolled up. Clem and his associates[46] conducted deployment tests in 2001

while a year later Campbell and her coworkers[35] experimentally investigated gravita-

tional effects during the deployment of inflatable tubes. Also during 2002, Miyazaki and

Uchiki[153] and Wang and Johnson[232] tested and analyzed the deployment process of

inflatable structures. All of these studies focused on pressure stabilized inflatable booms

where constant pressure is required to maintain the rigidity of the structures.

While the mentioned studies on inflatable structures were thorough, they only

focused on the deployment dynamics with minimal consideration given to the control

authority impact on the spacecraft. In addition, the use of inflatable structures were

never shown to be a feasible system for small satellites. The complexity of the plumbing

system for the pressurized air as well as the added mass and volume requirements

for storage tanks would quickly exceed the constraints placed upon small satellites.

Therefore, the support structure needed for inflatable structures would be scaled down

to fit within the confines of a small satellite and greatly reduce the length of such a
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structure.

1.3 Elastic Memory Composites

A recent innovation which has the potential to revolutionize the design of de-

ployable booms is the development of shape memory materials and their introduction

into the design of deployment mechanisms. Shape memory ”mechanisms” can elimi-

nate the need for traditional highly complex mechanical deployment devices, massive

launch canisters, and independent deployment control systems. In addition, these shape

memory mechanisms can lead to dramatically simpler boom designs that include fewer

”parasitic” (i.e. non-structural) parts and are therefore much lighter in weight.

A shape-memory alloy (SMA) is a mixture of two or more metals that has the

special property of being able to ”memorize” a certain shape, and return to that shape

even after being deformed. Usually the return to a memorized shape is triggered by

heating the material. The change can happen very fast, often within seconds. The key

to a SMA’s ability to shape-change is that its structure differs depending on the temper-

ature. At high temperatures, the atoms in an SMA possess a very stiff, rigid structure,

called the ”austenitic” structure (named after British metallurgist Sir William Chandler

Roberts-Austen). The shape of an SMA is linked to its austenitic structure[225]. Any

change in the shape of the metal while it is in the austenitic phase causes the structure

to change, and vice versa.

As the metal cools and reaches a critical temperature range, the atoms begin to

realign themselves into a different structure, called the ”martensitic” structure (named

after German metallurgist Adolf Martens). This structure is also linked to the austenitic

structure, but is flexible and allows the metal to be visibly bent, stretched, and manipu-

lated without changing the underlying atomic structure. When the metal is heated again

to its critical temperature range, the metal transforms back into the rigid austenitic

structure which, being linked to the shape of the metal, causes it to regain its original,
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”memorized” or ”programmed” shape[73]. If the metal is cooled once again to the flex-

ible martensitic phase, it will retain the memorized shape until otherwise changed by

an outside influence.

The austenitic and martensitic structures that cause shape memory also possess

several other exceptional properties: superelasticity, damping, and high, controllable

recovery force. The superelasticity of an SMA enables the SMA to stretch more than

other metals and then spring back to original size. SMAs can be stretched up to 8% more

than their original length without permanently stretching or damaging the material

(other metals stretch less than 1%).

Damping, another property of shape memory composites, is the ability to stop

oscillations or vibrations quickly. For example, when a rubber ball is dropped onto a

firm surface, it will bounce several times, but each successive bounce will get lower and

lower, until eventually the ball stops bouncing. On a concrete surface the ball may

bounce many times, whereas the ball might only bounce once or twice on a carpeted

surface. The carpeted surface, then, would have high damping (it stops the ball quickly),

and the concrete surface has lower damping. The same idea applies to damping in a

mechanical system. An automotive’s engine produces numerous vibrational frequencies.

The amplitude of these vibrations experienced by the occupants depends upon the

damping capability of the car’s materials and structure. Since SMAs have high damping,

a person sitting in an operating SMA car might not feel the engine vibrating.

A high recovery force from an SMA can be compared to the stretching or com-

pression of a spring, such as one found in a mattress or a trampoline. When a person

jumps onto a trampoline, the springs are compressed. When the springs return to their

normal state, the restoring force sends the person flying into the air. Changing the

shape of an SMA in its martensitic phase is like compressing the springs on a tram-

poline. The stored strain energy is released when the SMA returns to its memorized

austenitic shape.



18

Other shape-memory materials also have these properties (damping, superelas-

ticity, etc). Shape-memory polymers (SMPs) are a type of shape-memory material that

is also triggered by temperature change, but is composed of plastic, instead of metal.

The most familiar example of an SMP is shrink-wrap[11]. SMPs possess greater levels

of superelasticity than SMAs. SMPs can stretch up to 400% more than their original

length. However, SMPs produce a lower recovery force. This means SMPs are more fa-

vorable for purposes where major shape changing needs to occur while generating little

resistance to the change. An example usage of SMPs which is currently being mar-

keted is ”smart” cold-weather clothing. The clothing is impermeable to wind and rain

at lower temperatures but porous at higher temperatures for ”breathability.” Another

difference between SMPs and SMAs is that SMPs can be manufactured from biodegrad-

able materials. This is advantageous for surgical purposes. It is not necessary to remove

temporary implants or sutures created from SMP materials since they will intentionally

disintegrate over time[122].

The first use of SMAs occurred in various fields of engineering, especially in

the military. The first SMAs were developed by the Navy. A nickel-titanium alloy

was developed at the US Naval Ordnance Laboratory in 1961. The shape-memory

properties were discovered accidentally. The Navy named the new substance ”Nitinol”–

Ni for nickel, Ti for titanium, and NOL for Naval Ordnance Lab[105]. Nitinol has been

the most prominently used SMA in engineering applications.

The first application of SMAs was for pipe joining. For this purpose, the SMA

is programmed into the shape of a short tube slightly smaller than the two pipes being

joined. Then, in its malleable phase, the metal is stretched into a tube slightly larger

than the two pipes. The SMA is set with the two pipe ends inside, and then warmed.

As warming occurs, the pipes are squeezed together and secured. This method has been

used quite successfully to join various types of pipes, from hydraulic pipes in F-14 fighter

planes[73] and naval ships, to transport pipes in the chemical and petroleum industries.
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Pipes of up to 80 inches in diameter have been joined utilizing SMAs.

Due to the controlled force exerted when an SMA regains its programmed shape,

SMAs can be used in robotics to provide smooth motions. Robotics engineers in Japan

have developed ”devices to grasp delicate paper cups filled with water”[178]. SMAs have

also been used as replacements for explosives in building demolitions. When a large

force stored in an SMA is recovered in fractions of a second, the yield is comparable

to an explosion. These two examples of the practical uses of SMAs demonstrate these

materials’ astonishing range of capabilities.

SMAs are frequently utilized in the aerospace industry. The high damping capa-

bility of SMAs provides a spacecraft insolation from vibration, a major concern during

launch. In addition, SMAs can be utilized for deploying instruments and payloads

once the spacecraft reaches orbit. Many tasks, from the simple uncovering of a camera

lens, to the complete deployment of a solar panel, can be activated by an SMA. These

actions can be programmed to trigger automatically once the alloy reaches a prede-

termined low temperature as it cools off in the space environment. SMAs can also be

activated through heating from an electrical current. The heating process can be easily

commanded from ground control at the appropriate time.

Elastic Memory Composite (EMC) materials are a relatively new addition to the

family of SMAs and have been under development by Composite Technology Devel-

opment, Inc. (CTD) since 1999 [227]. CTD has been able to dramatically improve

both the stiffness and the recovery force of a shape memory polymer by incorporating

it into a fiber-reinforced composite[125]. This results in substantially lower densities

and higher elastic strain capacities. A specific thermo-mechanical cycle is used to store

and release the strain within the material. The strains are induced by elevating the

temperature of the material above the glass transition temperature (Tg) of the resin

and then applying a mechanical load to deform the material. Venturing above this crit-

ical temperature results in a ’rubbery’ composite structure which allows high levels of
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strain to be achieved without damaging the composite fibers or the resin system. While

maintaining the mechanical load, the material is cooled below Tg. This ’freezes’ the

strain within the material. Now, the mechanical load can be removed and the EMC

will remain deformed until it is once again heated above Tg. The heated material will

release the strain energy stored within and will return to its original shape[71].

A study was conducted in 2002 by members of CTD and ABLE Engineering[115].

The purpose of the study was to determine the impact of using EMC longerons in the

CoilAbleTM boom design for NASA’s Space Solar Panel System. The study determined

that the longeron mass of the boom could be reduced up to a factor of ten while easily

achieving effective strains of 2%. Repeated stowage and deployment cycles showed no

substantial mechanical degradation.

1.4 Flexible Spacecraft Control

With the conclusion of the Apollo space program in the 1970s, NASA researchers

turned their attention to the design of flexible space structures. This generated an

increasing interest in the dynamics and control of such structures within various re-

search communities. Several survey papers exist which provide a listing of published

efforts in the area of controlling flexible structures. Robinson’s survey[177] lists a small

number of papers on structural control, and in particular on attitude control of flex-

ible space structures. Croopnick et al.[50] present a literature survey in the areas of

attitude control, vibration control and shape control as they apply to space structures.

Meirovitch[149] assesses various methods for the active control of space structures with

a view to the problems of high dimensionality and modeling. Balas[15] presents a math-

ematical framework for the discussion of large space structure (LSS) control theory and

provides a look at trends in LSS control theory in the early 1980s. A comprehensive

survey of problems in dynamic modeling and control of space structures is compiled

by Nurre et al.[161]. One important thing to note from the surveys listed above is the
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focus on the control of large flexible space structures; a focus which has predominately

driven the field of study.

Flexible structures on small satellites are becoming increasingly popular. Actively

controlling flexible structures is an important area of research[117]. The increased usage

of flexible structures is related to the growing number of small satellites being launched,

the use of lightweight materials, and the desire to meet tighter packaging requirements

inside a launch vehicle’s fairing[133]. Tethering spacecraft, deployable solar arrays,

communication antennas, and extending scientific payloads away from the spacecraft

bus are only a few examples where pointing accuracies, attitude information, and active

control are required. The excitation of these appendages is highly probable while the

spacecraft performs attitude control maneuvers. Reorientation of the spacecraft during

these maneuvers is a critical part of the ADCS process so that the induced vibrations

are kept to minimum levels[77].

Maghami, Sparks, and Lim (1998) identified four dynamic characteristics of flex-

ible structures which complicate control system design[142].

• large number of structural modes in controller bandwidth

• low and closely spaced modal frequencies

• very small inherent damping

• insufficient knowledge of parameters

Even if the underlying physical model of the spacecraft could be accurately modeled at

one point in time, parameter variations during system operation will eventually result

in an inaccurate model[236]. The distributed parameter models often used to describe

flexible structures are essentially infinitely dimensional and need to be truncated. This

leads to complications of destabilizing one or more of the poorly damped modes since

only some of the lower frequency modes are approximated and kept[130].
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Research in the area of solid-state physics originally revealed how modal distortion

may impede the propagation of vibrational energy[9]. Anderson’s efforts led to improved

predictions on the effects defects have in lattice vibrations. Almost five decades later,

the theories derived from solid-state physics are being applied to flexible spacecraft

structures[246]. When modal distortions occur, they tend to be localized in the region

in which they were created. Most spacecraft flexible appendages are unactuated or

unsensed. Slight structural asymmetries may complicate control design as the potential

for large modal errors compared to modeled results will push for an overly conservative

control design[150].

Another technique sensitive to modeling errors was the wave cancelation technique[203].

This technique drove a second-order system to its final position in finite time. In the

early 1990s, researchers furthered this technique using a pulsed sequence expansion to

desensitize their models[197]. Input shaping relies on the fact that a spectrum of a

convolution of two signals is a product of each signal’s spectra. Thus, a zero excitation

frequency results when one or the other spectra is zero. By designing a sequence of

input pulses, Singer and Seering (1990) forced the magnitude of the residual energy to

zero. A time delay filter designed to cancel the poles of the system produced similar

results while remaining insensitive to errors in modeled damping and frequency[199].

Multiple zeros of the time delay filter could also be placed at the estimated locations of

the system poles to produce robust time-optimal control[131].

The general problem with frequency-based input shaping is they are designed

for linear systems. A small satellite with extended flexible appendages is subjected to

many disturbance torques, several of which are unmodeled. If the input shaping method

accounts for nonlinearities by making robustness assumptions, the spacecraft bus may

experience significant levels of residual vibration[107]. Time-domain representations

and optimization of control inputs are usually easier to generalize. Non frequency-based

input shaping techniques use either some type of inverse dynamics computation with a
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known endpoint trajectory or an optimization technique to find a feedforward function

to meet final conditions[170]. Some additional types of input shaping techniques either

increase the range of uncertain parameters in regions where residual vibration is below

a specified level[200] or include probability distributions of the uncertain parameters to

weight the nominal value of the parameter the most[166].

Input shapes are designed to result in an exact time-optimal control algorithm.

To do this, a ”bang-bang” method of actuation is used. This method is an initial firing of

the control actuators and is used to begin a maneuver; then the spacecraft is placed into

a ’coast’ mode. When the attitude sensors detect the system approaching the opposite

threshold, the actuators fire in the opposite direction to stop the momentum from the

initial maneuver. This attitude maneuver process continues, while the actuator inputs

decrease in magnitude, until a narrow band of motion is achieved about the desired final

position. The ADCS then monitors the satellite’s motion until once again the sensors

determine an attitude threshold is about to be breached.

The ”bang-bang” method attempts to maximize the number of zero excitation

frequencies in the input spectra. However, higher-order frequencies of the system can

easily be excited with this method. A smoother control input is achieved by using an

approximation function to eliminate the sudden change of control magnitudes[102]. The

smoother control input is less likely to excite the structural modes and is calculated by

solving an optimal control problem with the objective of minimizing the maneuver time.

The solution utilizes the state equations describing the rigid-body mode, boundary con-

ditions, and an additional constraint which limits the derivative of the control input[7].

Numerical solutions of Albassam’s (2002) technique show the residual energy of the

flexible appendages is greatly reduced while slightly increasing the maneuver time.

Accounting for modeling errors and uncertainties in control methods have been

studied by several researchers[98][99][108][109][146][187][188][189][190][201][202][243][244].

However, one paper is of particular interest. Doyle and Stein[58] investigated the is-
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sue of feedback control design in the face of uncertainties and generalized single-input,

single-output statements and constraints of the design problem to multi-input, multi-

output cases. They developed the procedure known as linear-quadratic-Gaussian/loop

transfer recovery (LQG/LTR). Stein and Athans[213] provide a tutorial overview of the

LQG/LTR procedure for linear multivariable feedback control design. This method is

applied to robust controller synthesis for a large flexible space antenna by Joshi[98] and

Sundararajan[216] while a modified version is presented by Blelloch and Mingori[21].

The linear-quadratic-regulator (LQR) is a special optimal controller whose cost

function, measure of performance, is a quadratic function of states and controls. Two

desirable properties of the LQR are good stability margins and sensitivity properties.

One limitation is that it is a full state feedback type of controller. In several practical

applications, access to all of the states is difficult to achieve and state estimation will be

required. The LQG problem combines the LQR controller with an estimation filter (i.e.

Kalman filter). However, the LQG controller will often have lower stability margins and

lower gain crossover frequency than the LQR controller. The LQG will pass more noise

into the system and have a slower response when compared to the LQR.

The main problem with the LQG solution is its lack of robustness which has

resulted in a failure to work effectively in real environments[212]. As more realism is

added to the plant of the system, the LQG became unstable in the presence of model

uncertainties. The loop transfer recovery technique (LQG/LTR) addresses some of

the shortcomings of the LQG approach. The process begins with selecting the LQR

parameters until a desired open-loop transfer function is obtained. The filter design

parameters are iterated until the desired loop transfer function shape has been obtained.

This allows the LQG technique to become a flexible frequency domain design technique.

It is still based on state-space design techniques, but is more of a classical approach to

controller design.

Usage of LQG/LTR techniques is applicable to current research efforts. In par-
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ticular, Mackison[139][140][141] has used these techniques to develop controllers which

retain the characteristics of full state feedback without requiring all of the states to

be measureable. This work has demonstrated full state feedback, LQG/LTR feedback,

and reduced order compensators derived from the LQG/LTR controller all produced

identical dynamic responses for 3-axis attitude control problems. Smaller initial control

torques were required for the LQG/LTR and reduced order controllers when compared

to that required by full state feedback controllers. This result occurs because a low order

transfer function for the controller is found through pole-zero cancellation techniques.

1.5 Problem Formulation

The support structure size of satellites are limited to the dimensions of the launch

vehicle payload fairing being used to deliver the satellite to orbit. An exception to this

occurs when the spacecraft is constructed in orbit. The International Space Station

is one example of an operational space structure which was assembled after launch.

However, the dimensions of the space station sections were limited by the size of the

Space Shuttle delivery bay. A popular method used to alter the support structure size

of a satellite is to package components prior to launch and then deploy these structures

once the spacecraft is in orbit.

Deployable spacecraft structures are often used for communication antennas, cre-

ating larger surface areas for solar arrays, moving scientific payloads away from the

satellite, and providing passive gravity gradient stabilization. These structures extend

out from their stowed configuration using various forms of deployment mechanisms and

energy sources. Reliability, low mass, packaged volume, and energy consumption are

design concerns for deployable appendages. Since it is ideal to make these structures

mechanically simple and light weight, they are susceptible to vibrations; either induced

by attitude maneuvers of the spacecraft or external disturbance torques. These vibra-

tions may prove detrimental to mission completion and become more of a concern as
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the inertial properties of the satellite reduces.

The review of current literature in the areas of deployable structures and small

satellites identifies a need to further relevant research. High levels of stored energy

in mechanical deployment systems, as well as the use of pyrotechnic cutting bolts,

require additional levels of inhibit measures to prevent premature release during launch

environments. High packaged strain energy of traditional booms will limit the diameter

of the boom while also producing low deployed stiffness and strength. In addition, the

hazardous pyrotechnic release devices will produce high shock and contamination.

Mass limitations of small satellites may make redundant safety measures difficult

to use. Reduced usable mass will also impact the sizing options of deployable structures

available for small satellites. As the length of the appendage increases, so will its mass.

This would lead to ruling out the use of small satellites to accomplish certain missions

which would require longer deployed structures. Some examples of missions using long

booms are interferometry, generating power along the boom length, determining plasma

variations local to the satellite, conducting wake studies to predict spacecraft charging,

and there are probably many more that we have not yet considered.

Shape memory materials show promise in minimizing the shortcomings in tradi-

tional booms. Although shape memory technology has been studied over the last 50

years (e.g. US Naval Ordnance Laboratory research in 1961), Elastic Memory Compos-

ites (EMC) are an emerging field of study. These composites will result in substantially

lower densities and higher elastic strain capacities. By constructing a deployable struc-

ture from EMC materials, it is possible to eliminate the need for traditional highly

complex mechanical deployment devices. These structures contain fewer non-structural

components and are lighter in weight. A recent study completed by Composite Technol-

ogy Development, Inc (CTD) determined longeron mass of a deployed structure could

be reduced by an order of magnitude while achieving effective strains of 2%[115].

Constructing flexible structures from ’soft’ materials will introduce more flexible
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modes into the system dynamic equations of motion. Control designers will need to

concern themselves not only with the additional flexible modes, but also the lower

frequencies at which they occur. Research over the last three decades mainly focused

on attitude control of large space structures with flexible appendages because a limited

number of bending modes would form close to the control bandwidth. The large inertia

values of these spacecraft helped to keep the control bandwidth low enough in frequency

so that typically only the first bending mode was included in the analysis.

Attitude control authority of small satellites will be limited more from both in-

creased resonant modes at lower frequencies as well as lower inertia values of the central

body. Because of the added risk, small satellite engineers are more likely to select flex-

ible appendages which have extensive flight heritage. The traditional response is to

design around the flexible nature of the system by making the appendages stiffer, the

spacecraft inertia larger, or lowering the attitude controller’s closed loop bandwidth.

Engineers from Surrey, a leading designer of small satellites, use only traditional booms

and would not entertain the thought of appendages made from ’soft’ materials. This

directly results from the uncertainties involved and a perceived view of the high risks

surrounding non-traditional booms. A concern arises when mission requirements call

for the use of a small satellite as well as a flexible non-traditional structure.

To address this concern, this research will continue following the path defined by

Mackison[139][140][141]. While the LQG/LTR technique was shown effective in gener-

ating reduced order controllers for 3-axis attitude control of spacecraft, Mackison only

modeled the rigid body dynamics of the spacecraft. This research will examine the

unique characteristics of controllers for a satellite with a flexible appendage constructed

from EMC materials. In particular, this research will address the following basic ques-

tion:

Will the LQG/LTR technique of controller design produce an effective
controller for a small satellite using a non-traditional elastic memory
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composite flexible appendage and how robust is the system in the face of
material uncertainties, high frequency modeling errors, and appendage
length modifications?

1.6 Research Importance

This research is both innovative and significant. A brief summary of the literature

search in the area of flexible spacecraft modeling is provided here while a detailed

literature study is provided in earlier sections within this chapter. This brief summary

is given to set the stage for the reader on what researchers have done in the area

of flexible spacecraft modeling. References are provided in author, year format while

specific reference numbering is provided in the detailed literature search discussion.

1.6.1 Innovative

Modeling flexible spacecraft is not a new area of study. 60 years ago, structural

analysis studies were first applied to spacecraft at the beginning of the ”space race”

between the United States and the former Soviet Union. Likins developed hybrid coor-

dinate equations using cantilever boundary conditions in 1970, which was incorporated

into NASA’s Space Vehicle Design Criteria documents in 1971. Cantilever boundary

conditions were continued to be utilized in the papers surveyed by Croopnick et al. in

1979, by Meirovitch in 1979, Balas in 1982, and Nurre et al. in 1984. The focus of

the papers included in all of the surveys focused on the control of large flexible space

structures and used cantilever boundary conditions in the formulation of the system’s

equations of motion. Some researchers mentioned that a similar process can be done for

free-free boundary conditions, but none of them demonstrated or implemented equa-

tions of motion using free-free mode shapes; Canavin 1977, Sundararajan 1987, Junkins

1993, and Izzo 2004.

Over the years, spacecraft have become smaller in design. Even though several

small flexible spacecraft would best be characterized as free-free systems, cantilever
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assumptions are still being used (Gorinevsky 1998, Maghami 1998, Wie 1998, Lomas

2001, Bodineau 2004, Calise 2004, Gili 2004, Izzu 2004, Tafazoli 2004, Takahito 2004,

Wilson 2004, and Ledesma 2005). This researcher is not stating these well informed

people are making large errors in modeling. In some of the cases presented, assuming

cantilever mode shapes is a valid assumption, but this assumption cannot be used on the

formulation of the equations of motion for all small flexible spacecraft (see Section 2.2.2).

This research applies free-free boundary conditions to a small flexible space-

craft using a non-traditional gravity gradient boom constructed from Elastic Memory

Composite material, demonstrates the development of the equations of motion using

these conditions, and implements the equations in an attitude control scenario using

LQG/LTR techniques. A key finding is the historical assumption of considering the

spacecraft as a rigid body if the first resonant modes are greater than an order of mag-

nitude when compared to the controller bandwidth may no longer be a valid assumption

when a small flexible spacecraft is taken into consideration.

Two methods are described and compared for reducing the order of the con-

trollers. Reducing the order of the controllers leads to fewer coefficients needed to be

coded onto the satellite’s on-board processor. Comparisons of the number of opera-

tions per computing cycle are discussed to aid a satellite designer during the on-board

processor sizing task. In addition, several tools are provided for small satellite designers

to determine the affects uncertainties in the material as well as varying the length of

a gravity gradient boom will have on the satellite’s performance parameters (such as

settling time and stability robustness values).

1.6.2 Significance

The intention of this research is to provide an understanding of how attitude con-

trol of small satellites is impacted when attached flexible appendages are constructed

from materials which are more elastic than traditional structures. A better under-



30

standing of how variations in elasticity and length of these appendages impact attitude

control authority will aid designers in reducing some of the risks involved in using soft

materials.

Although the 2002 CTD study makes EMC materials look promising, there are

concerns. To date, only deployment hinges have been tested by CTD. In 2004, CTD

developed a few test longerons constructed from EMC materials. However, only ther-

mal cycling tests of small lengths (approximately 12 inches) in a vacuum chamber were

conducted to determine battery sizing requirements to heat the material prior to deploy-

ment. Initial dynamic analysis of an EMC appendage offers preliminary data; however,

a system test of an engineering model of the deployable structure has not been con-

ducted. This analysis indicates a deployable structure made from EMC materials will

have a bending frequency of 1.5 Hz and a torsional frequency of 1.7 Hz.

