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Abstract

The Legion system defines a software architecture designed to support
metacomputing, the use of large collections of heterogeneous computing
resources distributed across local- and wide-area networks as a single, seamless
virtual machine. Metasystems software must be extensible because no single
system can meet all of the diverse, often conflicting, requirements of the entire
present and future user community, nor can a system constructed today take best
advantage of unanticipated future hardware advances. Metasystems software
must also support complete site autonomy, as resource owners will not turn
control of their resources (hosts, databases, devices, etc.) over to a dictatorial
system. Legion is a metasystem designed to meet the challenges of managing and
exploiting wide-area systems. The Legion virtual machine provides secure shared
object and shared name spaces, application adjustable fault-tolerance, improved
response time, and greater throughput. Legion tackles problems not solved by
existing workstation-based parallel processing tools, such as fault-tolerance,
wide-area parallel processing, interoperability, heterogeneity, security, efficient
scheduling, and comprehensive resource management. This paper describes the
Legion run-time architecture, focussing in particular on the critical issues of
extensibility and site autonomy.

1. The Legion project is partially supported by NFS CDA-9724552, DARPA contract #N66001-96-C-8527, DOE
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1. Introduction

The next several years will see the widespread deployment of high-speed gigabit and terabit

networks, both as national and international backbones and as local, campus, and metropolitan

area networks. These networks will act as sinews to bind together computation and data

resources throughout the world. The challenge facing the computer science community is to

provide software abstractions that can glue the diverse resources into a single entity—to

construct one system from many. We call thismetasystems software: the software above the

physical resources and below applications. Without metasystems software it will be difficult if

not impossible to construct the applications that can unleash the full potential brought about by

the new, more powerful networks.

The design of these new metacomputing software abstractions is the subject of this

paper. We believe that, above all else, metasystem software must be extensible and must provide

complete site autonomy. It must be extensible because no single system can meet all of the

diverse, often conflicting, needs and requirements of the entire present and future user

community, nor can a system constructed today take best advantage of unanticipated future

hardware advances. Metasystem software therefore must provide users, applications developers,

and resource owners with the ability to reshape the software infrastructure as needed in a

consistent, orderly manner. Site autonomy must be supported for the simple reason that resource

owners will not turn their resources (hosts, databases, devices, etc.) over to a dictatorial system

as the price of admission. Metasystems software must instead allow resource owners to decide

who can use their resources, which binaries a user can execute on their processors, how much of

a given resource a user can access, how much it will cost, and so on.

Legion, developed at the University of Virginia, is a metasystem designed to meet the
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challenges of managing and exploiting wide-area systems. The hardware base for Legion will

consist of workstations, vector supercomputers, and parallel supercomputers connected by local-

area and wide-area networks, but the system is designed to provide users with the illusion of a

single virtual machine. This virtual machine provides secure shared object and shared name

spaces, application adjustable fault-tolerance, improved response time, and greater throughput.

Legion tackles problems not solved by existing workstation-based parallel processing tools,

such as fault-tolerance, wide-area parallel processing, interoperability, heterogeneity, security,

efficient scheduling, and comprehensive resource management. We envision a system in which

a user sits at a Legion workstation and has the illusion of working on a single, very powerful

computer. When the user invokes an application on a data set, it is Legion’s responsibility to

transparently schedule application components on processors, manage data transfer and

coercion, and provide communication and synchronization. System boundaries, data location,

and faults are invisible.

Legion’s components will include a run-time system, Legion-aware compilers that target

this run-time system, and programming languages that present applications programmers with a

high level abstraction of the system. Thus, Legion will allow users to write programs in several

different high-level languages, and will transparently create, schedule, and utilize distributed

objects to execute the programs. Legion users will require a wide range of services in many

different dimensions, including security, performance, and functionality. No single policy or

static set of policies will satisfy every user, so users must be allowed to determine their own

priorities and to implement their own solutions as much as possible. Legion supports this

philosophy by providing the mechanisms for system-level services such as object creation,

naming, binding, and migration, and by not mandating these services’ policies or
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implementations. We explain this philosophy in more detail in Section3 and throughout

Section6.

1.1 Outline

The primary purpose of this paper is to describe the Legion run-time architecture.

Sections 2 and 3 describe our high-level objectives and philosophies and explain the motivation

for the Legion object model and architecture. Section4 then introduces some key Legion

concepts that are required for the remainder of the discussion. Section5 introduces the core

system elements by explaining the behavior of a simple narrative example, an RPC-style

interaction between two Legion objects.1 This discussion demonstrates how the components of

Legion work together at a high level. In Section6 we discuss in detail the interface and

functionality of the core system objects: class objects, metaclass objects, host objects, vaults,

context objects, binding agents, implementation objects, and implementation caches. These

objects combine to implement basic Legion services. For each core object, we discuss examples

of the options that are available to programmers who wish to augment or replace different parts

of our implementation. Section7 discusses the current status of the Legion implementation

effort. We conclude with related work (Section8) and a summary (Section9).

2. Legion Objectives

To realize the Legion vision is not a trivial matter. We have distilled ten design objectives that

are essential to the success of the project: site autonomy; an extensible core; scalability; an easy-

to-use, seamless computational environment; high performance via parallelism; a single

persistent object space; security for both users and resource providers; resource management and

exploitation of heterogeneity; multi-language support and interoperability; and fault tolerance.

1. This is a “simplified” example because Legion does not restrict objects to using RPC-style interactions. On the
contrary, Legion allows objects to create and execute generalized macro data-flow program graphs, enabling a
much richer set of semantics for object interaction.
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• Site autonomy: Legion will not be a monolithic system; it will be composed of resources

owned and controlled by an array of organizations. Organizations, quite properly, will insist

on having control over their own resources; for example, they may insist on specifying how

much of a particular resource can be used, when it can be used, and who can and cannot use

the resource. One important aspect of site autonomy is implementation autonomy. Sites must

be able to choose which implementations of Legion components to use. For example, users

may trust the security mechanisms of one implementation over those of another, or they may

require the performance guarantees of a particular implementation.

• Extensible core: A metacomputing system must be flexible enough to suit the wide variety

of current user demands and capable of evolving to meet unanticipated future needs.

Mechanism and policy must be realized via extensible replaceable components. This will

permit Legion to adapt over time and will allow users to construct their own mechanisms

and policies to meet specific needs. Consistent with our site autonomy objective, the core

system components themselves must be extensible and replaceable. This will allow third

party or site-local implementations that provide value-added services to the system.

• Scalable architecture: Because Legion will consist of millions of hosts, it must have a

scalable software architecture; there must be no centralized structures or servers—the system

must be fully distributed.

• Easy-to-use, seamless computational environment: Legion must mask the complexity of

the hardware environment and of communication and synchronization of parallel processing.

Machine boundaries, for example, should be invisible to users. As much as possible,

compilers acting in concert with run-time facilities must manage the environment for the

user. If Legion is not transparent and easy to use, then it will provide little benefit over the
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status quo and will not be used. Tempering our transparency objective is the knowledge that

there are “power users” with demanding applications that will require the capability to make

low-level decisions and to interface with low-level system mechanism. Therefore we must

accommodate both end users who don’t want to worry about the details, and power users

who are compelled to tune their applications.

• High performance via parallelism: Legion must support easy-to-use parallel processing

with large degrees of parallelism. This includes arbitrary combinations of task and data

parallelism. Not all applications will be parallel; Legion will necessarily best support

relatively coarse-grain applications. This does not mean that we think a single huge

application will ever use all of the computers in the country; most parallel applications will

use only a small subset of the available resources at any given time.

• Single, persistent object space: The lack of a single name space for data and resource

access is one of the most significant obstacles to wide-area parallel processing. The current

multitude of disjoint name spaces makes writing applications that span sites extremely

difficult. Any Legion object should be able to access transparently (subject to security

constraints) any other Legion object without regard to location or replication.

• Security for users and resource owners: Security must be built firmly into the core of a

metacomputing system. Attempting to patch security on as an afterthought (as is being

attempted today in many contexts) is a fundamentally flawed approach. We also believe that

no single security policy is perfect for all users. Although we cannot significantly strengthen

existing operating system protection and security mechanisms (because we cannot replace

existing host operating systems), we must ensure that existing mechanisms are not weakened

by Legion. Therefore, we must provide mechanisms for users to select policies that fit their
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needs and meet their local administrative requirements.

• Management and exploitation of resource heterogeneity: Clearly, Legion must support

interoperability between the heterogeneous hardware and software components that will be

used in the system. In addition, some architectures are better than others at executing

particular applications, e.g., vectorizable codes. These affinities, and the costs of exploiting

them, must be factored into scheduling decisions and policies.

• Multiple language support and interoperability: Legion applications will be written in a

variety of languages. It must therefore be possible to integrate heterogeneous source-

language application components in much the same manner that heterogeneous architectures

are integrated. Interoperability also means that we must be able to support legacy codes and

work with emerging standards such as CORBA [32] and DCE [28].

