DEVELOPMENT OF A
PHYSIOLOGICALLY BASED
PHARMACOKINETIC MODEL FOR THE
ANESTHETICS HALOTHANE,
ISOFLURANE, AND DESFLURANE IN
THE PIG (SUS SCROFA)

Allen Vinegar
MANTECH-GEO CENTER JOINT VENTURE
PO BOX 31009
DAYTON, OH 45437-0009

August 1999

Human Effectiveness Directorate
Deployment and Sustainment Division
Operational Toxicology Branch
2856 G Street
Wright-Patterson AFB OH 45433-7400

Approved for public release; distribution is unlimited.
NOTICES

When US Government drawings, specifications or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from the Air Force Research Laboratory. Additional copies may be purchased from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical Information Center should direct requests for copies of this report to:

Defense Technical Information Service
8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir, Virginia 22060-6218

DISCLAIMER

This Technical Report is published as received and has not been edited by the Technical Editing Staff of the Air Force Research Laboratory.

TECHNICAL REVIEW AND APPROVAL

AFRL-HE-WP-TR-1999-0236

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE DIRECTOR

STEPHEN R. CHANNEL, Lt Col, USAF, BSC
Branch Chief, Operational Toxicology Branch
Air Force Research Laboratory
The pig has been commonly used in biomedical research studies because of similarities between humans and pigs in various aspects of structure and function. Under consideration is its use for studying the effects of long-term low-level exposure to organophosphates. In spite of the wide use of the pig as an experimental subject there has been no prior attempt to develop a physiologically based pharmacokinetic (PBPK) model to allow linking of external exposure to internal concentrations at sites of effects resulting from xenobiotic exposures. A model was developed with the potential of tracking chemical concentrations in brain, kidney, liver, fat, arterial and venous blood, muscle/skin, and other generally well perfused body organs. As an initial attempt at validating the model, the literature was explored for studies that contained data that were in a form suitable for modeling. Such a study was one in which pigs had been exposed to the anesthetics halothane, isoflurane and desflurane and exhaled concentrations of these chemicals were monitored. These data were used in the initial model validation. The model did an adequate job of simulating the data. Further development and reining of the model will depend on planning actual studies with defined endpoints of interest.
PREFACE

This is one of a series of technical reports describing results of the experimental laboratory programs conducted at the Toxicology Division under the ManTech Geo-Centers Joint Venture contract. This document serves as an interim report on the description of an initial physiologically based pharmacokinetic of the pig. Funding for the work was provided in part by Dr. Harry Salem, SBCCOM/ECBC, Aberdeen Proving Grounds, Maryland. The research described in this report began in September 1998 and was completed in November 1998 under Department of the Air Force Contract No. F41624-96-C-9010. Maj Steve Channel served as the Contracting Officer's Representative for the U.S. Air Force, Air Force Research Laboratory. Darol E. Dodd, Ph.D., served as Program Manager for ManTech Geo-Centers Joint Venture.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>vii</td>
</tr>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II MATERIALS AND METHODS</td>
<td>2</td>
</tr>
<tr>
<td>III RESULTS</td>
<td>6</td>
</tr>
<tr>
<td>IV DISCUSSION</td>
<td>8</td>
</tr>
<tr>
<td>V LITERATURE CITED</td>
<td>9</td>
</tr>
<tr>
<td>APPENDIX A. Model Code</td>
<td>11</td>
</tr>
<tr>
<td>APPENDIX B. Command File for Model</td>
<td>16</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>FIGURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Physiologically Based Pharmacokinetic Model of the Pig (Sus scrofa)</td>
</tr>
<tr>
<td>2</td>
<td>Exhaled Breath Data from Pigs Exposed to Halothane, Isoflurane, and Desflurane</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>Table Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Physiological and Anatomic Parameters and Values</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Chemical-Specific Model Parameters and Values</td>
<td>5</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>ACSL</td>
<td>Advanced Continuous Simulation Language</td>
<td></td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
<td></td>
</tr>
<tr>
<td>PBPK</td>
<td>physiologically based pharmacokinetic</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
<td></td>
</tr>
</tbody>
</table>
SECTION I

