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Abstract

We present a comprehensive performance analysis of mul-
tiple appearance-based face recognition methodologies, on
visible and thermal infrared imagery. We compare algo-
rithms within and between modalities in terms of recog-
nition performance, false alarm rates and requirements to
achieve specified performance levels. The effect of illu-
mination conditions on recognition performance is empha-
sized, as it underlines the relative advantage of radiometri-
cally calibrated thermal imagery for face recognition.

1 Introduction

Face recognition in the thermal infrared domain has re-
ceived relatively little attention in the literature in compar-
ison with recognition in visible-spectrum imagery. Orig-
inal tentative analyses have focused mostly on validating
thermal imagery of faces as a valid biometric [1, 2]. The
lower interest level in infrared imagery has been based in
part on the following factors: much higher cost of thermal
sensors versus visible video equipment, lower image res-
olution, higher image noise, and lack of widely available
data sets. These historical objections are becoming less rel-
evant as infrared imaging technology advances, making it
attractive to consider thermal sensors in the context of face
recognition. In the current study, we focus our attention on
longwave infrared (LWIR) imagery, in the spectral range of
8µ–12µ. Other regions of the infrared spectrum also hold
promise, and will be considered in upcoming work.

The influence of varying ambient illumination on sys-
tems using visible imagery is well-known to be one of the
major limiting factors for recognition performance [2, 3]. A
variety of methods for compensating for variation in illu-
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mination have been studied in order to boost recognition
performance, including histogram equalization, laplacian
transforms, gabor transforms, logarithmic transforms, and
3-D shape-based methods. These techniques aim at reduc-
ing the within-class variability introduced by changes in il-
lumination, which has been shown to be often larger than
the between-class variability in the data, thus severely af-
fecting classification performance.

Thermal infrared imagery of faces is nearly invariant to
changes in ambient illumination [4]. Consequently, no com-
pensation is necessary, and within-class variability is sig-
nificantly lower than that observed in visible imagery. As
a matter of fact, it is well-known that under the assump-
tion of Lambertian reflection, the set images of a given
face acquired under all possible illumination conditions is
a subspace of the vector space of images of fixed dimen-
sions. In sharp contrast to this, the set of LWIR images of
a face under all possible imaging conditions is contained in
a bounded set. It follows that under general conditions we
can expect lower within-class variation for LWIR images of
faces than their visible counterpart. It remains to demon-
strate that there is sufficient between-class variability to en-
sure high discrimination.

Previous work by the authors provides a starting point for
the current analysis. In [5], the authors perform a compar-
ison of recognition performance between visible and long-
wave infrared imagery, based on two standard appearance-
based algorithms: Eigenfaces and ARENA. The prelimi-
nary nature of that study limited the performance analy-
sis to top-match recognition rates on various scenarios ob-
tained by varying the training and testing sets, in a fash-
ion reminiscent ofn-fold cross-validation. No mention is
made of false-alarm rates, receiver-operating-characteristic
(ROC) curves or peformance-versus-rank curves.

The current work builds on our previous research and
expands to cover those areas not touched-upon therein. In
addition, we provide a much broader comparison including
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Figure 1: Camera and lighting setup for data collection.

several other appearance-based face recognition algorithms
based on more sophisticated representations, better approx-
imating the state-of-the-art in the field. While still within
the limitations imposed by existing data sets, we feel that
the analysis below provides a firm basis for evaluation of
thermal imagery as a valid biometric identification tool.

2 Data Collection and Calibration

All data used to obtain the results below was acquired with a
newly developed sensor capable of capturing simultaneous
coregistered video sequences with a visible CCD array and
LWIR microbolometer. This is of particular significance for
our tests, since it allows performance comparison on pre-
cisely the same imagery, much like using the red and blue
channels of a color image.

We collected the data during a two-day period at the Na-
tional Institute of Standards and Technology (NIST). The
format consists of240x320 pixel image pairs, co-registered
to within 1/3 pixel, where the visible image has8 bits of
grayscale resolution and the LWIR has12 bits.