• Fault-tolerance: In a system as large as Legion it is certain that at any given instant several

hosts, communication links, and disks will have failed. Thus, dealing with failure and with

dynamic re-configuration is a necessity for both Legion system-level objects and the

applications they support.

In addition to these purely technical objectives, there are also political, sociological, and

economic issues, such as encouraging the participation of resource-rich centers and discouraging

the temptation to take advantage of free resources without making reciprocal contributions to the

resource pool. We intend to develop mechanisms that facilitate accounting policies to encourage

good community behavior.

2.1 Constraints

In addition to the goals described above, several constraints restrict our design.

• We cannot replace host operating systems. Organizations will not permit their machines
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to be used if their operating systems must be replaced. This would require rewriting

applications and retraining users. It could also make Legion resources incompatible with and

unavailable to other resources in the organization. Our experience developing the Mentat

system [16] indicates that building a metasystem on top of existing host operating systems is

a viable approach.

• We cannot legislate changes to the interconnection network. We must initially assume

that the network resources and the protocols in use are fixed. Much as we must

accommodate operating system heterogeneity, we must live with the available network

resources. However, we can layer better protocols over existing ones, and we can warn users

that the performance for a particular application on a particular network will be poor unless

the protocol is changed.

• We cannot require that Legion run in privileged mode. To protect their objects and files,

most Legion users will want the Legion software to run with the fewest possible privileges.

Of course, we do not prohibit Legion implementations that require root privilege; this may

provide some additional benefit and may be acceptable to some sites.

3. Philosophy

Complementing our use of the object-oriented paradigm is one of our driving philosophical

themes: we cannot design a system that will satisfy every user's needs. We must design Legion

to allow users and programmers the greatest flexibility in their applications’ semantics, resisting

the temptation to dictate solutions to a wide range of system functions. Users should be able,

whenever possible, to select both thekind and thelevel of functionality, and to make their own

trade-offs between function and cost.

Neither the kind nor the level of functionality are linearly ordered, but a simplistic model
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is that of a multi-dimensional space. The needs of users will dictate where they need and/or can

afford to be in this space; we as the designers of the supporting conceptual system have no way

of knowing what those needs are, or what they will evolve to be in the future. Indeed, if we were

to dictate a single system-wide solution to almost any of the issues raised in our list of

objectives, we would preclude large classes of potential users and uses.

Consider security, with respect to both kind and level of functionality. Some users are

more concerned with privacy, some only need to maintain the integrity of their data, and others

require both of these types of security. Banks and hospitals, for example, are likely to fall into

the last category. There is a difference between the kind of security functionality and the degree,

or level, of security. Some users are content with password authentication, while others feel the

need for more stringent user identification, such as signature analysis, fingerprint verification, or

another approach. A user might be willing to pay the higher cost (in terms of CPU, bandwidth,

and time) of a more powerful cryptographic key in order to have a stronger degree of security

without changing the basic nature of the type of security provided. On the other hand, an

application that requires low overhead cannot afford such a policy and should not be forced to

use it. Such an application might instead choose a light-weight policy that merely verifies

communication integrity or perhaps one with no security at all. Users decide what trade-offs to

make, whether by implementing their own policies or by using existing policies, instead of

coping with an inevitably unsatisfactory fixed security mechanism.

Next, consider the issue of consistency semantics in a distributed file system. To achieve

good performance, it is often desirable to replicate all or parts of a file. If updates to the file are

permitted, the replicated data may begin to diverge. There are many ways to address this

problem: do not replicate writable files, use a cache invalidation protocol, use lazy updates to a
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master copy, and so on. Each has an associated cost and semantics. Some applications don't

require all copies to be the same, others require a strict “reads deliver the last value written”

semantics, others know that the file is read-only (so that consistency protocols are a waste of

time), while still others may need different semantics for the file in different regions of the

application. Independent of the file semantics, some users may need frequent automatic backups

and archiving, while others may not. The point is that the user—not the system—should make

these decisions for users; users themselves should select the kind and level of service they

require.

This philosophy has been manifested in the system architecture. The Legion object

model specifies the composition and functionality of Legion's core objects (the objects that

cooperate to create, locate, manage, and remove objects from the Legion system). Legion

specifies the functionality but not the implementation of the system's core objects. Therefore, the

core consists of extensible, replaceable components. The Legion project provides default

implementations of the core objects, but users are not be obligated to use them. Instead, users

are encouraged to select or construct objects that implement mechanisms and policies that meet

their specific requirements.

The object model provides a natural way to achieve this kind of flexibility. Files, for

example, are not part of Legion itself. Anyone may define a new Legion object type whose

interface and semantics are recognizable as those of a file, but whose specifics suit its intended

application. The current Legion software system provides an initial collection of file objects that

reflect the most common needs, but we do not have to anticipate all possible future requirements.

4. The Object Model and Key Legion Concepts

Legion is an object-oriented system comprising independent, logically address space disjoint
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objects that communicate with one another via method invocation. The fact that Legion is object-

oriented does not preclude the use of non-object-oriented languages or non-object-oriented

implementations of objects. In fact, Legion supports objects written in traditional procedural

languages such as C and Fortran in addition to object-oriented languages such as C++, Java, and

the Mentat Programming Language (MPL).2

Method calls are non-blocking and may be accepted in any order by the called object.

Each method has a signature that describes the parameters and return values, if any, of the

method. The complete set of method signatures for an object fully describes that object's

interface, which is determined by its class. Legion class interfaces are described in an Interface

Description Language (IDL). Two different IDL's will be initially supported by Legion, the

CORBA IDL and MPL.

In the Legion object model, each Legion object belongs to a class, and each class is itself

a Legion object. All Legion objects export a common set ofobject-mandatory member functions

that are necessary to implement the core Legion services (such asdeactivate() and

getInterface()). Class objects export an additional set ofclass-mandatory member

functions that enable them to manage their instances (such ascreateInstance() and

deleteInstance()).

Much of the Legion object model’s power comes from the important role of Legion

classes. In Legion, much of what is usually considered system-level responsibility is delegated

to user-level class objects. For instance, Legion classes are responsible for creating and locating

their instances, and for selecting appropriate security and object placement policies. The core

Legion objects simply provide mechanisms for user-level classes to implement the policies and

2. MPL [16] is a parallel dialect of C++ in which classes may be denoted as Mentat classes, whose instances are
address-space disjoint, and whose member functions may be executed in parallel (see also Section4.3).
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algorithms that they choose. Assuming that we have defined the operations on core objects

appropriately (i.e. that they are the right set of primitive operations to enable a wide enough

range of policies to be implemented), this philosophy effectively eliminates the danger of

imposing inappropriate policy decisions, and opens up a much wider range of possibilities for

the application developer.

4.1 Naming and Binding

Legion objects are identified using a three-level naming hierarchy, as depicted in Figure 1. At

the highest level, objects are identified by user-defined text strings calledcontext names. These

user-level context names are mapped by a directory service calledcontext space to system-level,

unique, location-independent binary names calledLegion object identifiers (LOIDs). For direct

object-to-object communication LOIDs must be bound to low-level addresses that are

meaningful within the context of the transport protocol that will be used for message passing.

These low-level addresses are calledobject addresses and the process by which LOIDs are

mapped to object addresses is called the Legionbinding process.

4.1.1 LOIDs

LOIDs are the central, system-level naming mechanism in the Legion system. Every

Legion object is assigned a unique LOID that can be used to communicate with the object. The

basic LOID data structure consists of a sequence of binary stringfields; a LOID can contain up

FIGURE 1. The three-level Legion naming hierarchy. Context names are convenient user-defined
textual identifiers. These map to Legion object identifiers (LOIDs): system-wide unique,
location-transparent object identifiers. For direct communication, LOIDs are mapped to low-
level object addresses.

Context
Space

Binding
Process

context name LOID OA



Page 12

to 216-1 fields, each of which may contain up to 216-1 bytes of arbitrary binary information. In

addition to containing the information associated with each field, the LOID also encodes the

number of fields it contains and the size of each field. Each LOID also contains a type identifier,

a four byte string used to describe the meaning of the LOID contents (for example, to determine

the semantics of certain content fields).

A LOID contains an initial four byte type identifier, followed by a two byte unsigned

integer indicating the number of fields, followed by the fields themselves, as depicted in Figure

2. Each field is effectively a two byte unsigned integer indicating the field length, followed by

the bytes that make up the field. Of course, the implementation of various LOID data structures

may differ from this model, but the implied information content will be preserved.

Within the abstract LOID data type, four of the fields are reserved for specific system

purposes. The first three reserved fields play a key role in the LOID to object address binding

mechanism. Field 0 contains a Legion domain identifier, which can be used to support the

dynamic connection of separate existing Legion systems. Field 1 is aclass identifier, a string of

bits uniquely identifying the named object’s class. Field 2 is aninstance number that

distinguishes the named object from other instances of its class within the same Legion domain.

LOIDs containing an instance number field of length zero are defined to refer to class objects.