INTRODUCTION

The pig has been a common animal for use in biomedical research studies (Tumbleson, 1986). Humans and pigs have similarities in structure and function, which include size, digestive physiology, kidney structure and function, lung vascular bed anatomy, coronary artery distribution, respiratory rates and tidal volumes. It has been used to evaluate chronic and acute exposures to various xenobiotics such as alcohol, caffeine and environmental pollutants. In spite of the apparent usefulness of the pig as a human surrogate for various studies there is currently no physiologically based pharmacokinetic (PBPK) model to link xenobiotic exposure with resulting concentrations at target tissue sites of potential effects resulting from the exposures. This report presents an initial PBPK model for the pig and demonstrates the simulation of exposures to several anesthetic agents.
A PBPK model was developed with the general form of Ramsey and Andersen (1994) but with the addition of brain, kidney, and separate arterial and venous blood compartments. The model was perfusion limited and metabolism was assumed to occur in the liver. Mass balance differential equations were written for each compartment and were solved using ACSL simulation software (Pharsight Corp., Mountain View, CA) operating under WindowsNT (Microsoft Corp., Redmond, WA).

Data on the volumes of physiological compartments and the blood flows to them were taken from several publications (Armstrong et al., 1987; Denac et al., 1977; Doornenbal et al., 1986; Friedman et al., 1994; Lundeen et al., 1983; Mehta et al., 1997; Tranquilli et al., 1982; Tumbleson et al., 1970; Verbrugghe et al., 1982). The major sources for each parameter are indicated in Table 1.

Tissue partition coefficients (Table 2) and pharmacokinetic data used for model development and validation come from Yasuda et al. (1990), where details of collection were described. Briefly, five young healthy female swine (3-4 months old; 20 ± 2 [mean ± SD] kg) were exposed to a mixture of 3.0% desflurane, 0.5% sevoflurane, 0.4% isoflurane, and 0.2% halothane, balance 40% O2/60% N2. Exposure occurred for 30 min using a controlled-ventilation nonrebreathing system. End-tidal samples were taken periodically during the 30-min exposure and for up to 3400 min post-exposure. Samples were analyzed for anesthetic concentrations using gas chromatography.
Figure 1 – Physiologically Based Pharmacokinetic Model of the Pig (*Sus scrofa*). Abbreviations: CA, arterial concentration; CX, exhaled concentration; CI, inhaled concentration; CV, venous concentration; CVBR, venous brain concentration; CVK, venous kidney concentration; CVL, venous liver concentration; CVR, venous richly perfused concentration; CVS, venous muscle/skin concentration; CVF, venous fat concentration; QP, alveolar ventilation; QC, cardiac output; QBR, brain blood flow; QK, kidney blood flow; QL, liver blood flow; QR, Richly perfused blood flow; QS, Muscle/skin blood flow; QF, fat blood flow; PxA, tissue/air partition coefficient.
TABLE 1. PHYSIOLOGICAL AND ANATOMIC PARAMETERS AND VALUES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (kg)</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Volumes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle/Skin (% of body weight)</td>
<td>0.48(^7)</td>
</tr>
<tr>
<td>Fat (% of body weight)</td>
<td>0.23(^2)</td>
</tr>
<tr>
<td>Richly perfused (% of body weight)</td>
<td>0.084(^1)</td>
</tr>
<tr>
<td>Liver (% of body weight)</td>
<td>0.025(^3,4,7)</td>
</tr>
<tr>
<td>Kidney (% of body weight)</td>
<td>0.003(^3,4)</td>
</tr>
<tr>
<td>Brain (% of body weight)</td>
<td>0.004(^7)</td>
</tr>
<tr>
<td>Lung (% of body weight)</td>
<td>0.004(^7)</td>
</tr>
<tr>
<td>Arterial blood (% of body weight)</td>
<td>0.033(^1)</td>
</tr>
<tr>
<td>Venous blood (% of body weight)</td>
<td>0.066(^1)</td>
</tr>
</tbody>
</table>

Flows

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alveolar ventilation rate (liter/hr/kg)</td>
<td>20.0(^5,8)</td>
</tr>
<tr>
<td>Cardiac output (liter/hr/kg)</td>
<td>20.0(^9)</td>
</tr>
<tr>
<td>Muscle/Skin (% of cardiac output)</td>
<td>0.25(^1)</td>
</tr>
<tr>
<td>Fat (% of cardiac output)</td>
<td>0.05(^10)</td>
</tr>
<tr>
<td>Richly perfused (% of cardiac output)</td>
<td>0.34(^1)</td>
</tr>
<tr>
<td>Liver (% of cardiac output)</td>
<td>0.23(^4,6)</td>
</tr>
<tr>
<td>Kidney (% of cardiac output)</td>
<td>0.12(^4,6)</td>
</tr>
<tr>
<td>Brain (% of cardiac output)</td>
<td>0.01(^4,6)</td>
</tr>
</tbody>
</table>

