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Abstract

This paper extends the theory of median, order-statistic (OS), and stack filters
by using mathematical morphology to analyze them and by relating them to those
morphological erosions, dilations, openings, closings, and open-closings that commute
with thresholding. The max-min representation of OS filters is introduced by showing
that any median or other OS filter is equal to a maximum of erosions (moving local
minima) and also to a minimum of dilations' (moving local maxima). Thus, OS filters
can be computed by a closed formula that involves a max-min on prespecified sets of
numbers and no sorting. Stack filters are established as the class of filters that are
composed exactly of a finite number of max-min operations.

The kernels of median, OS, and stack filters are collections of input signals that
uniquely represent these filters due to their translation-invariance. The max-min func-
tional definitions of these nonlinear filters is shown to be equivalent to a maximum of
erosions by minimal (with respect to a signal ordering) kernel elements, and also to a
minimum of dilations by minimal kernel elements of dual filters. The representation of
stack filters based on their minimal kernel elements is proven to be equivalent to their
representation based on irreducible sum-of-products expressions of Boolean functions.

It is also shown that median filtering (and its iterations) of any signal by convex 1-D
windows is bounded below by openings and above by closings; a signal is a root (fixed
point) of the median iff it is a root of both an opening and a closing; the open-closing
and clos-opening yield median roots in one pass, suppress impulse noise similarly to
the median, can discriminate between positive and negative noise impulses, and are
computationally less complex than the median. Some similar results are obtained for

2-D median filtering.



1 INTRODUCTION

Median filters and their generalization, order-statistic (in short, OS)! filters, are a class
of nonlinear and translation-invariant discrete filters that have become popular in digital
speech and image processing, and also in statistical or economic time series analysis. These
filters are attractive because they are easy to implement and can suppress impulse noise®
while preserving the edges of the signal. This is in contrast to linear filters, which blur
edges and only smooth impulses. ’

Tukey [1] first used the median filter for nonlinear smoothiﬁg of data. Median filters
were then used in speech smoothing {2,3] and image enhancement [4]-[7]. Considerable
interest and research have been invested in studying properties and fixed points (roots)
of median filters [8]-[19]. Roots of the median filter have been used in edge enhancement
[1,6,7] and image coding [14]. The OS filters were studied in {8,11,17,21,22] and used for
AM signal detection and image enhancement. Any OS filter can be defined both for binary
and for multilevel signals. Moreover, OS filters commute with any monotonic pointwise
transformation of the signal amplitude; thresholding at any level is such a monotonic
transformation. This property of OS filters to commute with thresholding was investigated
independently in {23,8,9,7,15,17,24,25,26]. It was proven for any cascade of min/max op-
erations by Nakagawa and Rosenfeld [23], appeared with examples in Justusson [8], and
was proven for the median by Tyan [9], who also notes that a signal is a median root iff
each of its thesholded versions (cross-sections) is a binary median root. Serra [24] outlined
a procedure to prove that the 2-D hexagonal median filter commutes with thresholding.
Serra also proved that a signal can be uniquely decomposed into its cross-sections and re-
constructed from them using a supremum. Fitch et al. [15,17] provided a complete proof,
without using morphology, for the combined result that median and OS filters (recursive
and nonrecursive) commute with thresholding and hence OS filtering of multilevel signals

reduces to a sum of OS filters for binary signals; their result refers to signals with finite

1What we call OS filters in this paper have also been called “ranked-order” operations in [11,17]; we use
the name OS to keep up with earlier literature (7,8,20].
2By impulse noise is meant that a signal is corrupted by impulses (spikes), i.e., very large positive or

negative values of short duration; probabilistic models of impulse noise can be found in [8].



extent and a finite number of amplitude levels. Wendt et al. [27,28] defined the stack filters
as the class of all filters that are defined via a finite window, commute with thresholding
and, hence, are increasing. They made the connection between stack filters and positive
Boolean functions [29,30,31], which have a unique minimal expression as Boolean sum of
products. Finally, in Maragos & Schafer [25] and Maragos [26] a unified approach was
introduced for representing a large class of linear and nonlinear filters (including median
and OS filters) as a supremum of erosions or infimum of dilations.

This baper, which reports work from [25,26], introduces the use of mathematical mor-
phology, minimal kernel elements, and concepts from Part 1 [32] to analyze median, OS,
and stack filters and to relate them with morphological erosions, dilations, openings, and
closings. We emphasize at this point that median, OS, and stack filters are related only
to the function- and set-processing morphological filters that commute with thresholding.
The general function-processing morphological filters that involve a non-binary structur-
ing function do not commute with thresholding, and thus are not related to median, OS,
or stack filters. In Section 2 we examine some properties of OS filters and provide two
alternative sfmple proofs of the fact that they commute with thresholding. In Sections 3,4
we show that: 1) Any OS filter can be exactly represented as a maximum of erosions, or as
a minimum of dilations. 2) Medians and their iterations are bounded below by openings
and above by closings. 3) A signal is a median root iff it is a root of both an opening and a
closing. 4) The open-closing and clos-opening give us median roots in a single pass, smooth
signals similarly to the median, and have some advantages over the median. Some of the
above results are also valid for 2-D signals. In Section 5 we put result (1) in the unified
framework of the theory of minimal eleménts [26] by introducing the kernel representation
of OS filters. Finally, in Section 6 we establish that stack filters is the class of all finite
min-max and max-min operations, and we relate their representation based on positive
Boolean functions to their representation based on minimal elements.

Throughout this paper we use the same notation, terminology, and concepts as in Part 1

[32].



"2 OS FILTERS FOR SETS AND FUNCTIONS

We shall deal only with discrete OS filters, i.e., processing sampled signals.® Hence, our
functions (multilevel signals) will be defined on Z™ (m is any positive integer), and our sets
(binary signals) will be subsets of Z™. The functions will generally have their amplitude
range in the continuum R. Let S be a set of n real numbers, where we allow in S multiple
repetitions of the same element. Suppose we sort these n numbers in descending order
with respect to their algebraic value; the k-th number from this sorted list is called the
k-th OS of the finite set S, k = 1,2,...,n. If n is odd, for k = (n + 1)/2 we have the
median of S.

Let W be a window, which is defined henceforth as a finite subset of Z™ with |W| = n,

where | -| denotes set cardinality. The k-th OS of a function f(z) by W is the function
[OS*(f : W)](z) = k—th OS of {f(y):y € W.}, (1)

where 2 € Z™,1 < k <n,and W, = {z+a: a € W} denotes the set W shifted at location
z. The k-th OS filter for functions by W is a function-processing (FP) filter whose output
is the k-th OS of the incoming function by W. For k = (n + 1)/2, whenever n is odd, we
have respectively the case of the median of a function f by W, denoted as med(f; W),
and the median filter. If f is a binary function, then its k-th OS by W is also a binary
function. Thus FP OS filters are actually function- and set—processiﬁg (FSP) filters.