Constructing a deployable appendage from EMC material is a novel idea. The

deployment mechanism is contained within the stored stress energy of the material itself

and does not require mechanically complicated motors or added inhibit precautions

needed on currently used traditional style booms. Small satellites will take advantage

of the lighter mass systems and will begin to utilize missions requiring longer boom

lengths.

The proposed research will support both commercial and governmental areas of

research and development. Demonstrating the feasibility of space structures constructed

from EMC materials is the next step in CTD’s current design and implementation ef-

forts in the area of EMC space structures. The Space Vehicles Directorate of the Air

Force Research Labs is interested in CTD’s technological advancements. In particular,

the Power Sail program is considering the use of EMC deployment systems in their con-

ceptual design. This study will identify the key areas of effectiveness in controlling such

flexible space structures which will prove vital in allowing AFRL to pursue advanced

designs in their Power Sail structure.
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The United States Air Force Academy will use the findings of this research to

complete risk assessments in the area of attitude determination and control of an EMC

gravity gradient boom providing passive control to a small satellite. A successful in-

tegration of the boom into the next FalconSat spacecraft may provide an opportunity

to generate flight heritage with the system before the end of 2010. This will offer a

new way of deploying flexible space structures without the disadvantages of traditional

systems.



Chapter 2

Equations of Motion

2.1 Flexible Spacecraft Modeling

The attitude motion of a flexible spacecraft is properly described by coupled sets

of partial and ordinary differential equations. The rotational motion of the undeformed

system, called the rigid body motion, is described by ordinary differential equations

while the flexures are described by partial differential equations. The rigid body dy-

namics are derived from Euler’s rotational equations of motion and include gravity

gradient torques. Numerical finite element models are used to determine the mode

shapes and natural frequencies as well as the mass, damping, and stiffness matrices of

the flexible system[30]. The assumed modes method is used to couple the rigid body

and flexible dynamics by using the spatial solutions of the partial differential equations

as assumed mode shapes and letting the modal coefficients serve as the generalized

coordinates describing the flexures.

This research considers the impact a flexible appendage has on the attitude control

system of a small satellite. Topics such as meeting pointing requirements and attitude

maneuvers are concerned with the rotational motion of the spacecraft while station

keeping and changes in orbital parameters deal with the translation of the spacecraft.

Eq. A.62 from Appendix A illustrates how the translational effects can be removed from

the vibrational equations to leave a coupled set of rotation-vibration equations.
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2.1.1 Rigid Body Dynamics

To begin the formulation of the equations of motion for a small satellite with a

flexible appendage, consider Euler’s rotational equations of motion shown as Eq. C.34

in Appendix C.

J1ω̇1 − (J2 − J3)ω2ω3 = Tc1

J2ω̇2 − (J3 − J1)ω1ω3 = Tc2

J3ω̇3 − (J1 − J2)ω1ω2 = Tc3 (2.1)

where J1, J2, and J3 are the principal moments of inertia of the undeformed system,

ω1, ω2, and ω3 are the angular rates of motion about the principal axes (yaw, pitch, and

roll respectively), and Tc1, Tc2, and Tc3 are the attitude control torques of the spacecraft

about these axes.

Expanding out the coupled terms, ωiωj, and writing Eq. 2.1 in matrix notation

produces

















J1 0 0

0 J2 0

0 0 J3

































ω̇1

ω̇2

ω̇3

















+

















0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

































J1 0 0

0 J2 0

0 0 J3

































ω1

ω2

ω3

















=

















Tc1

Tc2

Tc3

















(2.2)

Since the spacecraft being modeled is on orbit and the flexible appendage is

providing passive gravity gradient stabilization, gravitational forces need to be included.

Using the local vertical and local horizontal (LVLH) reference frame to describe the

orientation of the spacecraft places the 1st axis along the orbit direction (velocity or

ram direction), the 2nd axis perpendicular to the orbital plane (orbit normal direction),

and the 3rd axis pointing towards the Earth (nadir pointing).

Using the gravity gradient derivations included in Appendix B and the rotational
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kinematics shown in Appendix C, the right hand side of Eq. 2.2 become

=

















Tc1

Tc2

Tc3

















+ 3n2

















0 −C33 C23

C33 0 −C13

−C23 C13 0

































J1 0 0

0 J2 0

0 0 J3

































C13

C23

C33

















=

















Tc1

Tc2

Tc3

















+ 3n2

















(−J2 + J3)C23C33

(J1 − J3)C13C33

(−J1 + J2C13C23

















(2.3)

where n =
√

µ
R3

o

is the orbital rate, µ = 3.9860x1014m3/sec2 is the gravitational para-

meter for Earth, and Ro is the orbital radius of the spacecraft measured from the center

of the Earth to the center of mass of the spacecraft. C13, C23 and C33 are elements of

the transformation matrix used to go from the LVLH frame to the body fixed frame.

Writing the equations of motion in differential form and moving the gravity gra-

dient torques to the left hand side yields:

J1ω̇1 − (J2 − J3)ω2ω3 + 3n2(J2 − J3)C23C33 = Tc1

J2ω̇2 − (J3 − J1)ω1ω3 + 3n2(J3 − J1)C13C33 = Tc2

J3ω̇3 − (J1 − J2)ω1ω2 + 3n2(J1 − J2)C13C23 = Tc3 (2.4)

As shown in Appendix C.1.2, a singularity occurs in the kinematic equations. For

a gravity gradient stabilized satellite, it is assumed the boom will be either zenith or

nadir pointing. The only way the pitch or roll angles can equal 90◦ is if the boom is

perpendicular to the gravitational force vector.

Consider the rotational sequence of C1(θ1)← C2(θ2)← C3(θ3) to the body frame

from the LVLH frame:

















~b1

~b2

~b3

















=

















C11 C12 C13

C21 C22 C23

C31 C32 C33

































~a1

~a2

~a3
















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













~b1

~b2

~b3

















=

















cθ2cθ3 cθ2sθ3 −sθ2

sθ1sθ2cθ3 − cθ1sθ3 sθ1sθ2sθ3 + cθ1cθ3 sθ1cθ2

cθ1sθ2cθ3 + sθ1sθ3 cθ1sθ2sθ3 − sθ1cθ3 cθ1cθ2

































~a1

~a2

~a3

















(2.5)

The angular velocity for this rotational sequence is

~ωB/A = ω′
1
~b1 + ω′

2
~b2 + ω′

3
~b3 (2.6)

and
















ω′
1

ω′
2

ω′
3

















=

















θ̇1

0

0

















+ C1(θ1)

















0

θ̇2

0

















+C1(θ1)C2(θ2)

















0

0

θ̇3

















(2.7)

with
















ω′
1

ω′
2

ω′
3

















=

















1 0 −sθ2

0 cθ1 sθ1cθ2

0 −sθ1 cθ1cθ2

































θ̇1

θ̇2

θ̇3

















(2.8)

Now,

~ω ≡ ~ωB/N = ~ωB/A + ~ωA/N = ~ωB/A − n~a2 (2.9)

and

~a2 = C12
~b1 + C22

~b2 +C32
~b3

= (cθ2sθ3)~b1 + (sθ1sθ2sθ3 + cθ1cθ3)~b2 + (cθ1sθ2sθ3 − sθ1cθ3)~b3 (2.10)

produce
















ω1

ω2

ω3

















=

















1 0 −sθ2

0 cθ1 sθ1cθ2

0 −sθ1 cθ1cθ2

































θ̇1

θ̇2

θ̇3

















− n

















cθ2sθ3

sθ1sθ2sθ3 + cθ1cθ3

cθ1sθ2sθ3 − sθ1cθ3

















(2.11)

To solve for the kinematic differential equations, the 3x3 non-orthogonal matrix

above is inverted to finally yield:
















θ̇1

θ̇2

θ̇3

















=
1

cθ2

















cθ2 sθ1sθ2 cθ1sθ2

0 cθ1cθ2 −sθ1cθ2

0 sθ1 cθ1

































ω1

ω2

ω3

















+
n

cθ2

















sθ3

cθ2cθ3

sθ2sθ3

















(2.12)
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where the singularity now occurs with a pitch value of 90◦.

Going back to the equations of motion in Eq. 2.4 and inserting the values C13 =

−sθ2, C23 = sθ1cθ2, and C33 = cθ1cθ2 from Eq. 2.5, the equations of motion become

J1ω̇1 − (J2 − J3)ω2ω3 + 3n2(J2 − J3)sθ1cθ2cθ1cθ2 = Tc1

J2ω̇2 − (J3 − J1)ω1ω3 − 3n2(J3 − J1)sθ2cθ1cθ2 = Tc2

J3ω̇3 − (J1 − J2)ω1ω2 − 3n2(J1 − J2)sθ2sθ1cθ2 = Tc3 (2.13)

Recall that the intention of this research is to determine the effect the flexible

appendage has on the attitude control authority of a small satellite. Large slewing

maneuvers of the satellite are not considered while certain pointing requirements are

maintained. Therefore, it is safe to assume the satellite is moving through small angular

displacements.

sθ ≈ θ

cθ ≈ 1

θ1θ2 ≈ 0

Applying small angle approximation to Eq. 2.13 yield:

J1ω̇1 − (J2 − J3)ω2ω3 + 3n2(J2 − J3)θ1 = Tc1

J2ω̇2 − (J3 − J1)ω1ω3 − 3n2(J3 − J1)θ2 = Tc2

J3ω̇3 − (J1 − J2)ω1ω2 = Tc3 (2.14)

Applying small angle approximation to the kinematic equations, Eq. 2.11, yield:
















ω1

ω2

ω3

















=

















1 0 −θ2

0 1 θ1

0 −θ1 1

































θ̇1

θ̇2

θ̇3

















− n

















θ3

1

−θ1

















(2.15)

Eq. 2.15 in differential form is

ω1 = θ̇1 − θ2θ̇3 − nθ3
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ω2 = θ̇2 + θ1θ̇3 − n

ω3 = −θ1θ̇2 + θ̇3 + nθ1 (2.16)

but θiθ̇j ≈ 0, so

ω1 = θ̇1 − nθ3

ω2 = θ̇2 − n

ω3 = θ̇3 + nθ1 (2.17)

If orbital motion is assumed to be constant (i.e. no eccentricity in orbit), the time

differential of Eq. 2.17 is

ω̇1 = θ̈1 − nθ̇3

ω̇2 = θ̈2

ω̇3 = θ̈3 + nθ̇1 (2.18)

Inserting Eq. 2.17 and Eq. 2.18 into Eq. 2.14, applying small angle approximation,

and collecting like terms results in

J1θ̈1 + n(−J1 + J2 − J3)θ̇3 + 4n2(J2 − J3)θ1 = Tc1

J2θ̈2 − 3n2(J3 − J1)θ2 = Tc2

J3θ̈3 + n(J1 − J2 + J3)θ̇1 − n2(J1 − J2)θ3 = Tc3 (2.19)

Eq. 2.19 is the rigid body dynamics of a satellite in a circular orbit with gravity

torques included. The dynamics of the flexible appendage still need to be included.

2.1.2 Flexible Dynamics

The method used to include the flexible dynamics of the appendage with the rigid

body of motion of the satellite transforms the equations of motion in physical coordinates

to decoupled vibrational equations (also known as modal equations but renamed here to
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prevent confusion with the modal form of the state space equations). This is done using

a linear coordinate transformation known as the modal transformation. In Appendix A,

the displacement of the flexible system, u(r, t), is expressed as

u(r, t) =
∞
∑

m=0

φm(r)ηm(t) (2.20)

where ηm(t) is the mth vibrational coordinate and φm(r) is the mth normal mode shape

of the mode shape matrix, [φ], whose columns are the eigenvectors of the system.

The differential equations of motion for an undamped free vibration system are

of the form

[m]ü+ [k]u = 0 (2.21)

where the matrices [m] and [k] are arbitrary mass and stiffness matrices of the system

with symmetric and constant elements. Since [φ] is a spatial variable and η is a temporal

variable, we can insert Eq. 2.20 into Eq. 2.21 and get

[m][φ]η̈ + [k][φ]η = 0 (2.22)

Premultiplying by [φ]T yields

[M ]η̈ + [K]η = 0 (2.23)

where

[M ] = [φ]T [m][φ] = [M ]T

[K] = [φ]T [k][φ] = [K]T

If [φ] is orthonormal, then the generalized mass matrix, [M ], is the identity ma-

trix ([M ] = diag(1, · · · , 1)) and the generalized stiffness matrix, [K], is a diagonal matrix

whose elements are equal to the natural frequencies squared ([K] = diag(ω2
0 , ω

2
1, · · · , ω2

n)).

Since both generalized matrices are diagonal, it makes the vibrational equations both

inertially uncoupled and elastically uncoupled. This results in independent equations
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of flexible motion. If there are m mode shapes included in the analysis, these equations

look like the following:

η̈1 + ω2
1η1 = 0

η̈2 + ω2
2η2 = 0

...

η̈m + ω2
mηm = 0 (2.24)

where ηm is the mth vibrational coordinate associated with the mth mode shape and

ωm is the mth natural frequency. Therefore, η has dimensions of (1×m). The mode

shape matrix, [φ] will have dimensions of (6n×m) where n is the number of nodes

used in the finite element analysis and each node has six degrees of freedom (three

translation and three rotation for each node). The number of nodal points used in

the FEM analysis is up to the discretion of the researcher. However, a more accurate

estimate of the deformation of the flexible system is found by using more nodal points

to reduce approximation errors in the displacement of each element.

The vibrational equations of motion are propagated along with the rigid body

equations. If the movement of certain points along the flexible appendage are of in-

terest, then inserting the updated vibrational coordinates into Eq. 2.20 will generate

the displacement function u(r, t) in physical coordinates. To illustrate this, consider a

simple example of a flexible appendage in which three nodes are selected for the FEM

analysis.

Each node is free to translate in three directions (T1, T2, T3) but for now we

will disregard rotation in three directions (R1, R2, R3). Also, let’s assume three mode

shapes are used in the analysis. Then the physical coordinates of the appendage are
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found as follows:

u(r, t) =














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
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
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
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
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
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Node2T1MS1 Node2T1MS2 Node2T1MS3

Node2T2MS1 Node2T2MS2 Node2T2MS3

Node2T3MS1 Node2T3MS2 Node2T3MS3

Node3T1MS1 Node3T1MS2 Node3T1MS3

Node3T2MS1 Node3T2MS2 Node3T2MS3

Node3T3MS1 Node3T3MS2 Node3T3MS3








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


















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


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
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















(2.25)

where, for example, Node3T1MS2 is the eigenvector value describing the displacement

of the third node in the first direction in response to the second mode shape. If the

total displacement of the third node in the first direction is required, it would be

u = φ7,1η1 + φ7,2η2 + φ7,3η3 (2.26)

This can be done for each of the three nodes in the three translational directions.

More complicated models which contain a greater number of nodes will produce better

estimates of the displacement shape of the flexible system, but will require more nodes

as well as rotation in three directions along with translational motion.

2.1.3 The Coupling Equation

The rigid body equations need to be coupled with the vibrational equations.

The hybrid coordinate approach[129] presents the rigid body equations and appendage

deformation in the form

Iθ̈ − δT η̈ = Tc

η̈ + 2ζωnη̇ + ω2
nη − δθ̈ = 0 (2.27)
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where δ is called the coupling matrix[127]. Solving the Lagrange equations in Appen-

dix A yields the following definition for the coupling matrix:

δ = XT
1 R̃−XT

3 (2.28)

where

X1 =

∫

app
[φ] dm (3×m)

X3 =

∫

app
r[φ] dm (3×m) (2.29)

Closed form solutions can be found for the mass and inertia integrals in Eq. 2.29

and the coupling matrix is rewritten as

δ = −φ̄TMc(ΣOE − ΣEOR̃− r̃ΣEO) (2.30)

where φ̄ is the truncated mode shape matrix, Mc is the generalized (6N×6N) inertia

matrix of N cantilevered appendages, ΣOE and ΣEO are summation matrices consisting

of ones and zeros, and R̃ and r̃ are skew symmetric matrices of position vectors. Each

variable is explained in further detail below to aid in the application of Eq. 2.30.

A concern arises when looking at the dimensions of [φ] used in Eq. 2.29. As shown,

the coupling matrix has dimensions (m×3). However, the mode shape matrix takes the

form (6n×m). The coupling matrix couples the rotational motion of the satellite with

the flexible motion of the appendage and there is a constraint relationship between the

two as illustrated in Figure 2.1.

US/C is a point located on the spacecraft while Uapp1 is the location of the first

node used in the FEM analysis. Notice that both of these points are located at the

connection point between the spacecraft and the flexible appendage. As a result, the

displacement and rotation of US/C is the same as those of Uapp1. It is at this location

where rotational (and translational) energy is passed between the spacecraft and the

flexible appendage. Therefore, while the mode shape matrix may take the form of
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Figure 2.1: Rotational-Vibrational Constraint Illustration

[φ] =


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(2.31)

the coupling matrix only relies on the translations and rotations of the first node.
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φ̄ =









































N1T1MS1 · · · N1T1MSm

N1T2MS1 · · · N1T2MSm

N1T3MS1 · · · N1T3MSm

N1R1MS1 · · · N1R1MSm

N1R2MS1 · · · N1R2MSm

N1R3MS1 · · · N1R3MSm









































(2.32)

which now puts the mode shape matrix in a truncated form with dimensions (6×m).

Note, Eq. 2.32 contains information for only one appendage. If N additional flexible

appendages are considered, append the rows of the truncated mode shape matrix with

the nodal information for the connection points to each flexible structure. Thus, the

dimensions become (6N×m).

The generalized inertia matrix of cantilevered appendages, Mc, is comprised of

the masses and inertias of each connected appendage and takes the form

Mc =


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(2.33)

where m1 is the (3×3) mass matrix of the first appendage such that

m1 =

















mapp1 0 0

0 mapp1 0

0 0 mapp1

















(2.34)
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and I1 is the (3×3) inertia matrix of the first appendage such that

I1 =

















Iappx 0 0

0 Iappy 0

0 0 Iappz

















(2.35)

R̃ and r̃ are skew symmetric matrices of the position vectors which have the

general form

R̃1 =

















0 −R13 R12

R13 0 −R11

−R12 R11 0

















(2.36)

where ~R1 is the position vector from the system center of mass to to the connection

point of the first appendage and ~r1 is the position vector from the connection point of

the first appendage to the center of mass of the first appendage.

Multiple appendages are accounted for by utilizing the summation matrices ΣOE

and ΣEO. These matrices are Boolean operator matrices of the form

ΣOE =

(

O E O E · · · O E

)T

ΣEO =

(

E O E O · · · E O

)T

(2.37)

where O is a (3×3) zero matrix and E is a (3×3) identity matrix.

The coupling matrix is general enough that the same concept not only applies to

a satellite with a flexible gravity gradient boom, but also works for solar arrays, multiple

flexible appendages of various shapes and elasticity, etc. What changes from each of

these instances is the mode shape matrix generated during FEM analysis. The coupling

matrix contains all of the dynamics used in coupling the rigid body dynamics with each

of the flexible appendages.
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Table 2.1: Material Properties of Beryllium Copper and EMC

Beryllium Copper EMC

Young’s Modulus, E [GPa] 138 40.06

Poisson Ratio, ν 0.30 0.31

Shear Modulus, G [GPa] 53.1 15.29

Density, ρ [ kg
m3 ] 8830 1384

2.2 Finite Element Model

Since the coupling matrix is dependent upon the properties of the satellite, the

type and number of flexible appendages, and the materials used in the construction of

the appendage, the illustration shown in Figure 2.1 will describe the set up of the system

to be modeled. The spacecraft will be a typical small satellite based on the FalconSat

system described in Appendix D. The flexible appendage is a non-traditional gravity

gradient boom constructed from Elastic Memory Composite (EMC) materials with a

cubic tip mass.

2.2.1 Model Parameters

As mentioned in Section 1.2, beryllium copper is a common alloy used in tra-

ditional beam elements. Table 2.1 lists the material properties for both beryllium

copper[1] and EMC materials[206]. The composite material used in the finite element

model (FEM) not only is more flexible but also has 15.7% the density of materials which

traditional booms are constructed from.

The EMC material properties were entered in MSC.Patran 2004 r2 to create a

FEM of a cantilevered beam with lumped masses at either end to represent the satellite

and tip mass. The satellite lumped mass boundary conditions are fixed while the tip

mass is allowed to move. The lumped masses were treated as cubic shapes with uniform
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Table 2.2: Lumped Mass Properties Used in FEM Analysis

Satellite Tip Mass

Mass 40kg 7kg

Side Length 0.5m 0.25m

Inertia 1.667kgm2 0.0729kgm2

mass distribution. For a cubic shape with uniform mass distribution, the inertia about

the object’s center of mass is

I11 = I22 = I33 =
ml2

6
(2.38)

where m is the mass of the object, l is the length of a side and the products of inertia

are equal to zero. Table 2.2 lists the properties entered into the FEM for the satellite

and tip mass.

The beam representing the EMC flexible appendage is modeled as a hollow, cylin-

drical tube with properties shown in Table 2.3 to resemble the initial design character-

istics of the EMC appendage[206]. One hundred node points were used in the analysis

evenly spaced 4cm apart to minimize the approximation errors in the mode shapes.

A normal modes solution type was selected to complete a full run of the entire

model. This solution will generate the eigenvectors for all available modes. The nominal

(or truth) model used in the analysis includes the first eighteen resonant modes, regard-

less of their impact (as with the compression mode) or modes which are disregarded

during order reduction methods of the controller.

The first eighteen mode shapes generated for the cantilevered appendage are listed

in Table 2.4 while plots of the first three bending modes and the torsional mode are

provided in Figures 2.2-2.5. One thing to consider is the compression mode places very

minimal torque on the satellite if the center of mass of the appendage is placed on

one of the principal axes of the system. This is validated by looking at the angular
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Table 2.3: Beam Properties Used in FEM Analysis

Property Value

Total Length 4m

Outer Diameter 2.54cm

Thickness 0.46482mm

Cross Sectional Area 73.5mm2

I11 = I22 2.3 × 10−8kgm2

displacement eigenvector of the compression mode for the first node of the appendage

connected to the satellite.

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

(2.39)

The compression mode is left in the nominal model, but will most likely not

appear in the controller design model because of order reduction techniques.
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Table 2.4: Cantilever Resonant Frequencies From FEM Analysis

Mode Shape Frequency (Hz)

1st Bending in Y direction 0.3947

1st Bending in X direction 0.3947

1st Torsional Mode 7.8585

2nd Bending in Y direction 12.141

2nd Bending in X direction 12.141

3rd Bending in Y direction 29.322

3rd Bending in X direction 29.322

1st Compression Mode 51.116

4th Bending in Y direction 61.567

4th Bending in X direction 61.567

5th Bending in Y direction 115.62

5th Bending in X direction 115.62

6th Bending in Y direction 188.56

6th Bending in X direction 188.56

7th Bending in Y direction 279.26

7th Bending in X direction 279.26

8th Bending in Y direction 386.96

8th Bending in X direction 386.96

Figure 2.2: First Bending Mode For Cantilever Conditions
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Figure 2.3: Second Bending Mode For Cantilever Conditions

Figure 2.4: Third Bending Mode For Cantilever Conditions
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Figure 2.5: First Torsional Mode For Cantilever Conditions
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Figure 2.6: Cantilever Beam with Applied Point Load

2.2.2 Free-Free Boundary Conditions

The traditional hybrid coordinate equation model first presented by Likins in a

1970 Jet Propulsion Laboratory Technical Report[127] has strongly influenced the dy-

namical modeling of flexible spacecraft. The simplified rotational/vibrational coupled

equations, Eq. 2.27, is found in one form or another in the works of several key re-

searchers in the field of flexible dynamics. While the references are too numerous to list

here, the survey papers presented in [177] [50] [149] [15] [161] provide a broad enough

summary of the collection of work.

The literature considers cantilever modes when analyzing the flexible appendage

(see Section 1.6.1). A common definition in the structures community for a cantilever

beam is a slender member which is fixed at one end and free at the other that supports

loadings that are applied perpendicular to their longitudinal axis[86]. The boundary

conditions applied to the fixed end of the beam restrain both translational and rotational

motion. During the generation of the equations of motion for the beam, either a point

load is applied at some location along the appendage, Figure 2.6, or as a distributed

load along the appendage length, Figure 2.7.