The fourth field of the LOID (field 3) is reserved for security purposes. Specifically, this

field contains a public key for encrypted communication with the named object. The format of

the LOID is left unspecified beyond these four reserved fields. New LOID types can be

type
identifier
4 bytes

num
fields

2 bytes

field 0
len

2 bytes

field 0
contents

field 1
len

2 bytes

field 1
contents . . .

FIGURE 2. The LOID data structure contents.



Page 13

constructed to contain additional security information, location hints, and other information in

the additional available fields.

4.1.2 Context names

Whereas LOIDs provide the basic system-level naming abstraction, users require a more natural

naming mechanism, one that allows them to assign meaningful, human-readable names to their

objects. Legion supports the notion of context space (directed graphs ofcontext objects that

cooperate to translate user-defined names into LOIDs) to fill this role. For example, an object

that represents a processing resource might be assigned a context name corresponding to that

host’s standard DNS. An object that represents a file might be assigned a descriptive context

name based on the file contents. Context space is discussed in greater detail in Section6.6.

4.1.3 Object Addresses

Legion uses standard network protocols and communication facilities of host operating systems

to support communication between Legion objects. However, LOIDs are meaningful only at the

Legion level, not within existing protocols such as TCP/IP. Consequently, Legion must provide

a mechanism by which LOIDs can be mapped to names that are meaningful to underlying

protocols and communication facilities. These low-level names are called object addresses, or

OAs. An OA is a list ofobject address elements and anaddress semantic field, which describes

how to use the list. An OA element contains two basic parts, a 32-bitaddress type field, and the

address itself. The address type field indicates the type of address that is contained in the address

field, whose size and format vary depending on the address type. For example, the current

Legion implementation contains an OA that consists of a single OA element. This element

contains a 32-bit IP address and a 16-bit port number; every Legion object is linked with a Unix-

sockets-based data delivery layer (called theModular Message Passing System, or MMPS[17])
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that communicates with the data delivery layers of other objects using these OA types.

The address semantic field is intended to encapsulate various forms of multicast and

replicated communication. For example, the field could specify that all addresses in the list

should be selected, that one of the addresses should be chosen at random, thatk of the N

addresses in the list should be used, etc. The composition and meaning of the full set of options

that will be defined by Legion have not yet been identified, but provisions for extending the list

with user-definable address semantics will likely be made.

4.1.4 Bindings

Associations between LOIDs and OAs are calledbindings, and are implemented as three-tuples.

A binding consists of a LOID, an OA, and a field that specifies the time at which the binding

becomes invalid (this field may also be set to some value that indicates that the binding will

never become explicitly invalid). Bindings are first-class entities that can be passed around the

system and cached within objects.

Note, the third field—the binding invalidation time—is strictly an optimization hint. A

binding may still be used after the timeout appears to expire at a client—the binding may simply

no longer be valid, leading to a communication timeout and rebinding. On the other hand, a

client could use the timeout information to schedule re-binding in advance in order to avoid

communication delays. Thus, the fact that there is no globally accurate notion of time does not

affect correctness, just performance.

4.1.5 Object States

In a typical Legion system, the number of objects is expected to be orders of magnitude larger

than the number of available processors. Thus, it would be unreasonable for our design to

require an active process for every object in the system, although this would be the naive
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approach to implementing the disjoint address space model.3 To address this issue Legion

objects are persistent, and alternate between two different states,active or inert. When an object

is active, it is running as a process on a Legion host and it can be accessed via an object address.

When an object is inert, it exists in persistent storage that is controlled by a Legionvault object

(Section6.3), is described by anobject persistence representation (OPR), and can be located

using anobject persistence address (OPA). Throughout their lifetime, objects can be moved

between active and inert states by other Legion objects.

An OPR is associated with each Legion object and is used to store an object’s persistent

state (see Figure 3). Legion objects implement an internalsaveState() method, which

enables them to store persistent state into their OPR before becoming inert, and an internal

restoreState() method, which is called immediately after reactivation to recover needed

state from the OPR. Through the use of these object-internal mechanisms, in cooperation with

system management of OPRs, objects are given the opportunity to preserver their state when

they are migrated between hosts.

The OPA of an inert object is analogous to the OA of an active object. Objects use their

OPA to gain direct access to their OPR. Typically, an OPA will be a file name (or a set of file

names), and will necessarily only be meaningful to the Legion vault that controls the named

3. Legion does not specify that each object will necessarily have its own process. Our current implementation has
one process per active object, but future alternative implementations may have the ability to multiplex objects to
processes. However, even assuming multiple objects per process, we expect the number of objects to exceed the
ability of the system to support active processes.
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OPR and to the object with which the OPA is associated.

4.2 Attributes

Legion attributes provide a general mechanism that allows an object to describe itself to other

objects in the system. An attribute is a tuple that contains atag and avalue; the tag is a character

string, and the value contains data that varies for different tags. Attributes reside in the address

space of the object they describe, and can be accessed via object-mandatory functions (such as

getAttributes()) whose parameters can be empty, can contain a specific tag or set of tags,

or can contain <tag, value> pairs. The set of attribute kinds (i.e., tags) supported by an object

depends on the object’s type. For example, each host object contains attributes that describe the

architecture and system configuration of the machine it represents (e.g., <Architecture, Sparc>,

<Operating System, Solaris>). Programmers can include arbitrary attribute sets in the objects

they create. During the lifetime of an object, its attributes can be dynamically updated or

augmented to reflect changes in the object.

4.3 Legion Programming

Legion is designed to support and allow interoperation between multiple programming models.

At its base, Legion prescribes the message format for inter-object communications, thereby

enabling a wide variety of Legion object implementation strategies. However, in its most useful

form, Legion presents programmers with high-level programming language interfaces to the

system. These high-level interfaces are supported by Legion-targeted compilers, which in turn

Legion
Object

A
A’s

OPR

A’s OPA

FIGURE 3. A Legion object has direct access to its persistent state, termed its object persistence
representation, or OPR. The location of an object’s OPR is called the object persistence address, or OPA.
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use the services of a run-time library that enables Legion-compliant inter-object communication.

We have implemented aLegion run-time library (LRTL) [36], and we have ported the

Mentat [16] programming language compiler (MPLC) to use the LRTL.4 Thus, programmers

can define Legion object implementations in MPL, which can be translated by MPLC to create

executable objects that communicate with one another in a Legion-compliant fashion. Figure4

depicts this typical programming model.

5. An Illustrative Example

We have described the Legion object model and fundamental features such as naming and

persistence, but we have not yet considered the design of system services such as object creation

and LOID to OA binding. In Legion, these system level services are supported by a cooperating

set of core objects, which are described in detail in Section6. However, before examining the

interfaces and designs of the individual system-level Legion objects, it would be useful to have a

4. We have also developed implementations of PVM [14] and MPI [21, 29] layered on top of the LRTL, and we
currently support a Java interface to the LRTL and a specialized programming interface for Fortran called Basic
Fortran Support (BFS) [11].

Legion targeting
compiler (e.g. MPLC)

Legion object

FIGURE 4. The Legion programming model. The object is defined in a high level language. Through a
combination of Legion-aware compiler support and use of the LRTL, a complete Legion object
implementation is produced. Based on this object implementation, new Legion objects can be instantiated
in the system. These new objects can communicate with one another and with existing Legion objects.

High-level language
source code (e.g. Mentat)

Legion run-time
library (e.g. LRTL)

implementation

Legion

register
with Legion
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high-level understanding of the roles these objects play and their interrelationships.

To this end, this section describes how Legion implements a simplified RPC-style

interaction between two Legion objects,Caller andCallee. The description introduces the basic

functionality that the supporting Legion core objects must support, but does not describe them in

intricate detail, nor does it expound on any alternative policies and implementations that are

allowable under the architecture and object model. These discussions are deferred until

Section6.

Suppose Legion object Caller wishes to invoke member functionfunc() on another

Legion object, Callee (see Figure 5). The typical chain of events consists of several parts:

determining the LOID for Callee, obtaining a binding for this LOID, and potentially creating or

activating Callee.

5.1 Determining LOIDs

The programmer, in writing the source code for object Caller, uses the appropriate programming

language constructs to indicate thatfunc() should be invoked on object Callee. For example,

in MPL, the programmer would simply include the following line of code in the program:

return_value = Callee.func(7);

wherereturn_value is a variable of the type thatfunc() returns (in this case an integer).

The compiler generates code in the translated implementation of Caller to marshall the integer

Caller Callee

return_value = int func() {...}

FIGURE 5. A simple RPC-style interaction between two Legion objects.

Callee.func(7);
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argument, to construct a simple macro data-flow program graph [36] representing the function

call, to translate the graph into a Legion message, and to retrieve the return value and place it in

thereturn_value variable.

To send a message to Callee, the compiler must associate the variableCallee with the

appropriate Legion object, which entails finding Callee’s LOID. One possible strategy is to

statically translate the programmer-specified name for Callee (in this caseCallee) into a

context name that the compiler can use to identify the object. This context name can then be

resolved—either statically within the compiler itself, or dynamically within the object being

created (with potentially different results in each case)—to determine Callee’s LOID (the LRTL

provides routines for using Legion context objects to resolve context names to LOIDs).