The straightforward way to define OS for sets by a window would be to represent these
sets by their characteristic function and take the OS of this binary function by this window.
An equivalent set-theoretic definition is the following. The k-th OS of a set X by W is
the set

OSH(X;W) ={ye Z™: | XnW,| >k} (2)

where k = 1,2,...,|W|. Hence, we shift the window W, locate it at y, and count the points
inside the intersection X N W,, where X is the input set. If the number of points is at
least k, then the point y bvelongs to the k-th OS of X by W. Note that | X N W,| < n for
ally € Z™. If nis odd and k = (n + 1)/2, Ath‘en' the _k-th OS of X is called thelmedz'an of

3For a definition of an analog median filter see {33].



X by W and denoted as med(X;W). The k-tﬁ OS filter for sété by W is a. sef—processing
(SP) filter whose output is the k-th OS of the incoming set by W.

In what follows, the term “OS”, except otherwise stated, will always refer to OS of
functions or sets by a window. Furthermore, we shall use interchangeably the terms “OS
filters for signals” and “bS of signals”. OS filters are morphological transformations of
signals by sets, because they satisfy all four morphological principles [24]. Moreover, the
window W is actually a structuring element capable of assuming any shape and finite
size. It need not be a convex or symmetric set as has been assumed so far by previous
researchers. Below we prove some general properties of OS filters.

Property 1. OS filters for sets and functions are increasing.

Proof. Let X C Y. Then z € OS"(X s W) |XnW,| > k. But, XNnW,CYn
W, = |XNW,|<|YNW,| = z€ OS*(Y;W). Hence, OS¥(X;W)C OS¥(Y;W). Now,
if f <g,then f(2) < g(2) Vz € W,, Vz € Z™. Thus, [0S*(f;W)|(z) < [0S¥(f;W))(z), Vz.
Q.E.D.

Property 2. OS of functions commute with thresholding. That is, for any function f
(of finite or infinite extent) and finite window W, for allt € R and k = 1,2,...,|W|,

X,[08*(f;W)] = OS*[X.(f); W] . (3)

Proof I. Let g(z) = [0S*(f;W)](z). Then, z € X,(g) <= g(z) >t < |W,n
X:(f)| > k < z€ OS*[X,(f);W]. Q.E.D.

Proof II. OS filters are FSP filters that are translation-invariant, increasing, and u.s.c.
[26]. Hence, from Theorem 4 of Part 1, they commute with thresholding. Q.E.D.

For the median we simply have that X;[med(f;W)] = med[X;(f); W]. Note that Prop-
erty 2 refers to any signal of finite or infinite extent with a continuous or dicrete amplitude
range; in {15,17] the commuting with thresholding of OS filters was proved only for the
special case of signals with finite extent and a finite number of amplitude levels. The
essence of Property 2 is the equivalence between the OS filtering of a function followed
by thresholding at level ¢, on the one hand, and, on the other hand, the thresholding of
the function at level t followed by OS filtering of the resulting cross-section. That is, both

ways should give the same set, i.e., the cross-section of the filtered function at level ¢. In



" addition, after having obtained all the cross-sections of OS*(f;W) via OS filtering of the
sets X,(f), we can reconstruct the filtered function by using a supremum (or maximum,

for a finite number of amplitude levels). Hence, from Property 2 and Part 1 (Theorem 1),
[OS*(f;W)](2) = sup{t € R : z € OSK[X,(f); W]}. (4)

In [15,17,28] it is assumed that f(z) has only M (finite) amplitude levels ¢, and hence the
reconstruction (4) can also be done by summing the characteristic functions of the sets
OS*[X;(f); W] for all M levels t. We can transpose this result to our case, where ¢ varies

continuously over R, by using tntegration; i.e.,

[0S (£iW)](2) = [o, Xostyx,smi(2)dt (5)

where xs denotes the characteristic function of a set S (i.e., xs(z) = 1 for z € S and
xs(2) = 0 for z ¢ S). The reconstructions (4) and (5) are equivalent, and both make use
of the fact that {OS*[X;(f);W] : t € R} is a family of decreasing sets as ¢ increases.
Consequently, the analysis and implementation of OS filters can be done by focusing only
on the case of sets. Clearly, OS of sets are much easier to deal with since their defini-
tion involves only counting of points instead of sorting numbers (as is the case in OS of
functions).

Let X° denote the set complement of X with respect to Z™.

Property 3. OS of sets interact with set complementation as follows: For any set X
and finite set W, OS*(X*¢; W) = [O§"~+*1 (X;W)e, for k =1,2,...,n = |W|.

Proof. z € OSK(X4W) <= |X*OW,| > k<= |XNW,| <n—k+1<=>2¢
OS" **1(X;W) <= z € [OS" ¥ (X;W)]. Q.E.D.

A corollary of the above property, if [W| is odd, is

Property 4. Median of sets commutes with complementation; i.e., med(X*;W) =

[med(X; W)]e.



3 RELATIONS BETWEEN'OS AND MORPHOLOG-
ICAL FILTERS

By combining the definitions of OS in (1),(2) with the definitions of erosion and dilation
in Part 1, we see that the first (k = 1) OS of any signal by a window W coincides with
its dilation by W. Similarly, the n-th OS, where n = |W|, is equal to the erosion by W.
Hence, it can be shown that, for k =1,2,... W],

Xew'C...costi(x;wycosk(x;w)c--.CXpW". (6)

Thus, (only) the FSP erosions and dilations by sets are special cases of OS filters. Since
OS filters commute with thresholding, relation (6) and all subsequent relations involving
sets, OS or morphological filters for sets, and set inclusions are also valid for functions too;
we only need to replace sets with functions and set inclusion C with function ordering <,
and vice-versa.

We can interpret the k-th OS filtering of S by a window W as a cascade of a linear
shift-invariant filter with impulse response h = xw followed by the nonlineér pointwise
thresholding operation of taking the cross-section of h* xs = xw * x5 at level t = k < |W|,

where * denotes linear convolution. That is, for all k = 1,2,...,|W]|,
OS*(S;W) = Xemi|xw * xs]-

This formula allows us to implement OS filters (including SP erosion and dilation) in terms
of linear convolutions; obviously, this is a sertal implementation.
Next we show how any OS filter can be expressed as a maximum of erosions or minimum

of dilations. Let (Z) = ——"—l—k—)l denote the number of combinations of n items grouped k

kl(n

at a time, where 0! = 1.

THEOREM 1 . For any function f and any finite set W, the k-th OS of f by W,
k=1,2,...,n = |W|, is equal to the pointwise mazimum of the moving local minima of
f inside all (2) windows equal to the subsets of W containing ezactly k points, and it 1s
also equal to the minimum of the mouving local marima of f inside all the subsets of 154

containing exactly n — k + 1 points. As a special case, the median of f by W s equal to



the mazimum of minima (and also to the minimum of mazima) of f inside all subsets of

W containing ezxactly (n + 1)/2 points, where n is odd.