All of the LWIR imagery was radiometrically calibrated.
Since the responsivity of LWIR sensors is very linear, the
pixelwise relation between grayvalues and radiant power
can be computed by a process of two-point calibration. Im-
ages of a black-body radiator covering the entire field of
view are taken at two known temperatures, and thus the
gains and offsets are computed using the radiant power for
a black-body at a given temperature. A complete expla-
nation of the process can be found in [5], but we should
note here that radiometic calibration of thermal images re-
moves extrinsic variations due to sensor and environmental
factors, yielding a physically meaningful measurement of
the scene’s radiance.

2.1 The Collection Setup

For the collection of our images, we used the FBI mugshot
standard light arrangement, shown in Figure 1. Image se-

quences were acquired with three illumination conditions:
frontal, left lateral and right lateral. For each subject and
illumination condition, a40 frame, four second, image se-
quence was recorded while the subject pronounced the vow-
els looking towards the camera. After the initial40 frames,
three static shots were taken while the subject was asked
to act out the expressions ‘smile’, ‘frown’, and ‘surprise’.
In addition, for those subjects who wore glasses, the entire
process was done with and without glasses. Figure 2 shows
a sampling of the data in both modalities.

Figure 2: Sample imagery from our data collection.

A total of 115 subjects were imaged during a two-day
period. After removing corrupted imagery from24 sub-
jects, our test database consists of over25, 000 frames from
91 distinct subjects. Much of the data is highly correlated,
so only specific portions of the database can be used for
training and testing purposes without creating unrealisti-
cally simple recognition scenarios. This is explained in Sec-
tion 3. The entire image collection used for the experiments
below is available at the authors’ website1.

3 Testing Methodology

Following the approach in [5], we selected subsets of our
face database to be used as testing and training sets. Inn-
fold cross-validation experiments, one repeatedly selects a
random subset of the available data as a training set, and
testing is performed on the remaining data. Repeating this
process multiple times and reporting mean performance
yields statistically significant results. We are particularly
interested in exposing the relation between illumination, as
well as facial expression, variation and recognition pefor-
mance. Therefore, we chose our training/testing pairs in a
biased fashion rather than randomly, in order to elicit the de-
sired information. Note that based on the choices below, our
testing methodology is stricter, and should produce lower
average results than random cross-validation. Additionally,

1http://www.equinoxsensors.com/hid



since much of our data is highly correlated due to the acqui-
sition procedure, the biased choices below help decorrelate
testing and training sets.

We construct multiple query sets for testing and train-
ing. Frames0, 3 and9 from a given image sequence are re-
ferred to as vowel frames. Frames corresponding to ‘smile’,
‘frown’ and ‘surprise’ are referred to as expression frames.
Our query criteria are as follows:

VA: Vowel frames, all subjects, all illuminations.
EA: Expression frames, all subjects, all illuminations.
VF: Vowel frames, all subjects, frontal illumination.
EF: Expression frames, all subjects, frontal illumination.
VL: Vowel frames, all subjects, lateral illumination.
EL: Expression frames, all subjects, lateral illumination.
VG: Vowel frames, subjects wearing glasses, all illumina-
tions.
EG: Expression frames, subjects wearing glasses, all
illuminations.
RR: 500 random frames, arbitrary illumination.

The same queries were used to construct sets for visi-
ble and LWIR imagery, and all LWIR images were radio-
metrically calibrated. Locations of the eyes and the frenu-
lum were semi-automatically located in all visible images,
which also provided the corresponding locations in the co-
registered LWIR frames. Using these feature locations, all
images were geometrically transformed to a common stan-
dard, and cropped to eliminate all but the inner face. Query
set RR is used to compute all relevant subspaces and basis
sets for the algorithms below, unless otherwise noted. Ad-
ditionally, some testing/training combinations are omitted
from the tables due to inclusion relations.

Tabular performance results reported below are for the
top match. We also report, in graphical form, recognition
performance as a function of rank. In this case, for a fixed
rankk ≥ 1, a probe is considered correctly classified if any
of the topk matches are correct. Note that this is not the
same as ak-nearest-neighbor classifier.

When reviewing rank-ordered match results, in addition
to the rate of correct recognition, we must also consider the
false-alarm rate incurred by relaxing our correctness crite-
rion. Let T be a training set andP a set of probes. For
p ∈ P, letMk

p be the distance fromp to thekth closest train-
ing observation, andHk

p = {t ∈ T | dist(p, t) ≤ Mk
p }.