When a flexible appendage is attached to a symmetrical spacecraft, the root

node, or connection point between the appendage and spacecraft bus, does both ro-

tate and translate. If one looks at the system as a whole, cantilever modes doesn’t
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Figure 2.7: Cantilever Beam with Applied Distributed Load

make sense due to the motion of the root node. The literature assumes the flexible

appendage is ”cantilever like” when deriving the mode shape matrix and the accepted

practice in flexible spacecraft modeling is to calculate the cantilever mode shapes of the

attached appendage and couple the resulting mode shape matrix with the spacecraft

non-vibrational equations of motion. This hybrid approach is valid if one looks at a

body fixed reference frame located at the root node, since in this frame the connection

point between the appendage and spacecraft bus does not appear to either rotate or

translate.

Modeling the flexible appendage as a cantilevered beam is the correct approach

when dealing with attitude control of large space structures. The boundary conditions at

one end have the appendage fixed in translation and rotation. This is a valid assumption

when the total system center of mass is located close to the center of mass of the

controlling body. Two examples of when this occurs is large space structures when

mCB ≫ mapp and when flexible appendages are symmetrically orientated about the

controlling body (as shown in Figure 2.8 and Figure 2.9). The torque generated by the

displaced appendage is applied at the connection point between the controlling body

and the appendage. The torque experienced by the controlling body is in the same

direction as it is generated from the appendage.

For both the large flexible spacecraft and symmetrical appendage configuration

examples, the position of the system center of mass experiences small displacements[31].
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Figure 2.8: Three-Axis-Stabilized Geosynchronous Communications Satellite[237]

Figure 2.9: Example of a Symmetrical Appendage Configuration
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As the system is deformed in asymmetrical modes, the velocity of the system center of

mass, and therefore the time rate of change of the moments of inertia, are approximately

zero[100]. This eliminates several terms from the Lagranian equations and simplifies the

resultant equations of motion. Likins’ work retained asymmetric modes corresponding

to known cantilever modes while showing that the symmetric modes contributed nothing

and could be ignored[129].

For a gravity gradient stabilized small satellite, the assumption of a cantilever

appendage is no longer as valid as it is for a large space structure. The flexible appendage

is attached to both the spacecraft bus and the tip mass. To determine which end is

free, one can argue that the end which does not generate loads perpendicular to the

longitudinal axis would be free to move. Thus, the tip mass is merely considered as part

of the appendage which is no longer uniform in mass distribution. Tethered spacecraft,

however, confuse this definition if both masses tethered are identical each with their

own attitude control systems. In these cases, it is no longer clear which end is fixed and

which end is free. The conventional definition of cantilevered beams breaks down.

This is especially true as the mass of the satellite gets closer to the mass of the

attached appendage and tip mass. As these two ends come closer to each other in mass,

the system center of mass moves away from a location within the constrained boundary

condition and is found at some point along the appendage itself. A better approach is to

consider the appendage as a free-free beam with attached lumped masses at either end

for the satellite and tip mass. Now, each end of the appendage is allowed to translate

and rotate when determining the mode shapes used to couple the rigid body and flexible

dynamics. This is a more realistic assumption when dealing with small satellites because

the attitude of the satellite is directly impacted by the motion of the appendage. For a

cantilever assumption, the satellite doesn’t move as a result of appendage motion.

For the free-free assumption, the center of mass of the total system is not nec-

essarily contained within the controlling body, nor along one of the principle axes. In
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Table 2.5: Free-Free System Eigenvalues Using Unmodified HCEs

Eigenvalue Coupled Pair

0 0

-0.19803 + 19.8023j -0.19803 - 19.8023j

0 + 0.00217j 0 - 0.00217j

0 + 0.00188j 0 - 0.00188j

67.0388 -67.0388

9.08888 -9.08888

fact, as the satellite mass comes closer to that of the tip mass, the center of mass of the

total system will move along the appendage length. One example, where the satellite

mass and tip mass are equal, places the center of mass equidistant from the satellite and

tip mass. In this situation, the position vector of the system center of mass in the body

frame is time varying as well as the system’s moments of inertia. Now, when a torque

is generated at the tip mass, the controlling body will experience an equal torque in the

opposite direction.

A concern arises when the hybrid coordinate equations (HCEs) (Eq. 2.27) are used

for the free-free system without modification. The coupling term is the representation

of how torque between the controlling body and the flexible appendage is transferred

at the connection point. If the HCEs are unmodified when applied to the free-free

boundary condition, the system plant demonstrates responses similar to that of an

inverted pendulum where one or more open loop poles are placed on the real axis and

mirrored in the left and right half parts of the plane. The eigenvalues for the system

plant which includes the first three resonant modes are listed in Table 2.5.

A way to visualize the impact of not modifying the HCEs for the free-free condi-

tion is to look at the open loop response of the system. If a gravity gradient spacecraft

orientation is initially roll=5◦, pitch=0◦, and yaw=0◦, the open loop response should
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show the spacecraft oscillating between ±5◦ if no energy is lost from the system. How-

ever, this is not the case (see Figure 2.10).
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Figure 2.10: Open Loop Response of Unmodified HCEs

If a flexible system is modeled correctly, it should contain a combination of rigid

body and flexible modes. The rigid body dynamics will generate 1
s2 terms while the

flexible dynamics produce 1
s2+2ζωns+ω2

n

terms. This places the open loop poles either at

the origin or very close to the imaginary axis for lightly damped poles. The eigenvalues

listed in Table 2.5 indicates the system model is incorrect.

Consider an example where a designer is attempting to model an undamped

resonant mode with a natural frequency of 1 rad/sec. The designer derives the following

two system plants:

Case1 =









0 1

1 0









Case2 =









0 1

−1 0









(2.40)

which produce characteristic equations of s2 − 1 for Case1 and s2 + 1 for Case2. The
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Figure 2.11: Pole-Zero Map for 1
s2−1

pole placement for both cases are shown in Figure 2.11 and Figure 2.12. A sign error in

the system plant can change the desired model for Case2 to that of an unstable system

shown in Case1.

The choice of mode shapes used to describe the deformation of the system is

crucial. The cantilever modes apply to a restrained system in which the controlling

body is assumed to neither translate nor rotate when the mode shape matrix is formed.

A better assumption is to no longer restrain the system and use the free-free mode

shapes in the equations of motion. This allows complete freedom of motion in response

to impressed moments and forces. In a Tisserand frame[38], the expressions for angular

momentum and kinetic energy are structurally simplified by moving the axes so as to

set the internal angular momentum always to zero. The requirement also makes the

internal linear momentum zero. This constraint is accomplished by locating the origin

of the frame at the center of mass of the system. Now that the frame moves with the

body, a floating reference frame, the measured displacements relative to this frame will

be small where an inertial frame will see large displacements as the body undergoes
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appreciable rotation.

The use of the floating reference frame is shown in Buttrill’s study[31] for flexible

aircraft but the methods are valid for a spacecraft as well. The following assumptions

used in the study will also apply to this research:

• the spacecraft is idealized as a collection of lumped mass elements, each being

a finite rigid body, and each having an associated mass and moments of inertia

• the elastic restoring force resulting from displacement of any mass element is

linear and proportional to that displacement

• the total rotational displacement of any lumped mass with respect to its unde-

formed orientation is small

• deformation is described by a linear sum of mode shapes multiplied by their

time dependent participation coefficients

the implications of the above assumptions are summarized in the following statements:

• each mass element resides at a node of the structural finite-element model and

constitutes a lumped resistance to acceleration

• proportional strain to stress relationships

• tip deflection is < 10% of beam length

• u = Σφiηi as shown in Eq. 2.20

To satisfy the minimum relative kinetic energy requirement of a floating reference

frame, Bucken’s constraint relationships must be considered[103].

Σiφijdmi = 0

Σir̃iφijdmi = 0 (2.41)
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if the assumed mode shapes are the eigenvectors of a structural model in undamped

vibration with free-free boundary conditions, then motion according to each mode shape

j should satisfy the conditions.

These constraints define the assumed modes method integral terms, X1 and X3,

shown in Eq. 2.29. When applied to Eq. 2.28,

δ = XT
1 R̃−XT

3

δ = 0 (2.42)

which reduces Eq. 2.27 to

Iθ̈ = Tc

η̈ + 2ζωnη̇ + ω2
nη = 0 (2.43)

and there no longer exists angular-vibrational momentum exchange.

Kakad provides a solution which does not rely on the hybrid coordinate equation[103].

This study discusses the dynamics and control of slewing maneuvers of a large flexible

spacecraft named NASA Spacecraft Control Laboratory Experiment (SCOLE). The

system was modeled as a distributed parameter beam with two end masses. The three

dimensional linear variation analysis of this free-free beam model is incorporated to-

gether with rigid-slewing maneuver dynamics. Beam vibrations at the end of slewing

maneuvers were controlled using the infinite time Linear Regulator Problem formula-

tion. The results illustrated how slew angle changes vs time changed between a model

using only rigid body modes and a model which added the first two flexible modes to

the rigid body equations.

Kakad’s analysis of higher uncontrolled modes indicated serious control spillover

due to coupling among the modes. This indicated the residual modes were excited by

feedback control which is designed for a low-order model, senses and actuates higher-

order modes, and renders the system unstable[14] [124]. Spillover can be avoided by
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reducing the control gain. However, this often results in poor performance. To improve

performance, control objectives lead to high-gain, high-bandwidth control strategies

which reduce inherent frequency separation between rigid body and elastic dynamics

and increases the possibility for adverse coupling when control loops are closed[233].

The SCOLE system modeled by Kakad deals with slewing maneuvers of an an-

tenna attached at one end of a shuttle robotic arm. Although similar techniques were

used by Kakad in his analysis, free-free modeling with linear quadratic control, several

differences between that work and the research presented in this document exist. The

on-orbit mass of the shuttle is approximately 100,000 kg while the spacecraft bus mod-

eled here is 40 kg. Kakad’s results demonstrated the change in slew response between

a rigid body model and one which includes the first two flexible modes. However, he

doesn’t mention the robustness of the system, what the cost/benefits are of including

or not including flexible modes, nor provides an explanation as to why he included the

first resonant modes and not higher order frequencies. At no point in his paper does he

mention the ”rule of thumb” of considering the system as a rigid body (information on

crossover frequency in relation to the first resonant mode was not provided).

While Kakad’s study considered a free-free system, it was similar to several other

studies focused on flexible dynamic control of a rotating hub with an attached whip

appendage[242] [248]. These studies focused on single axis analysis to avoid the adverse

coupling issues. Although the systems were not large flexible spacecraft, the mass of

the hub was still much greater than the mass of the appendage. Also, the hub was fixed

in translation which further limited the center of mass to small variations. Simulation

and comparison studies done by Guo-Ping show that even small tip masses may affect

dynamic characteristics of the system significantly, which may result in the largening of

vibrating amplitude and the descending of vibrating frequency of the beam, and may

affect end position of the hub-beam system as well[32]. While the efforts are closer to

the approach provided within this research document, they only looked at single-input
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single-output systems.

A recent study which uses finite element methods similar those presented within

this document was done by LoBosco in his modeling of a large optical telescope used

to find terrestrial planets in other solar systems[132]. The optical telescope modeled

was a large flexible structure constructed from cantilever beams. A concern identified

in the results of the study pertained to how extremely sensitive the optical performance

was to truss uncertainties. It was presented the cause of the sensitivity rests within

the reaction wheel assembly broadband disturbance and further study in this area was

identified. The error may lie in the fact that cantilever mode shapes were used in

the model instead of free-free mode shapes. While the optical telescope has typical

characteristics of a large flexible structure, it’s highly precise performance requirements

may be better met if a modeling approach mirroring the techniques presented within

this document were adopted.

Given the small flexible nature of the system modeled in this research effort,

and the areas of concern identified from previous researchers in the area of flexible

spacecraft control, the FEM analysis outlined in Section 2.2 was modified for the free-

free assumption. Material properties were kept the same and the free-free analysis

generated eighteen mode shapes. The applicable modes and the frequencies at which

they occur are listed in Table 2.6 while plots of the first three bending modes and the

torsional mode are provided in Figures 2.13-2.16.

All of the resonant modes for the free-free condition occur at similar frequencies as

those of the cantilever modes except for the first bending mode. Where the first bending

mode of the cantilever appendage occurs at 0.3947 Hz, the first bending mode of the

free-free appendage is almost an order of magnitude higher at 3.1518 Hz. Therefore,

each assumption will generate differing mode shape matrices.
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Table 2.6: Free-Free Resonant Frequencies From FEM Analysis

Mode Shape Frequency (Hz)

1st Bending in Y direction 3.1518

1st Bending in X direction 3.1518

1st Torsional Mode 8.0284

2nd Bending in Y direction 12.588

2nd Bending in X direction 12.588

3rd Bending in Y direction 29.491

3rd Bending in X direction 29.491

1st Compression Mode 55.555

4th Bending in Y direction 61.690

4th Bending in X direction 61.690

5th Bending in Y direction 115.70

5th Bending in X direction 115.70

6th Bending in Y direction 188.62

6th Bending in X direction 188.62

7th Bending in Y direction 279.30

7th Bending in X direction 279.30

8th Bending in Y direction 386.99

8th Bending in X direction 386.99

Figure 2.13: First Bending Mode For Free-Free Conditions
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Figure 2.14: Second Bending Mode For Free-Free Conditions

Figure 2.15: Third Bending Mode For Free-Free Conditions
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Figure 2.16: First Torsional Mode For Free-Free Conditions
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2.3 State Space Form of Nominal System Model

The FEM analysis output is a powerful solution to producing the equations of

motion for a small flexible spacecraft using free-free mode shapes. To illustrate this,

consider a spacecraft using the material properties shown in Section 2.2 where the FEM

model is comprised of 101 nodes with the controlling body treated as a lumped mass

located at node 1 and the tip mass is a lumped mass located at node 101. Each node

is free to both translate and rotate such that the state vector, x, takes a similar form

as Eq. 2.25 but is for 101 nodes instead of 3. Since each node has 6 degrees of freedom,

the dimensions of x is (606 × 1).

The harmonic equation shown in Eq. 2.21 is now written as

[m]ẍ+ [k]x = F (2.44)

where [m] and [k] are the mass and stiffness coefficients coupling each node and F is the

matrix of external forces applied to the system.

The state space representation of Eq. 2.44 requires a set of first order equations.

This is done in the following manner:

ẍ+ [m]−1[k]x = [m]−1F

ẍ = −[m]−1[k]x+ [m]−1F (2.45)

let

z1 = x

ż1 = ẋ

z2 = ż1

ż2 = −[m]−1[k]z1 + [m]−1F (2.46)

then








ż1

ż2









=









0 I

−[m]−1[k] 0

















z1

z2









+









0

m−1F









(2.47)
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For this system model, F is the control torque moments acting on the controlling

body located at node 1. Since there are three independent reaction wheels providing

the control input, F takes the form

F =

















03×3

I3×3

0600×3

















u (2.48)

Attitude measurements for this system are the rotational orientations of the con-

trolling body and is represented as

y = Cz (2.49)

where

C = [03×3I3×303×60003×606] (2.50)

since the measurements are the displacement rotations with no rate measurements.

Now, the state space representation of the system using physical coordinates, x,

can become overwhelming depending on the number of nodes used in the FEM. For this

case, the plant matrix, A, has dimensions (1212× 1212). Computer processing capacity

may be of little concern when using the latest desktop technology, but such luxury is

typically not available to small satellites. Therefore, the modal approach, shown in

Eq. 2.22 and Eq. 2.23, is desirable due to a reduced number of states and is written as

η̈ + D̄η̇ + K̄η = F̄ (2.51)

where the bar denotes a generalized matrix in modal equations, structural damping is

included in the form

D̄ = 2ζ
√

K̄ (2.52)

and the modal forces produced by controller inputs are

F̄ = [φ]TF (2.53)
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The same development of Eq. 2.47 is applied to Eq. 2.51 to generate the state

space representation of the modal equations.








˙̄z1

˙̄z2









=


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



0 I

−K̄ −D̄

















z̄1

z̄2









+









0

F̄









(2.54)

and

ȳ = C[φ]z̄ (2.55)

Consider what occurs when this approach is applied to cantilever boundary condi-

tions. The modal force vector, with momentum actuators placed only at the controlling

body, takes the form

F̄ = [φ]TF

=


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
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(2.56)

For the restrained system using cantilever mode shapes, as used extensively in the

literature, the boundary conditions applied to the first node constrain both translation
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and rotation. This means there is no rotation of node 1 and

F̄ =

[

0

]

(2.57)

Thus, for the cantilever assumption, the described method will generate linearly in-

dependent modal equations but with no controlling forces. This is perhaps why the

analytical solutions presented in the literature, those originally derived from Likins, all

assume cantilever modes; which is a valid assumption for cases where the system center

of mass is located at the center of mass of the controlling body and moves very slightly

from that location over time as seen with large space structures or symmetric spacecraft.

Recall, the dimensions of A from Eq. 2.47 is (1212 × 1212). Now, the size of

Ā is dependent on the number of mode shapes included in the system model. There

are an infinite number of mode shapes which can be generated for a flexible system.

It is impossible to include all of the mode shapes since the accuracy which Patran can

determine these mode shapes degrades at higher frequencies and the mode shape matrix,

[φ], no longer is orthonormalized if the number of modes exceeds the number of nodes

used in the FEM. A control designer can use the following technique to determine how

many mode shapes to include in the nominal plant model.

The higher the frequency of a mode shape, the smaller the energy which is stored

in that shape. Harmonic motion of the flexible structure will subject the controlling

body to harmonic excitation. The nondimensional ratio, Ftr

F0
, is a measure of the force

transmitted to the controlling body and is written as[147]

Ftr

F0
= [1 + (

2ζω

ωn
)2]

1

2 |G(iω)| (2.58)

where ζ is the viscous damping factor, ω is the excitation frequency, ωn is the natural fre-

quency of undamped oscillation, and |G(iω)| is the magnitude of the system’s frequency

response. For higher frequency resonant modes, the force transmitted to the controlling

body decreases. In addition, the gain of a stable system drops off at frequencies higher
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Figure 2.17: Nondimensionalized Resonant Transmission Forces

than the control dynamics of the closed loop system.

Using the free-free resonant frequencies listed in Table 2.6, a plot is created of

1
ω2

n

versus the resonant mode number where each mode number represents each mode

shape, with both bending modes in the x and y direction receiving one number instead

of two separate numbers (see Figure 2.17).

Resonant modes beyond the fourth bending mode will be excluded from the nom-

inal model because the slope of the plot approaches zero beyond that point which indi-

cates the amount of force transmitted at higher frequencies are indistinguishable from

one another. Table 2.7 lists the resonant modes generated in the FEM analysis, which

are used to build the nominal system model. These modes lead to a modal Ā matrix of

dimensions (32×32), which is 2.6% the size of the plant matrix generated using physical

coordinates.
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Table 2.7: Free-Free Resonant Frequencies for Nominal Model

Mode Shape Frequency (Hz)

Low Frequency Mode 8.3781×10−7

Low Frequency Mode 3.2062×10−6

Low Frequency Mode 3.9299×10−6

Low Frequency Mode 1.0974×10−5

Low Frequency Mode 1.2097×10−5

Low Frequency Mode 1.2959×10−5

1st Bending in Y direction 3.1518

1st Bending in X direction 3.1518

1st Torsional Mode 8.0284

2nd Bending in Y direction 12.588

2nd Bending in X direction 12.588

3rd Bending in Y direction 29.491

3rd Bending in X direction 29.491

1st Compression Mode 55.555

4th Bending in Y direction 61.690

4th Bending in X direction 61.690



Chapter 3

Attitude Control of Small Flexible Structures

3.1 Control Bandwidth

The normal mode solution of the FEM model generates modal information for all

resonant modes of the flexible structure. While all of this information is used in creating

the nominal model of the system, the design model may have fewer resonant modes

included. The stability and robustness of an optimal controller may be used by designers

to determine which modes to include (see Section 3.3). Knowledge of the proximity of

resonant modes near the controller bandwidth is also an important consideration. The

mode frequencies near the bandwidth of the satellite’s attitude control system will have

a larger impact on control authority than the higher frequency modes. According to

some designers, the lowest natural frequencies of flexible components should be at least

an order of magnitude greater than the rigid-body frequencies before flexibility can be

neglected[3]. This simplification of design is only valid in models based on assumed

cantilever boundary conditions and has not been validated for system’s using free-free

boundary conditions.

The controller bandwidth defines the frequency where the control authority begins

to diminish. Attitude control and disturbance rejection are effective from DC up to

the bandwidth[235] and high accuracy implies high position gain and high bandwidth.

However, increasing bandwidth may cause bending resonances to affect control system

performance by producing large output errors due to measurement noise.
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Control designers can estimate controller closed loop bandwidth with the following

equation:

ωBW =

√

Kp

I
(3.1)

where Kp is the position gain of the controller and I is the spacecraft’s moment of

inertia. The position gain can be estimated and must be high enough to provide the

required attitude control pointing accuracy in the presence of disturbance torques. The

units of Kp can either be Nm
deg or Nm

rad and is determined by

Kp ≥
TD

θǫ
(3.2)

where TD is the peak disturbance torque and θǫ is allowable attitude error.

Four environmental disturbance torques are commonly considered when determin-

ing the peak disturbance torque. These were the gravity gradient, Tg, solar radiation

pressure, Tsp, magnetic field, Tm, and aerodynamic torques, Ta. The equations used to

calculate these disturbance torques are:

Tg =
3µ

2R3
|Iz − Iy| sin(2θ) (3.3)

where Tg is the max gravity torque, µ is the Earth’s gravitational constant (3.986 ×

1014 m3

s2 ), R is the orbit radius (m), θ is the maximum deviation of the Z-axis from local

vertical in radians, and Iz and Iy are the moments of inertia about z and y (or x, if

smaller) axes in kgm2. The solar radiation pressure can be represented as

Tsp = F (cps − cg) (3.4)

where

F =
Fs

c
As(1 + q) cos i (3.5)

and Fs is the solar constant, 1,367 W
m2 , c is the speed of light, 3×108 m

s , As is the surface

area (m2), cps is the location of the center of solar pressure (m), cg is the center of
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Table 3.1: Typical Disturbance Torques for LEO Small Satellites

Disturbance Torque Worst Case Magnitude

Magnetic Torque (D = 1.0) 5.1468×10−5

Gravity Gradient Torque (Iy − Iz = 139.3) 4.3686×10−5

Drag Torque (cpa − cg = 3cm) 3.489×10−6

Solar Pressure Torque (cps − cg = 3cm) 0.02205×10−6

gravity (m), q is the reflectance factor, and i is the angle of incidence of the Sun. The

magnetic field torque on the spacecraft is

Tm = DB (3.6)

where D is the residual dipole of the vehicle (Am2) and B is the Earth’s magnetic field

in tesla. B can be approximated as 2M
R3 for a polar orbit to half that at the equator. M

is the magnetic moment of the Earth, 7.96 × 1015tesla ·m3, and R is the radius from

the dipole center to the spacecraft in m.

Finally, the aerodynamic drag on the satellite can be written as

Ta = F (cpa − cg) (3.7)

where F = 0.5ρCdAV
2, Cd is the drag coefficient, ρ is atmospheric density ( kg

m3 ), A is

the surface area (m), V is the spacecraft velocity ( m
sec), cpa is the center of aerodynamic

pressure (m), and cg is the center of gravity (m).

For a typical Low Earth Orbit (LEO) small satellite with a deployed appendage,

the worst case magnitude for these environmental disturbance torques are calculated

and listed in Table 3.1[231]:

The peak disturbance torque, TD, used in Eq. 3.2 would be if all of the envi-

ronmental disturbance torques were acting at the same time in resonance. Assuming

TD = 1 × 10−4 and a attitude pointing accuracy requirement, θǫ = 0.1◦, the controller



75

closed loop bandwidth would be ωBW = 0.45Hz. As the altitude of small satellites

decrease, an increase in atmospheric drag occurs. If the same satellite is placed in

an altitude comparable to that of the space shuttle, the atmospheric density becomes

approximately two orders of magnitude larger. This will cause the drag disturbance

torque to be approximately 2×10−4Nm and the control bandwidth to approximately

equal 0.7Hz. The flexible nature of the satellite system further complicates the deter-

mination of a specific value for control bandwidth as the center of mass of the system

relative to the center of pressure is continuously changing.