Proof. Let a; > a3 > --- > a,, be the n ordered values of f inside W shifted to any location
z. Let S;, 1 =1,2,..., (Z) , be the sets of values of f on each of all the different subsets of
W, containing exactly k points. Since {aj,...,ak_1,ax} is one of the S; ’s, then ay is one of
the minima of f on the S;’s. Every other set S; will have at least one element from the set
{ak+1,@k+2,---,an} and, hence, it will have & minimum < a;. Thus, the maximum of all
these minima is equal to a; = [OS*(f;W)](2). Likewise, T1 = {ak,ar+1,---,@n} is one of
the sets T,,, m = 1,2,..., (n _’}k + 1) , of the values of f on the subsets of W, containing
n — k + 1 points. Clearly, ax = max(7}). Every other set T, # 71 will have at least one
element from the set {a;,as,...,ax-1} and, hence, it will have a maximum 2> ai. Thus,
the minimum of all these maxima is again equal to a;. For the case of the median, n is odd
and k = (n+1)/2 => k = n — k + 1. Hence, the subsets of W with k points are equal to
the subsets with n — k + 1 points. Thus, the minima and maxima refer to the same subsets
of W. Therefore, the median can be expressed both as a maximum of minima and as a
minimum of maxima on all the subsets of W containing exactly (n + 1)/2 points. Q.E.D.

From Theorem 1 the following theorem immediately results.

THEOREM 2 . The k-th OS of sets (resp. functions) by a window W,k = 1,...,n =
[W|, ts equal to the union (resp. mazimum) of erosions by all the subsets of W containing
k points. It is also equal to the intersection (resp. minimum) of dilations by all the subsets

of W containing n — k + 1 points. That 1s, for any set S,

os*(s;w)= |J SeP' = (] SeQ°. (7)
PCW QCw
(Pl=k 1Ql=n—k+1

For any function f(z), z € Z™, and P,Q as in (7), we have

[08*(f;W)](2) = max{(f © P)(z)} = min{(f ® Q*)(z)} . (8)
If n is odd, for k = (n+ 1)/2 we have the special case of the median:
(med(f;W)](z) = max {(foB)(z)}= min {(f&B)(z)}. (9)
C |B|=(n+1)/2 - o [B|=(n+1)/2 S

The median of S by W 1is given from (7) by setting k = (n + 1) /2.

10



Proof. Eq. (8) results from Theorem 1 and the fact that the local minimum (maximum)
filter with respect to a moving window A is equal to the erosion (dilation) by A. Eq. (7)
results from (8) by setting S = X;(f) for some t and an arbitrary function f, because
X|OS*(f;W)] = 08*(S;W), Xi[maxp{fOP*(z)}] = Up X:(fOP*) = Up SOP°, and
Ximing{f®Q*(z)}] = Ng Xe(fQ°) =Ng S®Q*. If nisodd and k = (n+1)/2=n—-k+1
we get (9) from (8) or (7). Q.E.D.

4 MEDIANS, OPENINGS, CLOSINGS

So far, our discussion has been general and referred to every OS by an arbitrary window W.
In this section we discuss only the case of median filtering by convez windows, because this
constraint enables us to find some interesting properties between such median filters and
openings/closings. An intuitive idea about such properties can be obtained from Fig. 1.
Fig. 1a shows a function f representing a 256 x 256-pixel graytone image corrupted by
salt-and-pepper noise. In Fig. 1b the opening fg of f by a 2 X 2-pixel square convex
set B cuts down the peaks of f “and hence suppresses the positive noise spikes (“salt”
noise). In Fig. 1c the open-closing (fg)? fills up the valleys of fg and hence suppresses
the negative noise spikes (“pepper” noise). Comparing Figs. 1c and 1d indicates that a
median filtering of f by a 3 x 3-pixel convex square window W behaves similarly to the
open-closing by B, but the latter is computationally less complex than the median. In
addition, the open-closing can decompose the noise suppression task into two parts; i.e.,
opening suppresses the positive noise impulses, the closing suppresses the negative noise
impulses, but the median cannot discriminate between them. Qualitatively, the median
behaves like a combined opening aﬁd closing by a set of size about half the size of the

median window. Next we formalize our discussion.

4.1 Medians by 1-D Convex Windows

Assume in this section that the window for median filtering is a conver symmetric set

W and that the structuring element for openings and closings is a convex set B, where

11



W, BC Z,
|[W|=2n+1, |B|l=n+1,n€eZ,, (10)

and Z, is the set of positive integers. The set B does not have to be symmetric or contain
the origin, because the opening by B is equal to the opening by any translation B, of B.

That is, X5 = U B, A U (By)s = X(s,) for any y € Z; likewise for the closing
B.C X (By)s & X
by B.

‘The input signals to the examined filters v;;ill be sets or functions, and, if not otherwise
stated, of finite or infinite extent. In proving the theoretical results of this section we
assume, for simplicity, that the signals are 1-D. However, the obtained results are also
valid for mult:-D input signals. This is true because we can “slice” (intersect) a multi-D
signal by all 1-D discrete lines Z parallel to the line containing the 1-D median window W
and essentially reduce the multi-D filtering into 1-D filtering of each 1-D slice.

A root (or fized point) of a filter ¥(-) is any signal f such that ¥(f) = f. If ¢ is
FSP and commutes with thresholding, then a function f is a function-root of ¢ iff all
the cross-sections of f are set-roots of . Let med°*(;W), k € Z,, denote the k-th
iteration of the median filter by W, where med°**1)(f; W) = med|med°*(f; W); W] and
med°(f;W) = med(f;W). If f has a finite extent, then iterating the median by W on
f will yield a median root, which we denote by med°®(f;W); actually, this root will be
obtained after only a finite number of iterations [10,18].

The ordering relations (6) show that the median of a signal by a window W is bounded
below by its erosion and above by its dilation by W. Below we give tighter bounds for the

median and its iterations, and provide a sufficient condition to find a median root.

THEOREM 3 . The median (and any of its iterations) of any set X or’functz'on f by
W s bounded below by the opening and above by the closing of the signal by B. Further,
if the signal ts a root of the opening and closing by B, it is a root of the median by W:
(0) XpC med**(X;W)C XB and fp < med*(f;W) < f8, Vk € Z,..
() X = Xp = X? => X = med(X;W) and f = fp = f® => [ = med(f;W).

Proof. Let k = 1. Then z € Xp == there is y such that z € B,C X. From (10) and
since W = W, |W,nB, |>n+1=W,nX |[>n+1=z¢€ med(X;W). Thus,

12



X5C med(X;W). Now (X¢)5C med(X¢; W) = (XB)°C [med(X; W)]* => med(X;W)C X.
The median is increasing filter. Hence, med(Xp;W)C med°?(X;W)C med(X2;W). But
Xp = (Xp)pC med(Xp; W) and med(X2;W)C (XP)2 = XB. Thus XpC med°?*(X;W)C X5,
and by repeating the same procedure on the latter result we obtain XpC med°*(X;W)C X2,
Vk € Z,. The FSP filter med®*(; W) commutes with thresholding because it is a cascade
of k medians. Thus, by setting in the previous proof X = X,(f), it follows that Vt € R
[X(1)]a S med* [ X,(£); WIS [Xe(£)]P <= Xifo)C Xilmed™*(f;W)]C Xu(f7) <= Jo <
med**(f; W) < fB.

