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PREFACE

This workbook is a result of a growing awareness on the part of the

Ship Production Committee’s SP-9 Education Panel that both the Deming

philosophy of modern management and statistics should be used more ex-

tensively in the United States shipbuilding industry. The workbook was

written as a supplement to four educational videotapes on: the Deming

philosophy of management, the statistical control chart, statistics for

discrete random experiments, and statistics for continuous random

experiments. Although the workbook is self-contained, it is recommended

that the four educational m~dules be viewed prior to reading the

workbook. The educational modules present the subject matter in a less

mathematical way and with a slightly different viewpoint. They should,

therefore, provide a basic introduction which will assist you in reading

the workbook.

The workbook is designed to reach a wide variety of people with a

range of educational backgrounds. For the person who is interested in

only an overview of the subject matter, the authors recommend that only

Chapter 1 be studied. For

tics and to understand the

it is recommended that the

those who wish to learn the basics of statis-

theory behind the statistical control chart,

entire workbook be studied.
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1. INCENTIVES FOR LEARNING STATISTICS -

THE DEMING APPROACH TO MODERN MANAGEMENT

AND THE STATISTICAL CONTROL CHART

1.1 The Deming Philosophy of Modern Management

In 1950, at the invitation of the Japanese Union of Science and

Engineering, Dr. W. Edwards Deming introduced to Japanese industrialists

his approach to modern management. Since that time Dr. Deming has

demonstrated repeatedly that

tions, both large and small,

Dr. Deming is being referred

third wave of the industrial

his philosophy works and that all organiza-

can benefit from the approach. As a result

to by many individuals as the father of the

revolution. The first wave involved the

use of factories and modern machinery (e.g., Eli Whitney); the second

wave dealt with mass production (e.g., Henry Ford); and the third wave

is characterized by the use of statistical methods to improve quality

(e.g., W. Edwards Deming). In his series of videotapes and in his

textbook [11 it is stated repeatedly that quality is the responsibility

of everyone in the organization and that quality must be led by

management. A specific approach for implementing the Deming philosophy

of modern management is described in a recent series of videotapes by

Dr. Myron Trybus [2]. “Management’s Five Deadly Diseasesn and “Roadmap

for Change," two videotapes produced by the Encyclopedia Britannica

Educational Corporation [3][4], provide an excellent introduction to the

Deming approach to modern management and give a case study on its

implementation. These tapes should be viewed by individuals at every

level of management and by every worker.

1
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In the Deming approach managers must take the position that an im-

provement in quality will lead to an increase in productivity and to a

decrease in costs. This position is directly opposite to traditional

thinking, in which managers assumed that higher quality could be

achieved only by decreasing productivity and by increasing costs.

In a modern quality assurance program it is assumed that the cus-

tomer is the ultimate judge of quality and that the hidden cost of poor

quality must be taken into account. When a company manufactures a

product of poor

o The

o The

quality, one of two situations is encountered:

customers don’t complain and they go

product comes back but the custaners

elsewhere, or,

don’t.

Managers who fail to take into account the hidden cost of poor

quality are considered by Dr. Deming to have one of the five major dis-

eases of management. The quality of the process, which includes product

design, materials, and production systems, can be evaluated more clearly

by management. Furthermore, with leadership by management, the quality

of the process can be

only if everyone in the

becomes an inspector;

controlled and improved. This can be achieved

organization understands the system; if everyone

and if everyone down the line is treated as a

customer. Management must lead the way to improve the system and to

achieve the ultimate objective of producing a product without any final

inspection.
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walking around” (MBWA). From the chief executive officer down to the

production supervisor, MBWA must become the way of doing business. This

approach requires major changes in the attitudes of everyone. Corporate

executives will be required to develop a corporate goal statement in

which quality is emphasized and nunerical goals related to growth and

profit are de-emphasized. The corporate goal statement should become a

document that all people in the organization can support with

enthusiasm.

Those who practice MBWA will be responsible for locating and

eliminating all barriers to quality and productivity. One of these bar-

riers is the production quota. In the Dening approach all production

quotas are considered to be detrimental to the task of improving quality

and productivity. Similarly, the imposition of higher quality standards

(e.g., zero defects) without any change in the system is considered to

be unacceptable practice. Artificial quality standards, production

quotas, and performance evaluation based on annual dividends and profit,

all cr eate an environment in which the worker and management are afraid

to do the job. Fear is considered to be a major barrier to improved

quality and productivity. In MBWA, the manager?s job is to identify all

situations which create fear and to change the system to eliminate fear.

Creativity, responsibility, risk taking, and honest communication are

all reduced by fear and,

tive impact on quality.

several companies over a

upward mobility. This

as a result, fear is considered to have a nega-

In the past, managers who gained experience at

short period of time were considered to have

practice created managers who were unfamiliar
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tice of

emphasis
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sytem they were assigned to manage. It also enhanced the prac-

management by objectives with annual merit rating and an

on short-term profits. Mobility, annual merit rating, and em-

phasis on short-term profits are considered

more of the five major diseases of management.

Another major barrier to improved quality

in the traditional practice of purchasing from

by Dr. Deming to be three

and productivity is found

suppliers who provide the

lowest bid. In the Deming philosophy modern managers must make a

sincere effort to reduce the nunber of suppliers and to do business with

only those who can demonstrate a dedication to quality. In this ap-

proach the purchasing agent becomes directly involved and specifications 

to suppliers are written to emphasize quality.

Production quotas and fear are two factors that interfere

pride of workmanship. In the Deming philosophy modern managers

With

must

identify all factors that have a negative effect on pride of

workmanship. These factors must be eliminated and an environment must

be created to enhance pride of workmanship.

Dr.

1.

2.

3.

4.

Deming's approach

Create constancy
and service, with
in business.

is characterized by the following 14 points:

of pur pase toward improvement of product
a plan to become competitive and to stay

Adopt the new philosophy. We are in a new economic age.
We can no longer live with commonly accepted levels of
delays, mistakes, defective materials, and defective
workmanship.

Cease dependence on mass inspection. Require, instead,
statistical evidence that quality is built in, to
eliminate need. for inspection on a mass basis. Purchasing
managers have a new job, and must learn it.

End the practice of awarding business on the basis
price tag. Instead, depend on meaningful measures

of
of
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quality, along with price. Eliminate suppliers that can-
not qualify with statistical evidence of quality.

5. Find problems. It is management’s job to work continually
on the systan (design, incoming materials, composition of
material. , maintenance, improvement of machine, training,
supervision, retraining).

6. Institute modern methods of training on the job.

7. Institute modern methods of supervision of production
workers. The responsibility of foremen must be changed
from sheer numbers to quality. Improvement of quality
will automatically improve productivity. Management must
prepare to take immediate action on reports fran foremen
concerning barriers such as inheri ted defects, machines
not maintained, poor tools, fuzzy operational definitions.

8 . Drive out fear, so that everyone may work effectively for
the company.

9. Break down barriers between departments. People in re-
search, design, sales, and production must work as a team,
to foresee problems of production that may be encountered
with various materials and specifications.

10. Eliminate numerical goals, posters, and slogans for the
work force, asking for new levels of productivity without
providing methods.

11. Eliminate work standards that prescribe numerical quotas.

12. Remove barriers that stand between the hourly worker and
his right to pride of workmanship.

13. Institute a vigorous program of education and retraining.

14. Create a structure in top management that will push every
day on the above 13 points.

The Deming approach to modern management is being recognized as a

positive step in the future of the U.S. shipbuilding industry. This

workbook is a result of that recognition. It is designed to teach

statistics with examples frcm the shipbuilding industry and to use the

principles of statistics to explain the concept of a statistical control

chart.
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The ultimate objective of this workbook is to give those in-

dividuals who plan to use statistical methods in the shipbuilding

industry a practical level of understanding of a widely used graphical

technique called the statistical control chart. The authors of this

workbook believe firmly that a sound level of understanding of the

statistical control chart can be developed only after the student is ex-

posed to an extensive introduction to basic concepts in statistical

methods. For this reason the workbook is devoted almost entirely to

basic concepts of statistical analysis. After the student develops an

understanding of basic statistics, the control chart can then be under-

stood without any difficulty as a straightforward application of

statistical methods.

In order to provide the incentive for learning basic statistics

and, for those individuals who are interested in a basic introduction to

statistical control charts, the concept of a control chart is discussed

in this section of the workbook in a non-mathematical way.

1.2 Statistical Control Charts

In a broad sense a statistical control chart is a graphical tech-

nique for monitoring, periodically, an operating system in the shipyard

to determine, quickly, if something out of the ordinary has taken place.

It is a tool that provides basic information to someone who has the

authority to take corrective action when information is received to in-

dicate that something is going wrong. The control chart, when used

properly, gives the decision maker the signal that something is going

wrong. It should be understood that the control chart, when used in a
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modern and progressive quality assurance program, is not a

taking punitive action against a worker. The statistical

is only a technique for monitoring an operating system and

technique for

control chart

to give some

decision maker (hopefully the worker) a signal to take corrective

action. The corrective action may include an adjustment to the operat-

ing system; the institution of a special training program; a complete

change in the operating system; a heart-to-heart discussion with

vendors; etc. It should also be emphasized that a statistical control

chart can be used in a variety of

billing, secretarial services,

ping, incoming supplies, welding,

situations, which include accounting,

production systems, engineering, ship-

cutting, pipe construction, electrical

systems, fabrication, painting, etc. The list of applications will in-

crease as more and more individuals from different departments are

exposed to the technique. You should keep in mind as you are exposed to

the concept of a statistical control chart that numerous types of con-

trol charts are used in a progressive program to apply statistical

methods. In this introduction you will only be exposed to a small 

sample of the overall picture. Without a sound knowledge of basic

statistics, you will not understand the details of the control chart.

You should, however, develop an understanding of the significance of the

control chart and you should begin to see its areas of application.

In order to illustrate the basic concept of a control chart, we

begin with an example:

Suppose we have

monitor its behavior.

the following operating system and that we wish to



The operating system

At exactly 12 noon

cafeteria. Each day with

each working day you eat at the shipyard

your main course you order a side dish of peas

and carrots and, since You 1ike peas but are partial to carrots, you

decide to monitor the average nuuber of carrots over a five-day period.