3.2 LQG/LTR

Linear Quadratic Regulator (LQR) control leads to linear control laws that are

easy to implement and analyze. The system being controlled is assumed to be at

equilibrium and it is desired to maintain the equilibrium despite disturbances.

3.2.1 Linear Quadratic Regulator (LQR)

If a system is represented as

ẋ = Ax+Bu

y = Cx (3.8)

a cost function can be defined as

J =
1

2

∫ T

0
(x′Qx+ u′Ru)dt (3.9)

where J is minimized with respect to the control input u(t).

J represents the weighted sum of energy of the state and control. Q and R are

weighting matrices, or design parameters, where the state-cost matrix, Q, weights the

states while the performance index matrix, R, weights the control effort. If Q is increased

while R remains constant, the settling time will be reduced as the states approach zero
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at a faster rate. This means that more importance is being placed on keeping the states

small at the expense of increased control effort. If R is very large relative to Q, the

control energy is penalized very heavily. This physically translates to smaller motors,

actuators, and amplified gains needed to implement the control law.

Pontriagin’s minimum principle is used to solve the optimal control problem.

First, from the Hamiltonian

H(x, λ, t) =
1

2
(x′Qx+ u′Ru) + λ′(Ax+Bu) (3.10)

the minimum principle states that the optimal control and state trajectories must satisfy

the following three equations:

ẋ =
∂H

∂λ

−λ̇ =
∂H

∂x
∂H

∂u
= 0 (3.11)

where x(0) = x0 are the state equations and λ(T ) = 0 are the costate or adjoint

equations.

When Eqs. 3.8-3.11 are applied, the equations become

ẋ = Ax+Bu

−λ̇ = Qx+A′λ

u∗ = −R−1B′λ (3.12)

where u∗ is the optimal control and R has to be positive definite for its inverse to

exist. The above coupled linear differential equations form a two point boundary value

problem (TPBVP), which, because of mixed boundary conditions, is difficult to solve

numerically. Substituting the optimal control into the state equation produces








ẋ

λ̇









=









A −BR−1B′

−Q −A′

















x

λ









(3.13)
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where the matrix on the right hand side is known as the Hamiltonian matrix, H, and

plays an important role in LQR theory. If the following substitution is made, the

TPBVP doesn’t have to be solved:

λ = Px (3.14)

Differentiating both sides of Eq. 3.14 with respect to time, substituting in for λ

and ẋ (from Eq. 3.13), we get

dλ

dt
=

dP

dt
x+ P

dx

dt

=
dP

dt
x+ PAx− PBR−1B′Px (3.15)

and inserting λ̇ from Eq. 3.12

−Qx−A′Px =
dP

dt
x+ PAx− PBR−1B′Px (3.16)

Eq. 3.16 must hold true for any x, so a sufficient condition for optimal control is

that P must satisfy

−dP
dt

= Q+A′P + PA− PBR−1B′P (3.17)

Eq. 3.17 is known as the Riccati differential equation. It is a nonlinear first order

differential equation that has to be solved backwards in time. The above formulation

and solution of the LQR problem is known as the finite time problem. It results in a

linear time varying controller of the feedback form

u(t) = −K(t)x(t) (3.18)

where K(t) = R−1B′P (t).

For the infinite time LQR problem, we let t approach infinity. Of course, now one

runs into the question of the convergence of the cost function and the existence of the

optimal controller. Even if the optimal control exists, it does not necessarily result in a

stable closed loop system. It turns out that under mild conditions, P(t) approaches a
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constant matrix P (dP
dt → 0) and the positive definite solution of the algebraic Riccati

equation results in an asymptotically stable closed loop system.

Q+A′P + PA− PBR−1B′P = 0

u = −Kx

K = R−1B′P (3.19)

The exact conditions for the above to hold are the following. The pair (A,B)

are stabilizable, R > 0, and Q can be factored as Q = C ′
qCq, where Cq is any ma-

trix such that (Cq,A) is detectable. Stabilizable refers to the uncontrollable portions

being asymptotically stable while detectable refers to the unobservable portions being

asymptotically stable. These conditions are necessary and sufficient for existence and

uniqueness of an optimal controller that will asymptotically stabilize the system.

If one is interested in controlling a subset of the states, the system outputs for

this example, the cost function, J, can be written as

J =
1

2

∫ ∞

0
(y′Qy + u′Ru)dt

=
1

2

∫ ∞

0
(x′C ′QCx+ u′Ru)dt (3.20)

and the Hamiltonian takes the form

H =









A −BR−1B′

−C ′QC −A′









(3.21)

An interesting thing to note is the 2n eigenvalues of H are symmetric about both

the imaginary axis and the real axis. Thus, the adjoined system has n stable roots and

n unstable roots; half associated with x and the other half associated with λ. For the

cost function, J, to remain finite, the n stable eigenvalues of H must be the closed loop

poles of the system. When we optimize a controllable linear system using a quadratic

cost, we will always generate a stable closed-loop system.
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3.2.2 Optimal Estimation (Kalman Filter)

The LQR solution is basically a state feedback type of control meaning it requires

that all states be available for feedback. This is usually unreasonable and some form of

state estimation is necessary. The combination of the state feedback and observer will

always result in a stable closed-loop system. Controller performance can be optimized

according to some quadratic cost function (LQR). Observer design can also be done in

an optimal manner provided the problem is formulated in a probabilistic (or stochastic)

sense. The formulation of the state estimation problem is as follows:

ẋ = Ax+Bu+ ω

y = Cx+ ν (3.22)

where ω represents random noise disturbance input (process noise) and ν represents

random measurement (sensor) noise.

It is assumed that both noise processes are unbiased white Gaussian zero-mean

stationary processes with known covariances given below.

E{ω(t)} = 0

E{ν(t)} = 0

E{ω(t)ω(t + τ)′} = Q0δ(t− τ)

E{ν(t)ν(t+ τ)′} = R0δ(t− τ)

E{ω(t)ν(t+ τ)′} = 0 (3.23)

The state-space solution to this problem was first introduced by R. E. Kalman

and R. S. Bucy. It obtains an estimate of x(t) based on noise-corrupted measurements

such that the variance of the error is minimized. The optimal estimator is given by

˙̂x = Ax̂+Bu+ L(y − Cx̂) (3.24)
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where x̂ is the estimate of x. The observer gain is computed from

L = ΣC ′R−1
0 (3.25)

and Σ is found as the positive semi-definite solution of

AΣ + ΣA′ +Q0 − ΣC ′R−1
0 CΣ = 0 (3.26)

Note that the equations for the filter gain, L, and Σ are very similar to the

equations for the LQR solution. In particular, the equation for Σ is an algebraic Riccati

equation and is the estimation error covariance and the trace of Σ indicates how well

the filter is performing. The Q0 and R0 matrices represent the intensity of the process

and sensor noise inputs and are the only parameters that are to be provided by the user.

3.2.3 Linear Quadratic Gaussian (LQG)

The LQG combines the LQR with the Kalman filter. Consider the plant equations

ẋ = Ax+Bu+ ω

y = Cx+ ν (3.27)

with controller

u = −Kx̂

K = R−1B′P

0 = A′P + PA+Q− PBR−1B′P (3.28)

and observer

˙̂x = Ax̂+Bu+ L(y − Cx̂)

L = ΣC ′R−1
0

0 = AΣ + ΣA′ +Q0 − ΣC ′R−1
0 CΣ (3.29)



81

The LQR results in an asymptotically stable closed loop system. In addition, the

controller minimizes the average of the LQR cost function (weighted variance of the

state and input)

J =
1

2

∫ ∞

0
(x′Qx+ u′Ru)dt (3.30)

producing an optimal solution.

The transfer function of the LQG compensator is similar to the observer-based

compensator, and is given by

H(s) = K(sI −A+BK + LC)−1L (3.31)

An important thing to note is that LQG has no guaranteed stability margins like

those produce by LQR. In fact, its margins can be dangerously low. By changing the

design parameters Q, R, and the noise intensities, it is observed that some parameters

can have drastic effects on the system properties.

3.2.4 Loop Transfer Recovery (LTR)

The major problem with the LQG solution is its lack of robustness. The loop

transfer recovery (LQG/LTR) technique maintains the LQG machinery but modifies the

design procedure to address some of the short comings of the original LQG approach.

The open loop transfer function of the LQR is given by

L(s) = KΦ(s)B (3.32)

where Φ(s) = (sI −A)−1.

The open loop transfer function for LQG is likewise given by

L(s)LQG = K(sI −A+BK + LC)−1LCΦ(s)B (3.33)

Under the following two conditions

(1) Gp, the system plant, is minimum-phase (i.e. it has no zero in the RHP)
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(2) R0 = 1 and Q0 = q2BB′

it can be shown that

lim
q→∞

L(s)LQG = L(s) (3.34)

This suggests the following procedure for design. Choose the LQR parameters (Q

and R) such that the LQR loop transfer function, L(s), also called the target feedback

loop (TFL), has desirable time and/or frequency domain properties. Design an observer

with parameters specified in (2) above. Increase the tuning parameter, q, until the

resulting loop transfer function is as close as possible to the TFL while considering

Bode gain, closed loop bandwidth, and control effort limitations. Because the loop

transfer function of LQG approaches that of LQR, it will asymptotically recover its

properties.

Loop Shaping Step

(1) Determine the controlled variables (which may or may not be the same as the

measured variables) and set Q = C ′C or Q = C ′
qCq

(2) Convert the design specifications into a desired TFL

(3) Vary the parameter, q, until the resulting loop transfer function is similar to

the TFL. One may use the root square locus (RSL) approach here for SISO

systems[212].

To accomplish the recovery step, select a scalar, q, and solve the filter Riccati

equation

AΣ + ΣA′ + q2BB′ − ΣC ′CΣ = 0 (3.35)

and set L = ΣC ′.

Increase q until the resulting loop transfer function is close to the TFL. The higher

the value of q, the closer the LQG system comes to the LQR performance. It should be

noted that the value of q should not be increased indefinitely because this may lead to
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unreasonably large values for the controller gain. Also, because LQR has -20dB slope

at high frequencies, large values of q will also recover this slow roll-off rate. Smaller

values for q will tend to trade off lower stability margins with higher roll-off rates at

higher frequencies.

3.3 Reduced-Order Controllers

The basic problem in controlling a flexible structure is the presence of a large

number of lightly damped structural modes. Theoretically, there exist an infinite num-

ber of resonant modes. The higher the modal frequency, the smaller the energy which is

contained within the mode. It isn’t feasible for a numerical analysis to be conducted on

a nominal system plant model which contains one thousand, or even one hundred, reso-

nant modes. The energy of the higher frequency modes will have minimal impact on the

overall dynamic response and practical limitations necessitate the use of reduced-order

controllers. The initial analysis runs with Patran, shown in Section 2.3, generated 16

resonant modes.

3.3.1 Controller Robustness

The uncontrolled modes, as well as the error in the knowledge of the controlled

modes, represent uncertainty. Since the number of structural modes is usually large and

finite element modeling accuracy typically decreases with increasing modal frequency,

the design model should contain the first few resonant modes. The remaining structural

modes then constitute the plant uncertainty.

For single-input single-output systems, the relationship of stability, sensitivity re-

duction, disturbance attenuation and rejection to the return difference of the closed loop

system has been understood for quite some time[22] [87]. Attempts at extending classi-

cal design procedures to multivariable systems concentrated on sensitivity reduction[52]

and examining scalar quantities associated with the return difference matrix, which
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include inverse Nyquist procedures for diagonally dominant systems[179] and charac-

teristic loci plots[137] [136]. However, the designs may possess undetected sensitivities

to simultaneous perturbations in the elements of the return difference matrix[57]. In-

terpretations of quantities such as gain and phase margins in each input channel which

lead to invaluable design insights in the single-input single-output case do not extend

to the multivariable generalizations[53].

A better understanding of stability margins for multivariable systems is found in

the investigation of the norms of the inverse Nyquist matrix. The measure of stability

is taken to be the magnitude of the smallest plant perturbation which causes instability

and is given by an appropriate matrix norm[57]. The most commonly used norm is the

2-norm. The 2-norms of a matrix and its inverse are the largest singular value and the

inverse of the smallest singular value of the matrix[63] [118]. Singular value analysis

is popular because the interpretation of the smallest singular value of a matrix is the

distance between the matrix and the nearest singular matrix. Since this is precisely the

concept needed to determine the nearness of a stable transfer function to an unstable

one, its use as a measure of stability robustness is natural.

Understanding how stability margins are represented in multivariable systems is

important. However, one must also attempt to reduce the sensitivity of the closed-

loop system to plant perturbations as compared to the sensitivity to the open-loop

system. A sufficient condition for the return difference matrix to satisfy to achieve the

desired sensitivity reduction has been developed in the form of a positive definiteness

condition[110] [169] [51] [217]. This condition can be expressed as a condition on the

smallest singular value of the return difference. Comparison sensitivity and maintenance

of stability both seek to retain a qualitative system property of sensitivity reduction

versus stability under errors in the plant model.
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Both the sensitivity function,

S =
1

1 +GpGc
(3.36)

and the complementary sensitivity function,

T =
GpGc

1 +GpGc
(3.37)

of the closed-loop system play an important role in the stability robustness of the system.

Stability requirements bound the outputs for all bounded disturbances and bounded ref-

erence inputs. Doyle and Stein[58] applied Nyquist encirclement counts for the function

det(I +GpGc) (3.38)

to multivariable systems and placed magnitude constraints to determine the robustness

of the system in the face of uncertainties.

In classical SISO problems, gain and phase margins are used to characterize tol-

erable uncertainty. This characterization is generalized to MIMO problems as

G(s) + ∆G(s) = [I + L(s)]G(s) (3.39)

where L(s) is an arbitrary stable transfer matrix with

σ̄[L(jω)] ≤ m(ω) (3.40)

and covers simultaneous gain, phase, and direction errors which are unknown but

bounded in size. The bound m(ω) indicates the maximum normalized magnitude which

the model error can attain. Stability is maintained in the presence of all possible un-

certainties, Eq. 3.39 and Eq. 3.40, if and only if the complementary sensitivity function

satisfies

σ̄[T (jω)] ≤ 1

m(ω)
(3.41)

for all ω. Then,

det(I +GpGc + LGpGc) = det(I + LT )det(S−1) > 0 (3.42)
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Figure 3.1: Defining Uncertainty in a Model

and the uncertainty can’t change the number of encirclements in the Multivariable

Nyquist Criterion. The system is stable if the unperturbed system is stable.

The loop gain condition is now written as

σ̄(L)σ̄(T ) < 1 (3.43)

to arrive at an upper bound on the magnitude of the uncertainty multiplier, L, to

guarantee closed loop stability under perturbations. This condition is also necessary if

all possible multivariable perturbations are allowed, since there would exist an L with

σ̄(L) =
1

σ̄(T )
(3.44)

which brings the determinate above zero and changes the encirclement count[121].

Plant uncertainty, errors in the plant model, can be represented as either multi-

plicative or additive uncertainty (see Figure 3.1). The multiplicative uncertainty form

is preferred in the literature on robustness because the compensated transfer function

has the same uncertainty representation as the nominal model. However, since flexible

structure models exhibit naturally the additive uncertainty form of the transfer function

matrix, this will be used.

For the case of multiplicative uncertainty, the closed loop system is stable if

σ̄[Lp(jω)− 1] ≤ σ[I + (Gp(jω)Gc(jω))−1] (3.45)
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where Gp(s) and Gc(s) are the design model plant and compensator transfer matrices,

and σ̄ and σ denote the largest and smallest singular values. At high frequencies,

assuming ‖Lp(jω)‖ ≫ 1 and ‖Gp(jω)Gc(jω)‖ ≪ 1, the above stability condition yields

σ̄(GpGc) <
1

σ̄(Lp)
(3.46)

The uncertainty, or robustness, barrier is an upper bound lm(ω) on σ̄(Lp). The

system is stable in the presence of unstructured uncertainties if σ̄[GpGc] < l−1
m (ω) at

high frequencies.

When the additive uncertainty formulation is used, a sufficient condition for sta-

bility robustness is given by[53]

σ(I +GpGc)

σ̄(Gc)
> σ̄(∆G) (3.47)

a detailed derivation of the stability robustness conditions with associated theorems and

proofs can be found in [53].

At high frequencies, assuming ‖GpGc‖ ≪ 1, Eq. 3.47 approximately yields

σ̄(Gc) <
1

σ̄(∆G)
(3.48)

that is, the compensator must roll off sufficiently rapidly at high frequencies to remain

robust in the face of unmodelled/uncertain high frequency structural modes and noise.

The main objective of the LQG/LTR approach is to first design a full state compensator

which has the behavior of the desired loop transfer matrix (i.e. the loop gain GpGc).

Therefore, any loop shaping should involve the product GpGc rather than Gc alone as

in Eq. 3.47 and Eq. 3.48. Assuming Gp is a square matrix

Gc = G−1
p (GpGc)

σ̄(Gc) ≤ σ̄(G−1
p )σ̄(GpGc)

σ̄(Gc) ≤ σ−1(Gp)σ̄(GpGc) (3.49)
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Substituting Eq. 3.49 into Eq. 3.47, the following sufficient condition for stability

robustness is obtained:

σ(I +GpGc)σ(Gp)

σ̄(GpGc)
> σ̄(∆G) (3.50)

The performance of the closed loop system depends on the low frequency gain

and the crossover frequency of the loop transfer matrix GpGc; that is the behavior of

σ[GpGc]. Larger low frequency gain and crossover frequency indicate better tracking

performance (also shown in Section 3.1). Thus, σ[GpGc] should lie above the perfor-

mance specification. The other requirement is the stability robustness in the presence of

model uncertainties. If the multiplicative uncertainty formulation is used, the σ̄[GpGc]

plot should pass under the robustness barrier σ̄−1[Lp] at high frequencies. If the additive

formulation is used, the robustness condition of Eq. 3.50 should be satisfied.

3.3.2 Pole-Zero Cancelation

Looking at the robustness of the controller in the presence of unmodeled higher

frequency modes most often leads to lower order controllers than those that are required

to control the nominal plant. This is a result of the design model being lower in order due

to the inclusion of the lower frequency modes while high frequency modes are lumped

into the uncertainty of the system dynamics. It may be possible to further reduce the

order of the controller when pole-zero cancelation is taken into consideration.

Consider a design model where resonant modes (shown in Table 2.7) of frequencies

less than 20 Hz are required to satisfy stability robustness. This will reduce the order

of the controller from 32 down to 22. Since the small flexible spacecraft is a multi-input

multi-output (MIMO) system using three controller inputs and measuring three angular

displacements, the controller is comprised of nine transfer functions all of the order 22.

This high order of the controller may be unnecessary if some of the controller poles are

in close proximity to controller zeros.

There is no magic number to identify if the controller poles and zeros are within
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close proximity of each other or not. Instead, a useful technique in further reducing

the order of the controller is to evaluate the effect on dynamic response if some poles

are allowed to cancel out with zeros in close proximity. The Matlab command minreal,

minimal realization, is a useful tool in accomplishing pole-zero cancelation. It is a

straightforward search through the poles and zeros looking for matches that are within

a specified tolerance[144]. The default tolerance is
√
eps, where eps is machine precision.

The tolerance value can be increased to force additional cancelations as long as the Bode

plots don’t deviate significantly from the unreduced controller. If there is a difference in

the Bode plots, a comparison between the dynamic response of the reduced controller

and the controller prior to pole-zero cancelation will indicate whether the tolerance was

set too high. If the dynamic response shows little change, this may indicate that while

a certain pole-zero cancelation may generate differing Bode plots, the contribution of

that particular pole-zero pair is not significant enough to alter the system response

drastically. Use of this technique is demonstrated in Section 3.4.

3.4 Base-Line Response

A Matlab file was created to accomplish this research. This file reads in the FEM

data and generates the mode shape matrix for both the nominal and design model, as

outlined in Section 2.3, as well as reading in the natural frequencies for each mode. In

addition to the system parameters presented in Section 2.2.1, a damping ratio of 0.01 for

the EMC material is assumed. This assumption is common for the structural material

industry when experimental data is not available[41][206].

A key design consideration is the controller effort. Since the flexible system is

a gravity gradient appendage for a small satellite, it will take more control effort to

correct pitch and roll displacements than yaw displacements. In this case, as well as

for most flexible appendages, greater control effort is required to produce the same

dynamic response one would experience from a three-axis stabilized cube. The small
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satellite limitations of mass, volume, and available power impact the torque produced

from on board reaction wheels. The typical maximum torque produced by reaction

wheels on small satellites is in the 0.02Nm to 0.3Nm range[62][111][157][251]. It is

possible that in the near future more power to be made available to on-board control

actuators through improved power designs and increased solar array efficiency. For this

study, the maximum allowable control effort for the analysis of the system will be 3Nm.

Additionally, the mission of this small flexible spacecraft is to meet the attitude

requirements of the scientific payloads presented in Appendix D. The attitude control

system needs to keep these payloads pointed ±5◦ in the ram, or velocity, direction. This

requirement applies to both yaw and pitch while no hard requirement is placed on the

roll of the controlling body. Discussions with payload scientists identified a performance

metric which concludes that while data is usable within 5◦ off nominal, the accuracy of

the data degrades the further away from 0◦ the payloads are pointed[208].

A controller is designed, using the LQG/LTR techniques provided in Section 3.2,

to optimally reach nominal pointing requirements once pitch/yaw are 5◦ off nominal

while operating within the control effort limit of 3Nm. This initial displacement is a

result of the reaction wheels periodically reaching saturation and momentum dumping

is used in conjunction with despinning the wheels. The scientists are concerned with

how much time is required for the payloads to go from 5◦ to 0◦ and reach a steady state

such that vibrations induced by the flexible appendage have minimal impact on system

dynamic response.

Initial values used for the design parameters Q and R for the LQR calculation,

Q0 and R0 for the Kalman filter, and q for the LTR calculation are shown in Table 3.2.

The design model for the initial run was set to the nominal model since the first step

is to determine if the required control effort, resulting from the design parameter gains,

falls within the limit of 3Nm.

A simulation was run using Simulink to plot the system response to the LQG/LTR
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Table 3.2: Initial Values for Design Parameters

Design Parameter Value

Q In×n

R I3×3

Q0 variance of 1

R0 variance of 0.01

q [1 1e2 1e4 1e6]

Max Control Effort 3Nm

controller (see Figure 3.2). While physical coordinates are easier to visualize, the con-

troller design is based on modal coordinates because of the greatly reduced number of

states. Typically, the desired attitude is set to zero while the undeformed system has

some initial orientation. Initial orientation is commonly thought of in physical coordi-

nates with some initial angular displacement. Keep in mind the form of the physical

coordinates.

x =

































































N1T1

N1T2

N1T3

N1R1

N1R2

N1R3

N2T1

...

NnR3

































































(3.51)

If one wanted to give an initial rotation of 5◦ for the undeformed system, one

cannot simply set N1R1 = 5◦ because this would give an initial rotation to the first

node without propagating this along the appendage. This initial rotation will translate

node 2 which will translate node 3 and so on. Instead, the initial rotation is done as
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Figure 3.2: Simulink Block Diagram For Closed Loop Response

follows:

for initial roll

NαT1 = 0

NαT2 = −∆lsin(N1R1)

NαT3 = ∆lcos(N1R1)−∆l

NαR1 = N1R1

NαR2 = 0

NαR3 = 0 (3.52)

for initial pitch

NαT1 = ∆lsin(N1R2)

NαT2 = 0

NαT3 = ∆lcos(N1R2)−∆l

NαR1 = 0

NαR2 = N1R2

NαR3 = 0 (3.53)
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and for initial yaw

NαT1 = 0

NαT2 = 0

NαT3 = 0

NαR1 = 0

NαR2 = 0

NαR3 = N1R3 (3.54)

which is similar to the rotational kinematics presented in Appendix C where Nα refers

to an incremental node number with a length ∆l from the first node.

Since the roll and pitch axes will require more control effort, an initial angular

displacement of 5◦ is applied to the pitch axis and the controller is trying to bring the

system to a desired attitude of roll = 0◦, pitch = 0◦, and yaw = 0◦. The simulation

generates both the control effort and dynamic response for the flexible system.