(b) is a simple corollary of (a) since X = XpCmed(X;W)CX? = X = X =
med(X;W). Likewise for functions. Q.E.D.

Note that we take the median by W, but the opening and closing by B. From (10), the
set W is a fixed point of both the ‘openj.ng and closing by B. Hence, from [24], Xw C X5
and XB C X¥. Therefore, if we take the opening and closing by W instead of B, we will
bound the median with looser bounds.

By restricting the signal to be of finite extent, we can find a necessary and sufficient
condition relating the median roots to the roots of the opening and closing. Gallagher and
Wise [10] proved that a multilevel signal of finite length is a median root by a window of
2n + 1 points iff it consists of edges (monotonic regions) and constant neighborhoods of
at least n + 1 consecutive points. Using their method of proof, we now prove a similar

theorem for sets (our approach differs in the way we handle the boundary conditions).

THEOREM 4 . A finite set X 15 a root of the median by W, |W| = 2n+1, iff it consists
of conver subsets of length at least n + 1 potnts and these subsets are separated from each

other by conver subsets of X¢ of at least n + 1 points.

Proof. Sufficiency: Both X and X° consist of convex subsets of length > n +1 = |B|.
Hence, X = Xp, and X® = (X¢)p <= X = X5, thus, X = med(X;W) due to Theorem 3.
Necessity: Let X = med{X; W), as shown below for a set X with W = {-2,-1,0,1,2}:

i |
X=..00001111111110000111000... o (11)
W, — 5 =

13



“Slide the window W of 2n + 1 f)oints from left to right (in (11) n - 2). At the first point
a of X, the left part of the window W, contains n points of X°. Thus, the right part of
the window W, must contain n points of X so that a € med(X;W). Thus, adjacent to the
point a from the right there is a convex subset of X of length k > n + 1 points (in (11)
k =09) inclpding point a. All these k points will remain after median filtering. Moving
the window W from left to right, after this k-point subset of X, we will encounter points
of X°; call b the first such point. The windoyv W, contains from the left n points of X,
and, hence, it must contain from the right n i)oints of X°, so that b & med(X;W). Thus,
the point b must see from the right a convex subset of X° of length 5 > n + 1 points
(in (11) 7 = 4) including point b. All these j background points will remain unchanged
after median filtering. Continuing to the right we may encounter another point of X; by
repeating the above process, we complete the proof. Q.E.D.

In the above theorem and in all our andlysis concerning OS filtering, we did not assume,
as in [10], that the finite extent signal was extended by appending values at the border
points. We simply let the operation of set complementation take care of the border points.
That is, every point outside the finite extent of the set-signal, belongs to the background.
Based on Theorem 4 we can now relate the roots of the median with those of the opening

and closing, as follows.

THEOREM 5 . A set X or function f of finite extent ts a root of the median by W iff
it ¥s a root of both the opening and the closing by B. That 1s, X = med(X;W) <= X =
Xp=X5B, and f = med(f;W) < f = fp = fE.

Proof. 1) For Sets. Sufficiency results from Theorem 3b. Necessity: Let X = med(X;W).
Then, from Theorem 4, both X and X° consist of convex subsets of length > n+ 1 = |B].
Hence, X = Xp, and X¢ = (X¢)p <= X = XPB. 2) For Functions. Using the links
between sets and functions and the fact that median, opening, and closing commute with
thresholding, we have: -f = med(f;W) <= Xi(f) = Y = med(Y;W) Vt € R <=
Y=Yp=YP «= f=fp=fP. QE.D.

For inifinite signals, Theorem 3b is still true, whereas Theorem 5 is not always true,

as the following counter-example shows: Consider the i-nﬁn'ite 1-D set X below and let
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B = {-1,0,1}. Then,
X=...01010101...=> X5=...00000000...

where 0 € X¢ and 1 € X. Then, if W = {-2,-1,0,1,2}, X = med(X;W) but X # Xp.

One implication of Theorem 5 is the idea that instead of iterating a median filter many
times to obtain a median root, one could alternatively obtain a signal that is a root of the
opening and closing; this latter signal would then be a median root. In contrast to the
median filter, to obtain a root of the opening or closing we need not iterate the opening
or closing, respectively, because both operations are idempotent. That is, the opening or
closing of a signal is itself a root of the opening or closing filter, respectively.

A morphological filter that yields roots of both the opening and closing, and, hence,
of the median, is the open-closing or clos-opening. The open-closing (opening followed by
closing by the same structuring element) of X by B is equal to (X5)Z. The clos-opening
(closing followed by opening) of X by B is equal to (X®)p. Likewise for functions. Before

we prove the above assertion we need

THEOREM 6 . For any set X or function f of finite extent, the root of the median
by W 1s bounded below by the open-closing and above by the clos-opening by B. That 1s,
(XB)2 C med°®(X;W) C (XB)p and (f)? < med**(f;W) < (fB)s.

Proof. After a finite number, say k, of iterations of the median we obtain the median root
Y = med°®(X; W) = med°*(X;W). Then, from Theorem 3, X CY C X®. Since Y is a
median root, from Theorem 5,Y =Yg = YB. Thus, (Xp)2 CYB =Y =Y C (XB)p,
because opening and closing are increasing. Similarly for functions (by considering their
cross-sections since all the examined filters commute with thresholding). Q.E.D.

So far we have seen that the median is bounded by the opening and closing and that
the median root of a finite signal is bounded by the open-closing and the clos-opening.

Below we prove that these two latter morphological filters are median roots by themselves.i

THEOREM 7 . The open-closing and clos-opening by B of any finite extent function
f or set X are roots of the median by W. That is, (fz)? = med[(fs)2;W], (f8)s =
med|(f?)5; W]; likewise, if a set X replaces f.
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Proof. From Theorem 6, (f5)% = [(f5)5]? < mcdqw(fB;W)"S [(fB)B]B: < (fs)?. Hence,
(f8)2 = [(fB)®]s is a root of the opening and, obviously, of the closing by B. Thus, from
Theorem 3b, (f5)? is a root of the median by W. Similarly, (f¥)p is equal to its opening
and closing by B and, hence, a median root by W. Likewise for sets, if we replace in the
previous proof f with X and < with C. Q.E.D.