The basic characteristics of the operating system

First of all you imagine the scoop of peas and carrots you receive

each day as a random experiment where the variable of interest is the

number of carrots. Each day this experiment is repeated under essen-

tially the same conditions and has a variable outcome, namely, the

number of carrots. Each day you

colleagues as you count the nunber

cept the challenge. The random

might appear somewhat strange to your

of carrots, but you nevertheless ac-

variation in the nunber of carrots is

scmething you have to live with-it’s part of the system--you must learn

to cope with the situation.

The monitoring system

Each day you count the number of carrots and, after a five-day

period on Friday after lunch, you determine the average number of

carrots. After the first eight weeks you see the results which are

given in Figure 1-1.

This example represents a typical operating system which is being

monitored by a graphical display. The characteristics of the operating

system are:

1. A random outcome (number of carrots)
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5

4

Average Number3
of carrots

2

1

0
1 2 3 4 5 6 7

Week Number

Number of Carrots - 8 Weeks
FIGURE 1-1

8



2. Repeatability under essentially the

3. No control over the random outcome,

4. A variable (the average number of

11

same conditions

and

carrots ) to be computed and

If the

expect

plotted at specific points in time (e.g., end of each week).

operating system is in a "state of statistical control” you would

the average nunber of carrots to bounce around some line that you

could draw on your graphical display. For example, if you observed this

system over a long period of time, say 20 weeks, and if it showed a pat-

tern similar to the one in Figure 1-2, YOU might compute the average of

the 20 average values and use that value as the sol id line shown in

Figure 1-2. By this exercise you have established a base line for a

system which appears to be operating in a state of statistical control.

Now

analysis

monitor

assume that you are satisfied with your first 20 weeks of

and, using the base line you have established, you decide to

the system starting all over again with the end of next week as

week nunber one. Suppose that after the next seven weeks you observe

the situation shown in Figure 1-3. For the first three or four weeks

the systan appears to be bouncing around the way it did before. In

weeks 5, 6, and 7, however, something strange is happening. If you like

carrots yoIR’ graphic display is sending you a signal that you might not

like. From your point of view the signal is suggesting that sane cor-

rective action is necessary.

may have to train the person

ferent manner. Then again,

Perhaps you might talk to the chef or you

who is doing the scooping to work in a dif-

at this point you might argue that what

happened over weeks 5, 6, and 7 is perfectly natural and you should do

nothing. You then say, "Wouldn’t it be great if, in addition to the

center 1ine, I could draw on the graph two other lines--one above the
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center line and one below the center line in such a way that when the

operating system is in control any average value has a very high chance

of falling between the upper line and the lower line.” At this point

you consult your local mystic, who suggests that you can meet your ob-

jective by using the lines shown in Figure 1-4. You now replot your

average values for the seven weeks on this new graphic display and

produce the results shown in Figure 1-5. At this point with your new

graphic display you now have a more powerful tool to monitor the system.

You can now argue that because of the way the chart was constructed,

averages observed at the end of weeks 5, 6, and 7 are rare events

suggest strongly that something is wrong:

The

that is

general

the

and

example we have just considered is typical of the situation

encountered in the use of statistical control charts. In

terms, a statistical control chart can now be defined. The

general characteristics of a statistical control chart are shown in

Figure I-6 and are as follows:

1.

2.

3.

for the

The Center Line (CL) (The base line in the carrot example)

The Upper Control Limit (UCL)

The Lower Control Limit (LCL)

Time Point or Subgroup Number on the horizontal axis

The value of a Variable to be plotted on the vertical axis and
to be computed at different points in time or for different
Subgroups.

the example with peas and carrots the average nutier of carrots

five-day period was selected as the variable. We could have

computed some other value (e.g., total nuuber of carrots over the five-

day period or the difference between the largest number of carrots over
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the five-day period and the smallest number of carrots). We could have

used the ratio of the total number of carrots to the total number of

peas (counting the number of peas might cause sane problems). Also we

could have made our computations at the end of each three-day period,

four-day period, etc.

In the development of a control chart it is common practice to use

a solid line for the center line and dashed lines for the upper and

lower control limits. It is also common practice to choose the UCL and

LCL in such a manner that, when the process is in a state of statistical

control, each computed value has at least a 99 percent chance of f alling

between the UCL and the LCL. In other words, there is a one percent

chance or less that a computed value will fall outside the control

limits. In this manner, if a computed value fells outside the control

limits (above or below), we can say that a rare event has occurred. A

good knowledge of statistics is needed in order to understand how the

CL, UCL, and LCL are computed for a given experimental situation.

not important at this point to understand how they are computed.

Now consider a second example:

Steel plate of specified dimensions arrives fran sane vendor

It is

at the

loading dock of the shipyard. At the loading dock, arriving steel plate

is placed in stacks and, as each one is removed frcm the stack, it is

classified as either good or defective. For each group of

chart is then developed to monitor the percent defective.

In this example it is reasonable to alter the control

plot the sub-group nunber on the horizontal axis instead

15, a control

chart and to

of time. The
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statistical control chart for this situation would be similar to the one

shown in Figure 1-7.

As 15 items are examined and the percent defective is determined,

the value would be plotted as shown in Figure 1-7. The statistical con-

trol chart could then become the basis for monitoring the steel and for

detecting a change in the quality of incoming steel. Again, in this ex-

ample other variables could

of the control chart. For

have been considered for the vertical axis

example, we could have used the total nunber

of def ectives or the fraction defective. The use of a different vari-

able would result in a different control chart. The horizontal axis

would remain the same but the CL, UCL, and LCL would change. We could

have completely changed the example by assuning that each plate could be

examined to determine the nunber of significant defects (e. g., O, 1 , 2,

3,...). The variable of interest for the 15 items could then become

the average nunber of defects or perhaps the total. nunber of defects.

The examples present ed thus far (including the carrots) represent

situations in which the variable of int crest is discrete or countable

(e. g., number of defects , nunber of carrots, etc. ). The control charts

for these types of variables are referred to as control charts for

attributes. Although a wide variety of control charts can be used with

attribute data, the two most commonly used are referred to as the p

chart and the c chart.

The p chart is a statistical control chart which has percent defec-

tive as the variable of interest on the vertical axis. The horizontal
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axis is usually the time point at which the percent defective is COm-

puted from the sample. This type of control chart is used in the

following situation:

Items (k of them) are examined one at a time in a situation where

each item can be classified as either good or defective. For example,

in a repetitive welding operation 50 consecutive welds (k=50) from one

welder are examined and each is classified as either good or defective.

The total number of defective welds is then determined and divided by 50

to obtain the fraction defective. This value is then multiplied by 100

to obtain the percent defective. The percent defective is then plotted

on the control chart.

The c chart is a statistical control chart which has total nunber

of defects per inspection unit as the variable of interest on the verti-

cal axis. The horizontal axis is the time at which the inspection unit

is examined and the total nunber of defects is calculated. In this ap-

plication the inspection unit may be one item or several items. For

example, if 15 units of steel plate are examined and if the number of

defects per plate is counted and then totaled, we may consider the 15

units of steel plate as the subgroup.

In addition to control charts for attribute data there is also a

wide variety of charting techniques

some variable is measured rather

situation with peas and carrots, on

for experiment al situations in which

than counted. For example, in our

each day you might separate the peas

and carrots and then, with an accurate scale, weigh the carrots. In

this situation you are dealing with a variable that is called infinitely

divisible. It can take on, at least theoretically, any value in a range

of continuous values. It should be obvious, however, that a variable of
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this type could be used to monitor the statistical regularity of the

operating system. For example, suppose that each day the carrots are

weighed and at the end of the week, after five consecutive days, the

average weight is determined. This value could very easily be plotted

on a chart such as the one shown in Figure 1-8. Again, as in the situa-

tion with attribute data, we could draw in the CL, the UCL, and the LCL

and then monitor the system. If the lines are chosen to have a very

high chance of finding an average weight between the UCL and LCL, a

point outside these  lines would send us a signal that something is going

wrong. At this point sane action maybe required. We could also argue

that if the process is in a state of statistical control, you might ex-

pect the average weight of carrots to bounce around the center 1ine in

some random fashion where you would not expect to see increasing or

decreasing trends or too many sequential values above or below the CL.

Numerous variables can also be plotted in the situation where sane

variable is measured. In the example with peas and carrots, we could

have computed for each five-day period the minimun weight for the week

and then used this value on the vertical axis of our chart. Similarly

we could have computed the maximum weight over the five-day period. The

maximun weight minus the minimum weight (the range) over the five-day

period could also have been used as the variable to be monitored. The

average and range charts are used extensively in quality assurance for

measured variables.

In order to illustrate the types of variables that could be

measured and monitored with statistical control charts in the shipbuild-

ingindustry, the following examples are presented:
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1. Prior to welding steel plate
in Figure 1-9 and, using a

22

are butted together as shown
feeler gauge, the maximum gap

size is measured. This situation is repeated five times
and the average maximum gap is computed.

2. A pre-cut header of specified dimensions is SUPP1 ied by a
vendor and is inserted between two beams as shown in
Figure 1-10. Prior to inserting the header in place the
maximum overall length is measured. The situation is
repeated eight times and the range of the lengths is
computed.

3. An automatic burning machine repetitively cuts a trian-
gular steel plate as shown in Figure 1-11. After each
plate is cut dimension b shown in Figure 1-11 is measured
and then the difference between the as-cut measurement and
the design measurement (30 inches ) is computed. After the
product ion of ten triangular pieces the average difference
is computed.

4. In a paint spraying operation the line pressure to the
paint sprayer is determined at one minute intervals. At
the end of each five minute interval the average line
pressure is computed.

5. In a specific section of the shipyard steel plate is used
in some repetitive operation. Each plate is weighed and
the average weight for ten consecutive iterns is computed.

The Use of A Control Chart - Inherent Variability

and Assignable Causes

Once a stati stical control chart has been constructed and placed

into operation it must be interpreted periodically

if something is going wrong with the process. Any

tic that is being monitored by a control chart

in order to determine

quality char act eris-

will exhibit inherent

variability that cannot be either identified specifically or controlled.