\(^1\) Armstrong et al. (1987)
\(^2\) Doornebal et al. (1986)
\(^3\) Friedman et al. (1994)
\(^4\) Lundeen et al. (1983)
\(^5\) Mehta et al. (1997)
\(^6\) Tranquilli et al. (1982)
\(^7\) Tumbelson et al. (1970)
\(^8\) Verbrugghe et al. (1982)
\(^9\) Set equal to ventilation
\(^10\) 100 – other flows
Table 2. CHEMICAL-SPECIFIC MODEL PARAMETERS AND VALUES

<table>
<thead>
<tr>
<th>Chemical Parameter</th>
<th>Halothane</th>
<th>Isoflurane</th>
<th>Desflurane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular weight (g/mol)</td>
<td>197.39</td>
<td>184.5</td>
<td>168.0</td>
</tr>
<tr>
<td>V_{max}, max. metabolic rate (mg/h/kg)</td>
<td>7.4</td>
<td>0.074</td>
<td>0.0074</td>
</tr>
<tr>
<td>K_m, affinity constant (mg/L)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Blood:air partition coefficient</td>
<td>2.54</td>
<td>0.94</td>
<td>0.35</td>
</tr>
<tr>
<td>Lung:air partition coefficient</td>
<td>4.57</td>
<td>2.26</td>
<td>0.56</td>
</tr>
<tr>
<td>Brain:air partition coefficient</td>
<td>4.32</td>
<td>1.88</td>
<td>0.49</td>
</tr>
<tr>
<td>Kidney:air partition coefficient</td>
<td>3.30</td>
<td>1.50</td>
<td>0.39</td>
</tr>
<tr>
<td>Liver:air partition coefficient</td>
<td>4.57</td>
<td>2.26</td>
<td>0.56</td>
</tr>
<tr>
<td>Richly perfused:air partition coefficient</td>
<td>4.57</td>
<td>2.26</td>
<td>0.56</td>
</tr>
<tr>
<td>Slowly perfused:air partition coefficient</td>
<td>4.57</td>
<td>2.26</td>
<td>0.42</td>
</tr>
<tr>
<td>Fat:air partition coefficient</td>
<td>129.54</td>
<td>53.58</td>
<td>9.8</td>
</tr>
</tbody>
</table>

1 Metabolic constants are taken from Vinegar and Jepson (1998) and partition coefficients come from Yasuda et al. (1990)
SECTION III
RESULTS

Simulations and data of exhaled breath of pigs exposed to halothane, isoflurane and desflurane are shown in Figure 2. The left-hand column depicts the half-hour of exposure and the first half-hour post-exposure. Results extending to 50 hours (48 hours post-exposure) are shown in the right-hand column. Exhaled breath is expressed as an inhalation ratio which during exposure is the ratio of exhaled alveolar concentration to inhaled concentration, post exposure data are expressed as the ratio of exhaled alveolar concentration to the alveolar concentration immediately prior to reverting to air only breathing. At the half-hour point the exhalation ratio becomes one as represented by the blip seen in the simulation at that time.
Figure 2 – Exhaled Breath Data From Pigs Exposed To Halothane, Isoflurane, And Desflurane. Continuous lines represent simulations while individual points represent actual data.
SECTION IV

DISCUSSION

The structure of the model included several compartments that are not normally included in an initial PBPK model: brain, kidney, separate arterial and venous blood compartments. Attempting to find representative values for the volumes of the compartments and blood flows to them presented a challenge because of the diversity of the data available in the literature. No one paper provided all the information. Therefore it was necessary to go to multiple sources and piece together representative values. Multiple factors contributed to apparent inconsistencies between data sets: strain of pig, size, age, anesthetized vs. awake, methodology for determining weights and blood flows. Given that the values assigned to the physiological and anatomic constants represent a first approximation the data are reasonably well represented by the simulations. Clearly, improvements could be made if specific information were available on the actual pigs from which the pharmacokinetic data were collected. As the studies are being designed for which the pigs will ultimately be used it will be useful to determine the appropriate weights and blood flows on those particular animals. This will make the model more useful for conducting meaningful simulations of long term effects.
SECTION V