In this example we have assumed that the program wishes to use an existing object. In an

alternative scenario, Caller might create a new object to associate with the variableCallee (for

example, when that variable comes into scope). In that case, the object creation mechanism

would result in a LOID being returned to Caller. In any event, we now assume that the caller has

determined Callee’s LOID.

5.2 The Binding Mechanism

Once Callee’s LOID has been determined, Caller must bind this LOID to Callee’s current OA in

order to carry out the desired method invocation. Finding a binding for a LOID is called the

binding mechanism, and is depicted in Figure6.

If Caller has communicated with Callee prior to the current method invocation, Caller

may already have a binding for Callee stored in its localbinding cache (maintained within

Caller’s address space) (Figure6a). Legion object binding caches are populated by bindings

collected during the repeated execution of the binding mechanism. These caches allow objects to
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take advantage of the natural temporal and spacial locality observed in method invocation; that

is, if Caller invokes a method on Callee, Caller is likely to invoke other methods on Callee in the

near future. If Caller does have a binding for Callee, it simply uses the OA in that binding, and

the binding mechanism does not require any remote invocations on other Legion objects. Given

the natural locality in method invocation, and the low cost of maintaining relatively large

binding caches, we expect the use of cached bindings to be the common case. If Callee becomes

inert or if it migrates to a new OA after its binding is cached in Caller, then the binding becomes

stale, and Caller must obtain the up-to-date OA. Detecting stale bindings and obtaining current

OAs is discussed in Section5.4.

If Caller does not have a cached binding for Callee, Caller can contact itsbinding agent,

whose job is to return bindings for its clients (Figure6b). Typically, many objects will be clients

Callee

CalleeMetaclass
(Callee’s metaclass)

g

f

e

b

d

FIGURE 6. Potential steps in the Legion binding and class-of mechanisms—Caller must bind the LOID of Callee
to an OA for low-level communication. Caller may already have a cached binding for Callee (a), or may need to
consult a binding agent (b). The binding agent may have a cached binding for Callee (c), or may need to consult
Callee’s class,CalleeClass, for the binding (d). In order to communicate with CalleeClass, the binding agent
needs a binding for CalleeClass. If the binding agent does not have CalleeClass’s binding, it may need to consult
CalleeClass’s metaclass (e). If the binding agent does not know the binding for this metaclass, the process repeats
itself. The recursion is guaranteed to terminate at the root of the binding tree, LegionClass (f). Eventually, the
binding agent returns Callee’s binding (g) and Caller can send messages directly to Callee (h).

Caller’s
Binding Agent

Caller

a hBinding Cache

Binding Cachec

LegionClass

CalleeClass
(Callee’s class)
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of the same binding agent, allowing shared caching of the results of costly binding requests.

Thus, if any other objects using Caller’s binding agent had recently invoked Callee, the binding

agent may have a cached binding for Callee that it can immediately return to Caller. If the

binding agent does not have a cached binding for Callee, it can contact Callee’s class,

CalleeClass, to obtain the desired binding (Figure6d). Finding the LOID of a Legion object’s

class is called theclass-of mechanism, and is described in Section5.3.

Once the binding agent obtains CalleeClass’s LOID, it can request Callee’s binding from

CalleeClass. However, to do so, the binding agent must first execute the binding mechanism to

determine CalleeClass’s OA. This request might in turn require executing the class-of

mechanism to find CalleeClass’s class, CalleeMetaclass. There can be an arbitrarily long chain

of metaclasses, but the binding and class-of mechanisms are recursive, and because the class-of

hierarchy is rooted at LegionClass, the mechanism is guaranteed to terminate.

5.3 The Class-Of Mechanism

The binding mechanism may need to consult an object’s class; therefore it needs to be able to

determine that class’s identity. The class-of mechanism maps an object’s LOID to its class’s

LOID. As with bindings, objects and binding agents maintainclass-of caches. If Callee is not

itself a class object, then objects can use the fact that CalleeClass’s LOID contains the same

class identifier as Callee’s LOID, and contains an empty instance number (as mentioned in

Section4.1.1). Thus, the binding agent can search through its binding cache for a LOID with

these characteristics, and can assume that any such LOID is that of CalleeClass.

As in the binding mechanism, a desired class-of result may not be cached. In this case,

the class-of mechanism is performed through a binding agent. As they do for bindings, binding

agents provide a shared caching mechanism for class-of results. If the desired class-of result is
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not cached locally or in the binding agent, the class-of caller (in our running example, Caller’s

binding agent) must consult the comprehensive and logically-global Legionclass map. The class

map is maintained by LegionClass, which is located at a well-known and unchanging object

address. In practice, LegionClass will be distributed over multiple cooperating processes, and

the class map will be highly replicated. It is worth noting that the class map is a “write once,

read many” database; the Legion object model does not allow the class of an object to change.

Therefore, replicating the class map need not incur the overhead of maintaining cache coherence.

5.4 The Rebinding Mechanism

If Callee is a valid object (i.e. Callee maps to the LOID of an object that was created and has not

yet been destroyed), Caller will be able to obtain a binding. However, as noted earlier, bindings

(whether they come from binding caches, binding agents or class objects) can become stale.

Specifically, the Callee’s binding might contain an OA at which Callee no longer resides. When

this happens, Caller determines that the binding is stale (typically by noticing repeated failed

attempts to communicate with Callee at its old address) and invokes there-binding mechanism.

The re-binding mechanism mirrors the regular binding mechanism, but it uses the stale

OA to ensure that the same binding is not returned. Caller begins by checking its binding cache

for Callee’s LOID: if the only binding in the cache is the one that contains the stale OA, that

binding is removed from the cache, and the binding agent is consulted. The stale OA is passed

as a parameter to the binding agent, indicating that Caller was unable to use that binding. The

binding agent may attempt to verify that the binding is stale, or might immediately defer to

CalleeClass. In any event, assuming that Callee has just changed its OA (i.e., only stale

information about the location of Callee is currently cached in its clients and their binding

agents), CalleeClass will be consulted and will again serve as the ultimate authority for locating
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its instances.

5.5 Object Activation

In Section5.2 and Section5.4, we based our discussion of the binding process on the

fundamental assumption that classes could always return a valid OA for their instances.

However, as described in Section4.1.5, objects may be inert, and thus will be located at an

OPA, not an OA. For example, if Callee were inert when Caller invokedfunc(), all bindings

cached in Caller and in any binding agents in the system would be stale. In that case, the binding

process would result in a call to CalleeClass to obtain a new binding for Callee. At this point,

CalleeClass recognizes that Callee is inert, and employs theobject activation mechanism to

move Callee into the active state. Only by activating Callee can CalleeClass obtain a valid

binding to return to either Caller or a binding agent operating on Caller’s behalf.
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Figure7 depicts the object activation process. Before Callee can be activated,

CalleeClass must select a host on which Callee can execute. CalleeClass has complete freedom

in selecting an appropriate host for its instances. A very conservative and simple class object

might place all of its instances on its own host. More typically, a class object will want to

employ more elaborate and flexible placement policies. A common way to associate placement

policies with classes is through external scheduling agents. This allows a simple, generic class

object implementation to be combined with any number of separately defined scheduling

policies. It also supports the dynamic replacement of a class object’s scheduling policy.

When an external scheduling agent is used (as in Figure7), the external scheduling agent

may implement any specialized placement policy appropriate for the class. For example,

specialized policies may be appropriate for a 2D finite difference class used in an ocean model,

CalleeClass

External scheduler

Callee’s Vault

Callee’s Host

Other information
providers

Implementation
Cache

Implementation
Object

(impl. of Callee)

FIGURE 7. The Legion object activation mechanism—CalleeClass wishes to activate Callee. First, CalleeClass
must decide on which host and vault to place Callee. To do this, CalleeClass may consult an external scheduler
(a). After a placement decision is made, CalleeClass must determine the OPA for Callee by consulting Callee’s
vault (b). Finally, to activate Callee, CalleeClass sends an activation request to the desired host (c) specifying
the object LOID, implementation to use, and OPA. To created a process for Callee, the host must obtain the
implementation for Callee. To do this, the host uses a shared implementation cache object (d). After
downloading the implementation, the host starts a process for Callee and returns the binding to CalleeClass.

a

b

c

d
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or for a class designed to meet a particular organization's requirements that objects only execute

on machines local to the organization and only use resources not currently supporting interactive

sessions. Whatever the policy, the external scheduling agent will typically interact with other

information providers (objects that gather and dynamically update information about which

hosts are available, their type and attributes, their current load, and so on). Note, though, that the

placement process is guided by a set of restrictions determined by the class. A class might

maintain a list of acceptable object implementations (possibly for different architectures). If the

class has no implementation available for Sun hosts running the Solaris operating system, hosts

of this type must be excluded from selection. For more details on the scheduling model see

Karpovich [24]. For more information on application specific scheduling agents see Berman [5].