The inherent variability is the result of a multitude of factors that

are generally related to one of three causes: people, materials, and

equipment. Inherent variability is part of the system. The control

limits on a control chart define the boundaries for inherent

variability, and the process should continue to operate between these



.

DECK PLATE FITTING

Maximum Gap in Adjacent Steel Plate
Figure 1-9
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Typical Deck Header Installation
Figure 1-10







process that is operating in a state of statistical control

increased variability.

Other types of charting methods called Fishbone Charts

27

will lead to

or Cause and

Effect Charts are helpful in the search for assignable causes. These

methods are graphical procedures for identifying those factors (causes )

which may influence some quality characteristic (effect). They are

called fish-bone charts because of the way they appear subsequent to

construction. In the fishbone chart the quality characteristic of in-

terest is listed to the right of a bold arrow as shown in Figure 1-12.

Stems to the main arrow are then constructed where each stem is charac-

terized by a group of factors such as person, materials, and equipment.
 

Twigs are then placed on each stem to identify in more detail those fac-

tors in each group which may have an effect on the quality

characteristic. Twigs may then be placed on each twig until all factors

have been identified. The actual construction of the fishbone chart

forces you to think about the quality characteristic and, in this man-

ner, it provides a useful exercise to identify problems. Quality

circles can be used effectively in the construction of a fishbone chart .

where the chart becomes the basis for meaningful discussion. A clear

understanding of the process leads to a detailed fishbone chart.

As an example on the construction of a fishbone chart, consider a

spray painting operation in which the quality characteristic of interest

is the number of bubbles in 100ft2 of painted surface. In a preliminary

attempt to develop a fishbone chart by a group of people who are

familiar with the operation, the following major factors might be

identified: Environmental Conditions, Equipment, Surface .
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Characteristics, and Workers. In each major factor important sub-

factors could be identified and discussed. The procedure would continue

until the process is well understood and diagremmed as a fishbone chart.

See

for

Figure 1-13 for a preliminary attempt to construct a fishbone chart

this example.

The fishbone chart should be used in any initial examination of a

process to determine significant factors that should be measured or

counted through the use of a control chart. Other charts are also use-

ful in this stage of analyzing a process. For example, the Pareto Chart

provides the analyst with a means of identifying those factors which may

produce the most significant improvement in quality. In this manner,

with limited funds

ized very quickly.

states, in essence,

and personnel, significant improvements may be real-

The Pareto Chart is based on the Pareto Law which

that if many factors are involved in an end result a

very few will be found to contribute a completely disproportionate share

of the total. This law has been found to be true in many situations in

quality assurance. A Pareto Chart is simply a graphical procedure for

ranking those factors which affect

the analyst can identify those which

the end result.

sane quality characteristic so that

contribute most significantly to

As an example on the development of a Pareto Chart, consider your

own home and its consumption of electriCal energy. If you analyzed the

monthly consumption of energy (in kilowatt hours) for your home, you

might identify the following factors which contribute to the total

monthly consumption.





1.

2.

3.

4.

5.

6.

Hot Water Tank

Refrigerator

Clothes Dryer

Washing Machine

Small Appliances and

Lights

If you collected data on monthly energy consumption, it is very likely

that each factor would contribute to monthly energy as follows:

1.

2.

3.

4.

5.

6.

This situation,

gives the basic

Fact or Percent of Monthly Energy

Hot Water Tank 45.0

Refrigerator 30.5

Clothes Dryer 10.0

Washing Machine 7.5

Small Appliances 5.0

Lights 2.0

in graphical form, is shown in Figure 1-14. This figure

elements of a Pareto Chart where, using a bar graph, the

variable of interest is plotted in the vertical direction and the fac-

tors are 1isted in decreasing importance in the horizontal direction.

In most situations the Pareto Chart will show clearly those factors

which contribute significantly to the total. In this case the hot water

tank and the refrigerator are the factors to be considered for major

reductions in energy consumption.
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The Pareto Chart is also useful in comparing, in graphical form,

before and after conditions. In our example we might decide to insulate

the hot water tank and then determine the effect of this corrective

measure. A second Pareto chart would then be constructed to examine the

effect of the corrective measure.

1.4 Control Charts to Identify A State of Statistical Control

The statistical control chart can be used to determine if a process

has reached a state of statistical control. In general the approach is

as follows: 1) Data for a series of subgroups are collected; 2) The

data are then used to establish control limits and the center line of

the control chart; 3) For each subgroup the variable of interest is

plotted on the control chart; and 4) The results are then analyzed to

determine if statistical control has been reached. If the process does

not exhibit a state of statistical control, then, with a fishbone chart

or by sane other means, the process must be examined to locate a sig-

nificant cause (or significant causes) to eliminate all but inherent

variability. This basic procedure is repeated (collecting new data if

necessary) until it can be determined that a state of statistical con-

trol has been reached.

The basic procedure outlined above can be used in both discrete and

continuous random experiments. In the discrete case

to be used will depend on the specific situation and

The Fraction Defective Chart; or 2) The Total Number

In the continuous case, statistical control charts

the type of chart

will be either: 1)

of Defects Chart.

are

the Average (x) outcome and range (R) of the outcomes in

constructed for

each subgroup.
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These two charts are then used simultaneously to determine if a state of

statistical control has been reached. The discrete cases are discussed

first and are then followed by a discussion of the x and R chart for

continuous experiments.

The Discrete Random Experiment: Fraction Defective Chart

In this case it is assumed that data have been collected for r sub

groups where each of the k items in a subgroup has been classified as

either defective or non defective. The number of defective for each

subgroup is then presented in tabular form as

Using the values shown in Table 1-1, the

tion defective is then computed as follows:

= Average Value of Fraction Defective

shown in Table 1-1. 

average value of the frac-

The center 1ine and the control limits are then computed to be:

Upper Control Limit (U CL)

Lower Control Limit (LCL)



Subgroup Number of Defectives
Number in Subgroup

Number of Defectives in Each Subgroup
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For ease of computation the value of

given in Table 1-2. If the LCL is computed to be a negative value, it

should be set equal to zero.

Once the control chart has been constructed the fract ion defective

for each subgroup is plotted on the control chart and an assessment of

the state of statistical control would then be made.

As an example of a fraction defective control chart, consider a

situation where electrical switches are classified as either defective

or non-defective and that 30 subgroups, each consisting of 40 switches,

were examined, with the resulting number of defectives shown in Table 1-

3.

control limits are then computed as follows:

The control chart and a plot of the fraction defective for each

subgroup is shown in Figure 1-15. Since the process appears to be in a

state of statistical control the control chart would be used for

monitoring the process.



Subgroup Size Factor Subgroup Size Factor Subgroup Size Factor

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1.7321

1.5000

1.3416

1.2247

1.1339

1.0607

1.0000

0.9487

0.9045

0.8660

0.8321

0.8018

0.7746

0.7500

0.7276

0.7071

0.6882

0.6708

0.6547

k

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 

39

40

41

0.6396

0.6255

0.6124

0.6000

0.5883

0.5774

0.5669

0.5571

0.5477

0.5388

0.5303

0.5222

0.5145

0.5071

0.5000

0.4932

0.4867

0.4804

0.4743

0.4685

k

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

0.4629

0.4575

0.4523

0.4472

0.4423

0.4376

0.4330

0.4286

0.4243

0.4201

0.4160

0.4121

0.4082

0.4045

0.4009

0.3974

0.3939

0.3906

0.3873

0.3841



Subgroup Number Number of Defectives

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

3

3

2

7

1

3

3

3

2

5

7

1

2

4

3

4

4

8

2

3

2

2

4

2

4

3

2

2

2

2

Number of Defectives in 40 Electrical Switches

Table 1-3
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The Discrete Random Experiment: Total Number of Defects

In this case it is assumed that data has been collected for r sub-

groups where, in each subgroup, there are k items. Each item will have

0, 1,2,3, . . . defects and the total number of defects for the subgroup is

reported as shown in Table 1-4. Using the values in Table 1-4 the

average value of the total number of defects is then computed as

follows:

Average Value of Total Number of Defects = r

The center line and the control limits are

Center Line (LC) = T

Upper Control Limit (UCL)

Lower Control Limit (LCL)

then computed to be:

If LCL is computed to be a negative value it is set equal to zero and,

again, the total. number of defects for each subgroup would be plotted on

the control chart to determine if the process is in a state of statisti-

cal control.

As an example of this type of control chart consider a situation in

which each subgroup consists of 30 plates of steel and the total number

of defects for the 30 plates was counted for each of 50 subgroups. The

results are shown in Table 1-5. In this situation T = 13.88 and the

center 1ine and control 1imits are computed as follows:



Total
subgroup Number Defects

Number of
in Subgroup

Number of Defects in Each Subgroup

Table 1-4



Total Number Subgroup Total Number
Number of Defects Number of Defects

1

2

3
4

!5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

15

13

12

15

7

18

8

15

11

16

18

12

11

15

16

16

13

17

13

12

12

12

17

12

12

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 

46

47

48

49

50

Total Number of Defects in 30 Plates of Steel

Table 1-5

18

13

15

14 

12

14

6

8

18

10

24

10

12

20

13

12

14

17

17

13

19

18

13

12

14



CL = T = 13.88

UCL = = 25.06

LCL = 2.70

The Total Number of Defects for each subgroup is plotted on the

chart in Figure 1-16. Again the control chart indicates a

statistical control.

control

state of

The Continuous Random Experiment (x Chart, R Chart)

In this case it is assumed that data have been collected from the

process and that k measurements of some continuous variable have. been

made for each of r subgroups. For each subgroup the average value (x)

and the Range (R) have been calculated and conveniently displayed as

shown in Table 1-6.

Using the notation given in Table 1-6 the following computations

are made:

and
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These two values are then used to determine the center lines and the

control limits for the x and R charts as follows:

Center Line (CL)

Lower Control Limit (LCL)

The value of A2 can be determined from Table 1
-7.

R Chart

Center Line (CL) = F

Table 1-7.

As an example of the

determined from

consider the situation

where a laborer is using a shovel to move material from a pile into a

hopper . Before each full shovel is placed into the hopper it is

weighed, with the results shown in Table 1-8. For this situation the

control chart for the average weight would be established as follows: .