The control effort, when the initial design parameters are used, is shown in Fig-

ure 3.3. The peak value of 9.77Nm exceeds the limit of 3Nm. This shows the controller

is weighting the states too heavily in the LQG process while not placing enough empha-

sis on the control effort. Since the feedback gains are a function of the ratio between

Q and R, one can either decrease Q or increase R. After an iterative modification to

Q, the final design parameters listed in Table 3.3 produced the control effort shown in

Figure 3.4.
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Figure 3.3: Control Effort with Initial Design Parameters

Table 3.3: Final Values for Design Parameters

Design Parameter Value

Q 0.01 ∗ In×n

R I3×3

Q0 variance of 1

R0 variance of 0.01

q [1 1e2 1e4 1e6]

Max Control Effort 3Nm
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Figure 3.4: Control Effort with Final Design Parameters
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Figure 3.5: Baseline SR Test for Initial Design Model

The stability robustness test, outlined in Section 3.3.1, is evaluated to determine

which resonant modes listed in Table 2.7 need to be included in the design model. The

stability robustness (SR) barrier is violated if only the first six modes are retained in

the design model while all of the resonant modes are placed in the uncertainty transfer

matrix (see Figure 3.5). Do not confuse this design model with a rigid body model

since the resonance frequencies are in the 10−7 to 10−5 Hz range and are not zero. This

violation of the SR barrier occurs at the same frequency as the first bending mode.

To ensure the baseline system meets SR requirements, additional resonant modes

need to be included in the design model. Figure 3.6 is a plot of the SR barrier when

the first bending and torsional modes are included. This design model has a stability

margin of 41 dB in the frequency region of the second bending mode. The upper curve

sloping upwards indicates good tolerance of high-frequency uncertainty.

What is gained by including the second bending mode? Stability robustness can

be improved if more resonant modes are included in the design model. Performance

of the closed loop system depends on the low-frequency gain and crossover frequency
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Stability Robustness Test Based on the Recovered Compensator

Figure 3.6: Baseline SR Test with First Bending and Torsional Modes

of the loop transfer matrix GpGc. Larger values indicate better tracking performance.

Any increase in gain to improve tracking performance will decrease the stability robust-

ness. The baseline model already takes into consideration the maximum control effort

produced by the reaction wheels and an increase in bode gain will exceed this limit.

In addition to the system not being able to take advantage of an increase in control

gain, the cost of needlessly adding higher frequency resonant modes may prove detri-

mental to onboard processor limitations. The LQG/LTR process generates a controller

of the same order as the system plant. The controller for a design model containing nine

resonant modes is a 3 by 3 matrix of transfer functions, each the ratio of a 17th order

polynomial to a 18th order polynomial. It would require programming 333 coefficients

to implement this controller. By adding the second bending modes to the design model,

the order of the controller is increased to 22 and requires an additional 72 coefficients.

The inclusion of the first bending mode in both the x and y directions and the first

torsional mode is enough to satisfy the stability robustness of the controller and the

inclusion of higher resonant modes is not required.
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Figure 3.7: Pole-Zero Map of Each Element of the 3× 3 Controller Transfer Function

Using the controller reduction technique outlined in Section 3.3.2, the number of

required coefficients is greatly reduced. To illustrate the pole-zero cancelation technique,

consider the pole-zero map of the controller transfer function shown in Figure 3.7. It is

apparent several controller poles lie in close proximity to controller zeros. Cancelations

may occur as long as the Bode plots of the reduced controllers, as well as the system

dynamic response, match those of the unreduced controllers. The Bode plots of the

unreduced controller are shown in Figure 3.8.

Recall that the default tolerance value for the Matlab minreal command is
√
eps.

It is possible to increase this tolerance and generate the same Bode plot of the reduced

controller as the unreduced one. As long as the plots for both the full and reduced order

controllers match up, then the dynamics of both controllers are similar. For example,

consider the controllers if the default tolerance setting is used,
√
eps, for the transfer

function going from input 1 to output 1, Gc(1,1). From Figure 3.9, one can see how the

reduced order controller (green x’s) matches up with the full order controller (red line)

in both magnitude and phase, for both low and high frequencies.

One may relax the tolerance in the minimum realization until a divergence in the

Bode plots is noticed. A better approach is to run a sweep of tolerance values and,
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Figure 3.8: Bode Plots of Each Element of the 3×3 Controller Transfer Function
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100

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tolerance Step

R
M

S
 (

dB
)
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instead of visually comparing the Bode plots, calculate the RMS values and plot those

values vs. the tolerance step. The tolerance is stepped from
√
eps to 1e-1 in orders of

magnitude such that tolerance step 1 is
√
eps, tolerance step 2 is 1e-7, tolerance step 3

is 1e-6, and so on out to tolerance step 8 equalling 1e-1. The RMS of the Bode plots are

calculated for both magnitude and phase for all 9 controller transfer functions. Since

the previous plot was for Gc(1,1), the following two plots are the RMS plots for the

same transfer function.

Looking at Figure 3.10 and Figure 3.11, a noticeable change in RMS values occurs

between tolerance steps 3 and 4 (1e-6 and 1e-5). This means a noticeable change in

the reduced order controller dynamics occurs when additional pole-zero cancelations

are performed beyond a tolerance of 1e-6. Figure 3.12 and Figure 3.13 show the Bode

comparisons for both tolerance steps.

Notice how the two Bode plots differ once the RMS is noticeable. This would

lead one to believe that the tolerance limit should be set at 1e-6. However, note how the

plot in Figure 3.13 diverges at low frequencies. This is in a location where the poles and
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Figure 3.11: RMS of Bode Phase for Gc(1,1)
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Figure 3.12: Comparison of Reduced and Full Order Controller (tol=1e-6)
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Figure 3.13: Comparison of Reduced and Full Order Controller (tol=1e-5)

zeros are in close proximity to each other and the origin of the s-plane. It is expected

to see more cancelations occurring in this region than in the regions where the distance

from the s-plane origin (i.e. frequency) is greater.

Looking at the simulation results of how the system responds to the reduced

order controller shows no noticeable difference between tolerance step 3 or 4. Instead

of visually determining this, RMS values can be calculated and plotted in the same

manner as above for both control effort and dynamic response of the system. The

following figures plot these RMS values.

From Figure 3.14 and Figure 3.15, a noticeable change in RMS values occurs

between tolerance steps 6 and 7 (1e-3 and 1e-2). A design consideration is to limit

the pole-zero cancelation by using either the controller dynamics or the overall system

dynamics. With the controller approach, the reduced controller closely resembles the

dynamics of the full order controller. However, the cost of this approach is an increased

number of coefficients required to code up the controller. If the system dynamics ap-

proach is used, a smaller number of coefficients will be needed.
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Figure 3.16: Stability Robustness Test Using Reduced Controller

To illustrate this, the design model is comprised of the first nine resonant modes.

For the full order system, 333 coefficients are required. For the Bode dynamics approach

to pole-zero cancelation, 245 coefficients are required. The system dynamic approach

only needs 108 coefficients (67.6% reduction in the number of coefficients when compared

to the full order system).

The SR plot using the reduced controller is shown in Figure 3.16 and generates

the same stability robustness as that shown in Figure 3.6 for the full order controller.

Figure 3.17 and Figure 3.18 compare the full order controller performance (dashed line)

to the reduced order controllers (marked with x’s). From the singular value plots, the

control effort, and dynamic response, it is apparent that the reduced order controller

has the same dynamic response as the full order LQG/LTR controller.

Transient system performance is often described in terms of the unit step function

response. Since the input into the system is optimally shaped, the system performance

specifications are similar with the following definitions. Dynamic delay time is the time

required for the system to reach 50% the initial displacement value. Dynamic rise time
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Figure 3.19: Singular Values of Recovered Loop Transfer Matrix, GcGp

is the time required for the response to go from 90% to 10% of its initial value. The time

which the system response settles within 2% of its initial value is the dynamic settling

time. Dynamic peak overshoot is the maximum difference between the transient and

steady state solution and is a represented as a percentage of the initial displacement.

Another performance specification which is measured is the crossover frequency,

ω0, of the loop transfer matrix. While the stability margin is an indicator of the system

performance, the crossover frequency determines the speed of the system response. A

higher value for ω0 means faster response. The crossover frequency is determined by

the frequency at which the minimum singular value of the loop transfer matrix, GcGp,

has a gain of 0 dB (see Figure 3.19).

System performance specifications for the baseline model are listed in Table 3.4.

The following chapter illustrates how these performance specifications are affected when

the elastic properties of the appendage and its length are modified.
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Table 3.4: Baseline System Performance

Dynamic Performance Value

Delay Time 4.1 sec

Rise Time 8.2 sec

Settling Time 48.8 sec

Peak Overshoot 21.3%

Stability Robustness 41 dB

Crossover Frequency 0.025 Hz



Chapter 4

Variation of Appendage Parameters

4.1 Satellite Design Concerns

A survey was presented to lead satellite design engineers involved with the pro-

grams at the Space Systems Research Center (SSRC) located at the US Air Force

Academy. The involvement characterization of those engineers who responded to the

survey includes eight satellite control engineers working directly for the SSRC and the

Department of Astronautics, three engineers who formally worked on SSRC satellite

design projects, two engineers working for the Air Force Research Laboratory in the

Space Vehicles and Propulsion Directorates, two former SSRC members who are cur-

rently working on PhD programs with Surrey, and four first-degree Academy Cadets

(undergraduate seniors) taking the small satellite design course.

The survey asked each individual what were their top three small satellite design

concerns from the following list:

Control Complexity: Number of resonant modes included in the nominal model and

design model, reduced order of the controllers, etc.

Material Uncertainties: Variations in elastic modulus, thickness, laminate structure,

on-orbit fatigue cycles, etc.

ω1

ω0
: The ratio of the first bending mode frequency to the crossover frequency varied via

length variation of the appendage.
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Control Design Parameters: Weight on states and control effort, loop transfer re-

covery gain, diagonal matrices, frequency shaped, tuning parameters in Kalman

filter, etc.

Spacecraft Parameters: Inertia and mass of spacecraft and tip mass, appendage

properties, structural damping ratio, appendage configuration, etc.

Sensors and Actuators: Differing types and locations

The three areas of concern for satellite designers surveyed were control complexity

in the implementation sense, system response and sensitivity in the face of material

uncertainties, and how the system performs as the ratio ω1

ω0
varies as a result of increasing

the length of the appendage. Small flexible spacecraft performance characteristics used

to analyze these three concerns were settling time, delay time, rise time, peak overshoot,

number of processor operations for each controller, crossover frequency and stability

robustness. A discussion on each of the three primary satellite design concerns are

presented in the following sections.

4.2 Control Complexity

The complexity of the controller does not refer to whether a simple classical

PID controller or compensator is used instead of a more involved optimal controller.

The calculation of the controller is done on the ground where computer processing

efforts are of little concern. The controllers are determined and the coefficients of the

controller transfer functions are loaded onto the spacecraft’s on-board processor. A

satellite designer’s concern is if the on-board processor will be able to run the code or

not. A designer would like to see as few lines of code and to minimize the number

of operations per computing cycle as possible as long as the system performs within

mission requirements. This allows valuable processor time to be dedicated to other

system tasks such as telemetry and data handling, payload management, and health and
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status updates. This section considers what capabilities a satellite designer gains from

using a higher order controller while paying increased computing efforts to implement

such controllers.

The primary concern is to measure increased processor costs. Will a satellite

designer be able to use a current processor to successfully meet mission requirements

or will a more capable processor be required? The answer to this question lies in

determining the number of floating point operations a processor can dedicate to the

attitude control system. This value is dependant on processor memory size and speed,

other system functions the processor needs to support and the sequencing of those

functions, and the number of operations per computing cycle required to implement the

controller. The latter processor dependency is addressed here while the first two reside

in the realm of system integration and concept of operations.

The FLOPS command in Matlab was used by satellite designers to count the

number of floating point operations certain programs and functions used during their

execution. However, since the release of Matlab version 6.0, this command became

obsolete and is no longer practical. In addition, satellite processors typically run C+

code and not Matlab. Time limitations of the research efforts also makes it unfeasible

to benchmark simulations of the controller on various commercial-off-the-shelf (COTS)

satellite processors and operating systems.

The PROFILE command in Matlab is useful in determining the execution time of

a program or function. It is mainly used to debug and optimize run times of M-files by

providing information such as execution time, number of calls, parent functions, child

functions, code line hit count, and code line execution time. While useful when running

Matlab commands, the PROFILE command does not track Simulink simulation runs.

The TIC and TOC commands can be used while executing a Simulink model from

the Matlab command window. Tic/toc are stopwatch commands which provide elapsed

time measurements from when tic starts the watch and when toc stops it. The command
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entered in the Matlab command window is tic,[t,x,y]=sim(’modelname’,runtime);toc.

This command starts the stopwatch, executes the Simulink model ’modelname’ and

runs from 0 to runtime (in seconds), then stops the stopwatch and prints the elapsed

time.

Test runs of the Simulink model were for 60 second simulations. Since integrators

like ode45 have variable time steps, it is necessary to change the time step size in the

simulation configuration parameters solver options from variable-step sizes to fixed time

steps so that each run was conducted over fixed time intervals. The Runge-Kutta solver

ode4 was used with fixed time step size of 1 ms. In addition, various programs open on

the desktop may use CPU resources while the simulations were being run. Therefore,

prior to data collection, the computer needs to be restarted with only Matlab open. This

will prevent occasional pings to the system from the network or resource allocations used

from Outlook during received emails.

Even after restarting the computer, slight variations in run time may be experi-

enced during several runs of the same simulation. Larger variations were noticed when

the CPU usage history demonstrated increased numbers of non-linear affects instead of

smooth histories. An interesting observation is larger occurrences of non-linear CPU

usage was noted when simulations involved larger numbers of controller coefficients (see

Figure 4.1 and Figure 4.2). This is meaningful in that if the on-board processor must

cache data, a non-linear usage of the processor will be noted.

Figure 4.1: Smooth CPU Usage History

To determine a more accurate estimate of run times, 10 runs were done for each
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simulation with the average time being recorded. In addition, each run wasn’t started

until the hard drive was no longer being accessed and the CPU Usage History was 0%

for 5 seconds.

Elapsed execution times were recorded for differing design models based on in-

cluded flexible modes, m. From previous work presented in Chapter 3, the truth model

includes the first 10 flexible modes, m=10, along with the six low frequency resonant

modes while the baseline design model included the first flexible modes about each axis,

m=3. Not only were simulations run for the full order controllers for each design model,

but times were also calculated for reduced order controllers.

The number of operations performed per computing cycle is equivalent to the

number of addition, subtraction, multiplication, and division operations conducted. If

a transfer function of the controller is of the general form

a0s
m + a1s

m−1 + · · ·+ am−1s
1 + am

b0sn + b1sn−1 + · · ·+ bn−1s1 + bn
(4.1)

where a and b are coefficients needing to be programmed, n is the order of the controller,

and m is the order of zeros. Recall there are nine controller transfer functions for

a 3-input 3-output system. Considering only the addition and multiplication of the

coefficients, the total number of operations performed is equal to

operations =
9

∑

i

2(ni) +
9

∑

i

2(mi) + 18 (4.2)

Since m = n−1, and adding to the result nine for the division within the transfer

functions, six for the computation of each of the three input signal as a result of three

Figure 4.2: Non-Linear CPU Usage History
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measurement contributions for each, and adding an additional three for feeding back

the three inputs, Eq.4.2 becomes

operations =
9

∑

i

2(ni) +
9

∑

i

2(ni − 1) + 18 + 9 + 6 + 3

=
9

∑

i

4(ni) + 18 (4.3)

As was shown in Chapter 3, the number of coefficients needing to be programmed

into the on-board processor is

coefficients =
9

∑

i

2(ni) + 9 (4.4)

and the number of operations performed per computing cycle is twice the number of

coefficients of the controller transfer function matrix.

The elapsed run time for each case is plotted vs the number of operations for

each design model and is shown in Figure 4.3. The legend identifies which plot line

corresponds to which design model where m is the value representing the number of

flexible modes included in the design model. The plot is linear except in the region

where the number of operations exceeds 600. This is a result of the non-linear usage of

the CPU capability and caching of virtual memory to the hard drive.

The data collected for the run times was collected on a Pentium(R) 4 CPU, 1.69

GHz, with 256 MB of RAM and using the Microsoft Windows XP version 2002 opera-

tion system. However, satellite processors are not using the same processor and will run

code in forms other than M-files. To account for this, the data is non-dimensionalized

by dividing through all of the run times by the time it took to execute the baseline de-

sign model with the smallest order controller (pole-zero cancellations determined with

tolerance equal to 0.1 during the minimum realization calculations). This allows a com-

parison of implementation difficulty of one design model/reduced controller over another

(see Figure 4.4). This information is useful for satellite designers to determine on-board

processor size and capabilities while considering more complex control structures by
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Figure 4.4: Implementation Costs of Various Order Design Models

allowing them to quickly look up how many operations are required to implement the

various orders of controllers.

Figure 4.5 takes a look at how the number of operations per computing cycle

decreases as the tolerance step changes. Using this plot, satellite designers can consider

how many operations their on board processor can dedicate to the attitude control

architecture and determine which design model to implement and how far they need to

reduce the controller order before needing to acquire a higher performing processor. For

example, if a satellite designer determines that a given processor is capable of dedicating

500 operations per cycle to the control system, then a design model which includes the

first three flexible modes may be run regardless of the reduced order of the controller.

However, to implement any of the other design models which include more flexible

modes, the controllers need to be reduced in order while using tolerance equal to 0.0001

during the minimum realization process. Now, the satellite designer must determine

whether they need to go to a better performing processor or not.

The main considerations for a satellite designer, when determining processor size,

is will the added cost and power consumption generate increased stability robustness

and performance. As shown in Chapter 3, the baseline model (m=3) had a stability
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Figure 4.6: Dynamic Performance and Implementation Difficulty

robustness of 41 dB. Adding more flexible modes in the design model increases this

stability robustness. However, since the reaction wheels have a limit placed on them with

how much torque they can generate, the increased stability robustness gains the satellite

designer nothing since the bode gain cannot be increased to improve performance (the

control effort limit of 3Nm and how the weighting matrices in the LQG/LTR design

impact this effort and system performance is shown in Chapter 3).

Since a satellite designer doesn’t benefit from an increase in stability robustness,

the consideration of dynamic performance becomes important. Now, the full order

controller generated for the truth model is the benchmark when determining system

performance. RMS values are calculated for each design model and each reduced con-

troller to compare their dynamic response to that of the full order truth model. A

3-dimensional plot is created to show the relationship between these RMS values, im-

plementation difficulty, and number of operations (see Figure 4.6).

A satellite designer can use Figure 4.6 to determine which control complexity to

use on the satellite. A favorable location occurs in the lower/middle portion of the

graph where RMS values of the reduced system response compared to the full order
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Table 4.1: Performance Comparison Between Baseline and Truth Model

Performance Baseline Model Truth Model

Delay Time (sec) 4.1 4.1

Rise Time (sec) 8.2 8.3

Settling Time (sec) 48.8 48.8

Peak Overshoot (%) 21.3 21.0

Crossover Frequency (Hz) 0.025 0.025

Stability Robustness (dB) 41 125

truth model response are the smallest with requiring fewer operations per cycle and

easier implementation. From this plot, and knowing that the baseline model (m=3)

meets stability robustness requirements, the baseline model presented in Chapter 3 is

an ideal choice for a satellite designer. The system performance of the baseline model

is nearly identical to the performance of the full order truth model except for stability

robustness (see Table 4.1). The same performance is achieved with the baseline model

while using 37.2% the number of operations, being 20 times easier to implement, and

only has an dynamic RMS error of 0.01◦. Therefore, the baseline model is the better

choice unless mission requirements desire pointing accuracies of 0.01◦ or better.

4.3 Material Uncertainty

System performance was nearly identical between the baseline model using re-

duced order controllers and the truth model using full order controllers. Satellite de-

signers can use this information in the sizing of on-board processors. However, another

concern the survey indicated was would mission requirements be greatly impaired if

material uncertainties in the flexible structure were taken into consideration.

Not every elastic memory composite component is manufactured with identical

properties. A certain level of uncertainty, or error bar, exists between one piece and
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another. CTD mentions this is a result of variances in material thickness, laminate prop-

erties, mesh formulation, variances in parasitic components such as heating coils, resin,

connections, etc. The composite industry typically does not measure every possible

variance in the material. Instead, they lump the material uncertainties into the elastic

modulus and accept an uncertainty of ±10% of the baseline elastic modulus (3-sigma).

One consideration which is not included in the error bar is on-orbit fatigue cycling

of the composite material. Currently, no data exists (theoretical or experimental) to

determine a level of uncertainty in the elastic modulus resulting from prolonged exposure

to the space environment. On-orbit fatigue of the material may result in an increase of

stiffness (non-linear stress to strain relationships, resin hardening, etc) or an increase in

flexibility (severed laminate fibers, variance in thermal transition barriers, etc) in the

material.

To account for the unmodeled fatigue cycles, numerical analysis of the baseline

model was run while varying the baseline elastic modulus, Eo, from 80% to 120% at 1%

intervals. This allowed the modified elastic modulus, Ei, to take on values of 0.80Eo,

0.81Eo, · · ·, 1.19Eo, and 1.20Eo. While the ratio, Ei

Eo
, was varied, the following para-

meters were held constant: mass, inertia, structural shape, area, poisson ratio, shear

modulus, density, weighting matrices Q and R, recovery gain r, and the tolerance used

in the minimum realization of the controllers.

An analytical relationship of how the resonant frequencies change as a function

of elastic modulus is shown in the following derivation:

ω = c

√

EA

mL
(4.5)

where ω is the baseline resonant frequency, c is a characteristic value dependent on

boundary conditions and resonant number, E is the elastic modulus, A is the cross-

sectional area, m is the appendage mass, and L is its length.

When the elastic modulus is varied by a value of δE, the modified resonant
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frequency, ω∗, is found by

ω∗ = c

√

(E + δE)A

mL
(4.6)

and this frequency is determined by

(
ω∗

ω
)2 =

c2(E+δE)A
mL

c2EA
mL

=
E + δE

E

ω∗ = ω

√

1 +
δE

E
(4.7)

Analytical relationships between elastic modulus variation and system perfor-

mance characteristics do not exist. However, it is possible to estimate these relation-

ships by taking data from the numerical analysis on the baseline model as perviously

mentioned. Each elastic modulus ratio is entered into Patran and generates a new

eigen analysis. This information is placed into an input file for the Matlab code and

dynamic response simulations are executed. Values for peak control effort, stability ro-

bustness, crossover frequency, delay time, rise time, settling time, and percent overshoot

were recorded. The data was plotted versus the elastic modulus ratios to determine a

relationship between material uncertainties and system performance.

The Basic Fitting Option was used to evaluate the plots and generate a ”best fit”

polynomial, in the least squares sense, for a given set of data. Residuals were calculated

as a measure of how well the predicted data matches the observed data. If the residuals

show strongly patterned behavior, then it should be possible to do better than a simple

polynomial fit (exponential fit). Error bounds are also calculated for each data set

to determine if the data is reasonably modeled by the fit. The error bound uses an

interval of ±2δ which corresponds to a 95% confidence interval. The Matlab commands

POLYFIT and POLYVAL were used to perform curve fitting.

As the flexible structure increases in stiffness, the crossover frequency of the loop

transfer matrix remained constant, peak control effort, stability robustness, and peak
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Table 4.2: Performance Characteristics as a Function of Material Uncertainty

Performance Characteristic Material Uncertainty Ratio (x)

Peak Control Effort (Nm) = 1.3551 + 1.6588x

Stability Robustness (dB) = 31.136 + 8.1023x

Crossover Frequency (Hz) = 0.025

Delay Time (sec) = 4.5491 - 0.46261x

Rise Time (sec) = 9.2476 - 0.9941x

Settling Time (sec) = 49.729 - 1.0029x

Peak Overshoot (%) = 17.053 + 4.4043x

overshoot increases, and delay, rise, and settling times decrease. The linear equations

for these relationships are listed in Table 4.2 while the resulting plots are shown in

Figures 4.7 through 4.20.
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Figure 4.8: Error Bounds for Peak Control Effort Data
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Figure 4.9: Linear Fitting of Stability Robustness Data
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Figure 4.10: Error Bounds for Stability Robustness Data
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Figure 4.11: Linear Fitting of Crossover Frequency Data
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Figure 4.12: Error Bounds for Crossover Frequency Data
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Figure 4.13: Linear Fitting of Delay Time Data
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Figure 4.14: Error Bounds for Delay Time Data
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Figure 4.15: Linear Fitting of Rise Time Data
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Figure 4.16: Error Bounds for Rise Time Data
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Figure 4.17: Linear Fitting of Settling Time Data
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Figure 4.18: Error Bounds for Settling Time Data
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Figure 4.19: Linear Fitting of Peak Overshoot Data
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Figure 4.20: Error Bounds for Peak Overshoot Data
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An interesting observation is drawn from the residual plots in that each data

entry resulting from the Simulink run of ratio 1.17 resulted in an observed value which

falls outside the error bound. It is expected for some values to fall outside the error

bounds since the confidence interval is 95%. However, for all simulation response points

for this one case may indicate a faulty assumption.