Figure 2a shows a finite 1-D multilevel signal f of 256 samples representing a graytone
image intensity profile. Figures 2b,c,d show rel:spectively the open-closing and clos-opening
of f by B, and the median root of f by W, Qhere |B| = 3 and |W| = 5. The median root
was obtained by iterating the median four times. The bounds of Theorem 6 are satisfied,
but the difference between the median root and the open-closing or clos-opening is very
small. For a 1-D signal of L samples, the maximum number of iterations of the median
filter needed to obtain the median root (with respect to a 2n + 1-point window) is equal
to 3(L — 2)/(2n + 4) if we append samples at the ends [18], and 3L/(2n + 4) if we do
not append samples (in Fig. 2, L = 256, n = 2). Further, for a 256-sample signal, 28
iterations of the median are needed {16], at most, to obtain a signal which is a median root
with a confidence of 95%. However, Theorems 6,7 tell us that the open-closing and clos-
opening yield in one pass median roots, which bound from below and above, respectively,
(and, as Fig. 2 shows, lie close to) the median root obtained by iterating the median.
As an aside, both open-closing and clos-opening are tdempotent operations {26,32], and,
hence, their output stabilizes in a single pass. In addition, if we view Fig. 2a as a signal
corrupted with impulse noise and Figs. 2b,c,d as its smoothed versions, then clearly the
open-closing (or clos-opening) behave very similarly to the median. Moreover, as in Fig. 1,
the open-closing can selectively eliminate positive or negative noise impulses, whereas the
median root cannot discriminate them. In [34] the statistical properties of 1-D and 2-D
open-closings (by a combination of 4 oriented n + 1-point 1-D sets) and median filters (by
the same combination of 2n + 1-point windows) were compared; it was found that these
median filters offer more noise suppression, whereas open-closings appear to have superior
syntactical performance.

It may be of interest to compare the computation_a.l complexity involved to obtainvthe

open-closing (or, equivalently, the clos-opening) and a median root. Recall that [W| =
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2n + 1 and |B| = n + 1. Then the following three quantities are involved in measuring
the computational complexity (per output sample)'. The number of passes P; the number
of exchanges E; and the number of comparisons C. For the open-closing by B (two local
min and two local max) we have P =4, E = 0, and C = 4n. For a single median filtering
operation by W, using the bubble-sort [35] algorithm for sorting, we have 1 < P < 2n + 1,
0 < E < (2n® +n), and 2n < C < (2n? + n). In addition, the average number of these
three quantities required for the median (i.e.,"‘for the sorting) is approximately [35] of the
following order: O(M) for Py, O(M?) for E,,. and O(M?) for Cyye, where M = 2n+1. Of
course, there are other faster algorithms for sorting [35] or specifically for the median (see [6]
for references), but these faster algorithms usually come with an increase in sophistication.
Thus, the open-closing (or clos-opening) requires a comparable and, in many cases, smaller
computational complexity than a single median. In addition, the iterations of the median
needed to obtain median roots compared with the single pass needed for the open-closing
(or clos-opening) make the latter more appealing.

In summary, the following orderings and bounds have been established between open-

ings, closings, medians, and median roots:
Xp C med(Xp;W) C (X5)® C med®®(X;W) C (XB)p C med(XB;W)C XB. (12)

Similar results hold for functions too:

f8 < med(fs;W) < (f5)? < med°*(f;W) < (f¥)p < med(fZ;W) < fP. (13)

4.2 Medians by 2-D Windows

Some of the results concerning medians by 1-D convex windows also apply for median
filtering of multi-D discrete sequences by certain 2-D windows. Two such windows shaped
like a 7-point hexagon are shown in Fig. 3; the window H is for hezagonally-sampled 2-D
signals, and the window R for rectangularly-sampled 2-D signals.

Consider any subset X of a plane Z? whose points are arranged as on a hexagonal grid.

Then the set H has the property that
z€Xg=>|H.NX|>4, (14)
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since z € Xy iff there is point y such that = H,C X, and the latter impllies | H.NnX IZ 4

due to the geometry of H. Based on (14) we have:

THEOREM 8 . For any set X or function f defined on a hezagonal grid:
(a) XpCmed™ (X; H)C XH and fg < med**(f;H) < f¥,Vk € Z,.
(b) X =Xy =X" = X =med(X;H) and f = fy = f# = f = med(f; H).

Proof. (a) From (14), z € Xp => z € med(X; H), and hence XygC med(X;H). Then
(X )pCmed(X; H) < (XH)°C [med(X; H)]‘ <> med(X; H)C X¥. By following the
same procedure as in the proof of Theorem 3a, we can complete the proof of (a) both for
sets and functions. Finally, (b) is a simple corollary of (a). Q.E.D.

Theorem 8b is true both for finite and infinite signals; the converse, even for finite
signals, is not generally true. We prove this through a counter-example shown in Fig. 4,
where we see a finite set Y for which Y = med(Y; H), but Y # YH.. Further, Theorem 7
is not valid for 2-D filtering by H, because neither the open-closing nor the clos-opening
by H are always roots of both the opening and closing by H. We prove this through a
counter-example: If Y is the set of Fig. 4, Y# = (Yg)¥ # [(Ya)¥]g = Y; thus (Yg)¥ is
not a root of the opening and not a median root by H.

Finally, Theorem 8 also applies to median filtering of rectangularly-sampled functions
f or sets X by the window R of Fig. 3. That is, fr < med**(f;R) < fR and f = fr =
f® => f = med(f; R); the proof proceeds exactly as in Theorem 8 and exploits the fact
that z € Xp =>| R, N X |> 4, due to the geometry of R.

5 REPRESENTATION OF OS FILTERS BY KER-
NELS AND MINIMAL ELEMENTS

In this section we present the relations between morphological and OS filters under the

unified framework of the theory presented in [25,26]. Consider the SP filter ¥(X)

i

OS*(X;W), where £k = 1,2,...,|W| = n and X C Z™. Then the dual SP filter of ¥
with respect to.complementation, defined by PX) = [P(X)], X C _Z"‘.,”isA equal to the
(n—k+1)-th OS filter by W. For instance, if ¥ is the set erosion, then ¢ is the set dilation
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by W, and vice-versa. If n is odd and k = (n + 1)/2, then both ¥ and ¥* coincide with
the SP median by W. The filter ¥ is translation-invariant (in short, TI) and is defined on
P(Z™) (the class of all subsets of Z™), which is a class of sets closed under set translation.
The kernel of ¥ is defined generally by K(¥) = {X C Z™ : 0 € ¥(X)}, where 0 is the
zero vector of Z™. Thus K(V¥) is a collection of input sets that can uniquely characterize
and reconstruct ¥ by using translations [36]. That is, ¥(X) = {a € Z™ : X_, € K(¥)},
for each X. From (2), ' ‘

Ko)={XCZ™: | XnW|>k}. (15)

In [25,26] we extended the kernel representation to FP filters that are TI (see Table II
of Part 1) and are defined on a class ¥ of functions closed under function translation.
The FSP filter (f) = OS*(f;W) is such a case with 7 being, for example, the class of
all real-valued functions f defined on Z™. The kernel of ¢, defined generally by K(¢) =
{feF: [¥(f)0)>0},is a collection of input functions that can uniquely characterize
and reconstruct ¥ by using translations and supremum [26]. Since X,[¢(f)] = ¥[X.(f)]
VtER, f € K() <= Xi=o(f) € K(¥).

Sin;:e ¥ is TI and increasing, it can be realized as the union of SP erosions by all its
kernel elements [36]. Similarly, since ¢ is TI, increasing, and commutes with thresholding,
it can be realized exactly as the pointwise supremum of FSP erosions by all the kernel
elements of ¥ [26]. However, these realizations, except for their theoretical interest, are
impracﬁcal, because they require an infinite number of kernel elements. This is why we
introduced the concept of the basis B8(¥), of ¥, which is defined as the set of minimal
elements of K(¥). [The system (K(¥),C) is a partially ordered set; an element M € K(¥)
is minimal iff, for each A € K(¥), A C M = A = M.] These minimal elements exist
in K(¥) if ¥ is TI, increasing, and upper semicontinuous (u.s.c.) {26]. Next we provide a

representation theorem for filters like ¥ based only on their basis.