CL = 50.00

UCL =

LCL =

The control chart for the range of weights would become:

CL =





Measurement Average of Range of
Subgroup Weight (pounds) of Material Subgroup Subgroup
Number on Shovel x R

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

58.95

67.11

70.15

50.57

60.91

34.00

55.86

52.70

44.58

41.22

56.11

56.57

45.66

30.60

44.15

65.42

40.78

49.95

38.16

37.68

51.48

46.83

43.83

45.99

46.14

45.88

51.93

68.97

34.92

54.60

60.97

33.80

49.17

49.07

79.84

50.81

52.49

40.63

56.08

40.18

64.51

58.03

73.37

49.50

58.72

49.55

49.99

67.69

45.27

52.56

69.27

60.66

52.86

57.65

51.75

42.99

37.85

41.59

43.71

64.66

52.93

38.03

48. 08

39.15

47.52

42.83

52.86

41.79

43.32

59.31

53.02

43.53

62.08

62.05

37.49

39.78

51.08

48.47

58.91

43.64

42.33

56.80

50.24

51.20

46.18

40.42

33.74

32.87

48. 06

40.59

36.22

47.37

78.16

48.08

53.05

27.09

36.61

47.15

59.23

61.80

54.04

53.36

57.13

47.28

51.89

42.54

48.88

52.80

43.23

49.66

55.12

48.39

57.59

49.49

53.26

45.22

43.76

45.56

51.22

49.59

Weight (in pounds) of Material on Shovel

Table 1-8

22.18

29.08

29.54

12.05

14.77

15.55

22.12

36.10

13.14

18.72

33.05

26.86

32.50

31.45

42.35

38.33

15.88

9.32

21.07

26.98



0.000

The resulting X and R charts and the plotted values for each sub-

group are shown

process is in a

in Figure 1-17. Again, it would be determined that the

state of statistical control.

1.5 Description of Remaining Chapters

The purpose of the remaining chapters of this workbook is to

provide, using only elementary mathematics, the statistical background

necessary for those individuals who are either involved or are planning

to become involved in the continued use of sound quality assurance tech-

niques in the shipbuilding industry. In the development every attempt

has been made to illustrate the statistical theory with examples taken

directly from situations in the shipbuilding industry that have already

been examined from the point of view statistical quality assurance. The

layout of the workbook is directly related to the manner in which we

conceptualize a shipyard. From our point of view we consider the

shipyard as a system which consists of “a large number of operating

subsystems. These subsystems may in themselves be quite large or they

may be as small as one worker and one tack weld on two

From our viewpoint each subsystem can be imagined as an

can be repeated over and over again under essentially

plates of steel.

experiment which

the

ions where the outcome of the experiment

a random manner. The random nature of

the unpredictable nature of the outcome,

changes from trial

the outcome or, in

is a direct result

same condit-

to trial in

other words,

of the sub-

system itself. We are assuning that everything possible has been done
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to eliminate variability in the outcome of the experiment (the

subsystem), but because of intrinsic factors we have to accept a certain

degree of inherent variability. The key to understanding this inherent

variability lies in the proper understanding of statistics.

As an example consider the following situation. An apprentice

electrician assigned the task of taking a large spool of electrical

cable and producing individual cables, each with a length of 25 feet.

The apprentice electrician is provided with a specific working environ-

ment and a specific set of tools to accomplish the task of producing

each cable. We consider the production of one cable of length 25 feet

as a subsystem of the shipyard. We also consider this subsystem as an

experiment in which the outcome is a cable

length 25 feet. The experiment can obviOUS1y

again under essentially the same conditions

which is supposed to be of

be repeated over and over

and, each time the experi-

ment is repeated, the length of the cable will change. An accurate

device to measure the length of the cable would show clearly that random

variation does exist in the cables that are supposed to be of 1ength 25

feet. Despite this random variation, as long as the conditions under

which the experiment is repeated do not change, we are said to be in a

state of statistical control. Since the output of this subsystem

usually becomes the input to other subsystems and since the variability

in the outcome may have physical and economic impact in these other sub-

systems, this variability must be understood and controlled. This can

only be accomplished by using a sound statistical analysis.

Each random experiment (each subsystem of the shipyard) can be

classified as either discrete or continuous, depending on the type of



periment there iS a clearly defined list of  possible outcomes exactly

one of which must occur each time the experiment is executed. The

ber of defects in a weld of length 100 inches-is an- example

num-

of a

discrete random experiment.

In the continuous random experiment there is no list of possible

outcomes. The experimental out come comes from a continuous range of

possible outcomes. The actual length of an electrical cable which is

supposed to be 25 feet long is an example of a continuous outcome, as-

suming the ‘actual length can be measured to any degree of accuracy.

Because of our view of the shipyard as a large number of random ex-

periments and because each random experiment can be viewed as either

discrete or continuous, this workbook is structured in a specific

manner. In Section 2, discrete random experiments are defined and

illustrated. Continuous random experiments are then defined and il-

lustrated in Section 3. In each situation the appropriate statistical .

theory is introduced. In Section 4, we sunmarize the basics of statis-

tical control charts.



1.6 Problems

I. The amount of paint (ounces) to cover 100 ft2 of steel Plate was

measured by randomly selecting 20 painters. Each painter con-

ducted five trials of a basic experiment in which 100 ft2 of steel

plate was painted and the amount (in ounces ) was measured. The

results are shown in Table 1-9. Using the x and R charts, deter-

mine if the process is in a state of statistical control.

Subgroup Value of Variable 1 Value of Variable 2
Number Ounces of Paint to Cover 100 ft2 Average Range

1

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

30.42
27.97
25.30
32.30
33.58
26.69
28.84
32.95
26.47
23.82
24.46
24.79
27.40
18.18
31.26
25.79
27.61
23.07
28.93
15.67

22.29
24.64
29.28
23.61
23.15
30.91
25.21
24.41
35.41
24.55
29.95
15.16
26.48
30.15
24.12
31.52
34.53
21.82
27.07
28.74

19.68
12.73
26.05
20.08
29.54
24.88
24.03
21.06
34.01
31.98
28.20
26.01
28.98
33.82
22.42
21.94
26.68
19.62
23.54
19.20

19.05
23.67
20.96
32.02
35.18
26.70
29.00
19.44
29.86
25.97
31.65
18.93
27.44
26.19
22.29
19.45
21.36
20.33
24.80
25.94

Ounces of Paint to Cover 100

20.00
28.42
28.19
24.12
16.62
25.07
23.11
25.35
20.97
24.76
27.54
28.53
33.83
27.71
27.89
36.06
31.21
25.08
32.30
20.17

Square Feet
Table 1-9
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II.     

weld two pieces of steel plate along a scan of length 200 inches.

 ach welder repeated the experiment five times and for eachE .

repetition the total length of. defective weld was. determined. The

results are shown in Table 1-10. Using the x and R charts, deter-

mine if the process is in a state of statistical COntrOl.

Value of Variable 1 Value of Variable 2
Number Inches of Defective Weld Average Range
(Welder )

1
2
3

7
8
9

10
11
12
13
14
15
16
17
18
19
20

4.69
5.03
4.92
4.42
1.74
4.49
2.18
3.51
3.09
4.15
4.57
4.38
4.91
5.07
2.92
4.20
4.23-
2.46
4.67
4.02

4.12
4.38
3.49
4.08
4.71
3.96
5.71
4.48
4.71
4.23
2.82
3.72
3.69
4.79
5.86
4.20.
4.38

3.65
4.89
4.87

4.74
5.08
1.93
5.56
3.74
6.43
4.68
3.18
5.08

3 . 6 4
5.07

 3.59
3.62
3.55
2.07
3.46
4.91
5.19
3.62
3.61

4.02
4.21
3.64
4.65
2.65
5.50
4.97
2.22
3.44
3.55.
4.79
4.07
2.41
3.75
2.76
3.54
5.14
3.75
6.42
2.27

6.38
4.82
5.43
4.20
3.24
4.83
3.54
3.51
5.93
2.90
4.69
2.69
5.35
4.21
4.13
4.70
5.22
3.44
4.83
3.38

Inches of Defective Weld -20 welders
Table 1-10
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III. Over a period of 30 days pressure gauges were received in lots of

size 30 from a supplier. Each lot was examined to determine the

number of defectives. The results are shown in Table 1-11. Using

a fraction defective control chart, determine if the process is in

a state of statistical control.

Subgroup Number of Subgroup Number of
Number Defective Number Defectives
(Lot ) (Lot )

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

9
6

0
1
5
7
5
5
5
9

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Number of Defectives in Each Lot of Size 30
Table 1-11

6
3
3
5

10
3
5
3

5
7
4
3
8



Each day for  a period of 40 days 100 pieces of  electrical  conduit

were assembled from three different parts as specified by an en-

gineering drawing. A time standard was specified for the assembly

and at the end of the day, the number of assemblies that were not

shown in Table 1-12. Using a fraction defective. (fraction not

is in a state of statistical control.

Subgroup Number Outside Subgroup Number Outside
Number

1 3 21 5
2 22 4
3 23 4
4 24 4
5 25 4
6 8 26 5
7 4 27 5
8 2 28 2
9 3 29 3
10 6 30 4
11 31 4
12 3 5
13 6 4
14 4 34 5
15 2
16 5
17 4 37 3
18 3 38 6
19 6 39 1
20 0 40 4

Number of Assemblies Not Meeting Time Standard
Table 1-12
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V. Twenty spools of insulated electrical cable, with each spool con-

taining 1000 ft of cable, were subjected to the same high voltage.

For each cable spool a count was made of the number of points

where the insulation failed. The results are shown in Table 1-13.

Using a number of defects chart, determine if the process is in a

state of statistical control. In this case assume that a defect

is a point at which the insulation failed.