A likely assumption which contributes to this observation is holding the tolerance

value constant during the minimum realization of the controllers. The comparison plot

of the reduced and full order controller bode dynamics in Section 3.4 shows a divergence

at low frequencies (see Figure 3.13). This difference is in the low frequency region of the

system where the system poles and zeros are in close proximity. When Patran generates

the modal information, it is unable to provide zero frequency information. Numerical

artifacts in the analysis produce frequencies of 10−11 Hz. It is possible these numerical

artifacts may become important in the system dynamic response.

RMS values were calculated of both control effort and dynamic response for the

case where the elastic modulus ratio equaled 1.17 (see Figure 4.21 and Figure 4.22). A

large gradient is apparent in the tolerance step region where the baseline model plots

indicated a tolerance value of 0.001, tolerance step of 6, during minimum realization of

the controllers while the following plots indicate the tolerance value should equal 10−6,

tolerance step of 3.

For more accurate predictions, the use of a full order controller is required so that

low frequency dynamics are not lost. However, it turns out the system is not sensitive

to the differing controller order. The system performance characteristics, for the case

where Ei

Eo
= 1.17, shown in Table 4.3 for a full order controller and those of a controller

realized when tolerance equals 0.001 indicate minimal impact of increased pole zero

cancelations near the origin. Five of the seven values were identical while the difference

in settling time was 0.6% and peak overshoot was 0.4%.
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Table 4.3: Performance Comparison Between Full and Reduced Controller

Performance Full Order Controller Reduced Order Controller

Delay Time (sec) 3.6 3.6

Rise Time (sec) 7.1 7.1

Settling Time (sec) 47.8 48.1

Peak Overshoot (%) 27.4 27.3

Peak Control Effort (Nm) 3.65 3.65

Crossover Frequency (Hz) 0.025 0.025

Stability Robustness (dB) 40.3 40.3

4.4 Appendage Length

As the length of a gravity gradient boom is increased, the mass located at its

deployed end can be reduced while maintaining the required moment of inertia in the

nadir/zenith axis. This is a concern for small satellite designers because of the mass

and volume limitations these satellites possess. While uncertainties in the appendage

material produced linear approximations for system performance, this may not remain

the case as its length is increased. The appendage may reach a certain length at which

the design model will need to be modified to include higher frequency mode shapes.

To vary the appendage length for data collection purposes, a small step size (on

the order of 1% of the original length) is used and system performance parameters

are calculated. The length is increased by the same step size and the parameters are

calculated again. If the data appears linear, then the step size is doubled. Increasing

the step size in this matter is repeated until the data no longer appears linear. Then,

the initial step increment is applied to the appendage length prior to the last step

size increase and the process is continued. The gradient decent method provides a

systematic approach to increasing the appendage length while spending less time in

regions of minimal change and focusing most of the data collection efforts where the
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data varies at a greater rate.

A primary concern for this section is how does the flexible system perform as the

resonant frequencies approach the crossover frequency of the loop transfer matrix. A

relationship between the original resonant frequency, ω1, and the frequency once the

length is modified, ω2, is shown in the following equations:

ω1 = c

√

EA

mL

ω2 = c

√

EA

m(L+ δL)

ω2

ω1
= (

√

1

L+ δL
)/(

√

1

L
)

ω2

ω1
=

√

L

L+ δL
(4.8)

where the frequency equation was shown in Eq. 4.5.

The baseline system has the first bending mode at a frequency of 3.1518 Hz (see

Table 2.7) and a crossover frequency at 0.025 Hz (see Table 3.4). This yields a baseline

ratio of ω1

ω0
= 126.07. Inserting this value into Eq. 4.8 creates a method of relating an

increase in length to a desired frequency ratio.

ω2 = 126.07ω0

√

L

L+ δL

ω2

ω0
= 126.07

√

L

L+ δL
√

1 +
δL

L
=

currentratio

desiredratio

1 +
δL

L
= (

currentratio

desiredratio
)2

δL = L((
currentratio

desiredratio
)2 − 1) (4.9)

An initial run of the simulations considered increasing the length of the appendage

while holding all other variables constant across the simulations. Data collected is shown
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Table 4.4: Simulation Results When Only Appendage Length is Varied

Length (m) Peak CE (Nm) SR (dB) ω1 (Hz) ω0 (Hz) Frequency Ratio

4.0 3.06 40.7 3.1518 0.0241 130.78

4.111 3.06 39.6 3.0979 0.0250 124.10

4.32 2.92 35.4 3.0009 0.0242 124.15

4.5 2.80 34.8 2.9211 0.0234 124.59

4.8 2.71 32.8 2.7952 0.0228 122.84

5.1 2.63 29.6 2.6764 0.0215 124.74

5.7 2.45 26.0 2.4557 0.0211 116.40

6.9 2.12 15.3 2.0638 0.0181 113.90

7.8 2.03 11.8 1.8046 0.0176 102.30

8.0 1.87 10.7 1.7509 0.0164 106.47

8.2 1.77 10.9 1.6986 0.0164 103.25

in Table 4.4. The heading for the table lists appendage length, peak control effort,

stability robustness, frequency of the first bending mode, crossover frequency, and the

ratio of first bending mode to crossover.

The stability robustness value steadily decreases as the appendage length in-

creases. There occurs a length at which the baseline design model will no longer remain

robust in the face of unmodeled/uncertain high frequency structural modes and noise.

To estimate at what point this occurs, the stability robustness values were plotted versus

length (see Figure 4.23).

If the decreasing values of the norm of the residuals shown in Table 4.5 are used

to indicate which order of polynomial to fit the observed data, a fifth order polynomial

can be determined to estimate at what length the SR test is violated and should not be

used to accurately estimate values beyond the immediate range of the data observed.

The fifth order polynomial produced is

SR = −0.18411L5 + 5.8804L4 − 73.717L3 + 453.7L2 − 1379.6L + 1701.3 (4.10)

Using Eq. 4.10, one can estimate at what appendage length will the stability
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Figure 4.23: Curve Fitting of Stability Robustness Data for Length Variation

robustness value be negative, which indicates the need to include the second bending

modes in the design model. This resulted in an appendage length of 9.2 m.

Since the weighting matrices used in the LQG/LTR process, Q and R, were held

constant, both peak control effort and crossover frequency decreased. The intent is to

maximize the control input of the reaction wheels (3.0 Nm). Therefore, the simulations

were repeated while increasing the q/r ratio so that the peak control effort of 3.0 Nm is

maintained. The resulting data is presented in Table 4.6. The inclusion of the frequency

of the second bending modes, ω2, is included to illustrate how its ratio changes.

By allowing the simulation to reach the control limit of the reaction wheels, the

ω1

ω0
ratio decreased at a faster rate. Also, the stability robustness value becomes an

issue at a shorter appendage length than the estimated 9.2m. When the SR values of

3.9 dB and 3.8 dB (for lengths of 8.0m and 8.2m) are taken in consideration with the

information provided in Section 4.3, a different conclusion is made. The linear equation

relating stability robustness to material uncertainty, the associated error bounds, and

the norm of the residuals indicate the SR value of 3.9 dB for an appendage length of
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Table 4.5: Norm of Residuals for Appendage Length Variation

Curve Fitting Order Norm of Residuals

Linear 4.7192

Quadratic 2.6403

Cubic 2.5253

4th order 1.9473

5th order 1.5262

6th order 1.5258

7th order 1.5134

8.0m may not provide a safe enough margin for the baseline design model.

To further study when inclusion of the second bending modes in the design model

is desirable, consider the plot of q/r ratio versus appendage length (see Figure 4.24). The

plot is linear until an appendage length of 8.0 m is reached. This is another indication

that for appendage lengths equal to or greater than 8.0m, the system will not remain

robust in the face of unmodeled/uncertain high frequency dynamics and noise.

Consider what happens to the stability robustness plot for a design model using

an appendage length of 8.2m. From the plots shown in Figure 4.25 and Figure 4.26, a

satellite designer sees that a better stability robustness value is achieved when the second

bending modes are included in the design model. Table 4.7 contains key simulation data

for both design models with an appendage length of 8.2m.

When the second bending modes are included in the design model, the SR value

changes from 3.8dB to 34.7dB, while the q/r ratio and crossover frequency remain

relatively the same. Once the appendage length reaches 8.0m, the satellite designer

must consider stability robustness of the system with information provided on material

uncertainties and the increased number of operations to execute such a controller using

on-board processors.
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Table 4.6: Simulation Results When Control Effort Limit is Maintained

Length q/r Peak CE SR ω0 ω1
ω1

ω0
ω2

ω2

ω0

4.0 0.010 3.06 40.7 0.0241 3.1518 130.78 12.5924 522.50

4.111 0.010 3.06 39.6 0.0250 3.0979 124.10 12.1313 485.25

4.32 0.011 2.99 35.2 0.0247 3.0009 121.49 11.3213 458.35

4.5 0.013 2.99 34.2 0.0251 2.9211 116.59 10.6764 425.36

4.8 0.015 2.99 31.9 0.0252 2.7952 110.93 9.7202 385.72

5.1 0.017 3.00 28.5 0.0244 2.6764 109.62 8.8757 363.76

5.7 0.021 2.99 24.4 0.0255 2.4557 96.43 7.4989 294.07

6.9 0.033 3.00 12.6 0.0241 2.0638 85.77 5.6494 234.42

7.8 0.041 3.00 8.6 0.0251 1.8046 71.98 4.7640 189.80

8.0 0.059 2.99 3.9 0.0249 1.7509 70.42 4.6073 185.03

8.2 0.084 2.99 3.8 0.0271 1.6986 62.79 4.4592 164.55
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Figure 4.24: LQG/LTR Design Ratio, q/r, as Appendage Length is Varied
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Figure 4.25: SR Plot for 8.2m Appendage with 1st Bending Modes in Design Model
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Figure 4.26: SR Plot for 8.2m Appendage with 2nd Bending Modes in Design Model
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Table 4.7: Comparison of Design Models for the 8.2m Appendage

1st Bending Modes 2nd Bending Modes

q/r Ratio 0.084 0.073

Peak CE 2.99 2.99

SR 3.8 34.7

ω0 0.0271 0.0260
ω1

ω0
62.79 65.26

ω2

ω0
164.55 171.32



Chapter 5

Research Summary and Recommendations

5.1 Research Summary

The trend in utilizing small satellites to accomplish space missions has been

steadily increasing over the last two decades. Businesses, governmental organizations,

and academic institutions find the reduced development costs and time lines, when

compared to the larger conventional satellites, an appealing benefit when establishing

a small satellite program.

As the number of small satellite missions increase in the coming years, so too will

the unique ways in which designers prepare for these missions. Working within mass,

volume, and power constraints, satellite designers will ”push the envelope” on what

is possible to accomplish. These efforts will generate creative ways of designing satel-

lites to successfully meet mission requirements. Non-traditional methods of deploying

structures on small satellites is one such emerging area of study.

Current research efforts conducted within the materials industry are looking into

constructing deployable structures from elastic memory composites (EMC). Strain en-

ergy is stored within appendages made from shape memory composites and can be

released upon command by heating the material beyond its glass transition tempera-

ture. Shape memory mechanisms can eliminate the need for traditional highly complex

mechanical deployment devices, massive launch canisters, and independent deployment

control systems.
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While EMC appendages require less mass and volume compared to similar per-

forming traditional booms made from beryllium copper, the increased flexible nature is

a concern for the satellite’s attitude control system. Historically, research in the area of

flexible spacecraft control has focused on assuming cantilevered boundary conditions at

the connection point between the spacecraft bus and the flexible appendage. This as-

sumption simplifies several terms in the Lagrangian dynamics because the center of mass

of the system experiences small variations. However, the cantilever assumption becomes

less valid as the mass of the satellite bus is reduced and the appendage configuration

does not take on an asymmetric shape.

As the system’s center of mass moves further away from the center of mass of the

controlling body, larger displacements of the system’s center of mass are realized in the

body reference frame for the deformed spacecraft. This means the time rate of change

of the system’s inertia matrix is not zero and terms once neglected in the Lagrangian

now need to be taken into consideration. Assuming a free-free boundary condition for

determining the mode shapes of the small flexible spacecraft is the correct approach in

creating a more accurate dynamic model of the system.

LQG/LTR optimal control techniques were applied to a dynamic model generated

from generalized mass and stiffness matrices created from a finite element model of a

small satellite using a gravity gradient boom comprised of EMC materials. The satel-

lite mirrors the FalconSat-3 spacecraft designed at the US Air Force Academy’s Space

Systems Research Center. The design considerations for the LGQ/LTR controller is to

return the spacecraft to nominal pointing requirements following an initial displacement

that could result from momentum dumping of the on-board reaction wheels.

This research provides insight in the area of small flexible spacecraft which a satel-

lite designer can use to determine computer processor sizing, how material uncertainties

and fatigue cycling may impact system performance parameters, and what happens to

the robustness of the control system as the length of the appendage is varied.
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5.2 Future Research Recommendations

Several key areas of future research are mentioned in this section. A significant

finding from this research study is if one were to create the nominal and design models

using the method outlined in Section 2.3, and then calculate the additive uncertainty

matrix using

∆G = Gnom −Gdes (5.1)

then it becomes necessary to include the first bending and torsional modes in the design

model even though these modes are two orders greater than the magnitude of the

crossover frequency. According to the literature, control system designers model a

system as a rigid body as long as the first resonant mode is at least one order of

magnitude greater than the crossover frequency. Yet, for this research, the low frequency

design model should not be confused with a rigid body model since the FEM analysis

generates low frequency information instead of zero mode information.

The rule of thumb of one order of magnitude is using the same assumption of

boundary conditions as has been used repeatedly for the last 40 years of research. This

assumption is that the system is modeled as a cantilever appendage where the system

center of mass is contained within the controlling body and only experiences a small

variance in its location. This research is conducted on a free-free system where the

center of mass is not restricted within the controlling body and will experience larger

variances in its location. The one order of magnitude statement applies to and has

been validated for cantilever systems. Further research effort is required to characterize

the system modeled in this document and determine what factors affect the stability

robustness of a free-free system.

One area of research currently being conducted at the Air Force Research Labs,

Propulsion Directorate, is the application of micro pulsed plasma thrusters (µPPTs)

in augmenting the attitude control system of small flexible spacecraft. Future efforts
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could evaluate the effectiveness of placing µPPTs on the tip mass of a gravity gradient

boom and calculate the significance of their contribution to meeting system performance

requirements.

The FEM outlined in Chapter 3 would be modified to incorporate the µPPTs as

translational inputs located at the tip mass, node 101. Sensors may placed at the tip

mass to eliminate complications experienced from having non-collocated actuators and

sensors.

An important consideration in this research effort is the amount of torque pro-

duced by µPPTs. Engineering model testing of the thrusters measured average output

values of 25× 10−6 Nm. Recall the limit of the reaction wheels is set at 3 Nm, a value

which can also be varied by altering the q/r ratio in the LQG/LTR process. The design

parameter, R, would take the form

R =









RW

mPPT









6×3

(5.2)

which can be thought of as

R =









rw ∗ I3×3

th ∗ I3×3









(5.3)

where rw and th scaling factors which can be modified until the dynamic response of

the closed loop system indicates reaction wheel output of 3 Nm and µPPT outputs of

25× 10−6 Nm.

This analysis could determine if the µPPTs improve or degrade system perfor-

mance of the baseline model. Is anything gained by placing sensors on the tip mass?

Would this allow improved control of the tip mass or orientation of the flexible ap-

pendage relative to the controlling body? Thrusters used for station keeping, orbital

maneuvers, and plane changes can also be evaluated in a similar fashion and would
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allow a combining of attitude dynamics presented in this study with efforts in orbital

dynamics.

Appendage dynamics is another area where further research efforts may be fo-

cused. The Simulink model used in this research currently plots measured outputs. It

is possible to analyze tip mass deflection and appendage deformation shapes without

measuring the outputs in Simulink. Numerical integrations may be performed within

a Matlab program to propagate the system forward in time. The time history of the

modal coordinates, η, could then be transformed back to state variables. Plots of the

physical states would provide insight on how tip mass deflection changes as the control-

ling body moves. Optimal configurations of the controlling body, flexible appendage,

and tip mass could be evaluated against design and mission requirements needed for

such missions where pointing of the tip of the appendage is a primary concern while the

controlling body is only utilized to reach predetermined pointing requirements.

Studying the motion of the node points along the appendage will open up areas

for future study in micro-meteoroid impacts at various locations along the appendage.

Also, the FEM is an effective testbed in furthering efforts in technological advances in

sensors and actuators imbedded within the appendage material by providing a detailed

system dynamic model which is easily modified to accommodate placement of these

sensors and actuators through the state space matrices, B and C.

This research effort described in this document, and future research efforts uti-

lizing the findings from this analysis, will strengthen the field of study in attitude

control of small flexible structures. The near term utilization of this study will support

both commercial and governmental efforts in small flexible spacecraft and appendages

constructed from shape memory composites. Future impacts of these findings are as

limitless as space itself.
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Appendix A

Assumed Modes Method

A.1 Assumed Modes Model

The following mathematical development is based on the work of Canavin[37]

and Mackison[138] with modifications added to include torsional strain storage in the

flexible appendage. To begin, consider the satellite system shown in Figure A.1.

Figure A.1: Flexible Satellite Dynamic Model

with the following nomenclature:

• (b1, b2, b3): Unit vectors in the body frame.

• (a1, a2, a3): Unit vectors in the appendage frame.

• (i1, i2, i3): Unit vectors in the inertial frame.
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• O: Origin of the body frame. Center of mass of the undeformed system.

• O′: Position of O at rest.

• B: Center of mass of rigid body.

• A: Center of mass of undeformed appendage.

• M∗: Total system mass.

• M: Appendage mass.

• Q: Connection point of appendage.

• z(t): Motion of the system center of mass.

• R: Vector from system center of mass to beam attachment point.

• RB : Vector of the center of mass of the rigid body with respect to a coordinate

system origin in the rigid body.

• L: Coordinate of the center of mass in the undeformed body.

• RB = z − L

• ṘB = ż − ωB × L

• ra: Vector from beam attachment point to center of mass of beam.

• z: Displacement of system center of mass from rest.

• ωB: Inertial angular velocity of rigid body.

The basis for the development includes:

• The model is a rigid body with an attached flexible cantilevered beam.

• The beam rest position is constant relative to its base.
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• The motion of the body and the beam consists of small translations and rota-

tions.

No orthogonality requirements have been placed on the assumed mode shapes. The

vibration equations are therefore coupled.

The linearized attitude matrix is

[θ] = [E − θ̃] (A.1)

Therefore, the relation between the inertial coordinates, {i}, and the body fixed coor-

dinates, {b}, is given by

b = [θ]{i} (A.2)

where [θ]

[θ̃] =

















0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

















(A.3)

The transformation from the rigid body frame to the flexible appendage frame is

a = [c]{b} (A.4)

where [c] is constant for an undriven appendage.

For the undeformed system, the location of the center of mass is defined by

∫

sys
ρ dm = 0 (A.5)

where ρ is the generic position vector from the center of mass to the differential mass

element.

Next, the integral is evaluated,

∫

sys
ρ dm =

∫

rigidbody
ρ dm+

∫

flexbody
ρ dm (A.6)
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The first integral on the right hand side of the equation is −(M∗ −M)L while

the second of the integrals is M(R + ra). Thus,

−(M∗ −M)L+M(R+ ra) = 0 (A.7)

The inertia dyadic of the undeformed system is

II∗ = IIo
RB + IIo

Ap−u (A.8)

where IIo
RB is the inertia dyad of the rigid body and IIo

Ap−u is the inertia dyad of the

undeformed appendage.

IIo
RB = IIB

RB + (M∗ −M)(LLU − LL) (A.9)

IIo
Ap−u = IIA

Ap−u +M [(R + ra)(R + ra)U − (R+ ra)(R+ ra)] (A.10)

The kinetic energy for the system, Tsys, consists of terms for the rigid body and

for the flexible appendage.

Tsys =
1

2

∫

rb
v · v dm+

1

2

∫

app
v · v dm (A.11)

where v is the inertial velocity of a generic mass element. For the rigid body

TRB =
1

2

∫

rb
v · v dm

TRB =
1

2
(M∗ −M)ṘB · ṘB +

1

2
ωB · IIB

RB · ωB (A.12)

Recall

RB = z − L

ṘB = ż − ωB × L

z = O −O′ (A.13)

Inserting Eqs. A.13 into Eq. A.12, the resulting kinetic energy of the rigid body becomes

TRB =
1

2
(M∗ −M){ż − ωB × L} · {ż − ωB × L}+

1

2
ωB · IIB

RB · ωB

=
1

2
(M∗ −M)ż · ż − (M∗ −M)[ż · (ωB × L)]

+
1

2
(M∗ −M)(ωB × L) · (ωB × L) +

1

2
ωB · IIB

RB · ωB (A.14)
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Using the Parallel Axis Theorem relationships[224]

IIcm = IIB − (M∗ −M)(L2I − L · L)

IIB = IIcm + (M∗ −M)(L2I − L · L)

IIB
RB = IIo

RB + (M∗ −M)(L2I − L · L) (A.15)

the kinetic energy of the rigid body, with the inertial dyadic referred to the center of

mass, is

TRB =
1

2
(M∗ −M)ż · ż +

1

2
ωB · IIo

RB · ωB − (M∗ −M)[ż · (ωB × L)] (A.16)

The kinetic energy of the appendage is

Tapp =
1

2

∫

app
v̇ · v̇ dm =

1

2

∫

app
Ṙm · Ṙm dm (A.17)

where

Rm = z +R+ ra + u (A.18)

and

Ṙm = ż + u̇+ ωB × (R+ ra) (A.19)

Now, expand Eq. A.17 and use IIo
app, the dyadic of the undeformed appendage about

the center of mass.

Tapp =
1

2

∫

app
Ṙm · Ṙm dm

=
1

2

∫

app
[ż + u̇+ ωB × (R + ra)] · [ż + u̇+ ωB × (R+ ra)] dm

=
1

2
Mż · ż + ż ·

∫

app
u̇ dm+ ż · ωB × (M(R+ ra)) +

1

2

∫

app
u̇ · u̇ dm

+
1

2

∫

app
[ωB × (R+ ra)] · [ωB × (R+ ra)] dm

+

∫

app
u̇ · [ωB × (R + ra)] dm (A.20)

Consider the following portion of Eq. A.20.

1

2

∫

app
[ωB × (R+ ra)] · [ωB × (R+ ra)] dm (A.21)
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Knowing the vector property ~a×~b = −~b× ~a, and the following vector analysis[222]:

F1 · (F2 × F3) = (F1 × F2) · F3

F1 × (F2 × F3) = (F1 · F3)F2 − (F1 · F2)F3

Then,

(a× b) · (a× b) = (a× b× a) · b

= [(a · a)b− (a · b)a] · b

= (a · a)(b · b)− (a · b)(a · b)

= a2b2 − (a · b)2

and Eq. A.21 becomes

1

2

∫

app
ω2

B(R+ ra)
2 − (ωB · (R+ ra))

2 dm (A.22)

1

2
ωB

∫

app
(R+ ra)

2I − (R+ ra)(R + ra) dm ωB (A.23)

The term in the integral is the inertial dyadic of the undeformed appendage about

the system mass center, O (IIo
Ap−u). The kinetic energy of the undeformed appendage

is

TAp−u =
1

2
Mż · ż + ż ·

∫

app
u̇ dm+ ż · ωB × (M(R + ra)) +

1

2

∫

app
u̇ · u̇ dm

+

∫

app
u̇ · [ωB × (R+ ra)] dm+

1

2
ωB · IIo

Ap−u · ωB (A.24)

The total system kinetic energy, including the rigid body and the flexible ap-

pendage, is

Tsys =
1

2
(M∗ −M)ż · ż +

1

2
ωB · IIo

RB · ω̇B − (M∗ −M)[ż · (ωB × L)] +
1

2
Mż · ż

+ ż ·
∫

app
u̇ dm + ż · ωB × (M(R + ra)) +

1

2

∫

app
u̇ · u̇ dm

+

∫

app
u̇ · [ωB × (R+ ra)] dm +

1

2
ωB · IIo

Ap−u · ωB (A.25)
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Figure A.2: Illustration of Spacecraft Yaw Producing Torsional Torque

With Eq. A.25, combine IIo
RB and IIo

Ap−u into II∗, combine the ż · ż terms, and

the moments about the center of mass relationship from Eq. A.7.