LITERATURE CITED

APPENDIX A – MODEL CODE

PROGRAM: PHYSIOLOGICAL PHARMACOKINETIC MODEL – WITH DATA 'PIG.CSL with separate blood, brain and kidney compartments'

Miscellaneous

Timing commands

CONSTANT TSTOP=24. $ 'Length of experiment (hr)'
CONSTANT TCHNG=6. $ 'Length of inhalation exposure (hr)'
CONSTANT TINF=.01 $ 'Length of IV infusion (hr)'
CONSTANT POINTS=10000. $ 'Number of simulated data points in plot'

CINT=TSTOP/POINTS $ 'Communication interval (hr)'

Physiological Parameters

CONSTANT KS=100000. $ 'Suppression rate constant (mg/L)'
CONSTANT BW=20.0 $ 'Body weight (kg) {or L where 1 L/kg}'
CONSTANT QPC=20. $ 'Alveolar ventilation (L/hr/kg BW)'
CONSTANT QCC=20. $ 'Cardiac output (L/hr/kg BW)'
CONSTANT QLC=0.23 $ 'Proportion cardiac output to liver'
CONSTANT QFC=0.05 $ 'Proportion cardiac output to fat'
CONSTANT QRC=0.34 $ 'Proportion cardiac output to rapid'
CONSTANT QSC=0.25 $ 'Proportion cardiac output to slow'
CONSTANT QBRC=0.01 $ 'Proportion cardiac output to brain'
CONSTANT QKC=0.12 $ 'Proportion cardiac output to kidney'
CONSTANT VLUC=.004 $ 'Lung volume (L/L BW)'
CONSTANT VLC=0.025 $ 'Liver volume (L/L BW)'
CONSTANT VRC=0.084 $ 'Rapid volume (L/L BW)'
CONSTANT VSC=0.48 $ 'Slow volume (L/L BW)'
CONSTANT VFC=0.23 $ 'Body fat volume (L/L BW)'
CONSTANT VBRC=0.004 $ 'Brain volume (L/L BW)'
CONSTANT VKC=0.003 $ 'Kidney volume (L/L BW)'
CONSTANT VVBC=0.066 $ 'Volume of venous blood (L/L BW)'
CONSTANT VABC=0.033 $ 'Volume of arterial blood (L/L BW)'

Toxicant

CONSTANT CONC=1000. $ 'Inhaled concentration (ppm)'
CONSTANT MW=152.93 $ 'Molecular weight (g/mol)'
CONSTANT VMAXC=8.83 $ 'Michaelis-Menten Vmax (mg/hr/kg BW)'
CONSTANT KM=0.70 $ 'Michaelis-Menten Km (mg/L)'
CONSTANT KFC=0 $ 'First order metabol. rate constant (/hr-1kg)'

CONSTANT PLA=3.29 $ 'Liver/air partition coefficient'
CONSTANT PFA=70.27 $ 'Fat/air partition coefficient'
CONSTANT PSA=2.13 $ 'Slowly perfused tissues/air part. coefficient'
CONSTANT PLUA=2.13 $ 'Lung/air partition coefficient'
CONSTANT PRA=3.29 $ 'Richly perfused tissues/air part. coefficient'
CONSTANT PKA=3.3 $ 'Kidney/air part. coefficient'
CONSTANT PBRA=4.32 $ 'Brain/air partition coefficient'
CONSTANT PB=3.17 $ 'Blood/air partition coefficient'

PL=PLA/PB $ 'Liver/blood partition coefficient'
PF=PFA/PB $ 'Fat/blood partition coefficient'
PS=PSA/PB $ 'Slowly perfused tissues/blood part. coefficient'
PLU=PLUA/PB $ 'Lung/blood partition coefficient'
PR=PRA/PB $ 'Richly perfused tissues/blood part. coefficient'
PBR=PBRA/PB $ 'Brain/blood partition coefficient'
PK=PKA/PB $ 'Kidney/blood partition coefficient'

Exposure definition

CONSTANT PDOSE=0. $ 'Oral dose (mg/kg)'
CONSTANT KA=5.0 $ 'First-order oral uptake rate (1/hr)'
CONSTANT IVDOSE=0. $ 'IV dose (mg/kg)'
IF (PDOSE.EQ.0.) KA=0. $ 'If no oral dose set absorption rate to 0'