THEOREM 9 (Maragos {26, p.136-137}). (a) Let ® : S — P(Z™) be a TI, increasing,
and u.s.c. SP discrete filter, where SC P(Z™) s closed under translation and snfinite
intersection. Then ® ss ezactly represented as the union of erosions by its basis sets. If its

dual % is u.s.c., ® can also be represented as the intersection of dilations by the basis sets
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(b) Let ¢ be a TI discrete FSP ﬁltér commuting with thresholding, and ® Vbe its respective
SP filter. Then ¢ s ezactly represented as the pointwise supremum of FSP erosions by the
basts sets of ®. If the dual of ® 1s u.s.c., ¢ can also be represented as the snfimum of FSP
dilations by the basis sets of ®49.

Note that in Theorem 9b, ® and ®¢ are TI because éis TL Further, ® is increasing and
u.s.c. because ¢ commutes with thresholding (see Section 2.4 of Part 1); since ® is TI and
increasing, ¢ is TI and increasing too. Theorem 9 applies to median and OS filters as

follows.

THEOREM 10 . (a) Let the m-D SP filter ¥ be the k-th OS of sets by WC Z™, where
k =1,2,...,|W| = n; its dual ¥? is the (n — k + 1)-th OS filter by W. The minimal
kernel elements of ¥ are all the ( ) subsets P of W with |P| = k, and the minimal kernel
elements of U4 are all the (n " ks 1) subsets Q of W with |Q| =n — k + 1. The filter ¥
is equal to the union of erosions by all P’s and the intersection of dilation by all Q’s.

(b) If the m -D FSP filter ¢ is the k-th OS of functions by W, then ¢ is equal to the

pointwise mazimum of erosions by all the P’s and to the minimum of dilations by all the

Q’s. (See also Egs. (7), (8), (9).)

Proof. (a) From (15), if P C W with |P| = k, then P € K(¥). Now, if there is G € K(¥)
such that G C P, k < |GNW| < |G| < |P| = k => G = P. Hence, P is a minimal
element in (K(¥), C). For any other X € K(¥), X D F = X NW with F C W and
|F| > k. Then F, and thus X, contains a subset P of W with |P| = k. Hence, the subsets
P of W with |P| = k are the only minimal elements in K(¥). Since the dual filter ¥¢ is
the (n — k + 1)-th OS by W, the minimal elements of K(¥¢) are all the Q C W such that
|Q| = n — k + 1. The filters ¥ and ¥, defined on P(Z™), are TI, increasing, and u.s.c.
[26]. Hence, from Theorem 9, ¥ is the union of erosions by all P’s and the intersection of
dilations by all @’s.

(b) For the FSP filter 1, if the input functfon is f, and Y = X;(f) for any t € R, then
U(Y) is the union of all Y © P* and the intersection of all Y @ Q°. Since ¥(Y) = X;[¢([)],
Y¥(f) is the maximum of all f © P* and the minimum of all f & Q*. Q.E.D. :
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Basically, in Theorem 10 we proved the same result as in Theorem 2 but without
using Theorem 1; we used instead the minimal kernel elements of OS filters. Clearly, the
advantage of the minimal elements approach is that it unifies the representation éf 0Ss
filters as well as of many other filters [26], e.g., linear filters (see Part 1), in terms of

morphological filters. The basis elements of openings and closings are given by

THEOREM 11 (Maragos [26, p.141-143]. Let A C Z™ with |A| = n. Then:

(a) The basis of the SP opening filter \Il(X) = X4, XCZ™, consists of the n sets A_,
where a € A.

(b) The basis of the SP closing filter U%(X) = X4 consists of all minimal subsets M
of A® A® such that 0 € MA. If A is 1-D and convez, then the basis of W? consists of the

set {0} and the n{n — 1)/2 sets {a,b} C A® A® such that 0 € {a,b}*.

Next we provide some examples to clarify the basis representation of median, opening,
and closing filters.

Example 1: Median. Consider first the 1-D SP median ¥(X) = med(X;W), where
XCZ and W= {-1,0,1}. The kernel of ¥ is K(¥) = {X : |X nW/| > 2}. The kernel
elements have the form {...,-1,0,...},or {...,—1,1,...},0r {...,0,1,...}. Clearly, there
is an infinite number of kernel elements. The basis of ¥ has only 3 elements, which are the
3 subsets of W containing 2 points each: M; = {-1,0}, M, = {—1,1}, and M; = {0,1}.

Thus, from Theorem 10, the 3-point median of a function f(z), z € Z, is equal to

min{ f(z — 1), f(z)},
med{f(z — 1), f(z), f(z + 1)} = max{ min{f(z — 1), f(z + 1)}, (16)
min{f(z), f(z + 1)}

Since the median operation commutes with set complementation, we can interchange min
and max in (16). These max-min realizations of the median (and any othet OS) provide
geometrical insight for these nonlinear filters, since they involve erosions and dilations
which are geometrically defined set operations.

Consider now the 1-D SP opening #(X) = Xp and its dual, the closing, filter ®¢(X) =
X%, where B = {0,1}. From Theorem 11, it follows that the basis elements of ® are the

two sets {-1,0} and { 0,1}, and the basis elements of ®¢ are the two sets {0} and {—1,1}.
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Thus, from Theorem 9b,‘£he 2-point opening of f(z) by B can be expressed as:

f(z) = max{min{f(z 1), f(z)}, min{f(z), f(z +1)}} (17)
= min{f(z),max{f(n — 1), f(n+1)}} (18)

By interchanging min and max in (17), (18) we obtain the closing fZ(z), because closing
is the dual of the opening. Obviously, fz < med(f;W) < f?, as predicted by Theorem 3.
Realization of the opening (closing) by the basis of its dual closing (opening) yields faster
implementations of these filters, as discussed in [26] for a generel window B with | B |> 2.

Example 2: 2-D Maz/Median. Let W C Z? be the 3 x 3 symmetric square window,
and let W, W,, W3, W, be the 3-point subsets of W that lie on the lines passing through the
center of W at slopes 0, 45, 90, 135 degrees, respectively. Then the 2-D max/median (of
window size 3) filter ¢ is the pointwise maximum of the four 1-D medians by Wy, W,, Ws,
and W,. This filter was introduced in [37] and was found to preserve edges better than
the median by W. Obviously, this filter commutes with thresholding, and, hence, we
can focus our analysis on the respective SP max/median filter ¥(X U\I/ , XC 272,
where ¥;(X) = med(X;W;). Each filter ¥; has three minimal elements 1e the sets B,
J =1,2,3, with B;; C W, and |B;;| = 2. Thus ¢ is the maximum of twelve 2-point local
minima by the sets Bj;, as also recently observed in [37], and the minimum of the 12
respective local maxima.