Subgroup Number of Points Where
Number Insulation Failed 
(spool)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

16
15
10
22
6
8

10
10
12
9

19
17
8
8
8

10
6

12
11
9

Number of Insulation Failures in 1000 Ft of Cable
Table 1-13



58

VI. In a painting process 25 sections of aluminum plate, each= consist-

ing ‘of 500 ft2, where. painted by the same person Upon completion

of each plate the. number of bubble defects was counted. The

results are shown in Table 1-14. Using a

determine if the painting process is in

control. 

number of defects chart,

a state of statistical

Subgroup
Number

Number of
Bubble Defects

1
2
3

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

14
10
17
10
17
17
12
15
19
17
15
12
13
23
17
9

16
6
13
15
18
19
16
13
13

Number of Bubble Defects in 500 Ft2 of Aluminum Plate
Table 1-14



2. DISCRETE RANDOM EXPERIMENTS

2.1 The Discrete Random Experiment and Examples

In this section of the workbook a technique for displaying data

from a discrete random experiment is introduced. The technique, called

a histogram, gives a visual display of the data and provides a basis for

developing an appropriate mathematical model of the random experiment.

The technique also provides a method for describing visually the be-

havior of sane variable associated with a series of repetitions of sane

basic random experiment. After the concept of the histogram is intro-

duced, our attention will be focused on certain calculations which are

produced from a set of data to summarize the information contained in

the set of data. These calculations, which are called summary measures,

are:

1. The sample aver age

2. The sample variance

3. The sample standard deviation

4. The sample coefficient of variation.

As we proceed in our discussion the histogram will be used exten-

sively to illustrate the meaning of each of the summary measures. It is

important at this point to remind the reader that our ultimate goal is

to understand statistically the behavior of a specific operating system

in the

exactly

system

shipyard. In order to reach this goal it is important to define

the operating system under study and to think of the operating

as a random experiment. Once the random experiment is defined,

the techniques for analyzing the situation will follow quite naturally.

59
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we must also emphasize

only the discrete random

EXAMPLE 2-1

the fact that in this- section

experiment is being studied.

of the workbook

 The Operating System

In a specific section of the shipyard two sections of steel plate

120 inches long are welded together to form a single unit and are then

moved to another section of the shipyard.

The Discrete Random Experiment

We randomly select a welded unit (the output of the operating

system) and, using ultrasonic testing, determine the total number of

defects in the weld of length 120 inches.

The Set of Outcomes

The outcome of the experiment will be either O defects, in 120

inches, 1 defect in 120 inches, 2 defects in 120 inches, etc. Notice,

theoretically, there is no upper 1imit on the number of defects. From a

practical point of view, however, one does exist.

EXAMPLE 2-2

The Operating System

In a- particular section of the pipe shop a spool piece is

 manufactured. Using motion and time study a standard has been estab-

lished for the time to manufacture the unit.

 The Discrete Random Experiment

At the end of the day randomly select a spool piece from the daily

production of’ spool pieces and determine whether or not the actual time
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to manufacture the piece was within fifteen percent of the specified

time standard.

The Set of Outcomes

The outcome of the experiment will be either, yes, the piece is

within fifteen percent of the time standard or, no, the piece is not

within fifteen percent of the time standard. In this type of discrete

random experiment it is common in mathematics to define the outcome by a

number. For example, we might say the outcome is O if the spool piece

is within fifteen percent of the time standard

(or binary) variables are common in statistics.

EXAMPLE 2-3

The Operating System

At the loading dock of a shipyard, incoming

and transferred to their appropriate locations.

The Discrete Random Experiment

and 1 if not. Such O-1

materials are inspected

Fran a recent shipment of 4’ x 8’ sheets of 5/1 6“ plywood (yes,

wood is used in the shipbuilding industry) select one sheet of plywood

and count the number of significant defects. We assume that a precise

definition of a significant defect has been provided.

The Set of Outcomes

Each time the experiment is conducted, the outcome will be either,

O significant defects, 1 significant defect, 2 significant defects,

etc., the same set of possible outcomes as in Example 2-1.

At this point it is important to illustrate the manner in which

more complicated random experiments can be developed from the repetition



of some basic random experiment. Using the previous three examples as

basic random experiments, more complicated discrete random experiments

EXAMPLE 2-4

The Operating System

The same situation described in Example 2.1

The Discrete Random Experiment

Randomly select five welded units and using ultrasonic testing,

determine the number of defects per unit. Compte the total number of

defects from all five units and then divide the total by five.

The Set of Outcomes

The outcome of the experiment will be either 0/5, 1/5, 2/5, etc.

EXAMPLE 2-5

The Operating System

The same situation described in Example 2-2.

The Discrete Random Experiment 

At the end of the day randomly select 30 spool pieces from the

daily production and’ determine the total number that are not within fif-

teen percent of the specified time standard. 

The Set of Outcomes

The outcome of the experiment will be either   O,1,2...,29, or 30.



EXAMPLE 2-6

The Operating System

The same situation described in Example 2-3.

The Discrete Random Experiment

and

From the shipment of plywood randomly select 20 sheets of plywood,

determine the number of significant defects per sheet. Then deter-

mine the total for all 20 sheets.

The Set of Outcomes

The set of outcomes will be either O, 1, 2, 3, etc.

2.2 The Histogram

The six examples given in Section 2.1 can be divided into two

general types: (1) the basic random experiment and (2) repetitions of

the basic random experiment. Examples 2-1 through 2-3 each describe

basic random experiments, while Examples 2-4 through 2-6 were con-

structed by repeating a given basic random experiment. It is important

to emphasize at this point that a statistical analysis of data is

usually conducted for basic random experiments. Once the statistical

behavior of the basic random experiment is understood, mathematical

statistics can then be used to describe most variables which are as-

sociated with repetitions of the basic random experiment. It should

also be pointed out that in any statistical analysis of random experi-

ments, great care must be spent in defining clearly the basic random

experiment and the variable that is being studied. The analyst should

also be concerned with the operating system and any problems that may
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arise with repeating the basic random experiment under essentially the

same conditions.

We now direct our” attention to the concept of a histogram for a

discrete random experiment. We assume that a random- experiment has been

defined with k possible outcomes that have been identified and have been

In Example 2-2, the Pipe

Shop, k = 2 since there are only 2 out-comes.  If we decided that the

numbers O and 1 would represent yes and no respectively, then al = O and

a2

=1.
.

In general we will assume that the operating system is in a state

of statistical control and that we have observed data from n repetitions

of the basic discrete random experiment. Assume that in the n repeti-

tions the outcome al occurred f, times, the outcome a2 occurred f2

times,

may be as large as necessary to adequately describe the experiment: We

call fi the frequency of occurrence of outcome ai for i = 1,2, . . . . k and

1,2,... k. Note thatfl + f2+ . . . +

of occurrence

 We are now in a position to define the histogram.

of outcome ai for i =



Definition

A histogram of data from a discrete random experiment is a plot of

the relative frequency of occurrence of outcome ai
     versus ai for

i

Graphically the histogram for k = 4 is shown in Figure 2-l(a).

When the ai for i = 1 ,2,..., k are sequential numerical values it is com-

mon practice to plot the histogram as shown in Figure 2>1 (b), using

rectangles with vertical 1ines at the midpoint of adj scent values and a

f.
This is the approach that will be

used in the remainder of this workbook. It proves a more graphic pic-

ture of the manner in which the data are distributed.

and n would be numbers. For example, suppose that we take the situation

described in Example 2-2 of Section 2.1, and collected data on 1000

welded units (e. g., the basic experiment was repeated 1000 times, n =

1000), with the results shown in Table 2-1. The histogram for this ex-

ample is shown in Figure 2-2.

2.3 SUmmarY Measures

The histogram of a data set is an important means to visually sum-

marize the data. Another important means is the use

as summary measures. These numbers are essential in

data sets, setting control 1imits on control charts,

ing statistically the behavior of the operating

of quantities known

comparing different

and in understand-

System. The most





Number of Frequency of Relative Frequency of
Defects per Unit Occurrence Occurrence

o

1

2

3

4

5

6

7

8

9

50

150

224

224

168

101

50

22

9

2

0.050

0.150

0.224

0.224

0.168

0.101

0.050

0.022

0.009

0.002

Summary of Data - 1000 Welded Units

Table 2-1





commonly used summary measures are defined as follows, with the meaning

of each measure described later.

1. Sample Average (x)

2. Sample Variance (S2)

Computationally,

definition where



4. Sample Coefficient of Variation (C) ‘

The sample average x is a measure of central location of the data.

If you imagine the histogram as being made from material of uniform den-

sity, then the sample average, x would correspond to the center of

gravity or the balance point of the histogram. It is important to note

that the sample average is not necessarily equal to any one of the ex-

The sample variance, S2, and the

sample standard deviation, S, are measures of dispersion. They give the

analyst a measure of the amount of variability in the data and are par-

ticularly useful in comparing two sets of data with the same sample

average. The data set with higher value of S or S2 has the higher

variability. Since the sample standard deviation S has the same unit of

measurement as the variable being analyzed, it is more convenient to use

as a measure of variation. The significance of the sample standard

deviation (or the sample variance) can be illustrated with the

histogram. In Figure 2-3 two histograms are shown. In each case the

histograms have the same sample average, but histogram(b) is more con-

Centrated about the sample average The sample standard deviation of

Figure 2-3(a) is correspondingly much higher than that of Figure 2-3(b).









is either good or defective; a weld is either good or defective; insula-

tion on an electric cable either breaks down at high voltage (defective)

or does not (good); etc.).

When the system is in a state of statistical control and when the

basic random experiment is repeated k times, three important variables

are of interest: A) The total number of defective (the sum of the

outcomes); B) the fraction defective (the average outcome); and C ) The

percent defective (100 times the fraction defective). In each of the

three cases the theory of mathematical statistics can explain the be-

havior of the histogram of each of these variables. The results are as

follows:

A. The Histogram of the total Number of Defective will have:

1. -An Average that is (kp)
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3. A Standard Deviation that is

c. The Histogram of the Percent Defective will have:

1. An Average that is 100P

2. A Variance that is

At this point YOU should begin to understand how the center line

and control 1imits of a control chart are defined. refer to Chapter 1,

Section 1.4.

Case 2 - The Discrete Random Experiment with Outcomes O, 1,2, . . .

In this situation, the discrete basic random experiment will have a

set of outcomes 0,1 ,2,3,... and the histogram of the basic random ex-

periment will be similar to the one as shown in Figure 2-5. In this

situation we are generally dealing with some typs of complicated as-

sembly where the number of defects is being counted and it is unlikely

to find a small number of defects. For example, pinhole defects in the

painted surface of a large area or the number of mistakes in a large ar-

ray of complicated wiring.