Tsys =
1

2
Mż · ż +

1

2
ωB · II∗ · ωB +

1

2

∫

app
u̇ · u̇ dm + ż ·

∫

app
u̇ dm

+ ωB ·R×
∫

app
u̇ dm + ωB ·

∫

app
(ra × u̇) dm (A.26)

Neglecting external conservative torques such as gravity gradient affects, the po-

tential energy of the system is due to the energy stored in the deformation of the

appendage. Any elementary text on mechanics of materials calculates the strain energy

of a deflected beam as[180]

Vbend =
1

2

∫

app
EI(

∂2u

∂r2
)2 dr (A.27)

The potential energy is for the case of an Euler-Bernoulli beam which is in deformation

without any torsional concerns. The flexible appendage undergoing torsion needs to be

included in the equations of motion of the system. This is a concern since yaw control

torques will produce torsional moments along the longitudinal axis of the appendage

(see Figure A.2). Roll/pitch attitude maneuvers will generate bending torques and are

included in Eq. A.26 and Eq. A.27.

Let γ(r, t) denote the angular displacement of the appendage. The angle of twist

corresponding to a differential element of appendage of length dr is [∂γ(r,t)
∂r ]dr. Assuming
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the material properties are uniform in the appendage and the angle of twist is propor-

tional to the torque, the potential energy of the appendage in torsion (whose ends are

not supported by torsional springs capable of storing potential energy) is written as

Vtorsion =
1

2

∫

app
GJ(r)[

∂γ(r, t)

∂r
]2 dr (A.28)

whereGJ(r) is the torsional rigidity and Eq. A.28 has the same structure as the potential

energy of a rod in longitudinal vibration. In addition, if Ipmi(r) is the mass polar moment

of inertia per unit length, then the kinetic energy is simply

Ttorsion =
1

2

∫

app
Ipmi(r)[

∂γ(r, t)

∂t
]2 dr (A.29)

A.2 Lagrangian Equations of Motion

To determine the system’s equations of motion, the Lagrangian is found by sub-

tracting the potential energy components from the kinetic energy terms as follows

L = T − V (A.30)

Inserting Eqs. A.26-A.29 into Eq. A.30, the system Lagrange becomes

L =
1

2
M∗ż · ż +

1

2
ωB · II∗ · ωB +

1

2

∫

app
u̇ · u̇ dm+ ż ·

∫

app
u̇ dm

+ ωB ·R×
∫

app
u̇ dm + ωB ·

∫

app
r × u̇ dm +

1

2

∫

app
Ipmi(r)[

∂γ(r, t)

∂t
]2 dr

− 1

2

∫

app
EI(

∂2u

∂r2
)2 dr − 1

2

∫

app
GJ(r)[

∂γ(r, t)

∂r
]2 dr (A.31)

where, referencing Figure A.3 , u is the flexural displacement and r is the coordinate

along the appendage length to replace ra. Also, assume the undeformed appendage is

fixed relative to the base, ωB
B = ωA

B , and small angle rotations, ωB ≈ {θ̇}, II∗ ≈ I∗.

The Lagrangian can also be written in matrix form by using the following repre-

sentations:

z = {i}T {z}
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Figure A.3: Displacement of the Flexible Appendage

ωB = {b}T {ωB}

u = {a}T {u}

II∗ = {b}T I∗{b}

R = {b}T {R}

r = {b}T {r}

R =

















0 −R3 R2

R3 0 −R1

−R2 R1 0

















r̃ =

















0 −r3 r2

r3 0 −r1

−r2 r1 0

















θ̃ =

















0 −θ3 θ2

θ3 0 −θ1

−θ2 θ1 0

















[θ] = {E − θ̃}
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∂2u

∂r2
= {a}T

















∂2u1

∂r2

∂2u2

∂r2

∂2u3

∂r2

















= {a}T {u′′}

and the basis transformation relationships

{b} = [θ]{i}

{a} = [c]{b}

which yields

L =
1

2
M∗{ż}T {ż}+

1

2
{θ̇}T I∗{θ̇}+

1

2

∫

app
{u̇}T {u̇} dm + {ż}T [c]

∫

app
{u̇} dm

+ {θ̇}T [c]R

∫

app
{u̇} dm+ {θ̇}T [c]

∫

app
r̃{u̇} dm +

1

2

∫

app
Ipmiγ̇

2 dr

− 1

2

∫

app
EI{u′′}T {u′′} dr − 1

2

∫

app
GJ(γ′)2 dr (A.32)

Now, introduce the distributed coordinates

u(r, t) =
n

∑

i=1

φi(r)ηi(t) (A.33)

where n is the number of modes used to represent the displacement and

[u] = [φ]{η} (A.34)

where [φ] is a 3×n matrix with each column corresponding to a mode shape, the assumed

mode shapes are the spatial solutions of the Euler-Bernoulli partial differential equation,

and {η} contains n modal coordinates.

A similar representation is done for the torsional component where

γ = [ψ]{η} (A.35)

and [ψ] is a 1×n torsional mode shape matrix using the same modal coordinates, {η},

from Eq. A.34.
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Substitute Eq. A.34 and Eq. A.35 into Eq. A.32

L =
1

2
M∗{ż}T {ż}+

1

2
{θ̇}T I∗{θ̇}+

1

2

∫

app
{[φ]{η̇}}T {[φ]{η̇}} dm

+ {ż}T [c]

∫

app
{[φ]{η̇}} dm+ {θ̇}T [c]R

∫

app
{[φ]{η̇}} dm

+ {θ̇}T [c]

∫

app
r̃{[φ]{η̇}} dm +

1

2

∫

app
Ipmi{[ψ]{η̇}}T {[ψ]{η̇}} dr

− 1

2

∫

app
EI{[φ′′]{η}}T {[φ′′]{η}} dr

− 1

2

∫

app
GJ{[ψ′]{η}}T {[ψ′]{η}} dr (A.36)

or

L =
1

2
M∗{ż}T {ż}+

1

2
{θ̇}T I∗{θ̇}+

1

2
{η̇}T

∫

app
[φ]T [φ] dm{η̇}

+ {ż}T [c]

∫

app
[φ] dm{η̇}+ {θ̇}T [c]R

∫

app
[φ] dm{η̇}

+ {θ̇}T [c]

∫

app
r̃[φ] dm{η̇}+

1

2
{η̇}T

∫

app
Ipmi[ψ]T [ψ] dr{η̇}

− 1

2
{η}T

∫

app
EI[φ′′]T [φ′′] dr{η}

− 1

2
{η}T

∫

app
GJ [ψ′]T [ψ′] dr{η} (A.37)

Let

X1 =

∫

app
[φ] dm (3×n) (A.38)

X2 =

∫

app
[φ]T [φ] dm (n×n) (A.39)

X3 =

∫

app
r[φ] dm (3×n) (A.40)

X4 =

∫

app
EI[φ′′]T [φ′′] dr (n×n) (A.41)

X5 =

∫

app
Ipmi[ψ]T [ψ] dr (scalar) (A.42)

X6 =

∫

app
GJ [ψ′]T [ψ′] dr (scalar) (A.43)

The Lagrangian can now be expressed as

L =
1

2
M∗{ż}T {ż}+

1

2
{θ̇}T I∗{θ̇}+

1

2
{η̇}TX2{η̇}+ {ż}T [c]X1{η̇}

+ {θ̇}T [c](RX1 +X3){η̇}+
1

2
{η̇}TX5{η̇}
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− 1

2
{η}TX4{η} −

1

2
{η}TX6{η} (A.44)

The Lagrangian contains six coordinates which describe the translation and ro-

tation of the undeformed system (rigid body motion) and n modal coordinates which

describe the twist and displacement from rest of the flexible appendage relative to the

rigid base. The equations of motion take the form[79]

d

dt
(
∂L

∂q̇i
)− ∂L

∂qi
= Qi (A.45)

where Qi are the generalized forces and the generalized variables are:

translation: z (3 position coordinates)

rotation: θ (3 rotational coordinates)

vibration: η (n modal coordinates)

The partial derivatives of the Lagrangian are:

∂L

∂z
= 0 (A.46)

∂L

∂ż
= M∗{ż}+ [c]X1{η̇} (A.47)

∂L

∂θ
= 0 (A.48)

∂L

∂θ̇
= I∗{θ̇}+ [c](RX1 +X3){η̇} (A.49)

∂L

∂η
= −X4{η} −X6{η} (A.50)

∂L

∂η̇
= X2{η̇}+XT

1 [c]T {ż}+ (RX1 +X3)
T [c]T {θ̇}+X5{η̇} (A.51)

The time derivatives of the generalized momenta are:

d

dt
(
∂L

∂ż
) = M∗{z̈}+ [c]X1{η̈} (A.52)

d

dt
(
∂L

∂θ̇
) = I∗{θ̈}+ [c](RX1 +X3){η̈} (A.53)

d

dt
(
∂L

∂η̇
) = X2{η̈}+XT

1 [c]T {z̈}+ (RX1 +X3)
T [c]T {θ̈}+X5{η̈} (A.54)

The system equations of motion are written as

Translation: M∗{z̈}+ [c]X1{η̈} = {Qtrans} (A.55)
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Rotation: I∗{θ̈}+ [c](RX1 +X3){η̈} = {Qrot} (A.56)

Vibration: X2{η̈}+X5{η̈}+XT
1 [c]T {z̈}+(RX1+X3)

T [c]T {θ̈}+X4{η}+X6{η} = {Qdamp}

(A.57)

where {Qtrans} are the generalized translational forces acting on the system, {Qrot}

are the generalized rotational forces, and {Qdamp} are the generalized damping forces

within the flexible appendage. An example of a translational system force would be

thrusters providing station keeping forces while attitude control torques, such as those

provided by off-axial thrusters or reaction wheels, are contained within the rotational

forces category.

The generalized damping forces within the flexible appendage will take the form

of {Qdamp} = −c{η̇}, where the damping coefficient, c, is not to be confused with the

transformation matrix, [c], going from the body fixed frame to the flexible appendage

frame. In fact, if the flexible appendage is not off-nominal, meaning the principal axes of

the appendage line up with those of the rigid body, then the transformation matrix, [c],

can be assumed to equal the identity matrix and may be eliminated from the equations

of motion.

Another point to consider is the dimensions of X2, X4, X5, and X6. Looking at

Eq. A.57, it would seem intuitive to combine these values together. However, X2 and

X4 are (n×n) matrices while X5 and X6 are scalars. The scalar values can be multiplied

by the identity matrix to put them in a form which will allow the collection of similar

terms in Eq. A.57.

Assuming station keeping is not a key factor in the attitude control conceptual

operations of the spacecraft, and applying the above relationships, the equations of

motion are rewritten as follows:

M∗{z̈}+X1{η̈} = 0 (A.58)

I∗{θ̈}+ (RX1 +X3){η̈} = {Qrot} (A.59)
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(X2 +X5){η̈}+ c{η̇}+ (X4 +X6){η} = −XT
1 {z̈} − (RX1 +X3)

T {θ̈} (A.60)

Now, Eq. A.58 is rewritten as

{z̈} = − 1

M∗
X1{η̈} (A.61)

and is substituted into Eq. A.60 to eliminate translational effects from the vibrational

equation. This results in a coupled set of rotation-vibration equations.

I∗{θ̈}+ (RX1 +X3){η̈} = {Qrot}

(X2 +X5 −
1

M∗
XT

1 X1){η̈}+ c{η̇}+ (X4 +X6){η} = −(RX1 +X3)
T {θ̈}(A.62)

The theoretical derivation can be furthered by noticing the rotation/vibration

coupling terms in each of the two equations are the transpose of each other. Let

P = (RX1 +X3) (A.63)

where P has dimensions (3×n).

Inserting Eq. A.63 into Eq. A.59 and solving for θ̈ yields

θ̈ = (I∗)−1{Qrot} − (I∗)−1P{η̈} (A.64)

Now, insert Eq. A.64 into the right hand side of Eq. A.62.

= −P T{θ̈}

= −P T [(I∗)−1{Qrot} − (I∗)−1P{η̈}]

= −P T (I∗)−1{Qrot}+ P T (I∗)−1P{η̈} (A.65)

to finally arrive at the equation of motion describing how the flexible appendage responds

to attitude control torques.

(X2 +X5 −
1

M∗
XT

1 X1 − P T (I∗)−1P ){η̈}+ C{η̇}+ (X4 +X6){η} = −P T (I∗)−1{Qrot}

(A.66)
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where I∗ is the nonsingular system inertia matrix and C is the (n×n) damping matrix.

Note, the equation of motion can be represented as the classical dynamic model

M{η̈}+ C{η̇}+K{η} = F (A.67)

if

M = (X2 +X5 −
1

M∗
XT

1 X1 − P T (I∗)−1P )

K = (X4 +X6)

F = −P T (I∗)−1{Qrot} (A.68)



Appendix B

Gravity Gradient Stabilization

The center of gravity is often times not in the same location as the center of mass

for a large object orbiting about a planet. The differing locations will result in a torque

applied to the object as a result of differing gravitational strength. A simple solution to

overcome this applied torque in a gravity gradient field is to attach a cable to the satel-

lite. A mass is attached to the end of the cable pointing either toward or away from the

earth. The cable is slowly let out until a stable configuration is achieved. The concept

of gravity gradient control is discussed in several sources[80], [90], [159], [176], [238],

and[240].

B.1 Gravitational Field

Newton’s Law of Universal Gravitation states:

The force of gravity between two bodies is directly propor-
tional to the product of their two masses and inversely pro-
portional to the square of the distance between them[186].

Thus, the gravitational potential energy (V) is found with

V = −GMm

R
(B.1)

where G = 6.6726x10−11m3/kgsec2, M is the mass of the primary body, m is the mass

of the orbiting body, and R is the distance separating the two masses. If the satellite is
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in an Earth orbit, then M = 5.9737x1024kg and the gravitational parameter for Earth

becomes µ = GM = 3.9860x1014m3/sec2. Substituting the gravitational parameter of

Earth into Eq. B.1 yields

V = −µm
R

(B.2)

The gravitational force field is the gradient of the gravitational potential and the

gravitational acceleration acting on mass m is defined as:

~ag =
∇αV

m
(B.3)

where

∇α = b̂1
∂

∂b1
+ b̂2

∂

∂b2
+ b̂3

∂

∂b3
(B.4)

in terms of the body fixed coordinates shown in Figure B.1.

Figure B.1: Gravity Gradient Torques on a Near-Earth Satellite[240]

In a cartesian coordinate frame, the components of the gravitational field are

Γαβ = ∇α∇β
V

m
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Γαβ =
1

m

















∂2V
∂e2

1

∂2V
∂e1∂e2

∂2V
∂e1∂e3

∂2V
∂e1∂e2

∂2V
∂e2

2

∂2V
∂e2∂e3

∂2V
∂e1∂e3

∂2V
∂e2∂e3

∂2V
∂e2

3

















(B.5)

Γαβ is the gravitational acceleration gradient causing an acceleration in the α

direction on an object displaced in the β direction (α, β = b1, b2, b3). The acceleration

in the b1 direction is

a1 = Γ11e1 + Γ12e2 + Γ13e3 (B.6)

If the body fixed reference frame is located at the center of mass of the satellite

while a vector, ~Ro, points from the origin of the primary body to the center of gravity

of the satellite, the gravitational acceleration in an inertial frame can be expressed as

follows:

~ag = −GM
~R0

R3
0

= −µ(~R+ ~r)

R3
0

= −µ (~R+ ~r)

[(~R+ ~r) · (~R+ ~r)]
3

2

= −µ(~R+ ~r)

R3
x[1 + (

r

R
)2 +

2~R · ~r
R2

]−
3

2

= − µ

R3
[~R+ ~r − 3

~R · ~r
R2

~R] + higherorderterms (B.7)

Therefore, if

~R = Rb̂3 (B.8)

and

~r = r1b̂1 + r2b̂2 + r3b̂3 (B.9)

then

~ag ≈ −
µ

R3
[r1b̂1 + r2b̂2 + (R− 2r3)b̂3] (B.10)

Substituting Eq. B.10 into Eq. B.3 results in the following:

Γ11 = − µ

R3
(B.11)



180

Γ22 = − µ

R3
(B.12)

Γ33 =
2µ

R3
(B.13)

and putting the gradient of the gravitational field into matrix form yields

Γ =
GM

R3

















−1 0 0

0 −1 0

0 0 2

















(B.14)

B.2 Inertial Gradient Field

If the reference frame is rotating with an angular velocity ~ω, then an inertial

acceleration field is developed. The gradients from the inertial field are added to the

gravitational gradients to obtain the total gradient.

The general expression for the apparent acceleration of a point in a rotating frame

is

~̈r
′
= ~a− [~a0 + ~ωx(~ωx~r) + ~̇ωx~r + 2~ωx~̇r

′
] (B.15)

Only terms involving ~r have gradients which can be added to the gravitational

gradients in Eq. B.14. Let

~A = −[~ωx(~ωx~r) + ~̇ωx~r]

= ω2~r − ~ω(~ω · ~r) + ~rx~̇ω

= A1b̂1 +A2b̂2 +A3b̂3 (B.16)

where

A1 = r2ω̇3 − r3ω̇2 + (ω2
2 + ω2

3)r1 − ω1ω2r2 − ω1ω3r3 (B.17)

A2 = r3ω̇1 − r1ω̇3 + (ω2
3 + ω2

1)r2 − ω2ω3r3 − ω2ω1r1 (B.18)

A3 = r1ω̇2 − r2ω̇1 + (ω2
1 + ω2

2)r3 − ω3ω1r1 − ω3ω2r2 (B.19)

and

~ω = ω1b̂1 + ω2b̂2 + ω3b̂3 (B.20)
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After taking the partial derivatives of ~A and substituting them into Eq. B.14, the

gradient matrix becomes

Gαβ =

















(Γ11 + ω2
2 + ω2

3) (ω̇3 − ω1ω2) −(ω̇2 + ω1ω3)

−(ω̇3 + ω1ω2) (Γ22 + ω2
1 + ω2

3) (ω̇1 − ω2ω3)

(ω̇2 − ω1ω3) −(ω̇1 + ω2ω3) (Γ33 + ω2
1 + ω2

2)

















(B.21)

If a satellite is orbiting the Earth on a circular path, then its angular velocity is

ω2
o =

µ

R3
(B.22)

If the body reference frame is orientated such that b̂1 is aligned in the orbit normal

direction, then ω1 = ωo and ω2 = ω3 = 0. Inserting these angular velocity components

into Eq. B.21, and recalling Eq. B.14, the gradient field for a circular orbit becomes

Gαβ = ω2
o

















−1 0 0

0 0 0

0 0 3

















(B.23)

The above equation shows that for a satellite with a flexible boom deployed, it

will experience a compressive load in the orbit normal direction while in tension along

the local vertical direction. Thus, a deployed boom will produce a stable configuration

either when the boom is zenith or nadir pointing.

B.3 Gravity Gradient Torque

A gravitational gradient torque acting on an orbiting body is expressed as

~T (g) =

∫

(~rx~ag)dm (B.24)

Inserting Eq. B.7 into Eq. B.24 yields

~T (g) ≈ 3µ

R3

∫

(~rx
~R · ~r
R2

~R)dm (B.25)
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Letting ~R = RÊ1, where Ê1 is the unit vector pointing in the radial direction

from the primary body, Eq. B.25 is integrated as follows:

~T (g) =
3µ

R3

∫

(~R · ~r)~rx~R
R2

dm

=
3µ

R3
Ê1 ·

∫

~r~rdmxÊ1

=
3µ

R3
Ê1x

∫

(Ēr2 − ~r~r)dm · Ê1

=
3µ

R3
Ê1xĪ · Ê1 (B.26)

where Ē = Ê1Ê1 + Ê2Ê2 + Ê3Ê3 is a unit dyadic and the inertia dyadic about the

body’s center of mass is

Ī =

∫

(Ēr2 − ~r~r)dm (B.27)

The gravity gradient with respect to the body reference frame bα(α = 1, 2, 3)

becomes

~T (g) = KÊ1xĪ · Ê1

= Kaα1b̂αxIαβ b̂αb̂β · aα1b̂α (B.28)

where

Ê1 = aα1b̂α = a11b̂1 + a21b̂2 + a31b̂3

Ī = Iαβ b̂αb̂β(α, β = 1, 2, 3)

K =
3µ

R3

and aα1 are the direction cosines between the Ê1 and b̂α unit vectors.

The body components of torque are found when the scalar form of Eq. B.28 is

written as

T
(g)
λ = ~T (g) · b̂λ(λ = 1, 2, 3)

= Kaα1aβ1Iλβεαγλ (B.29)
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where the three dimensional permutation tensor is

εαγλ = (b̂αxb̂γ) · b̂λ(α, β, γ, λ = 1, 2, 3) (B.30)

For the principal body axes Iγβ = 0 for γ 6= β. The torque components become

T
(g)
1 = K(I33 − I22)a21a31

T
(g)
2 = K(I11 − I33)a11a31

T
(g)
3 = K(I22 − I11)a11a21 (B.31)

where the aαβ terms are still the direction cosines (i.e. b̂α = aαβÊβ).

B.4 Equations of Motion

Euler’s equation of motion for a satellite in a circular orbit with orbital angular

velocity, ωs, is

~̇h+ ~ωsx~h = ~T (g) (B.32)

where

~h = ω1I1b̂1 + ω2I2b̂2 + ω3I3b̂3

~T (g) = T
(g)
1 b̂1 + T

(g)
2 b̂2 + T

(g)
3 b̂3

Three sequential rotations θ1 about the b̂1 axis, θ2 about the b̂2 axis, and θ3

about the b̂3 axis are used to describe the orientation of the satellite’s principal axes

with respect to the orbiting reference frame. The body reference frame is expressed in

terms of the fixed reference frame as follows:
















b̂1

b̂2

b̂3

















= R(θ3)R(θ2)R(θ1)

















Ê1

Ê2

Ê3

















(B.33)
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where

R(θ1) =

















1 0 0

0 cθ1 sθ1

0 −sθ1 cθ1

















(B.34)

R(θ2) =

















cθ2 0 −sθ2

0 1 0

sθ2 0 cθ2

















(B.35)

R(θ3) =

















cθ3 sθ3 0

−sθ3 cθ3 0

0 0 1

















(B.36)

and

R123 = R(θ3)R(θ2)R(θ1)

=

















cθ2cθ3 cθ3sθ1sθ2 + cθ1sθ3 −cθ1cθ3sθ2 + sθ1sθ3

−cθ2sθ3 −sθ1sθ2sθ3 + cθ1cθ3 cθ1sθ2sθ3 + sθ1cθ3

sθ2 −cθ2sθ1 cθ1cθ2

















(B.37)

The expanded form of the body components of the satellite angular velocity, ~ωs,

is

ω1 = θ̇1 + ω0(cθ3sθ1sθ2 + cθ1sθ3)

ω2 = θ̇2 + ω0(cθ1cθ3 − sθ1sθ2sθ3)

ω3 = θ̇3 + ω0(−sθ1cθ2) (B.38)

with ω0 = µ
R3 . Linearizing yields

ω1 = θ̇1 + ω0θ3

ω2 = θ̇2 + ω0

ω3 = θ̇3 − ω0θ1 (B.39)
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The component equations in scalar form are

T
(g)
1 = I1ω̇1 + ω2ω3(I3 − I2)

T
(g)
2 = I2ω̇2 + ω1ω3(I1 − I3)

T
(g)
3 = I3ω̇3 + ω1ω2(I2 − I1) (B.40)

Taking the derivative of Eq. B.39 and substituting into Eq. B.40 produces

T
(g)
1 = I1(θ̈1 + ω0θ̇3) + (θ̇2 + ω0)(θ̇3 − ω0θ1)(I3 − I2)

T
(g)
2 = I2θ̈2 + (θ̇1 + ω0θ3)(θ̇3 − ω0θ1)(I1 − I3)

T
(g)
3 = I3(θ̈3 − ω0θ̇1) + (θ̇1 + ω0θ3)(θ̇2 + ω0)(I2 − I1) (B.41)

Recall the body components of the gravity gradient torque, T
(g)
1 , T

(g)
2 , and T

(g)
3 ,

shown in Eq. B.31. Using small angle approximations, the torque components are now

expressed as
















T
(g)
1

T
(g)
2

T
(g)
3

















≈ 3ω2
0

















0

(I1 − I3)θ2

(I1 − I2)θ3

















(B.42)

Inserting these torques into Eqs. B.41, the linearized equations of motion for small

angular deviations become

0 = I1(θ̈1 + ω0θ̇3) + (I2 − I3)(ω2
0θ1 − ω0θ̇3) (B.43)

0 = I2θ̈2 + 3ω2
0(I3 − I1)θ2 (B.44)

0 = I3(θ̈3 − ω0θ̇1) + (I2 − I1)(4ω2
0θ3 + ω0θ̇1) (B.45)

In addition, the gravity gradient restoring torques resulting from small angular

deviations are obtained by neglecting the small θ̇ coupling terms.