Example 3: Linear Combination of Order-Statistics. Let 7 be a class of real-valued
sampled m-D functions closed under function translation. Let W C Z™ with | W |= n.
Given an input function f € ¥, the output function from the linear combination of order-

statistics (LOS) filter by W is
[LOS(f Zak[OSk fiWi(z) , ze€z™ (19)

The parameters of the LOS filter are the weighting coeflicients a; € R and the shape/size
of the window W. This FP filter was introduced in [21], called “the order-statistic filter”,

and used for impulse noise suppression; it was also used in [22] for envelope estimation and

called “order filter”.

As for the morphological analysis of linear shift-invariant filters in Part 1, we henceforth
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assume that 1) ax > 0 Vk € {1,2,...,n}, and 2) iak = 1, so that the LOS filter be
increasing and TI respectively. Then the LOS ﬁltel;zlis also u.s.c., because it is a finite
linear combination (with positive a;’s) of us.c. filters. If fu) = OS*{f(y) : y € W},
k=1,...,n,the kernel of the LOS filter is the collection of all input functions f such that
[LOS(1)](0) > 0; i,

K (LOS) = {fe}' S f 20}. (20)
From K(LOS) we can reconstruct the LOS ﬁft:r 1exa.ctly [26]. Moreover, we can find the

set of minimal kernel functions in K(LOS), i.e., the basis of the LOS filter as follows:

THEOREM 12 . Let W C Z™ with |W| = n, and consider a1, az,...,a, € R witha, >0
for each k and > ar = 1. Then the basis of the LOS filter defined in (19) is equal to

k=1

B(LOS) = {g €F: iak gi) =0 and g(z) = —co Vz ¢ W} , (21)
k=1

where gy = 0S¥ {g(y) :y € W}, k=1,2,...,n. Moreover, Vf € F,Yz € Z™,

LOS()(=) = sup {min{f(u) - alv - 2)}} (22

' seB(Los) WEW=

Proof. (a) Let B be the function class of (21). B is nonempty because g* € B, where
g*(z) =0Vz € W and ¢g*(z) = —oo Vz ¢ W. Assume that some g € B. From (20) and
(21), g € K(LOS). Let h € K(LOS) such that h < g. Then h(z) = g(z) = —co Vz ¢ W,
and 0 < [LOS(h)](0) < [LOS(g)](0) = 0 = iak[g(k) — h(xy)] = 0. Hence, gy = h(x) Vk,
because ax > 0 and gg) > hes) VE, since h < g. Now, hyy) = gy Vk and h < g = h(z) =
g(z) Vz € W = h = g. Thus ¢ is a2 minimal kernel function; i.e., ¢ € M, where M denotes
the true basis of the LOS filter. Hence, B C M.

Let now ¢ € M. Then g must have a minimal region of support and hence ¢g(z) =
—oo Vz ¢ W. Further, [LOS(g)](0) = p > 0. If p > 0, the function h defined by h(z) =
—oo Vz ¢ W and h(z) = g(z) — p, z € W, is a kernel function (because [LOS(h)](0) = 0)
with h < g and h # g; this is a contradiction, however, because ¢ is minimal. Hence p =0
and thus ¢ € B implying that M CBC M = M = B.

(b) Since the filter is TI increasing and u.s.c., it is equal to the supremum of FP erosions

by its basis functions [26], from which (22) results. Q.E.D.
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As an >illus'tr’ation of Théoren;i 1»-2" we prbvide below an example where we restfiét ‘the.
amplitude range of all functions in 7 to be discrete, say Z, and the coefficients a; to be
positive rational numbers. Let W = {—1,0,1} C Z and consider the LOS filter [¢(f)](z) =
iak[OSk(f : W))(z), z € Z, whose basis is B. If g € B, let g1 = g(—1), 92 = ¢(0), 95 = g(1).
li‘:ﬁen, aig(1) + az9(2) + asgzy = 0. Without loss of generality we can assume that gy =1
(note that always g(;y > 0 and g(,) < O from (21)), because g(z) € B = pg(z) € B for

any p € N = Z, U{0}. Since a; + a; + as = 1, we must solve

az29(2) +asgsy = az +as — 1 (23)
subject to
1> >1 RN (24)
> g(2) = Gt 2@

where g(;) and g(s) are the inteéer unknowns. To each solution (g(1),9(2), g(3)) there corre-
sponds a multitude of 3-tuples (g1, g2, 93) whose number is equal to the number of distinct
permutations of the 3-tuple (g(1),9(2),9(3))- The solutions of (23) can be obtained from
a search of the finite region of Z*? delineated by the constraints (24). For example, let

a; = 2/4 and a; = a3 = 1/4. Then, the solutions are

(9):9(2),9(3)) | (91 = g(—1),92 = ¢(0), g3 = ¢(1))
(1,0,-1) (1,0,-1),(0,1,-—1),(—1,0,1),(1,—1,0),(—1,1,0),(0,-1,1)
(1,1,-3) (1,1,-3),(-3,1,1),(1,-3,1)

Let £ be the set of the 9 basis functions defined by (g1, 92,93) in the above table. Then

B(¢) = {pg(z) : p €N, g(z) € L}. Thus,
LZ: akoSk(f;W)] (z) = sup {rzleaﬁx [Jgé‘g{f(y) — pgly — x)}]} .

Finally, it is straightforward to extend the above procedure to LOS filters with n > 3.

6 RELATIONS BETWEEN MORPHOLOGICAL AND
STACK FILTERS

Before we discuss the relations between morphological and stack filters, a few definitions

are needed from the theory of Boolean functions [30,31]. Any Boolean expression of n
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variables :z:l,:iz,. .yTn € {0,1} can l;)e written as Boolean sum-of-products (SOP)' terms
or as Boolean product-of-sum (POS) terms. Each product or sum term may contain each
literal (a variable z; or its complement z}) at most once and/or the Boolean constants 0 or
1. To each Boolean expression therel corresponds a unique Boolean function (x) € {0,1},
where x = (z1,Z2,...,Zs). A Boolean function is usually described through a truth table.
Two Boolean expressions are called equivalent if they correspond to the same Boolean
function. A Boolean function 7 is said to imply B iff B(x) = 1 for each x such that
v(x) = 1. A prime tmplicant 7 of 3 is a product term which implies 3, such that deletion
of any literal from 7 results in a new product which does not imply 3. A prime implicate
of # is a sum term o implied by 83, such that deletion of any literal from o results in
a new sum term which is not implied by 8. Any minimal SOP (resp. POS) expression
for § is a sum (resp. product) of prime implicants (resp. prime implicates) such that
removal of any of them makes the remaining expression no longer equivalent to 3, and the
expression contains the minimum number of literals and product (resp. sum) terms. This
minimal expression is not necessarily unique. A function §(x) is called positive if it can be
represented by a SOP or'POS expression in which no variable appears in uncomplemented
form. Each positive function has a unique minimal SOP expression that is positive and is
the sum of all its prime implicants; it also has a unique minimal POS expression that is

positive and is the product of all its prime implicates.