Scaled and other derived parameters

QP=QPC*BW**0.75 $ 'Alveolar ventilation rate (L/hr)'
QC=QCC*BW**0.75 $ 'Cardiac output (L/hr)'
QL=QLC*QC $ 'Blood flow to liver (L/hr)'
QF=QFC*QC $ 'Blood flow to fat (L/hr)'
QS=QSC*QC $ 'Blood flow to slowly perfused tissue (L/hr)'
QR=QRC*QC $ 'Blood flow to rapidly perfused tissue (L/hr)'
QK=QKC*QC $ 'Blood flow to kidney (L/hr)'
QBR=QBRC*QC $ 'Blood flow to brain (L/hr)'
VL=VLC*BW $ 'Volume liver (L)'
VF=(2.59*bw**2+41*bw-248)/1000 $ 'Volume fat (L)'
VF=VFC*BW
VS=VSC*BW $ 'Volume slowly perfused tissue (L)'
VLU=VLUC*BW $ 'Volume lung (L)'
VR=VRC*BW $ 'Volume rapidly perfused tissue (L)'
VK=VKC*BW $ 'Volume kidney (L)'
VBR=VBRC*BW $ 'Volume brain (L)'

12
VVB=VVBC*BW \quad \text{'Volume venous blood (L)'}
VAB=VABC*BW \quad \text{'Volume arterial blood (L)'}

VMAX=VMAXC*BW^{0.75} \quad \text{'Vmax for toxicant (mg/hr)'}
KF=KFC/BW^{0.25} \quad \text{'First-order metabolism of toxicant (1/hr)'}

Cl=CONC*MW/24450. \quad \text{'Concentration in inhaled air (mg/L)'}
DOSE=PDOSE*BW \quad \text{'Oral dose (mg)'}
IVR=IVDOSE*BW/TINF \quad \text{'Rate intravenous dosing (mg/hr)'}

cxmax=0

\text{END} \quad \text{'End of initial'}

\text{DYNAMIC}

\text{DERIVATIVE}

\text{**Condition for termination of run**} \quad \text{TERMT(T.GE.TSTOP)}

\text{Minute}=t*60

\text{**TOXICANT EXPOSURE**}

\text{**Inhalation exposure**}

\text{CIZONE}=RSW((T.LT.TCHNG),1.,0.) \quad \text{'Exposure switch, 0 or 1'}
\text{RAI}=QP*Cl \quad \text{'Rate of inhalation (mg/hr)'}
\text{AI}=\text{INTEG}(RAI,0.) \quad \text{'Amount inhaled (mg)'}
\text{Cl}=RSW((T.LT.TCHNG),CONC*MW/24450.,0000000000000001)
\quad \text{'Concentration inhaled (mg/L)'}
\text{Cl}=CONC*MW/24450.*cizone \quad \text{'Concentration of toxicant (mg/L)'}
\text{CONSTANT CXEND}=5.39105988

\text{if(cx.gt.cxmax) then}
\text{cxmax=cx}
\text{else}
\text{cxmax=cxmax}
\text{end if}

\text{CXON2}=RSW((T.LT.TCHNG),(CX/Cl),CX/CXEND)
!CXON2=RSW((T.LT.TCHNG),(CX/Cl),CX/CXMAX)

\text{**Oral dose**}

\text{RMR}=-KA*MR \quad \text{'Rate of change of amount in stomach (mg/hr)'}
\text{MR}=DOSE*\text{EXP}(-KA*T) \quad \text{'Amount of toxicant in stomach (mg)'}
RAO=KA*MR $ 'Rate absorption from stomach into blood (mg/hr)'
AO=DOSE-MR $ 'Amount of dose absorbed (mg)'

*** Intravenous dosing ***
IV=IVR*(1.-STEP(TINF)) $ 'Dose rate (mg/hr)'

*** TOXICANT PHARMACOKINETICS ***

*** Toxicant mass balance ***
TMASS=AAB+AVB+AF+AL+AS+ALU+AR+AK+ABR+AM+AX+MR $ 'Total dose (mg)'
DOSEX=AI+AO+IVR*TINF-AX $ 'Net amount absorbed (mg)'
Massba=ai-tmass

*** Toxicant exhaled ***
CX=CVLU/PB $ 'Exhaled alveolar conc. (mg/L)'
CXPPM=(0.7*CX+0.3*CI)*24450./MW $ 'Exhaled breath conc. (ppm)'
RAX=QP*CX $ 'Rate of exhalation (mg/hr)'
AX=INTEG(RAX,O.) $ 'Amount exhaled (mg)'