Defineαp to be1 if any member ofHk
p belongs to the same

class asp, and zero otherwise. Further define‖Hk
p ‖ to be

the number of distinct class labels among elements ofHk
p

and‖P‖ the number of probes inP. With this notation, the
correct classification rate and false alarm rate are respec-
tively given by

ξ =
1
‖P‖

∑
p∈P

αp , φ =
1
‖P‖

∑
p∈P

‖Hk
p ‖ − αp
‖Hk

p ‖
.

4 Algorithms Tested

The testing methodology outlined above was applied to sev-
eral appearance-based algorithms. We should point out that
the restriction to appearance-based techniques was moti-
vated by the fact that geometry-based methods depend only
on the ability to accurately locate facial landmarks in the
image. While such landmarks may be more easily located
in one modality over the other, the effect of the imaging
modality on the final recognition outcome is indirect, and
thus an analysis of that effect would be less revealing. In
addition, appearance-based methods have generally shown
higher performance than those based on facial geometry
alone.

All algorithms tested consist of a projection to a sub-
space of the image space followed by1-nearest neigh-
bor classification. The different subspace constructions are
briefly outlined below. For complete details see [6]. Digi-
tal images are converted into vectors by scanning in raster
order.

4.1 Eigenfaces (PCA)

This is perhaps the most popular algorithm in the field [7].
The face spaceis computed by taking a (usually separate)
set of training observations, and finding the unique ordered
orthonormal basis of the data space that diagonalizes the co-
variance matrix of those observations, ordered by the vari-
ances along the corresponding one-dimensional subspaces.
These vectors are known as principal components, oreigen-
faces. It is well-known that, for a fixed choice ofn, the sub-
space spanned by the firstn basis vectors is the one with
lowestL2 reconstruction error for any vector in the train-
ing set used to create the face space. Under the assumption
that the training set is representative of all face images, the
face space is taken to be a good low-dimensional approxi-
mation to the set of all possible face images under varying
conditions.

4.2 Linear Discriminant Analysis (LDA)

It is a classical result that while the feature subspace used
by Eigenfaces, obtained through principal component anal-
ysis, is optimal in terms ofL2 reconstruction error, it has
no optimality properties in terms of class discriminabil-
ity. In fact, class membership is not taken into account
in the construction of the face space. Under the assump-
tion of homoscedastic gaussianly distributed classes and lin-
ear separability, one can show that the optimal subspace in
which to perform classification is spanned by the solution
vectorsw of the following generalized eigenvalue problem
Sb w = λSw w, whereSw andSb are the within-class and
between-class scatter matrices, respectively. This gives rise



to the algorithm popularized as Fisherfaces [8]. We con-
sider two slight variants, referred to below as LDAg and
LDAt, details on the differences may be found in [6].

4.3 Local Feature Analysis (LFA)

Another subspace representation for facial data based on
second order statistics results by enforcing topographic in-
dexing of the basis vectors, and minimizing their correla-
tion. Local Feature Analysis [9] achieves this by construct-
ing a family of feature detectors based on a PCA decompo-
sition, which are locally correlated. A selection, or sparsifi-
cation, step is then used to produce a minimally correlated
subset of features, which define the subspace of interest.
While the original method is geared at optimal reconstruc-
tion, sparsification techniques consistent with the require-
ments of a recognition system are also possible. We use
two subselection methods, one following [10] and the other
explained in detail in [6], referred to below as LFAb and
LFAe, respectively.

4.4 Independent Component Analysis (ICA)

Principal component analysis seeks an orthonormal basis
for the data space with respect to which the marginal train-
ing distributions are uncorrelated. Independent component
analysis goes farther by requiring a basis (not orthogonal)
such that the corresponding marginals are statistically in-
dependent. Note that these conditions are equivalent if the
data is globally Gaussian, but that is hardly ever the case in
practice. Computation of the independent components can-
not be done by solving an algebraic system of equations,
and rather must be done by numerically minimizing a crite-
rion function. Different criterion functions exist, based on
kurtosis or other higher order moments, mutual information
between marginals or entropy criteria, all yielding compa-
rable results for our application. We used the FastICA algo-
rithm described in [11].