The placement process is performed either by the class object itself, or by an external

agent, and ultimately produces the LOID of the host object selected for placement. Next, the

instance must be activated on that host. However, the class must first ensure that the instance

will be able to access its OPR when it runs on that host. As mentioned in Section4.1.5, vault

object manage OPRs, which reside on physical storage devices. Not all storage devices are

accessible from all hosts, so before a class activates an instance on a given host, it must verify

that the current vault object containing the instance’s OPR is compatible with that host. Stated

differently, the class must ensure that the host it selects to execute its instance has access to the

storage device that contains the instance’s persistent state. Attributes (Section4.2) of the host

and vault objects are used to indicate compatibility. If a class wishes to execute an instance on a

host that is not compatible with the vault currently containing the instance’s OPR, the OPR must

be migrated to a new compatible vault before the object is started. Once the appropriate host has

been selected, and the object’s OPR resides in a compatible vault, the class object invokes the
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host object’sstartObject() method. Parameters to this method specify the LOID and OPA

of the object to be started, and the LOID of theimplementation object (see Section5.5.1 and

Section6.4) to be used.

ThestartObject() method may not succeed, however, for a variety of reasons. The

host object is free to refuse the activation request for policy or security reasons; perhaps, for

example, only privileged users can use that particular resource. Or, a host might decide that its

load is too high to accept new object activations. In some cases, a host may have simply crashed

and will (at least temporarily) be unable to service the request. If thestartObject()

invocation fails, the class object must make another placement selection, possibly re-invoking

the external scheduling agent.

5.5.1 Implementation Objects

Assuming, though, that the host decides to accept the instantiation request, it must start a

process to represent the object. This means that the host must obtain appropriate executable

code. Typically, implementation objects contain a binary executable file, although the model

explicitly allows shell scripts and interpreted code such as Java bytecode or Perl. Management

of object executables is based on the use of implementation objects, Legion objects that contain

the executable code for other objects. Each class maintains a list of LOIDs of implementation

objects that are suitable for the class’s instances. Several different implementation objects might

be maintained by a class to support the use of multiple platforms—a class might have

implementation objects for different architectures, for different operating systems, with different

memory requirements, etc. So, whenstartObject() is invoked on a host, the class passes

the LOID of the appropriate implementation object, from which the host can retrieve appropriate

executable code.
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5.5.2 Implementation Caches

To service astartObject() request, the host object must find or make a local copy of the

executable code contained within the specified implementation object. A simple host object

could retrieve, via the member functions of implementation objects, the executable code on

everystartObject() invocation. However, retrieving executable code can be expensive, in

both communication time and local storage space. Thus, groups of host objects typically share

an externalimplementation cache, a Legion object that downloads executable code on behalf of

a set of host objects and caches copies of the executables to save storage space and

communication time. To use an implementation cache, the host object sends the cache object the

LOID of a desired implementation object. The cache object responds with the name of a local

file that contains the cached executable code—the host need not be aware of whether the cache

retrieved the executable in response to this request, or used an existing local copy.

5.5.3 Running Objects

Once the implementation is locally available, the host object can execute it. How an

executable is used depends on the implementation’s type and host object’s characteristics. For

example, if the implementation consists of native executable code, the host runs the executable

as a normal process; if the host represents a normal Unix workstation it uses thefork() and

exec() system calls. Alternatively, if the implementation consists of Java bytecode, the host

executes it within a Java Virtual Machine. In yet another case, if the host represents a

workstation farm that is managed by a queueing system such as Condor [27] or LoadLeveler

[23], the host starts the object through the batch system’s particular interface.

Once the host activates the object, the host passes the object its LOID and its new OPA.

The host object determines the activated object’s local OA, and returns it to the calling class
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object. The class marks the instance as active, records the instance’s OA, and can once again

return accurate bindings for the instance.

The binding and activation processes as described throughout this section can be time

consuming. In practice, aggressive caching of bindings and object executables helps bypass

much of the mechanism and its cost. The benefits of this design include flexibility and the

convenient transparent binary migration, one-step system-wide binary replacement for objects,

object-local policy autonomy, licensing and proxies, user-definable scheduling policies, user-

definable persistent storage, and more. The following sections describe how users can realize

these and other features by using and customizing core object implementations.

6. Core Object Types

6.1 Classes and Metaclasses

As described earlier, every Legion object is defined and managed by its class object. Class

objects are empowered with system-level responsibility to create new instances, schedule them

for execution, activate and deactivate them, and provide bindings for clients who wish to

communicate with them. In this sense. Classes aremanagers andpolicy makers: Legion allows

users to define and build their own class objects so that Legion programmers can determine and

even change the system-level mechanisms that support their objects. Combining these two

important features—class objects manage their instances and can be provided by applications

programmers, not just system developers—provides considerable flexibility in determining how

an application behaves, and further supports the Legion philosophy of enabling flexibility in the

kind and level of functionality

Legion classes export the class-mandatory interface, a simplified subset of which is
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depicted in Figure8.

The createInstance() function causes a new instance of the class to be created, and

returns this new instance’s LOID.CreateMultipleInstances() can be used to create

several instances of the class at once. There are actually several different flavors of

createInstance() and createMultipleInstances(), which allow the caller

varying levels of control over the creation and placement processes. For example, the caller can

specify the host object on which the new instance(s) should be created, or a list of acceptable

hosts from which to choose, or even a list of characteristics of acceptable hosts (processor

speeds, architectures, etc.). The same is true of theactivateInstance() function. The

general object placement model is that the class selects the host and vault objects when placing

its instances, but includes the object placement parameters in the activation and creation

functions so as to give callers a way to help the class make intelligent decisions, should the

caller so choose. ThedeactivateInstance() function allows callers to make an active

object inert, anddeleteInstance() allows its caller to remove an instance from Legion.5

The addImplementation() andremoveImplementation() functions allow external

5. We should note here that an object can disallow any member function invocation requests, typically based on the
identity of the caller. This is especially relevant to the system-level functions implemented in core objects, but it
is true of all Legion objects.

class ClassObject {
LOID createInstance(<placement info>);
LOID createMultipleInstances(<placement info>);
int activateInstance(LOID instance, <placement info>);
int deleteInstance(LOID instance);
int deactivateInstance(LOID instance);
int addImplementation(LOID implementation_object);
int removeImplementation(LOID implementation_object);
Binding getBinding(LOID instance);
Binding getBinding(Binding stale_binding);

};

FIGURE 8.  A subset of the Legion class-mandatory interface
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objects (typically Legion-targeted compilers or Legion objects that manage the compilation

process) to configure classes with implementation objects. ThegetBinding() functions

support the binding mechanism as described in Section5.2. Not shown in Figure8 are several

other functions that allow clients of class objects to retrieve information about the location and

characteristics of a particular class’s instances, including the instances’ interface, host (if any)

on which they’re currently running, current state (active or inert), etc.

Although the core interface to classes is set, the implementation behind that interface can

vary depending on the behavior that the class wishes to exhibit. This enables considerable

flexibility of policy and mechanism. For example, a class can match its scheduling and object

placement policies to the characteristics of the instances it supports. If an implementation runs

much faster on a particular architecture, the class can factor in that affinity when selecting a host

on which to run. If instances of a class communicate frequently with one another when they are

created in relatively rapid succession (thereby possibly indicating that they are all part of the

same instantiation of an application), the class can attempt to schedule these objects “close” to

one another, (i.e. on hosts between which the communications links are fast, or possibly even as

multiple threads within the same process).

Class objects are in the best position to be able to take advantage of their instances’

special characteristics since class objects can be provided or selected by the same programmer

who provides the implementation of that class object’s instances. This does not mean, however,

that all programmers must build a new specialized class object for each type of Legion object

that they build, thereby incurring the burden of metasystem-level programming. On the contrary,

we expect that a vast majority of programmers will be served adequately by the class object

types that already exist in Legion.
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The mechanism for taking advantage of an existing class object type is simple. Legion

contains the notion ofmetaclass objects, class objects whose instances are themselves class

objects. Just as a normal class object maintains implementation objects for its instances, so too

does a metaclass object. A metaclass object’s implementation objects are built to export the

class-mandatory interface, and to exhibit a particular functionality behind that interface. To use

one, a programmer simply callscreateInstance() on the appropriate metaclass object,

and configures the resulting class object, viaaddImplementation(), with implementation

objects for the application in question. The new class object can then support the creation,

migration, activation, and location of these application objects in the manner defined by its

metaclass object.

One example of a class object taking advantage of knowledge about its instances'

implementations is astateless Mentat class. In MPL, the keywordstateless can be used to

describe a class definition, as depicted in Figure 9.

Here, the programmer has indicated that the instances of classExample do not maintain

state between their member function invocations—that the instances are pure functional units.

Therefore, from the client's point of view, invoking a function on one instance of a stateless

class is functionally equivalent to invoking the same function on any other instance of that

class.6 In particular, two consecutive invocations from the same client need not be made on the

6. Of course, a function may return a different result if, for example, it queries its environment in some way for
information. Mentat considers any environment information that may be different across different stateless
objects to be state; in other words, if an object does this, it should not be declared as stateless.

stateless mentat class Example {
   public:
      int functionOne(int i);
      int functionTwo();
};

FIGURE 9. Stateless Mentat class definition



Page 32

same object.