*** Toxicant in arterial blood ***
RAAB=QC*(CVLU-CA) $ 'Rate of change (mg/hr)'
AAB=INTEG(RAAB,O.) $ 'Amount (mg)'
CA=AAB/VAB $ 'Concentration (mg/L)'

*** Toxicant in venous blood ***
RAVB=QF*CVF+QL*CVL+QS*CVS+QR*CVR+QK*CVK+QBR.CVBR-QC*CV+IV 'Rate of change (mg/hr)'
AVB=INTEG(RAVB,O.) $ 'Amount (mg)'
CV=AVB/VVB $ 'Concentration (mg/L)'

*** Toxicant in lung ***
RALU=QC*(CV-CVLU)+QP*(Cl-CVLU/PB) $ 'Rate of change (mg/hr)'
ALU=INTEG(RALU,O.) $ 'Amount (mg)'
CVLU=ALU/VLU/PLU $ 'Concentration (mg/L)'

*** Toxicant in slowly perfused tissues ***
RAS=QS*(CA-CVS) $ 'Rate of change (mg/hr)'
AS=INTEG(RAS,O.) $ 'Amount (mg)'
CS=AS/VS $ 'Concentration (mg/L)'
CVS=CS/PS $ 'Concentration in venous outflow (mg/L)'

*** Toxicant in fat ***
RAF=QF*(CA-CVF) $ 'Rate of change (mg/hr)'
AF=INTEG(RAF,O.) $ 'Amount (mg)'
CF=AF/VF $ 'Concentration (mg/L)'

14
CVF=CF/PF $ 'Concentration in venous outflow (mg/L)'

Toxicant in rapidly perfused tissues
RAR=QR*(CA-CVR) $ 'Rate of change (mg/hr)'
AR=INTEG(RAR,0.) $ 'Amount (mg)'
CR=AR/VR $ 'Concentration (mg/L)'
CVR=CR/PR $ 'Concentration in venous outflow (mg/L)'

Toxicant in kidney
RAK=QK*(CA-CVK) $ 'Rate of change (mg/hr)'
AK=INTEG(RAK,0.) $ 'Amount (mg)'
CK=AK/VK $ 'Concentration (mg/L)'
CVK=CK/PK $ 'Concentration in venous outflow (mg/L)'

Toxicant in brain
RABR=QBR*(CA-CVBR) $ 'Rate of change (mg/hr)'
ABR=INTEG(RABR,0.) $ 'Amount (mg)'
CBR=ABR/VBR $ 'Concentration (mg/L)'
CVBR=CBR/PBR $ 'Concentration in venous outflow (mg/L)'

Toxicant in liver
RAL=QL*(CA-CVL)-RAM+RAO $ 'Rate of change (mg/hr)'
AL=INTEG(RAL,0.) $ 'Amount (mg)'
CL=AL/VL $ 'Concentration (mg/L)'
CVL=AL/(VL*PL) $ 'Concentration in venous outflow (mg/L)'
AUCL=INTEG(CL,0.) $ 'Tissue dose (mg-hr/L)'

Toxicant metabolism in liver
RAM=(VMAX*CVL)/(KM+CVL*(1+CVL/KS))+KF*CVL*VL $ 'Rate (mg/hr)'
AM=INTEG(RAM,0.) $ 'Amount (mg)'

END $ 'End of derivative'

'---'

'Dynamic'

END $ 'End of dynamic'

'---'

END $ 'End of program'
APPENDIX B – COMMAND FILE FOR MODEL

'The following results are from experiments'
'reported in Yasuda, N., A.G. Targ, E.I. Eger II,'
'B.H. Johnson, and R.B. Weiskopf.'
'Pharmacokinetics of desflurane, sevoflurane, isoflurane, and halothane'

PREPAR 'ALL'

SET CINT=.0001,TSTOP=.5,TCHNG=.5

PROCED ISOFLUR
SET PB=0.94,PLA=2.26,PRA=2.26,PSA=2.26,PFA=53.58,PLUA=2.26
SET PKA=1.50,PBRA=1.88
SET MW=184.5
SET VMAXC=.74,KM=.1,KFC=0.0,KS=100000.
END

PROCED HALO
SET PB=2.54,PLA=4.57,PRA=4.57,PSA=4.57,PFA=129.54,PLUA=4.57
SET PKA=3.30,PBRA=4.32
SET MW=197.39
SET VMAXC=7.4,KM=0.1,KFC=0.0,KS=18.1
END