When the basic random experiment

are of interest: A) The total number

bar of defects. Again, for a process
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is repeated k times two variables

of defects and B) The average num-

that is in statistical control,

the theory of mathematical statistics can be used to explain the his-

,togram of these variables as follows:

A. The

1.

2.

3.

B. The

1.

2.

3.

2.5 Problems

I. An

Histogram of the Total Number of Defects will’ have:

An average value that is the same as the average of
the histogram of the basic random experiment multi-

Histogram of the Average Number of Defects will have:

An average that is the same as the average of the his-

A Variance that is

electronic assembly consists of five modules where each

module can be replaced if it is found to be defective. The electronic

assemblies are manufactured by a supplier and are packaged five to a

carton. At the loading dock of the shipyard 50 cartons were examined

and the number of defective modules in each electronic assembly was

determined with the results shown in Table 2-2. Imagine each carton as

a series of five repetitions of a basic random experiment where the out-

come of the basic random experiment is O defective modules, 1 defective
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Number of Defective Modules Number of Defective Modules
Carton Electronic Assembly Number Carton Electronic Assembly Number
Number 1 2 3 4 5 Number 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

 20

21 

22

23

24

25

0 3 2 2 0

0 0 2 1 4

0 0 2 0 1

0 0 1 2 0

0 0 2 0 0

1 0 0 0 2

2 0 1 1 1

1 2 3 0 3

1 0 1 3 0

4 1 0 1 2

0 1 2 2 1

0 3 2 0 1

1 0 0 2 1

1 1 0 1 2

1 2 0 3 1

0 1 1 0 3

1 0 1 0 4

3 1 0 0 1

1 1 2 2 1

0 0 1 1 1

3 o o 1 2

0 2 2 2 2

0 1 1 2 1

3 2 4 0 1

1 1 3 0 1

26

27

28

29

30

31

32

33

34

35

36 

37

38

39

40 

41

42

43

44

45

46

47

48

49

50

2 0 1 2 0

3 1 1 2 2

1 1 1 1 0

1 1 0 1 0

2 1 0 2 0

1 1 1 2 1

1 2 1 1 0

0 3 1 0 0

1 2 0 1 2

1 2 1 0 3

1 0 1 0 1

0 1 2 0 1

0 2 1 0 1

0 0 1 1 2

1 2 2 1 1

1 0 0 1 2

0 0 2 0 0

2 0 1 0 1

2 0 1 0 2

0 1 1 2 0

2 3 1 1 1

1 0 2 1 1

0 0 3 0 2

1 2 0 3 1

2 3 1 2 2

Number of Defective Modules in Electronic Assemblies

Table 2-2
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module, . . . . or 5 defective modules. Construct a histogram of basic

For each carton compute the average number of defective modules and plot

a histogram of these 50 values.

II. Identical electric cables, each of length 100 ft., were

subjected to a high voltage to determine the number of points in each

cable where the insulation failed. As each group of our cables was

tested the results were reported as shown in table 2-3. Plot a his-

togram of the basic random experiment and compute the four sunmary

measures (~, s2,s and c). Then plot a histogram of the Average Number of

Insulation Failures and- compute the summary measures. Compare these

values to the results that are supposed to occur from the results of

Section 2.4.



Number of Insulation  Failures Average number
Test Number in Cable Number

1
of Insulation Failures

2 3 4

1

2

3

4

5

6

7

8

9

10

11 .

12

13 

14

15

16

17

18

19

20 

21 

22

23

24

25

26

27

28

2 9

30

6

1

3

3

4

1

1

1

2

1

1

1

3

0

1

4

4

0

3

1

1

3

1

1

3

1

3

0

1

2

3

1

5

3

2

3

2

2

4

1

3

1

3

0

1

5

1

4

3

1

3

5

2

2

3

1

4

4

2

5

5

2

3

1

3

3

3

2

2

3

4

0

1

6

3

4

0

1

2

2

0

4

3

1

2

1

2

2

1 3

2

3

2

3

3

2

2

1

4

4

5

4

2

0

3

3

2

3

4

3

5

3

3

3

5

8

1

1

2

0

4.00

2.50

3.00

3.00

2.50

2.25

1.75

1.75

3.00

2.00

3.00

2.50

2.00

0.25

2.75

3.75

2.75

1.75

2-75

1.75

2.75

2.75

2.50

2.25

3.00

3.00

2.25

1.75

1.75

1.50

Number of Insulation Failures in 120 Electric Cables
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Table 2-3



3. CONTINUOUS RANDOM EXPERIMENTS

3.1 Introduction

In this section of the workbook a technique for displaying data

from continuous random experiments is introduced. The technique gives a

visual display of the data and again is called the histogram. The

development of the histogram, however, is somewhat different when the

data are from an operating system that can be imagined as a continuous

random experiment. The four summary measures that were defined for dis-

crete random experiments will be

case. The computations, however,

plained in detail.

To illustrate the type of

introduced again for the continuous

are somewhat different and will be ex-

continuous random experiments that are

found in the shipbuilding industry, three basic random experiments are

described. They are followed by three additional experiments to il-

lustrate that repetitions of a basic random experiment are, as in the

discrete case, important in the continuous case.

EXAMPLE 3-1

The Operating System

In a specific part of the shipyard two sections of steel plate

120 inches long

a single unit.

shipyard.

are welded together along the

This unit is then transferred

81

120-inch dimension to form

to another section of the
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The Continous Random Experiment

Prior to welding, sections of steel plate are butted together as

shown in Figure 3-1 and a feeler gauge is used to measure the maximum

gap that occurs over the entire 120 inches.

The Set of Outcomes

The set of outcomes cannot be

mum gap, there is no such thing as a

etc. ; the outcome can be any value

counted. When measuring the maxi-

first outcome, a second outcome

on a continuous scale from zero to

sane realistic upper limit. The outcome scale is said to be infinitely

divisible.

EXAMPLE 3-2

The Operating System

In a certain section of the shipyard pre- cut steel headers are

received from an external supplier. The headers are then welded between

two I beams which are attached to a steel plate. See Figure 3-2.

The Continous Random Experiment

A steel header is selected at random from the available headers

and its maximun overall length is measured.

The Set of Outcomes

When measuring the maximun overall length, the outcome scale is

infinitely  divisible, as with Example 3-1.







is selected at random and

dimension for length a in

length a is determined.

the difference between the engineering drawing

Figure 3-3 and the actual dimension as cut for

The Set of Outcomes

Again the set of outcomes is infinitely divisible.

EXAMPLE 3-4

The Operating System

The same situation described in Example 3-1.

The Continuous Random Experiment

The basic experiment described in Example 3-1 is repeated five

times (e. g.,

Figure 3-1 is

gap size in

determined.

the maximum gap for each of the butted sections shown in

computed). The average of the five measurements (maximum

each trial) and the range (largest-smallest) is then

The Set of Outcomes

Again infinitely divisible.





EXAMPLE 3-5

The Operating System

The same situation described in Example 3-2.

The Continuous Random Experiment

The basic experiment described in Example 3-2 is repeated five

times. The average and the range of the five values are determined.

The Set of Outcomes

Again infinitely divisible.

EXAMPLE 3-6

The Operating System

The same situation described in Example 3-3. 

The Continuous Random Experiment

The basic experiment described in Example 3-3 is repeated eight

times. The average difference and the range of the differences are

computed.

The Set of Outcomes

Again infinitely divisible.

3.2 The Histogram- Continuous Data

As we saw in the treatment of discrete random experiments, a

statistical analysis of data is usually conducted for the basic random

experiment. In the language of statistics, understanding a basic random

experiment is analogous to understanding a population. When the basic

random experiment is repeated under essentially the same conditions, we

are, in the language of statisticians, sampling from a population. Once



the basic random experiment (or population) is understood statistically,

mathematics can be used to describe those variables which are usually

associated with a random sample from the population. As we did in the

discrete case the histogram will be defined after the introduction of

basic notation. 

We assume that a basic random experiment has been clearly defined

and that the experiment results in an outcome (the variable) which has

been determined to be infinitely divisible (continuous or measurable).

We also assume that the basic continuous random experiment has been

repeated n times under essentially the same conditions in which the

operating system is in a state of statistical control. The n repeti-

tions of’ the basic random experiment produce n numerical values (the

data or measurements) for the variable of interest which for notational

With this notation x1 is the

numerical value from the first repetition of the experiment, X2 is the

numerical value from the second repetition, etc. The construction of a

histogram for continuous data requires that we know the largest and the
.

smallest numerical value in the set of data. Therefore let M be the

largest numerical value in the set of

is the largest. Rotationally we write

L be the smallest numerical value in

data. M is one of the X's and it

Let

the set of data. Again, L is one

of the X'S and it is the smallest. Rotationally we write L =

minimum (xl,x2, . ..xn). The range, R, of the data set is then defined to

be the difference between M and, L or R =M-L. Before we begin With our 

discussion the reader should re-examine Figure 2-1 and should examine





With these definitions we must have

(1) f1+ f2+... +fk = n
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and

We are now in ‘a position to define the histogram for a continuous

random experiment.

Definition:

A histogram for a continuous random experiment is a plot of the relative

k.

In the construction of the histogram it is common practice to label

the horizontal axis using the midpoints of each cell (say ml, m2, . ..~

~) and, for cell i, to draw a horizontal line of constant height, ~

over the cell width.

constructing a histogram is illustrated in Figure

with nine cells.

the procedure for

3-4 for a situation

As we mentioned earlier, the histogram is constructed for the basic

random experiment and gives us a visual display of the statistical be-

havior of the population from which we will be drawing samples

(repeating the experiment). It is important to understand that the

shape of the histogram is most significant. The shape of the histogram

will help us to identify an appropriate e mathematical model for the basic





random experiment. For example, a statistician would look at the

in Figure 3-4 and conclude that the population might be modeled by

thing called the normal distribution (the bell-shaped curve).
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shape

some-

Other

shapes lead to other types .of models and are illustrated in Figure 3-5.