The class object that supports stateless objects can take advantage of this fact when

responding to class-mandatory member function invocations. For example, in response to a

createInstance() call, the class object need not actually create a new instance; instead, it

can instead simply return the binding for an instance that already exists. Conversely, if the load

on some instance rises above some acceptable threshold, the class can create a new instance and

respond to requests to bind to the heavily-loaded instance with a binding for the new instance.

The point is that the class object can use its knowledge about the semantics of its instances to

attempt to optimize its support for them.

6.2 Host Objects

Legion host objects abstract processing resources in Legion—they may represent a single

processor, a multiprocessor, a Sparc, a Cray T90, or even an aggregation of multiple hosts. A

host object is a host's representative to Legion: it is responsible for executing objects on the host,

reaping objects, and reporting object exceptions. A host object is also ultimately responsible for

deciding which objects can run on the host it represents. Thus, host objects are important points

of security policy encapsulation within the system.

Aside from implementing the host-mandatory interface depicted in Figure 10, host object

implementations can be programmed to adapt to different environments and suit different users’

needs. For example, host objects that provide interfaces to different resources must be based on

the underlying resource management interface for those machines. A host object implementation

suitable for use on a normal interactive workstation will use different process creation

mechanisms than a host object that operates on a parallel computer whose nodes are managed by
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a batch queuing system (e.g. LoadLeveler [23]) will use.

 Whereas host object implementations provide a uniform interface to different resource

management interfaces, they also (and more importantly) provide a means for users to enforce

security and resource management policies for Legion objects. For example, the host object

implementation can be customized to allow only a restricted set of users to have access to a

resource. User authentication can be performed using any means desired. Alternatively, host

objects can restrict access based on code characteristics. For example, a host might be

configured to accept only object implementations that contain proof-carrying code [31]

demonstrating certain desired security properties. A less formally restrictive host might analyze

incoming object implementations for certain “restricted” system calls.

We now consider a sample host object implementation (our current default host object),

and two possible alternative implementations. Our current host object has a very simple design—

it implements a non-restrictive access policy and uses the Unix process management interface

(i.e.fork(), exec(), kill()) for starting and stopping objects. While simple to implement,

this basic host object design has a number of limiting features. In terms of performance, it places

a high cost on object activation, since each object on the host executes within its own process,

and new processes are created on demand to contain activating objects. In terms of security, this

host object implementation is severely limited, since it executes objects owned by different

Legion users under the same Unix user-id (processes executing as the same user-id can send one

class Host {
ObjectAddress activateObject(LOID object, LOID impl,

OPRAddress opa);
void deactivateObject(LOID object);
ObjectAddress getObjectAddress(LOID object);

};

FIGURE 10. The Legion host object interface.
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another arbitrary signals, examine one another's state, and so on). Fortunately, we can address

these limitations transparently by providing alternative host object implementations.

One possible implementation to address these performance problems might use threads

instead of traditional processes. This design would improve the performance of object

activation, and would also reduce the cost of method invocation between objects on the same

host by allowing simplified shared address space communication. To support this style of host

object, alternate forms of object implementations would need to be made available, particularly,

object implementations in the form of dynamically loadable object files (as opposed to normal

executable files). This would allow the host to map the needed code for objects into its address

space prior to object activation (i.e. thread creation). This need for alternate forms of object

implementations fits nicely into our established model for managing multiple object

implementations per class as needed to support heterogeneity.

The above host object implementation would appeal to users with high performance

requirements, but it shares and exacerbates our existing host object's security limitations. An

alternate host object implementation to support better security properties might be based on the

use of multiple Unix user-ids to run different users' objects. Our current host object typically

runs under a single user-id, and all objects that it starts also run as this user. If we extend the

host object implementation to have the ability to start up processes under a set of different user-

ids, it could ensure that different Legion users' objects run under different Unix user ids.

This host object implementation can be supported in a number of ways. For example, the

host object could be given the limited amount of privilege needed to start processes as different

user id's. This could take the form of a “set uid” script without write permissions for the host

object so that it would not require full root permissions. Alternate approaches are also possible,
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such as the use of a set of “sub-host objects”—one running as each user id—that could be used

by the “primary” host object for control of low-level processes. In this design, the standard

Legion authentication mechanisms could be used to ensure that only the host object is able to

use these process-control daemons.

Different versions of this multi-user id host object can map different Legion users to

different “anonymous” local user ids (e.g. “legion1,” “legion2,” etc.), or map Legion users to

their associated local Unix user ids. The latter form extends directly to a simple scheme for

limiting resource use to approved users—if a Legion user attempting to activate an object does

not have a local Unix user-id, the activation request could be denied.

6.3 Vault Objects

Vault objects are responsible for managing other Legion objects’ OPRs. Much in the same way

that hosts manage active objects’ direct access to processors, vaults manage inert objects on

persistent storage. A vault has direct access to a storage device (or devices) on which the OPRs

it manages are stored. It might manage a portion of a Unix file system or a set of databases. The

vault supports the creation of OPRs for new objects, controls access to the OPRs of existing

objects that it manages, and supports the migration of OPRs from one storage device to another.

The basic vault interface is depicted in Figure 11.

Class objects manage the assignment of vaults to individual objects: when an object is

class Vault {
OPRAddress createOPR(LOID object);
OPRAddress getOPRAddress(LOID object);
LinearOPR getOPR(LOID object);
void giveOPR(LOID object, LinearOPR OPR);
void deleteOPR(LOID object);
void markActive(LOID object);
void markInactive(LOID object);

};

FIGURE 11. The Legion vault object interface.
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created, its vault is chosen by the object’s class. The selected vault creates a new, empty, OPR

for the object, and supplies the object with its OPA. Similarly, when an object migrates or

reactivated, the selection of a new vault for the object is managed by the object’s class.

If an object’s class (or an external scheduling agent acting on behalf of that class)

decides to move the object to another host, the migration may require moving the OPR to a new

vault, whose persistent storage is accessible by objects on the new host. In this case, the class (or

scheduling agent) selects a new vault, and the OPR is transferred between the vaults.

The above vault activities are supported by the basic Legion vault abstract-interface

depicted in Figure 11. To enable object creation, the vault provides acreateOPR() method,

which constructs a new empty OPR, associates this OPR with the given LOID, and returns the

address of the new OPR for use by the newly created object. To support object activation and

deactivation, the vault provides agetOPRAddress() method to determine the location of the

OPR associated with any of its managed objects. For use during object migration, vaults support

giveOPR() andgetOPR() methods, which transfer a linearized (i.e. transmissible) OPR to

and from vaults, respectively. ThedeleteOPR() can be used to terminate a given vault’s

management of an OPR. TheisManaged() method can be used to determine if a vault

manages a given object. Finally,markActive() and markInactive() methods are

provided so that the vault can be notified when an object is active or inactive, respectively. This

knowledge allows the vault to store the OPRs of inactive objects in compressed or encrypted

forms for efficiency and security purposes.

An important feature of the vault interface is its use of OPAs to provide access to object

persistence representations. When an object wants to access its OPR, it can learn the OPA from

its vault. The vault must provide an address that contains enough information embedded in it to
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find and access the OPR. For example, consider an implementation of vaults and OPRs that is

based on the Unix file system. In such an environment, an OPR might be implemented as a Unix

directory, and an OPA might contain a Unix path name corresponding to a Unix directory. In

this case the OPAs, besides containing the path name needed to locate the OPR, would also need

to contain a type indicator that lets the object know that it should access the OPR in the form of

a Unix subdirectory. In a sense, the OPA constitutes an agreement between a vault and a

managed object about what kind of OPR will be used for the object. With this agreement, the

object can directly access its OPR without consulting its vault. Clearly, not all object types or

implementations need be compatible with all vaults. Just as class objects restrict the placement

of objects and use of implementations to acceptable host objects, they also ensure reasonable

placement of objects onto vaults.

The current Legion implementation supports two types of vaults (and hence, two types

of OPR implementations): one for use in Unix file systems, and one for use with the SRB

archival storage interface. These implementations are quite similar, as both systems support a

file and directory interface typical of file systems. The addition of vaults for other file systems

(e.g. Windows NT) and other archival file storage systems (e.g. HPSS) is straightforward.

Alternative vault implementations can be built on top of database management systems. In this

design vaults must manage the association between OPRs and database entries, and the mapping

must be encapsulated in a suitable OPA format that can be used by managed objects to bind to

their OPRs.

6.4 Implementation Objects and Caches

Implementation objects in Legion hide the storage details of object implementations. These

objects can be thought of as the Legion equivalent of executable files in Unix or other traditional
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operating systems. Given this similarity to files, implementation objects support an interface

typical of file objects, as depicted in Figure 12. Read and write operations that assume a client-

side file pointer, and a method to determine the size of the implementation data are provided.

However, a fundamental difference between file objects and implementation objects is that

implementation objects cannot be written to after being read from. After being initialized with a

sequence ofwrite() methods an implementation object’s contents are constant until the

object is deleted. This allows important caching optimizations to be employed by

implementation object clients (i.e. host objects).