5 Experimental Results and Discus-
sion

Images were subsampled by a factor of10 in each dimen-
sion prior to experimentation. Visible images were de-
meaned and normalized to unit norm in order to provide
some measure of illumination compensation. Thermal im-
ages were processed via two-point radiometric calibration.
Subspaces for PCA, LFA and ICA were chosen to be100-
dimensional, and the LDA subspaces have as many dimen-
sions as classes in the training set, minus one.

For each valid pair of training and testing sets, we com-
puted the top-match recognition performance, and reported

it below in Tables 1, 2, 3, and 4. Each column in a given
table corresponds to a training set, and each row to a testing
set. Visible results are reported above the corresponding
LWIR results. Note that, over all experiments performed,
results on visible imagery are always inferior to those on
LWIR imagery. This is not only the case for testing/training
pairs where the illumination conditions are different, but in-
deed holds even for those pairs where we have no intuitive
reason to expect performance on LWIR to be superior.

Recognition performance on visible imagery, regardless
of algorithm, is worst for pairs where both illumination and
facial expression vary between the training and testing sets,
followed by pairs where either illumination or expression
differ. Note that due to the reflective nature of visible light
imaging, a change in facial expression implies a change
in shading (even in uniform areas of the face) as a result
of varying surface normals. Worst performance for LWIR
recognition occurs for similar condition pairs. We should
briefly mention that the best improvement between algo-
rithms on visible imagery occurs also for these challenging
pairs, indicating that more powerful representational meth-
ods are better able to reject features with poor classification
potential.

Table 5 shows mean, minimum and maximum perfor-
mances for each algorithm over the multiple experiments in
Tables 1, 2, 3, and 4. Mean results are weighted accord-
ing to the number of images in each testing set. The most
notable property of these results is that recognition perfor-
mance is always better with LWIR over visible imagery.
Average error is reduced anywhere from47% to 83%, de-
pending on the algorithm. Similar improvement is seen for
the worst- and best-case results. An additional measure of
relative accuracy and stability of recognition results in the
visible versus LWIR is given by the average ratio of worst to
mean performance. For visible imagery we have a ratio of
0.719, while for LWIR we have0.936, which indicates that
LWIR recognition is both more accurate and more stable.

Figure 3 shows representative receiver-operating-
characteristic curves for each algorithm and both modali-
ties. We can see that LWIR imagery is superior not only in
terms of correct classification, but also in terms of lower
false alarm rates. In fact, in order to obtain recognition
performance with visible imagery comparable to top-match
performance in LWIR, one must be willing to accept
untenable false-alarm levels. Figure 4 shows representative
plots of performance as a function of rank-ordered result.
Once again, we see that top-match performance in the
LWIR is comparable to that obtained with visible imagery
when considering the top10-50 matches. A more thorough
analysis of these phenomena can be found in [6].
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Figure 3: ROC curves for Eigenfaces, LDA, LFAb and ICA, respectively.
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Figure 4: Performance-vs-rank curves for Eigenfaces, LDA, LFAb and ICA, respectively.

VA EA VF EF VL EL

VA
(0.867
0.979

) (0.731
0.971

) (0.509
0.927

) (0.877
0.990

) (0.747
0.967

)
EA

(0.806
0.945

) (0.498
0.894

) (0.694
0.950

) (0.682
0.930

) (0.856
0.983

)
VF

(0.805
0.981

) (0.805
0.954

) (0.636
0.970

) (0.447
0.947

)
EF

(0.722
0.935

) (0.722
0.905

) (0.361
0.905

) (0.578
0.951

)
VL

(0.899
0.978

) (0.596
0.957

) (0.359
0.913

) (0.899
0.978

)
EL

(0.849
0.951

) (0.383
0.888

) (0.536
0.924

) (0.848
0.943

)
VG

(0.928
0.970

) (0.820
0.993

) (0.652
0.949

) (0.926
1.000

) (0.811
0.967

)
EG

(0.887
0.963

) (0.620
0.932

) (0.781
0.973

) (0.766
0.959

) (0.894
0.990

)
RR

(0.968
0.994

) (0.898
0.982

) (0.688
0.964

) (0.564
0.942

) (0.838
0.978

) (0.788
0.964

)
Table 1: Eigenfaces performance.
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1.000
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) (0.986
0.988
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0.986