Although possible mathematical models are listed for each shape in

Figure 3-5, it is not important to concern ourselves with these models

at this point. It should also be emphasized that the histogram of the

basic random experiment is important in an examination of sane dimension

to determine if tolerances are being met.

In a detailed statistical analysis of a continuous basic random ex-

periment, a specific type of mathematical function called a density

function is used as a mathematical model for the basic random

experiment.

to determine

analysis the

For a given histogram, statistical procedures can be used

the appropriate  mathematical model. In the detailed

statistician usually makes a plot of the density function

on the sane graph paper used to plot the histogram. In this manner the

analyst is provided with a visual description of the extent to which the

mathematical model “ fits" the histogram. Since all density functions

are such that the area under the function is one, the scale of the ver-

tical axis of the histogram must be adjusted to create a histogram in

which the total area of the rectangles suns to one. Refer to Figure 3-4

and note that, in general, unless the cell width is one, the sum of the

rectangular areas would not be one. To make the sum of the rectangular

areas equal to one, change the scale of the vertical axis by dividing

each relative frequency





wish-to plot a mathematical density

histogram, the plot should be relative
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function on the same graph as the

frequency divided by cell width

versus cell midpoint. If the cell width is W then a 1ine of constant

would be plotted over cell i. By adjusting the vertical

scale in this

the same time,
. .

the histogram.

manner the shape of the histogram does not change and, at

the density function can be plotted and then compared to

Since the normal density function is used extensively in many

situations in quality assurance, it is introduced at this point in the

workbook.

The normal density function, denoted by f(x), is defined as

fOllows:

--

The function includes two--numbers v and u whi

parametrs of the density function. The shape of the

lustrated in Figure 3-6. For any value of v and for any

of u the function is centered on the parameter M and is

ch are called

function is il-

positive value

symmetric about

v with the shape of a ‘bell .“ The total area under the density function

is one and the function is always positive (alwaYs above the x axis).

The parameter v is called the location parameter and is that point on

the x axis at which the function reaches its highest value and about
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which the function is symmetric.

sion parameter and determines the shape of the bell. For a fixed value

centrated about the parameter U. This phenomenon is illustrated in

Figure 3-7. The total area under the curve between x values of V-U and

In a practical situation the analyst would collect a set of data

and plot a histogram for sane basic continuous random experiment. If

the histogram has the bell shape an attempt would then be made to use

the normal density function as an appropriate mathematical model. The

summary measures of the histogram would be used to assign numerical

values to M and u. Once the parameters have been assigned numerical

values the density function would be defined specifically and would then

be plotted on the same graph as the histogram. This would provide the

analyst a picture of the degree to which the normal density function is

an appropriate e model for the basic random experiment under study. In

reality, a statistical test would be conducted to have a more scientific

test of statistical appropriatenes.

3*3 Summary Measures - Continous Random Experiments

As we saw in the discrete case, summary measures can be defined to

summarize the information

measures used in the discrete

S2
, Sample Standard Deviation

content of the data. The four summary

case (Sample Average X, Sample Variance

S, and the Coefficient of Variation C ) are
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also defined in this section for the continuous random experiment. They

are defined for two situations which are commonly encountered in the

analysis of continuous data where

(2) Only the histogram fi/n vs mi for i = 1, 2, . . . . k is

available. 

The procedure for computing the summary measures is different in each

situation and are treated separately as follows:

Situation 1: Use of Actual Data (Xl , X29 . ..~ xn)

Sample Average (x)

Sample Standard Deviation

or equivalently,



Sample Coefficient of Variation (C)

Situation 2:

Sample Variance (Sz)

Sample Standard Deviation (S)



Sample Coefficient of Variation-(C) 

The reader should understand that when the summary measures are

computed using only the histogram (Situation 2) , an approximation to

each summary measure is being computed. The true summary measure should

be computed using the actual data. The approximation, however, is good

when the analyst has a large data set and is using a histogram with a

large number of cells.

The two histograms shown in Figure 3-8 illustrate the meaning of

the sample variance and the sample standard deviation (e. g., for the

same sample average a lower sample standard deviation or sample variance

means a higher concentrate on of the data near the sample average).

3.4 Repetition of A Continuous Random Experiment

The discussion we gave in the case of discrete random experiments

will again be followed in the statistical analysis of variables which

are associated with the repetition of some basic continuous random

experiment. We assume that a subsystem of the shipyard has been

analyzed and that the histogram and summary measures have been

developed. We are now concerned with repetitions of the basic con-

tinuous random experiment and are interested in developing procedures

for understanding statistically three general types of variable:

(1) The Average Outcome,

(2) The Sum of the Outcomes, and
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(3) Variability of the Outcomes. 

Again, each of these general categories is treated separately in

the subsequent sections.

The Aver age Out come

In the continuous case, as it was in the discrete case, it is cer-

tainly possible to collect data on the average outcome of a specified

number of repetitions of a basic experiment. The data could then be

used to construct a histogram of the average outcome and to provide all

of the summary measures. This approach does not have to be followed.

We can determine mathematically the statistical behavior of the average

outcome from a specified number of repetitions of a basic continuous

random experiment. For a process that is in a state of statistical con-

trol, the mathematical results are as follows:

1. The average (XA ) of the histogram for the average outcome will

be close to the average (x) of the histogram for the basic

random experiment.

2. The vari ante of the will

be close to the variance of the histogram for the basic random

experiment Sz divided by the number of repetitions k.

3. The histogram of the average outcome will, for a 1arge number

of repetitions of the basic random experiment, be symmetric
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about the average and will have the bell shape. If the his-

togram of the basic random experiment iS normal , then

regardless of the number 0f repetitions, the histogram of the

average outcome will be normal.

In order to illustrate theses results for the continous case con-

sider the following example.

In the electrical shop a piece of electrical conduit four feet long

is placed in a bending machine to form a right angle at the midpoint of

the conduit and two equal lengths of conduit. The distance between the

end points of the conduit (the hypotenuse of the 90° triangle) is then

measured.

When the system was in a state of statistical control 500 completed

pieces of conduit were measured with the resulting histogram and summary

measures shown in Figure 3-9.

For this example the results of the central 1imit theorem for 15

repetitions and 20 repetitions of the basic experiment are shown in

Figure 3-10. It is clear from Figure .3-10 that the variability

deer eases as the number of repetitions increases and that the% histogram

is centered on the average for the histogram of the basic random

experiment.

It should be emphasized again that the results are true regardless

of the shape of the histogram of the basic random experiment.

The Total of The Outcomes

In this situation a basic continuous random experiment is repeated

a fixed number of times and the variable of interest is the sum of the
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values of the individual outcomes. This is a situation frequently

encountered in the shipyard industry. For example, suppose our basic

random experiment is one where a welder selects a steel plate 4 ft. wide

and 8 ft. long. Now suppose that we imagine a situation in which the

basic random experiment

steel are welded together

ft. long. Our variable

the welded unit. Without

is repeated two times and the two plates

to produce one steel plate 4 ft. wide by

of interest here might be the total length

of

16

of

any random variation in the basic random ex-

periment the total length of the welded unit would be exactly 16 ft.

With random variation in the basic random experiment, there will also be

random variation in the total length of the welded unit.

In this situation we are again saved by mathematics and can draw

the following conclusions:

1. For k repetitions of the basic random experiment, the

the histogram for the sum of the

indi vi dual outcomes will be approximately k times X.

2. For k repetitions of the basic random experiment the

2
individual outcomes will be approximately k times S .

3. The histogram of the sum of the outcomes will, for a large
number of repetitions of the basic random experiment, be

of the normal density function. If the hi stogram of the
basic random experiment has the shape of the normal den-

sity function then the histogram of the sum of the
outcomes will be normal regardless of the number of
repetitions of the basic experiment.
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It is instructive at this point to take an example with specific

numerical values to illustrate the benefits of knowing the statistical

behavior of a particular situation.

The basic random experiment

by 10 ft. long where the length is

Figure 3-11(a). The basic random

the individual plates of steel are

is to select a steel plate 1 ft. wide

described by the histogram shown in

experiment is repeated five times and

welded together to produce one plate

1 ft. x 50 ft. The histogram of the total length is shown in Figure 3-

11(b).

Because of the characteristics of the normal distribution we can

.
welded units will have total length between

ST or 45.53 ft. and 54.479 ft.

welded units will have a total length be-

3. 99.73% Of the welded units will have a total length be-

If the welded

know from statement

long by 4.47 ft. or

unit is to fit into a space 1 ft. by 50 ft., then we

1 that 31 .74% will be short by 4.47 ft. or less or

more. 

Variability of the Outcome in a Repeated Basic Experiment

In the statistical analysis of variability in repetitions of a

basic random experiment, it is common to use the range as a basic

measure of variabilities. Here, the reader should understand that we

are discussing the variability between repetitions of the basic random

experiment. Our definitions of Variability are as follows:





Range of Outcomes (R)

Let M be the largest value of the outcome in the k repetitions of

the basic random experiment.

Let L .be the smallest value of the variable in the k repetitions of

the basic random experiment.

The range, R, of the outcomes is then defined to be,

R =1 M-L .

When the histogram of the basic random experiment has the shape of

the normal density function (the bell shape) and when the process is in

statistical control, sane general statements can be made about the be-

havior of the range.

Range of the Outcome in A Repeated Experiment (R)

For a small number of repetitions of a basic random experiment (k <

10), the range, R, can be used as a measure of variability. In the case

where the basic random experiment has a histogram that has the bell

shape the following general statements can be made.

1. The histogram of the range of the outcome in a repeated
random experiment will have an average value which is ap-
proximately gk x S where gk can be determined from Table  .

3-1 and s is the standard deviation of the basis
experiment.

2. The histogram of the range of the outcome in a repeated
random experiment will have a variance which is ap-

proximately hk x S2 where hk can be determined from Table

3-1 and S2 is the variance of the basic experiment.

3. The histogram of the of the range of the outcome in a
repeated random experiment will have a standard deviation



Number of Repetitions
of Basic Experiment Factors for Average Factors for Variance



3.5 Problems

I. A header

For each header in

is placed between two beans and then welded in place.

a group of five, the time to complete the operation

was recorded as shown in Table 3-2. Construct a histogram of the basic

random experiment (the time to complete one header) and comPute the s~-

and the range of each subgroup. Construct a control chart for this

situation and determine if the process is in statistical control.