Legion object implementations typically contain executable object code for a single

architecture and operating system platform, but may in general contain any information that

would be necessary to instantiate an object on an appropriate type of host object. For example,

the implementation might contain Java byte code, a Perl script, or even high-level source code

that would require compilation by a host object upon object activation. A complete list of

(possibly very different) acceptable implementation objects appropriate for use with a given

class is maintained by the class object. When the class calls on a host to perform object

activation, it selects an implementation object based on the attributes (see Section4.2) of the

host and the instance in question.

Implementation objects allow classes a large degree of flexibility in customizing the

behavior of individual instances. For example, a class might maintain implementations with

class ImplementationObject {
ByteArray read(size_t startByte, size_t szToRead);
size_t write(size_t startByte, ByteArray data);
size_t sizeOf();

};

FIGURE 12.  The Legion implementation object interface
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different time/space trade-offs to run more quickly on hosts with abundant memory, and more

slowly on hosts with less memory. To provide users with ability to customize their cost and

performance trade-offs, a class might maintain slower, low-cost implementations for use with

some instances, and faster, higher-cost implementations for use with other instances created by

users willing to pay more.

In our discussion of object activation in Section5.5, we described how host objects

typically employ an external implementation caching object to avoid storage and

communication costs. Since the contents of implementation objects do not change, a hosts can

safely cache the downloaded contents of an implementation object for later use, saving a

potentially significant amount of communication costs. Furthermore, if multiple host objects

share access to some common storage device they can share the downloaded contents of

implementation objects—that is, if one host downloads an implementation data to shared storage

other hosts do not have to download that implementation themselves. Both of these performance

enhancements are supported in the current Legion implementation through the use of

implementation cache objects.

The interface to the implementation cache object is depicted in Figure 13—a single

method is provided to return the path of a local file containing the same data as contained in a

named implementation object. In our current Legion implementation, each host object is

associated with an implementation cache, and implementation caches can be shared among any

number of hosts. Instead of performing implementation downloads, host objects invoke the

class ImplementationCache {
pathName getImplementation(LOID impl);

};

FIGURE 13.  The Legion implementation cache interface
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getImplementation() method on their local implementation cache object, which in turn

downloads requested implementation data, caching the results of common requests. Thus the use

of implementation caches results in object activation being approximately as inexpensive as

running a program located in a file system visible on the host.

Our implementation model makes the invalidation of cached binaries a trivial problem.

Since class objects specify the LOID of the implementation to use on each activation request, to

begin using a new version of an implementation, a class need only replace the old

implementation LOID with the new implementation LOID on its list of valid binaries. The new

version will be specified with future activation requests, and the old implementation will simply

time-out and be discarded from caches. Since the implementation is keyed on its LOID, there is

no danger of “invalid” cached binaries being used to execute objects.

6.5 Binding Agents

Section5 introduced the binding and class-of mechanisms and the role of binding agents, which

exist in Legion to help client objects map LOIDs to OAs and to find the class of an object, given

that object's LOID. The core interface to a binding agent is depicted in Figure14.

The getBinding(LOID) function returns a binding for a specified LOID, and

getClassBinding(LOID) returns a binding for the class of a specified LOID; both are

intended to be invoked directly by a client object that is in search of a binding. The

class BindingAgent {
Binding getBinding(LOID object);
Binding getBinding(Binding stale_binding);
Binding getClassBinding(LOID object);
Binding getClassBinding(Binding stale_binding);

int addBinding(Binding new_binding);
int removeBinding(LOID object);

};

FIGURE 14.  The Legion binding agent interface
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getBinding(Binding) and getClassBinding(Binding) support the rebinding

mechanism (Section5.4), allowing a client to pass a stale binding, and to suggest that the

binding agent return a different binding in response. TheaddBinding(Binding) and

removeBinding(LOID) functions allow a binding agent to act as a database of bindings

under the control of external objects. A class can useremoveBinding(LOID) to remove an

instance's binding when that instance becomes inert or gets deleted, and can call

addBinding(Binding) upon creation, activation, or migration of an instance. In this way, a

class object can help a binding agent better reduce the number of binding requests it makes to

the class object.

Binding agents are not technically necessary for the correct execution of the binding

mechanism; clients can directly contact class objects and LegionClass's class map to obtain

bindings for objects and classes with which they wish to communicate. However, in a system

that consists of millions of potentially migratory objects—as we envision Legion becoming—

binding is a necessary and common operation. Binding agents exist to help make the binding

mechanismscalable. For instance, in the example of Section5.2, the binding agent runs a

simple algorithm in response to thegetBinding(LOID) call—it checks its local cache and

(if necessary) it contacts the appropriate class object to obtain the binding. Even this simple

strategy allows clients to benefit from the execution of the binding mechanism by other clients

that share the same binding agent, thereby reducing the total amount of binding traffic in the

Legion system.

A binding agent can implement several different strategies to improve its ability to

provide bindings for its clients. For example, a binding agent might attempt to ensure that the

bindings in its cache don't become stale, by either periodically “pinging”7 the objects named in
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its binding cache or contacting their classes to make sure they're still located at the same OA.

Binding agents may also choose to get up-to-date values for bindings whose time-out field

indicates that they are about to expire.

In addition to these strategies in which binding agents act essentially autonomously,

many binding agents can be configured to cooperate with one another to serve their clients. For

instance, binding agents could be organized hierarchically, as DNS name servers are, or could

emulate a software combining tree [38], thereby sharing the responsibility for providing

bindings and improving the mechanism for scaling to the millions of objects the system will

need to support.

The above strategies attempt to improve the response time of binding requests, but they

default to the full binding mechanism of contacting the appropriate class object if a binding

cannot be otherwise obtained. Other binding agents may slightly change the semantics of the

binding agent member functions in an attempt to optimize on different performance metrics. For

instance, they may try to decrease the variance in the response times to binding requests. This

could be accomplished by responding to agetBinding() call with a simple check the

binding cache, avoiding the outcall to classes, even if the binding is not in the cache. To better

respond to future requests, the binding agent could contact the class during the binding agent’s

idle time to get the binding, rather than while the client waits. Unlike the example of

Section5.2, a client of this kind of binding agent should not assume that a binding does not exist

just because the binding agent doesn't return it; the client may be able to expect more timely

responses to its requests.

7.ping() is an object-mandatory member function that returns the LOID of the called object.
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6.6 Context Objects and Context Spaces

As described in Section4.1, Legion objects are identified LOIDs. A LOID contains a set of

fields including those that identify the class of the named object, a class-unique instance number

for the named object, and a public key for the named object. Given this set of fields, LOIDs can

grow quite large. Whereas LOIDs are typically transmitted and manipulated in binary form, a

“dotted-hex” textual representation for use by human users is also supported. An example of a

typical LOID is depicted in Figure 15.

The LOID naming scheme is central to a number of Legion design features, but as

Figure 15 clearly demonstrates, LOIDs are by no means convenient for human users. To address

the basic need for a convenient object naming mechanism, and to provide a tool for organizing

information in Legion, we define the interface to a user-level naming service calledcontext

spaces.

Context spaces consist of directed graphs ofcontext objects that name and organize

information. A context object provides an interface for managing a list of mappings between

user-defined string names and LOIDs, as depicted in Figure 16. Operations are provided to

insert a <name,LOID> tuple, to remove a string name, and to find the LOID associated with a

given user-level string name. Also, a method is provided to return a list of <name,LOID> pairs,

elements of which match a specified regular expression. At most one tuple containing any string

1.01.66000000.21000000.000001fc0cf5465691d88fbf0417ed590ce2a7ff4db9fd92cb15
95471c3eaaf53e1b9b805226292bf88a6d7d50ffbb676acef0fe53433410ab064714c0fcaf6
eff3161cd

LOID
Type

Legion Domain

Class ID
Instance Number Public Key

FIGURE 15. Example of a LOID
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name may be contained within a context, although any number of different string names may

map to the same LOID.

In isolation, a context object may be used to provide a simple, convenient user-level

naming service for a user’s objects. However, the names inserted into a context can map to other

context objects’ LOIDs, providing a natural mechanism for constructing a directory service.

Connected graphs of context objects are a basic mechanism for organizing information in

Legion, and are referred to as context spaces. Every Legion object contains the LOID of a

current working context and aroot context,8 and library routines are provided for traversing

context space to map context paths to LOIDs.

On the surface, context space appears to provide a basic directory service. However,

8. Note that there is no notion of a global “root” context for the system. The root is a user-definable starting point
for resolving fully qualified context paths.

class Context {
int insert(String name, LOID loid);
int remove(String name);
LOID lookup(String name);
List<String,LOID> multilookup(String regexp);

};

FIGURE 16.  The Legion context object interface

FIGURE 17. Context space used to organize information about host objects
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much of the importance of context space in Legion is derived from the fact thatany kind of

object can be named in context space—contexts are not limited to listing names of other

contexts and files. Therefore, context space provides a convenient way of organizing

information aboutany of the objects that are available in a Legion system. For example, Figure

17 depicts a simple portion of a context space used to organize information about host objects.