)
EF

(0.930
0.972

) (0.930
0.946

) (0.879
0.956

) (0.965
0.979

)
VL

(0.969
0.995

) (0.928
0.974

) (0.761
0.958

) (0.967
0.996

)
EL

(0.935
0.974
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0.937

) (0.844
0.971

) (0.925
0.974

)
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(0.963
0.993
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0.981

) (1.000
1.000
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0.987
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0.975

) (0.925
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)
Table 2: LDAt performance.
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0.913

) (0.983
0.990

)
RR

(0.970
0.986

) (0.888
0.950

) (0.898
0.936

) (0.784
0.866

) (0.946
0.980

) (0.880
0.928

)
Table 3: LFAb performance.

VA EA VF EF VL EL

VA
(0.911
0.956

) (0.959
0.979

) (0.791
0.870

) (0.983
0.993

) (0.892
0.946

)
EA

(0.850
0.933

) (0.751
0.887

) (0.932
0.948

) (0.821
0.913

) (0.973
0.984

)
VF

(0.913
0.958

) (0.872
0.894

) (0.952
0.981

) (0.865
0.924

)
EF

(0.824
0.925

) (0.817
0.891

) (0.743
0.879

) (0.921
0.953

)
VL

(0.910
0.956

) (0.938
0.968

) (0.750
0.857

) (0.906
0.957

)
EL

(0.863
0.937

) (0.718
0.885

) (0.897
0.922

) (0.862
0.930

)
VG

(0.926
0.956

) (0.949
0.993

) (0.841
0.910

) (0.988
1.000

) (0.898
0.949

)
EG

(0.896
0.961

) (0.800
0.918

) (0.949
0.968

) (0.858
0.944

) (0.975
0.997

)
RR

(0.978
0.994

) (0.930
0.968

) (0.922
0.964

) (0.824
0.896

) (0.954
0.982

) (0.912
0.954

)
Table 4: ICA performance.



Visible LWIR Error
Reduction%

PCA 0.73 / 0.36 / 0.97 0.95 / 0.89 / 1.00 83/83/100

LDAg 0.93 / 0.85 / 0.99 0.97 / 0.92 / 1.00 57/47/100

LDAt 0.92 / 0.76 / 1.00 0.98 / 0.94 / 1.00 77/74/0

LFAe 0.82 / 0.62 / 0.97 0.93 / 0.84 / 0.99 61/59/92

LFAb 0.85 / 0.63 / 0.98 0.93 / 0.83 / 0.99 47/53/73

ICA 0.88 / 0.72 / 0.99 0.94 / 0.86 / 1.00 49/50/100

Table 5: Weighted mean, minimum and maximum perfor-
mance on each modality, plus percentual reduction of error
from visible to LWIR.

6 Conclusions

We performed a comprehensive comparison of classical
and state-of-the-art appearance-based face recognition al-
gorithms applied to visible and LWIR imagery. Building on
previous work, we emphasized the role of varying the train-
ing and testing sets, as a tool to uncover strengths and weak-
nesses of algorithms and imaging modalities. Confounding
variation in imaging conditions were minimized by collect-
ing data with an innovative sensor capable of simultaneous
coregistered acquisition of both modalities.

It becomes clear from our analysis, that LWIR imagery
of human faces is not only a valid biometric, but almost
surely a superior one to comparable visible imagery. This
conclusion must be tempered somewhat by the fact that
while our data collection includes many challenging situ-
ations for visible recognition algorithms, it may not contain
sufficiently challenging ones for LWIR recognition. Unfor-
tunately, collecting such challenging imagery is costly and
complicated, since we must introduce variation due to ambi-
ent temperature, wind, and metabolic processes in the sub-
ject. Nonetheless, such data collection is currently under-
way, and experimental results will be reported elsewhere.
As noted in [5], while our current working database may
not include the most challenging scenarios for LWIR face
recognition, it is representative of uncontrolled indoor im-
agery, and thus our results are very encouraging in that con-
text.

Ongoing and future work includes analysis on more chal-
lenging LWIR imagery, improved calibration methods to
further reduce environmental distractors, and most impor-
tantly fusion of both modalities. Preliminary results on fu-
sion of modalities are extremely promising, indicating that
a further reduction of error of50% over LWIR performance
may be possible.
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