T1 = −ω2
0(I2 − I3)θ1

T2 = −3ω2
0(I3 − I1)θ2

T3 = −4ω2
0(I2 − I1)θ3 (B.46)



186

note, the restoring torques vanish for a symmetrical satellite.

B.5 Stability Considerations

The derivations provided in the previous section were for a yaw (θ1), pitch (θ2),

roll (θ3) configuration. However, FalconSAT-3 uses a roll (θ1), pitch (θ2), yaw (θ3)

convention. To avoid confusion between research results presented in this document and

those found by the FalconSAT-3 design teams, Eqs. B.43-B.45, the linearized equations

of motion of a rigid body in a circular orbit (roll, pitch, and yaw, respectively) are as

follows:

I1(θ̈1 − ω0θ̇3) + (I2 − I1)(4ω2
0θ1 + ω0θ̇3) = 0 (B.47)

I2θ̈2 + 3ω2
0(I1 − I3)θ2 = 0 (B.48)

I3(θ̈3 + ω0θ̇1) + (I2 − I1)(ω2
0θ3 − ω0θ̇1) = 0 (B.49)

Because the pitch-axis equation, Eq. B.48, is decoupled from the roll/yaw equa-

tions, Eq. B.47 and Eq. B.49, (i.e. there are no θ1 or θ3 terms) consider the characteristic

equation of the pitch axis given by

s2 + 3ω2
0

I1 − I3
I2

= 0 (B.50)

If I1 > I3, then the characteristic roots are pure imaginary numbers and the pitch

equation is a simple harmonic oscillator. If I1 < I3, then one of the characteristic

roots is a positive real number and the pitch equation is unstable. For an unstable

configuration, the satellite will swing away from the equilibrium configuration when

disturbed. Therefore, it is required that I1 > I3 for pitch stability.

For roll/yaw stability analysis, Eq. B.47 and Eq. B.49 are rewritten as

θ̈1 + (k1 − 1)ω0θ̇3 + 4ω2
0k1θ1 = 0

θ̈3 + (1− k3)ω0θ̇1 + ω2
0k3θ3 = 0 (B.51)
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where

k1 =
I2 − I3
I1

k2 =
I2 − I1
I3

Eqs. B.51 can be combined into one coupled roll/yaw system equation as









1 0

0 1

















θ̈1

θ̈3









+









0 ω0(k1 − 1)

ω0(1− k3) 0

















θ̇1

θ̇3









+









4ω2
0k1 0

0 ω2
0k3

















θ1

θ3









=









0

0









(B.52)

The characteristic equation of Eq. B.52 becomes

∣

∣

∣

∣

∣

∣

∣

∣

s2 + 4ω2
0k1 sω0(k1 − 1)

sω0(1− k3) s2 + ω2
0k3

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (B.53)

or

s4 + (1 + 3k1 + k1k3)ω
2
0s

2 + 4k1k3ω
4
0 = 0 (B.54)

The roots of the coupled roll/yaw system characteristic equation become pure

imaginary numbers if and only if

k1k3 > 0

1 + 3k1 + k1k3 > 0

(1 + 3k1 + k1k3)
2 − 16k1k3 > 0 (B.55)

The requirements in Eqs. B.55, combined with the pitch stability requirement of I1 > I3,

govern the complete stability of the gravity gradient satellite equilibria. This stability

result is illustrated using a stability diagram in the (k1, k3) plane as shown in Figure B.2.
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Figure B.2: Gravity Gradient Spacecraft Stability Regions



Appendix C

Rotational Dynamics

C.1 Rotational Kinematics

When studying the equations of motion of an object one must understand both

kinetics and kinematics. Kinetics is the study of the forces acting on a body while

kinematics describes the motion of that body. This section will concern itself with

the theory of rotational kinematics. Kinetics will be discussed in Section C.2. ”The

subject of rotational kinematics is somewhat mathematical in nature because it does not

involve any forces associated with motion” [238]. The three mathematical approaches

to identifying rotational motion are direction cosines, Euler angles, and quaternions.

C.1.1 Direction Cosines

The first mathematical method of describing rotational kinematics is direction

cosines. In a rigid body there exists a body reference frame A. This frame consists of

a right-hand set of three orthogonal unit vectors {~a1, ~a2, ~a3}. Another reference frame

B will contain a different set of three right-handed orthogonal unit vectors ~{b1, ~b2, ~b3}.

The dot product law is used to describe one reference frame in terms of the other.

~a ·~b = |a||b| cos 6 ~a~b (C.1)

Using the dot product B can now be expressed in terms of A as follows:

~b1 = C11 ~a1 + C12 ~a2 + C13 ~a3
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~b2 = C21 ~a1 + C22 ~a2 + C23 ~a3

~b3 = C31 ~a1 + C32 ~a2 + C33 ~a3 (C.2)

where Cij ≡ ~bi · ~aj is the cosine of the angle between ~bi and ~aj and Cij is called the

direction cosine.

An equivalent way of expressing the directional cosines is in matrix form.

















~b1

~b2

~b3

















=

















C11 C12 C13

C21 C22 C23

C31 C32 C33

































~a1

~a2

~a3

















(C.3)

The direction cosine matrix is also called the rotation matrix or the coordinate trans-

formation matrix [2].

The kinematical equations of Poisson describe the functional relationships of the

direction cosines and their rates [44].

Ċ11 = C12ω3 − C13ω2

Ċ12 = C13ω1 − C11ω3

Ċ13 = C11ω2 − C12ω1

Ċ21 = C22ω3 − C23ω2

Ċ22 = C23ω1 − C21ω3

Ċ23 = C21ω2 − C22ω1

Ċ31 = C32ω3 − C33ω2

Ċ32 = C33ω1 − C31ω3

Ċ33 = C31ω2 − C32ω1 (C.4)

The direction cosines are easy to calculate but do require integrating 9 equations to

solve rotational kinematics. Also, the direction cosines are not intuitive since the values

are not expressed as angles.
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C.1.2 Euler Angles

A more intuitive way of looking at rotational kinematics is with Euler angles.

These angles are easier to visualize than direction cosines. A perfect example of Euler

angles is the yaw, pitch, and roll of an aircraft. Euler angles involve rotating about the

three axes of the body as shown in Figure C.1.

Figure C.1: Classical Euler rotations of a rigid body [44]

For each rotation about an axis, a rotational matrix is calculated. Consider a

rotation of a body axis ê with respect to a reference frame Ê as shown in Figure C.2.

The components of Ê along the ê directions are calculated as

ê1 = Ê1

ê2 = Ê2 cos θ1 + Ê3 sin θ1

ê3 = −Ê2 sin θ1 + Ê3 cos θ1 (C.5)
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or in matrix form as
















ê1

ê2

ê3

















=

















1 0 0

0 cθ1 sθ1

0 −sθ1 cθ1

































Ê1

Ê2

Ê3

















(C.6)

where cθ and sθ represent cos θ and sin θ.

Figure C.2: Sequential orthogonal rotations of the ê reference frame about the Ê refer-
ence frame [44]

A rotation about each axis can be represented as

















ê′1

ê′2

ê′3

















= R(θ1)

















Ê1

Ê1

Ê1

















(C.7)

















ê′′1

ê′′2

ê′′3

















= R(θ2)

















ê′1

ê′2

ê′3

















(C.8)
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















ê1

ê2

ê3

















= R(θ3)

















ê′′1

ê′′2

ê′′3

















(C.9)

where

R(θ1) =

















1 0 0

0 cθ1 sθ1

0 −sθ1 cθ1

















(C.10)

R(θ2) =

















cθ2 0 −sθ2

0 1 0

sθ2 0 cθ2

















(C.11)

R(θ3) =

















cθ3 sθ3 0

−sθ3 cθ3 0

0 0 1

















(C.12)

Referring again to Figure C.1, assume the body is undergoing a rotation first

about the ê1 axis followed by a rotation about ê2 and then ê3. The body reference

frame is expressed in terms of the fixed reference frame as follows:

















ê1

ê2

ê3

















= R(θ3)R(θ2)R(θ1)

















Ê1

Ê2

Ê3

















(C.13)

or

R123 = R(θ3)R(θ2)R(θ1)
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=

















cθ2cθ3 cθ3sθ1sθ2 + cθ1sθ3 −cθ1cθ3sθ2 + sθ1sθ3

−cθ2sθ3 −sθ1sθ2sθ3 + cθ1cθ3 cθ1sθ2sθ3 + sθ1cθ3

sθ2 −cθ2sθ1 cθ1cθ2

















(C.14)

The angular velocities for this rotation sequence are

ω1 = θ̇ cosφ+ ψ̇ sin θ sinφ

ω2 = ψ̇ sin θ cosφ− θ̇ sinφ

ω3 = φ̇+ ψ̇ cos θ (C.15)

Solving for φ̇, θ̇, ψ̇ yields

















ψ̇

φ̇

θ̇

















=
1

sin θ

















sinφ cosφ 0

− sinφ cos θ − cosφ cos θ sin θ

cosφ sin θ − sinφ sin θ 0

































ω1

ω2

ω3

















(C.16)

These three equations appear easy to integrate but trigonometric functions require

greater computational time than addition and multiplication. Although Euler angles

have fewer equations to integrate than direction cosines, a larger amount of processing

time is used to calculate the angular velocities. The only concern is the singularity in

Eq. C.16 when θ equals 0◦. For a gravity gradient stabilized satellite, this singularity

becomes a concern. To avoid the singularity in pitch, a roll-pitch-yaw (1-3-2) rotation

sequence is used. This rotation sequence yields

















ψ̇

φ̇

θ̇

















=
1

cos θ

















cos θ − cosψ sin θ sinψ sin θ

0 cosψ − sinψ

0 sinψ cos θ cosψ cos θ

































ω1

ω2

ω3

















(C.17)

Now the singularity occurs when the pitch angle equals 90◦ and gravity gradient dy-

namics of the satellite will prevent this singularity from occuring.
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C.1.3 Quaternions

The third mathematical approach to identifying rotational motion is using quater-

nions. Instead of the trigonometric functions of Euler angles, quaternions use algebraic

relations. This provides quicker computations and also eliminates the possibility of a

singularity appearing. An Euler axis, also known as a principal axis, is an axis that

is fixed in the body frame and is stationary in the inertial frame. This axis is special

because any combination of rigid body rotation is described as a single rotation about

the Euler axis. The eigenaxis vector ~e = (e1, e2, e3) is simply the direction cosines of

the Euler axis relative to both the body and inertial reference frames.

The quaternions, Euler parameters, are then defined as

q1 = e1 sin(θ/2)

q2 = e2 sin(θ/2)

q3 = e3 sin(θ/2)

q4 = cos(θ/2) (C.18)

where θ is the rotation angle about the Euler axis. After applying trigonometric iden-

tities the rotation matrix becomes

R =

















1− 2(q22 + q23) 2(q1q2 + q3q4) 2(q1q3 − q2q4)

2(q1q2 − q3q4) 1− 2(q21 + q23) 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) 1− 2(q21 + q22)

















(C.19)

Substituting Eq. C.19 into Eqs. C.4 and solving for angular velocity we obtain

ω1 = 2(q̇1q4 + q̇2q3 − q̇3q2 − q̇4q1)

ω2 = 2(q̇2q4 + q̇3q1 − q̇1q3 − q̇4q2)

ω3 = 2(q̇3q4 + q̇1q2 − q̇2q1 − q̇4q3) (C.20)
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Applying a constraint equation such that

q21 + q22 + q23 + q24 = 1 (C.21)

and differentiating it

0 = 2(q̇1q1 + q̇2q2 + q̇3q3 + q̇4q4) (C.22)

We can now combine Eqs. C.20 and Eq. C.22 into matrix form as follows:
























ω1

ω2

ω3

0

























= 2

























q4 q3 −q2 −q1

−q3 q4 q1 −q2

q2 −q1 q4 −q3

q1 q2 q3 q4

















































q̇1

q̇2

q̇3

q̇4

























(C.23)

Rearranging Eq. C.23 results in the kinematic differential equations for quater-

nions as
























q̇1

q̇2

q̇3

q̇4

























=
1

2

























q4 −q3 q2 q1

q3 q4 −q1 q2

−q2 q1 q4 q3

−q1 −q2 −q3 q4

















































ω1

ω2

ω3

0

























(C.24)

or
























q̇1

q̇2

q̇3

q̇4

























=
1

2

























0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

















































q1

q2

q3

q4

























(C.25)

As a result of the fewer number of equations to integrate compared to direction

cosines, and the absence of singularities and trigonometric functions, modern spacecraft

orientation is now commonly described in terms of quaternions [238].

C.2 Rigid Body Dynamics

Kinematic differential equations are useful for integrating the motion of a satellite.

An understanding of kinetics is required to study how this satellite reacts to forces acting
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upon it. This section will first discuss the properties of angular momentum, moments

of inertia, and how moments will affect the equations of motion. The section concludes

with a discussion on stability requirements for both linear and nonlinear systems.

C.2.1 Kinetics

Just as a moving body has translational momentum comprised of its velocity and

mass, a rotating body will also have rotational momentum. This rotational momentum

is referred to as angular momentum. Similar to its counterpart, angular momentum is

comprised of angular velocity, ω, and inertia, I. Thus the total angular momentum is

expressed as

~H = I~ω (C.26)

Both ~H and ~ω are 3× 1 vectors so I is a 3× 3 matrix known as the inertia matrix.

A rigid body does not necessarily have to possess uniform density distribution.

It’s density can vary with position relative to the system’s center of mass. The moment

of inertia matrix contains all of the information of the mass distribution within a rigid

body [240].

I =

















∫

(y2 + z2)dm − ∫

xydm − ∫

xzdm

−
∫

xydm
∫

(x2 + z2)dm −
∫

yzdm

−
∫

xzdm −
∫

yzdm
∫

(x2 + y2)dm

















(C.27)

This inertia matrix only needs to be recalculated if the mass distribution alters from its

original configuration.

The kinetic relation between moments and angular momentum is

M = Ḣ (C.28)

Using a body fixed reference frame Eq. C.28 becomes

M =
d

dt
H + ω ×H (C.29)
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Applying the matrix form of the cross product yields

M = Iω̇ + ωxIω (C.30)

where ωx is a scew-symmetric matrix of the form

ωx =

















0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

















(C.31)

To further simplify the equations of motion, assume a principal axis frame. The

inertia matrix becomes a diagonal matrix

J =

















J1 0 0

0 J2 0

0 0 J3

















(C.32)

and Eq. C.30 becomes

















M1

M2

M3

















=

















J1 0 0

0 J2 0

0 0 J3

































ω̇1

ω̇1

ω̇1

















+

















0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

































J1 0 0

0 J2 0

0 0 J3

































ω1

ω1

ω1

















(C.33)

which reduces to Euler’s rotational equations of motion for a rigid body.

M1 = J1ω̇1 − (J2 − J3)ω2ω3

M2 = J2ω̇2 − (J3 − J1)ω1ω3

M3 = J3ω̇3 − (J1 − J2)ω1ω2 (C.34)

These three equations are coupled, nonlinear ordinary differential equations. The

rotational motion of a rigid body can be completely described when Euler’s rotational

equations of motion are combined with the kinematic differential equations from Sec-

tion C.1.
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C.2.2 Stability

Stability is a major concern with satellite control theory. An unstable satellite

may drift away from its operational orbital path, disrupt communications, or waste

excessive fuel and reduce its mission effectiveness. An object near an equilibrium point

is considered stable when small disturbances result in small changes. To understand

stability about an equilibrium point consider a pendulum. Two equilibrium points

exist. One point occurs when the pendulum is pointing straight down and the other

point when the pendulum is pointing straight up. At both equilibrium points the

pendulum will remain motionless if no external forces are applied. However, only one

of these points are stable. A small disturbance applied to the pendulum while pointing

down will cause it to oscillate slightly about its equilibrium point. This configuration is

considered stable. A small disturbance applied to the pendulum while it is pointing up

will cause a large change in its orientation. This point is unstable.

Current theory supports two concepts of stability. The first concept deals with

Lagrange stability. Lagrange stability applies when small disturbances result in bounded

changes. Liapunov stability occurs when an object resting at an equilibrium point

experiences small disturbances and only small changes are detected. Now consider the

pendulum example previously mentioned. When the pendulum is pointing downward it

is considered to be both Liapunov and Lagrange stable. When the pendulum is pointing

straight up, any small change will result in a drastic change in location. Thus, this point

is Liapunov unstable. But the angle of the pendulum is bounded (i.e. it may oscillate

slightly about the equilibrium position) so the system is considered Lagrange stable.

From this it is apparent that a Liapunov stable system is also Lagrange stable but a

Lagrange stable system is not necessarily Liapunov stable.

To test if a linear system is considered stable a concept from control theory is

applied. ”A linear system is said to be stable if and only if the roots of its characteristic
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equation have negative real parts” [44]. This is the same as saying that the real part of

the eigenvalues of the system are only negative. A zero root is considered asymptotically

unstable. A system is asymptotically stable if changes from an equilibrium point result

in returning to the same equilibrium point.

Liapunov developed two theorems to determine if a nonlinear system is stable.

The first theorem states that a nonlinear system is asymptotically stable in a region

near an equilibrium point if and only if its linearized approximation is asymptotically

stable. The second theorem states if a positive definite function can be found such that

its derivative is negative definite the nonlinear system is stable [2]. This function is

often referred to as the Liapunov function. For a more indepth discussion of stability

and methods to determining a Liapunov function refer to [44], pages 113-126.



Appendix D

FalconSAT-3

At the same time CTD was conducting tests on the CoilAble boom, the United

States Air Force Academy (USAFA) was beginning the design phase for their fourth

satellite, FalconSAT-3. The Academy’s Space Systems Research Center (SSRC) sup-

ports the Department of Defense (DoD) Defense Planning Guide mandate to ”establish

and sustain a cadre of space professionals” by providing an opportunity for AFA cadets

to ”learn space by doing space” within a safe, supervised environment. This allows the

cadets to gain real-world, practical experience working with small satellite and launch

systems. Students in the fields of astronautics, physics, math, computer science, and

management are supervised by members of AFA faculty and contractor support in the

research areas of systems engineering, sounding rocket systems, and micro/nanosat sys-

tems.

The FalconSAT-3 spacecraft is a 0.46m cube weighing approximately 50 kg. A

solid model drawing of the current spacecraft is shown in Figure D.1. The spacecraft is

manifested for launch aboard an Atlas V Evolved Expendable Launch Vehicle (EELV)

in October, 2006[207]. While deployed at an altitude of 560km and an inclination of

35.4◦, the spacecraft is designed to provide an on-orbit platform that supports three

DoD experiments: the Flat Plasma Spectrometer (FLAPS), the Plasma Local Anom-

alous Noise Environment (PLANE), and the Micro Propulsion Attitude Control System

(MPACS).
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Figure D.1: A Solid Model Drawing of FalconSAT-3



203

The objective of the FLAPS experiment is to characterize the effects of non-

Maxwellian charged particle distributions on formation, propagation, and decay of

ionospheric plasma bubbles[208]. Successful completion of this objective will support

the validation of the plasma bubble and radio wave scintillation nowcasting and fore-

casting system associated with DoD’s Communication/Navigation Outage Forecasting

System (C/NOFS). The FLAPS experiment will make fine resolution (10%) measure-

ments of ionospheric plasma spectra differential in energy and angle and could support

simultaneous multi-point in situ measurements of a single plasma bubble structure with

another satellite. FLAPS requires FalconSAT-3 to provide ±5◦ attitude control in the

ram direction (2-axis) with attitude knowledge of ±1◦ for post processing of the data.

The PLANE experiment’s objective is to characterize the plasma turbulence in

the space environment surrounding a satellite[209]. PLANE is designed to distinguish

the turbulence in the ambient environment (global effects) from variations in the plasma

population co-moving with the satellite (local effects). PLANE is also capable of quan-

tifying plasma perturbations caused by active systems on the satellite, such as a firing

propulsion system. The experiment does not require state vector data for real time

operations. However, data post processing requirements call for ±20◦ pointing in the

ram direction (2-axis), a rate of change in the pitch and yaw axis of less than 2 deg/sec,

and attitude knowledge of ±3◦.

The MPACS thruster is based on the micro pulsed plasma thruster (mPPT)

developed at Air Force Research Lab’s Propulsion Directorate over the last several

years[210]. A three-electrode version of the mPPT was developed by Busek for advanced

engineering development on the FalconSAT-3 flight (see Figure D.2). Flight heritage of

the Micro Propulsion Attitude Control System (MPACS) thruster is to be established

on FalconSAT-3 in the hopes of demonstrating that the thruster can be used as an

effective actuator as part of a microsatellite ADCS[211]. The experiment’s objective is

to operate MPACS as part of the FalconSAT-3 ADCS for 100 cumulative hours. Data
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Figure D.2: 3-Axis MPACS Cluster

concerning the beginning and end of life performance characteristics, as well as detection

of any adverse operational interactions between MPACS and the satellite, need to be

quantified. To demonstrate attitude stabilization functions, four 3-axis clusters are

mounted on the nadir plate of the satellite (Figure D.3) and one 2-axis cluster is placed

on the tip mass of the gravity gradient boom (Figure D.4)[205].

The attitude determination requirements imposed by the MPACS experiment are

nebulous at best. The calculated moments of inertia of FalconSAT-3 with an opera-

tionally deployed boom are shown in Table D.1. The FalconSAT-3 ADCS design team

are conducting simulation efforts to determine the impact the approximately 100 µ/N

of thrust produced by MPACS will have on effectively controlling the satellite.

FalconSAT-3 is the USAFA’s first attempt at designing a 3-axis stabilized and

controlled spacecraft. Aware of the power and volume limitations inherent with small

satellites, the ADCS team is utilizing both active and passive actuators in the design.

Attitude sensors on the spacecraft consist of four Space Quest model SS-256 (2-axis)

sun sensors and one Billingsley TFM100G2 Fluxgate Magnetometer. Three Space Quest

magnatorque rods (5.0 Am2) provide active control while CTD is developing an EMC

gravity gradient boom for passive control. The EMC longerons will be both the pri-

mary deployment mechanism and the principal structural members of the boom. Al-
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Figure D.3: Four MPACS Clusters on the Nadir Plate of FalconSAT-3

Figure D.4: A 2-Axis MPACS Cluster Attached to the EMC Boom
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Table D.1: Moments of Inertia with Deployed Boom Configuration

MOI kg-m2 lbm-in2 lbf-ft-s2 lbf-in-s2

Ixx 67.40 23.0E4 49.72 596.60

Iyy 67.45 23.1E4 49.74 596.98

Izz 1.31 4.468E3 0.96 11.57

though the application of composite materials has the potential to reduce weight and

improve performance, the cost is experiencing increased deflection and vibration within

the structure[241]. With the flexible characteristics of the boom (1.5 Hz bending fre-

quency and 1.7 Hz torsional frequency) there is great concern of the impact this flexible

structure will have on the control of a small satellite.