One view of context space provides hints about how to find hosts of given types, whereas a

different view provides information about resource ownership. Similar organizational schemes

are equally useful for objects of other types.

7. Project Status

In June 1996, after a year of design work, we began code development for Legion, and in

December of 1997 we released VaL 1.0 (VaL stands for Virginia Legion—to denote that others

may release different versions of Legion). VaL 1.0 is a complete implementation; it includes an

implementation of the class and metaclass structure, host objects, vault objects, binding agents,

authentication, encryption, access control, context spaces, support for several languages, and

many different tools and utilities. Legion is available on a range of platforms (see Table 1).

Table 1: VaL 1.0 Supported Platforms

Platform
Operating
System

Comments

x86 Linux Linux is our development platform.

Sparc Solaris

RS/6000 AIX Includes the SP-2. Does not currently use the
SP-2 native message passing.

SGI IRIX Both workstations as well as the PCA and Ori-
gin 2000.

Alpha Linux/DEC
Unix

Cray T90 IEEE FP.
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From the user’s point of view, the implementation consists of four parts: a set of “client”

utilities, the core objects described earlier (hosts, vaults, etc.) with a set of default scheduling

and placement policies, a set of tools to develop new Legion applications, and the Legion run-

time library. Below we briefly expand on the utilities and application development tools. The

core system has already been described in detail, and the run-time library is described

completely in [10].

7.1 Client utilities

Examples of “client” utilities include

• Utilities such aslegion_ls, legion_cat, legion_cp, etc., that manipulate context

space and are similar to the Unix utilities of the same suffix.

• Utilities that manipulate classes to activate and deactivate instances, destroy instances, move

instances, and set the acceptable hosts and vaults

• utilities to manipulate hosts and vaults, listing active objects on the host or in the vault,

destroying running instances, or querying the host or vault about its status, such as the type

of host, the amount of memory or disk space, the load, etc.

• security utilities to create new users, manipulate access control lists, authenticate a user to a

login object, etc.

The list is quite extensive and is beyond the scope of this paper. It suffices to say that there are

dozens of utilities. A full description can be found in the Legion users manual [25].

7.2 Program development tools

Without programming tools Legion would be of little use beyond a shared file space. We have

concentrated on tools for parallel programming and I/O support. Our strategy focuses on the

popular parallel computing tools PVM [14] and MPI [21, 29]. MPI is the most popular of the
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two—and most parallel applications today are written in MPI. Legion provides a complete

emulation of both PVM and MPI with user libraries for C, C++, and Fortran. Applications and

benchmarks, such as the NAS benchmark, have been ported to Legion. Besides PVM and MPI,

the Mentat Programming Language (MPL) [16], Basic Fortran Support (BFS), and Java are

supported in Legion.

MPL, as noted earlier, is a parallel C++ language in which the user specifies those

classes that are computationally complex enough to warrant parallel execution. Class instances

are then used like C++ class instances: the compiler and run-time system take over and construct

parallel computation graphs of the program, then execute the methods in parallel on different

processors. Legion is written in MPL. BFS is a set of pseudo-comments for Fortran and a pre-

processor that gives the Fortran programmer access to Legion objects. It also allows parallel

execution via remote asynchronous procedure calls and the construction of program graphs.

I/O support in applications programs is provided via a set of library functions with a

unix-like file and stream operations to read, write, and seek. These functions provide complete,

location independent, secure, access to context space and to “files” in the system.

8. Related Work

Legion is one of a number of projects developing software to support metacomputing.

This section discusses some of the current major metacomputing projects such as Globus [13]

and Globe [35]. However, it is worth noting that these projects, Legion, and other

metacomputing projects such as MOL [33], Ice-T [15], and Harness [9], are all outgrowths of

the significant existing work in first-generation network parallel computing systems, such as

PVM [14] and MPI [21], and in modern transparent distributed computing systems, such as the

Berkeley NOW project [1] and DCE [28].
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8.1 Globus

The Globus project [13] at Argonne National Laboratory and the University of Southern

California shares with Legion a common base of target environments, technical objectives, and

target end users. Beyond a basic similarity in goals, Globus and Legion also share a number of

similar design features. For example, similar to Legion’s use of context space, Globus organizes

information about resources and other entities of interest within the system in a Metacomputing

Directory Service (MDS) [12]. Legion abstracts access to processing resources via the host

object interface, and Globus abstracts access to processing resources through the Globus

Resource Allocation Manager (GRAM) interface [8]. Both systems support a range of

programming interfaces, including popular packages such as MPI.

Despite an underlying commonality of goals and basic approaches, the systems differ

significantly in their basic architectural techniques and design principles. Whereas Legion builds

higher-level system functionality on top of a single unified object model, the Globus

implementation is based on the composition of working components into a composite

metacomputing toolkit. For example, MDS is based on an existing directory service

implementation, the Lightweight Directory Access Protocol (LDAP). Globus defines a set of

metacomputing-related data structures that are contained within the LDAP (e.g. information

about hosts, users, networks), and allows LDAP to run over the Globus message passing

implementation.

The Globus approach of adding value to existing high-performance computing services

by rendering them interoperable and extending their implementations to operate well in a wide-

area distributed environment has a number of advantages. For example, this approach takes

great advantage of code reuse, with its many attendant advantages, and allows the user to retain
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familiar tools and work environments. However, this sum-of-services approach has a number of

drawbacks: as the amount of provided services grows in such a system, the lack of a common

programming interface and model becomes a significant burden on end users. By providing a

common object programming model for all services, Legion enhances the ability of users and

tool builders to employ the many services that are needed to effectively use a metacomputing

environment: schedulers, I/O services, application components, and so on. Furthermore, by

defining a common object model for all applications and services, Legion allows a more direct

combination of services. For example, traditionally system-level agents such as schedulers can

be migrated in Legion, just as normal application processes are—both are normal Legion objects

exporting the standard object-mandatory interface. The short-term advantages of patching

existing parallel and distributed computing services together to render them interoperable and

usable in a wide-area environment do not outweigh the long-termnecessity of basing a

metacomputing software system on an extensible design consisting of orthogonal building

blocks. The challenges of metacomputing are great; finding scalable, efficient, and robust

solutions demands fundamental architectural design that can not be achieved within the

framework of most existing parallel and distributed systems.

8.2 Globe

The Globe [35] project, which is being developed at Vrije Universiteit, also shares many

common goals and attributes with Legion. Both are middleware metasystems that run on top of

existing host operating systems and networks, both support implementation flexibility, both

have a single uniform object model and architecture, both use class objects to abstract

implementation details, and so on.

However, Globe's object model is different; a Globe object is passive and is assumed to
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be physically distributed over potentially many resources in the system. A Legion object is

active, and although we don't preclude the possibility of it being physically distributed over

multiple physical resources, we expect that it will usually reside within a single address space.

These conflicting views of objects lead to different mechanisms for inter-object communication;

Globe loads part of the object (called a local object) into the address space of the caller whereas

Legion sends a message of a specified format from the caller to the callee.

Another important difference is Legion’s core object types. Our core objects are

designed to have interfaces that provide useful abstractions that enable a wide variety of

implementations. As of the writing of this paper, we are not aware of similar efforts in Globe.

We believe that the design and development of the core object types define the architecture of a

system, and ultimately determine its utility and success.

8.3 CORBA

The Common Object Request Broker Architecture (CORBA) standard developed by the

Object Management Group (OMG) [32] shares a number of elements with the Legion

architecture, although it is not intended for Metacomputing. As in Legion, CORBA systems

support the notion of describing the interfaces to active, distributed objects using an IDL, and

then linking the IDL to implementation code that might be written in any of a number of

supported languages. Compiled object implementations rely on the services of an Object

Request Broker (ORB), analogous to the Legion run-time system, for performing remote

method invocations.

Despite the large degree of similarity in basic concepts between CORBA and Legion, the

different goals of the two systems result in different features. Whereas Legion is intended for

executing high-performance, typically parallel applications, CORBA is more commonly used
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for business applications such as providing remote database access from clients. This difference

in intended usage manifests itself at all levels in the two systems—from their basic object

models up to the high-level services provided. For example, where Legion provides macro-

dataflow method execution model suitable for parallel programs, CORBA provides a simpler

remote-procedure call based method execution model suited to client-server style applications.

9. Summary

Metasystems are on the horizon. They are enabled by the tremendous increase in the available

network bandwidth. Constructing metasystem software to meet the needs of a diverse user and

resource owner community will not be easy; it requires that the metasystem software be

extensible to meet unanticipated needs, and that it provide complete site autonomy.

Legion meets these requirements by using replaceable system components that

encapsulate both policy and mechanism, and by enabling classes and metaclasses with system-

level functionality. The result is a system that a user can shape to meet a particular application’s

needs, controlling how the system is implemented with respect to that application, while at the

same time ensuring that the resulting application can interact with other Legion applications via

a standard set of basic protocols. At the same time, resource owners can protect their resources

and can ensure that they are used in an appropriate manner.
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