PROCED DES
SET PB=.35,PLA=.56,PRA=.56,PSA=.42,PFA=9.8,PLUA=0.56
SET PKA=0.39,PBRA=0.49
SET MW=168.
SET VMAXC=0.0074,KM=.1,KFC=0.0,KS=100000
END

PROC PIGISO
ISOFLUR
SET TITLE='Pig, ISOFLURANE'
SET BW=20,CONC=4000.
END

DATA PIGISO &
(T, MINUTE, CXON2)
0.0 0.0 0.0
0.017 1.0 0.482
<table>
<thead>
<tr>
<th>T</th>
<th>MINUTE</th>
<th>CXON2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>3.0</td>
<td>0.575</td>
</tr>
<tr>
<td>0.083</td>
<td>5.0</td>
<td>0.664</td>
</tr>
<tr>
<td>0.167</td>
<td>10.0</td>
<td>0.741</td>
</tr>
<tr>
<td>0.333</td>
<td>20.0</td>
<td>0.800</td>
</tr>
<tr>
<td>0.5</td>
<td>30.0</td>
<td>0.823</td>
</tr>
<tr>
<td>0.517</td>
<td>31.0</td>
<td>0.308</td>
</tr>
<tr>
<td>0.550</td>
<td>33.0</td>
<td>0.198</td>
</tr>
<tr>
<td>0.583</td>
<td>35.0</td>
<td>0.169</td>
</tr>
<tr>
<td>0.667</td>
<td>40.0</td>
<td>0.106</td>
</tr>
<tr>
<td>0.833</td>
<td>50.0</td>
<td>0.064</td>
</tr>
<tr>
<td>1.0</td>
<td>60.0</td>
<td>0.047</td>
</tr>
<tr>
<td>4.662</td>
<td>280.0</td>
<td>0.00519</td>
</tr>
<tr>
<td>9.092</td>
<td>546</td>
<td>0.00224</td>
</tr>
<tr>
<td>12.333</td>
<td>740</td>
<td>0.00138</td>
</tr>
<tr>
<td>19.138</td>
<td>1148</td>
<td>0.00062</td>
</tr>
<tr>
<td>25.693</td>
<td>1542</td>
<td>0.00036</td>
</tr>
<tr>
<td>32.189</td>
<td>1931</td>
<td>0.00021</td>
</tr>
<tr>
<td>38.906</td>
<td>2334</td>
<td>0.00018</td>
</tr>
<tr>
<td>45.479</td>
<td>2729</td>
<td>0.00013</td>
</tr>
</tbody>
</table>

PROC PIGDES
DES
SET TITLE='Pig, DESFLURANE'
SET BW=20, CONC=30000.
END

DATA PIGDES &
(T, MINUTE, CXON2)
0.0 0.0 0.0
0.017 1.0 0.656
0.05 3.0 0.772
0.083 5.0 0.830
0.167 10.0 0.889
0.333 20.0 0.915
0.5 30.0 0.927
0.517 31.0 0.211
0.550 33.0 0.114
0.583 35.0 0.091
0.667 40.0 0.048
0.883 50.0 0.03
1.0 60.0 0.021
4.644 279 0.00153
9.119 547 0.00054
12.262 736 0.0003
19.075 1145 0.00011
25.685 1541 0.00006
32.160 1930 0.00003
38.864 2332 0.00002
45.441 2726 0.00001
END

PROC PIGHAL
HALO
SET TITLE='Pig, HALOTHANE'
SET BW=20,CONC=2000.
END

DATA PIGHAL &
(T, MINUTE, CXON2)
0.0 0.0 0.0
0.017 1.0 0.294
0.05 3.0 0.363
0.083 5.0 0.433
0.167 10.0 0.506
0.333 20.0 0.567
0.5 30.0 0.613
0.517 31.0 0.389
0.550 33.0 0.302
0.583 35.0 0.258
0.667 40.0 0.175
0.833 50.0 0.111
1.0 60.0 0.082
4.744 285 0.00935
9.118 547 0.00441
12.380 743 0.00277
19.055 1143 0.00141
25.719 1543 0.0008
32.205 1932 0.00052
38.892 2333 0.00047
45.562 2734 0.00028
END

SET NPCCPL=100000
SET WESITG=.F.,GRDCPL=.F.