II. The purchasing agent of a shipyard has been asked to examine

the validity of complaints about the

bulbs that are supplied by a certain

conducted in which four bulbs from

random. The lifetime (in hours) was

lifetime of 100 watt electric light

manufacturer. An experiment was

each of 25 cartons were selected at

then determined as shown in Table

3-3. Construct a histogram of the bulb 1ifetime and compute the summary

If the average 1ifetime is supposed to be

600 hours, what would you conclude?



Time (minutes) to
Subgroup Weld Header Number
Number 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19.

20

21

22

23

24

25

20.3

25.9

7.1

0.5

12.4

0.6

11.9

28.8

4.0

5.1

6.6

2.7

2.0

32.4

39.6

0.7

1.6

16.6

0.7

3.3

8.2

0.1

3.7

5.5

2.5

1.6

21.1

28.5

7.7

2.5

15.6

15.5

2.1

0.9

3.7

0.9

12.1

1.6

25.8. 13.9

0.7 19.1

7.0 5.8

2.3 15.7

14.6 1.7

0.6 4.4

4.5

4.2

6.0

5.4

8.5

6.8

10.6

0.9

3.8

7.1

4.2

15.2

12.5

9.4

1.9

36.7

1.5

29.5

7.6

6..7

8.2

2.9

7.1

4.5

8.4

1.1

7.4

5.2

11.1

33.9

3.8

15.0

0.9

0.3

3.1

7.7

7.6

17.5

5.6

9.5

5.2

3.6

23.1

8.5

1.0

3.7

14.4

4.5

0.2

4.0

 3.1

5.8

0.9

5.1

3.0

18.2

3.3

4.2

8.6 

25.2

23.7

0.3

4.8

3.3

28.2

1.3

14.3

10.6

0.8

5.7

30.7

3.2

1.4

0.1

15.1

Time to Weld Header in Place

Table 3-2
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Subgroup Lifetime (hours) of
Carton Bulb Number
Number 1 2 3 4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 

20

21

22

23

24

25

491.2

487.4

502.7

492.1

496.6

520.5

492.9

497.7

479.2

496.0

538.5

486.8

517.4

455.6

473.2

479.5

475.3

495.1

474.2

537.4

503.4

506.6

485.5

467.7

515.9

500.4

511.6

519.6

559.5

461.4

476.1

497.1

514.7

463.9

482.0

519.5

510.4

458.7

479.4

546.3

473.2

480.0

513.2

512.9

536.3

549.8

491.3

469.2

452.5

512.5

Lifetime of 100 Watt Electric

Table 3-3

513.4

500.2

527.3

512.7

494.4

481.2

520.6

535.0

520.6

479.5

453.2

513.9

538.6

502.6 

523.8

509.7

489.9

494.1

566.5

503.4

497.2

444.6

519.1

496.8

516.0

512.6

460.5

547.0

490.9

514.0

493.9

512.3

511.5

474.0

518.7

526.5

511.5 481.6

538.1 481.6

517.6 507.6

459.0 546.8

493.7 506.0

516.9 518.7

498.3 561.2

Light Bulbs



4. SUMMARY OF STATISTICAL CONTROL CHARTS

4.1 Introduction

If you are a manager and if you follow the Deming philosophy of

modern management, then you will be involved in management by walking

Your new responsibilities will ‘include a basic under-

standing of the fact that 80-85 percent of all problems are with the

system. In addition, you will adhere to the following rule:

Your new role is to learn the system
in such a way that both quality
improved.

In order to learn the system you will

and to change the system
and productivity are

have to become actively in-

volved in the analysis of variability and become familiar with the

subject of " decision-making based on facts" where the facts are numbers

that exhibit variability. This is exactly the situation you will

encounter when you begin to apply the general techniques of statistics

and, in particular, when you use a statistical control chart.

With the statistical control chart you will be looking at a set of

numbers that exhibit variability (the facts) and, based on these num--

bers, you will make a decision about the process from which the numbers

were drawn. You will be deciding if the process is operating with only

natural variability or if the process is operating with unnatural

variability. If the facts lead you to conclude that unnatural

variability is present, then you will have to search for an assignable

cause (or assignable causes) that produced the unnatural variability.

114
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In this decision-making process your objective is to return the system

to its state of natural variability and to continue the decision-making

process by collecting more data (the facts) and by repeating your

analysis of the facts.

A statistical control

cal display of the facts

chart is a

to assist

technique for providing a graphi-

you in making a correct decision

about the

simply a

series of

state of statistical control of the process. The chart is

plot of the value of some variable that is computed from a

repetitions of a basic random experiment. The chart, along

with basic rules about the behavior of the chart for a process which is

in statistical control, will provide you with the proper structure to

reach a logical conclusion.

In the construction of a control chart the repeated experiments are

called subgroups, and one value of the variable of interest is plotted

for each subgroup number. Thus, the vertical axis of the control chart

will be the important variable and the horizontal axis will be subgroup

number or 1, 2, 3, 4, . . . . r, where r is the number of subgroups you

. have.

The chart will also have three horizontal lines called the Upper

Control Limit (UCL), the

(CL). The general format

Figure 4-1.

The central tendency

Lower Control Limit (LCL), and the Center Line

of the Statistical Control Chart is shown in

and the standard deviation of the variable of

interest are used to determine values for the CL, the UCL, and the LCL.

In general the CL is the central tendency of the important variable, the

UCL is the central tendency plus three standard deviations of the
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variable; and the LCL is the central tendency minus three standard

deviations. For all types of control charts and for a process that is

in statistical control, the central tendency and the standard deviation

of the important variable can be related to the central tendency and the

standard devi at ion of the basic experiment. In this manner, and using

some additional knowledge of probability theory and statistics, you can

make the following statement.

If the process is in a state of statistical control, then the
important variable should behave in a random but natural way.
If YOur plotted values of the important variable do not behave
as they should, then YOU can only conclude that the process is
not operating in a state of statistical control.

The basic elements of statistics

three to introduce you to both the

were presented in Chapters two and

concept of a hi stogram and certain

summary measures of a set of data that were celled the average (central

tendency) and the standard deviation (dispersion). This introduction to

statistics should put you in a position to understand the basics of the

statistical control chart,

The manner in which the ‘statistics” of the important variable are

related to the ‘statisticsn of the basic experiment is a topic which re-

quires a deeper understanding of probability and statistics than we

could provide in this workbook.

4.2 Specific Types of Statistical Control Charts

Most practical decision-making situations that should be analyzed

with the help of a statistical control chart can be placed into one of
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three categories. Each category and the important variables that are

commonly used in each category are as follows:

Category I: Repeated experiments where the outcome of each trial is:

O (good or conforming) or 1 (defective or nonconforming)

Important Variables

Total Number of Defectives

Fraction Defective

Percent Defective

Category II: Repeated experiments

O, or 1, or 2, or 3,

Import ant Variable

where the outcome of each trial is:

Total Number of Defects

Average Number of Defects

Category III: Repeated experiments where the outcome of each trial is:

measurable (continuous)

Important Variables

Aver age Out come

Range of Outcomes

For a process that is in a state of statistical control each of the

important variables in categories I and II will have a statistical be-

havior (central tendency and standard deviation) that can be specified

experiment. If the basic random experiment is repeated k times and if

the process is in a state of statistical control, the statistical be-

“ havior of the important variables in each category should be as follows:



Fraction Defection

Percent Defective

Category II: Total. Number of Defects

Average Number of Defects

In the continuous case (Category III) and for a process that is in

statistical control with k repetitions of the basic experiment the

statistics of the two important variables are as follows:
.

Category III: Average Out come

Central Tendency =

Range of Outcomes

Central Tendency



Subgroup Size
(k)

Value of Factor

‘1 ‘2

2

3

4

5

6

7

8

9

10

0.627

0.341

0.243

0.192

0.161

0.140

0.124

0.112

0.103

0.756

0.422

0.427

0.372

0.335

0.308

0.288

0.272

0.259

Factors for Computing Standard Deviations

Table 4-1



where B2 can be determined from Table 4-1.

Now that we have listed the central tendency and the standard

deviation for each of the important variables the construction of the.

control chart for each variable is accomplished as follows:

Center Line = Central

Upper Control Limit =

Lower Control Limit =

Tendency

Central Tendency

Central Tendency

+ 3 Times Stander d Deviation

- 3 Times Standard Deviation

4.3 Rules for Statistical Control

Once the control chart has been constructed and the values of the

important variable have been plotted you have to decide if the process

is operating with only natural variability (statistical  control) or with

unnatural variability (out of Statistical  Control) l

The

1.

2.

3.

4.

5.

following rules are generally accepted:

If a value of the important variable is plotted above the
upper control limit or below the lower control 1imit look
for cause of .unnatural variability. 

If 8 consecutive values of the important variable appear
above the center 1ine or below the center line look for
cause of unnatural variability.

If 12 out of 14 consecutive values of the important vari-
able are either above the center 1ine or below the center
1ine look for cause of unnatural variability

If 6 consecutive values of the important variable show
either an increasing trend or a decreasing trend look for
cause of unnatural variability.

If the values of the important variable show CYC1ical or
periodic behavior look for cause of unnatural variability.



6. If values of the important
ter 1ine look for cause of

It should be emphasized that
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variable appear to hug the cen-
unnatural variability.

these rules are generally acceptable

in the use” of Statistical Control Charts. When a specific situation is

being studied a careful analysis should be made of the cost of making

incorrect decisions. In order to accomplish this task you must deter-

mine the cost of saying that the process is in control when it is not.

Similarly you must determine the cost of saying the process is not in

control when it is. Once these costs have been established the rules

given above and the corresponding risks can be evaluated. In many cases

the rules might have to be changed to reflect the costs.

4.4 Problems

I. Using the data presented for problem I of Chapter 2, construct

a control chart for the average number of defects and plot the in-

dividual values. Determine if the process is in a state of statistical

control. =

II.

struct a

values.

Using the data presented for problem III of Chapter 1, con-

control chart for percent defective and plot the ‘individual

Determine if the process is in a state of statistical control.
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