6.1 Stack Filters

Wendt et al. [27,28] defined the stack filters as follows. Consider an input function
f(2), z € Z™, with a finite number M of amplitude levels. Threshold f at all ampli-
tudes t € {0,1,...,M — 1}, obtain its cross-sections X;(f), and consider their respective
characteristic functions xx,(s)(2), or simply x(z). Filter all binary signals x; by a TI,
disqrete, increasing, binary filter ®,. (In [27,28] the increasing property of @, is called
“stacking property”.) Then t; < t3 == X¢, > Xxt, => Po(xe,) = Ps(x:,). Assume that
at each z € Z™ the value of the output {®,(k)|(2) is determined only from the values
of the input signal k(z) inside a fixed finite window W of n points shifted at location z.

Since ®; is TI and binary filter, its defining rule can be represented by the truth table of
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a Boolean function B(z1, zz,. .. ,xn)., where the Qa.riables x; rebreseﬁt the ni'v‘a,lu>es k(y), '
y €W, ={z4+w:w & W}, of the input signal k(z) inside W,. Let x = (21, z3,...,z,) and
¥ = (¥1,¥2,-.-,Yn) Tepresent two vectors in {0,1}", and define a partial ordering relation
=<in {0,1}" through the rule x <y <= z; < y; Vi. The fact that ®; is an increasing filter
is equivalent to the condition x <y = f(x) < B(y) Vx,y € {0,1}", which in turn is

equivalent to § being a positive Boolean function [29]. Finally, the multilevel function

STo()](z) = g[@b(xx.m)l(z) , zezm, (25)

is viewed as an output function for each input f(z), and thus the stack filter STy is defined.
By varying £, or equivalently ®,, a different stack filter is obtained.
As an aside, for input functions f whose amplitude range is a continuum, say R, we

can extend the definition (25) as

ST(NN(E) = J 1200, (2)et (26)

6.2 Morphological Analysis of Stack Filters

Any stack filter STg, by its construction, is a TI discrete FSP filter commuting with
thresholding; hence it is increasing and u.s.c. too (due to Theorem 3 of Part 1). To each
binary filter ®, we can uniquely associate a SP filter ®, such that whenever ® operates
on a set A C Z™, ®, operates on the characteristic function xArof A, and vice-versa. ® is
TI and increasing iff @, is TI and increasing; further, ® is u.s.c. due to the finite window
W. Then & is the respective SP filter of the FSP filter STy, and from our discussion in

Section 2.4 of Part 1,

[STs(f)](2) = sup{t € V: z € 2[X,(f)]} , . (27)

where V can be either R or Z and X;[STs(f)] = ®[X:(f)] V¢t € V. Thus the sum-definition
of STs in (25) is only a special case of its sup-definition in (27). For a finite number of
amplitude levels t, the supremum becomes a maximum; in [28,38] the usefulness of this
maz-definition of stack filters is recognized for fast VLSI implementations.

For the cases when f(zy,..,z,) is a threshold function [30], Wendt et al. |28] provided a

functional definition for STp as a generalization of OS filters, in which multiple repetitions
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bf the same element are a.lio’wed. In [27,28] all the stack filters corresponding to the 20
positive Boolean functions of n = 3 variables were examined. To obtain a functional
definition for STy from a threshold function would be inefficient for large n because of
the large number of repetitions of the same elements and because deriving the threshold
function form a large truth table is not a simple task. In addition, for n > 3 not all positive
Boolean functions are threshold functions. For example, in [28] it was observed that, of
the 7581 positive functions with n < 5, only 83287 are threshold functions; hence it was
conjectured that there are many stack filters whose outputs cannot be expressed as simple
functions of the input samples. However, by using morphological concepts, we provide
below a general algorithm that obtains from the SOP or POS positive Boolean expressions
of B the functional definition of any stack filter STy in terms of max-min operations:

(A) Let W C Z™ be the window of n points associated with f(z1,z3,...,2,) and let
I(-) be an index function that assigns to each w € W a unique integer I(w) in {1,2,...,n}.
For example, let m = 1,n =3,W = {-1,0,1},and I{w) =w+ 2, w € W.

(B) Obtain the minimal SOP and POS expressions for 3; e.g.,

B(z1,Z2,Z3) = Z1Z3 + T2z5 = z2(z1 + z3). (28)

(C) Obtain the respective SP filter ® operating on an input set S by replacing: the
Boolean sum/product (logical OR/AND) with union/intersection, respectively; and each

variable z; in § by a translation S_,, of S, where w € W and I(w) = 7. For example,
Q(S) =(SQS])U(SQS_1) =Sﬂ(SluS_1). (29)

(D) Obtain the respective stack filter STy from ® by replacing: the set S in (C) with
the cross-sections X;(f) of an input function f{z); the finite union/intersection of cross-
sections with pointwise max/min, respectively, of functions; and cross-section translations
[X:(f)]-w with function shifts f(z + w). For the example of (29), STs(f) assumes a max-
min and a min-max functional definition identical to the realizations of the obening I8,
B = {0,1}, in (17) and (18). Moreover, with the hindsight obtained, we can combine steps
(C) and (D) in a single step:

(C*) Obtain the functional definition of STp from S by replacing: each Boolean
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'sum/produ"ct with a max/min, respéctiver;» and ézich variable z; by a shifted version'
f(z + w) of the input function f(z), where w € W and I(w) =1.

Concluding, each stack filter can be expressed as a finite max-min or min-max oper-
ation. Conversely, any finite max-min or min-max operation is TI and commutes with
thresholding [23]; hence it corresponds to a TI increasing u.s.c. SP filter, or equivalently
to a positive Boolean function, which in turn defines a stack filter. Therefore, the stack
filters are the class of all discrete FSP filters that are TI, commute with thresholding, and
can be erpressed as a finite mazimum of local minima or as a minimum of local marima.
Thus, discrete FSP erosions, dilations, closings, openings, open-closings, medians, and OS
filters, as well as any finite cascade or parallel (using poitwise min-max) combination of
these filters, are all special cases of stack filters. However, the general FP erosion, dilation,
opening, or closing of a function f by another non-binary structuring function g (defined
in of Part 1), as well as any finite cascade or parallel combination of these FP filters do
not commute with thresholding and hence‘they are not stack filters. Moreover, these latter
morphological filters include the stack filters as a special case, because they become stack
filters whenever all the structuring functions involved in their definition become binary.
Finally, the original definition of stack filters in (25) via Boolean functions allows only for
discrete filters, whereas our definition in (27) via TI increasing u.s.c. SP filters allows for

both discrete and analog filters.

6.3 Minimal Elements of Stack Filters

Theorem 9 applies to any stack filter STy and its respective SP filter ®. That is, STy
can be represented as a supremum of FSP erosions by all the basis sets of & and also
as an infimum of FSP dilations by all the basis sets of its dual SP filter ®¢. Next we
will establish some connections between these ideas and the representation of the positive
Boolean function # by a minimal SOP and POS expression.

In {0,1}", a vector X = (1, Z2,...,za) is called a minimal true vector of B iff B(x) =1
and x is not preceded (with respect to the vector ordering <) by any other vector v with
B(v) = 1. A vector y € {0,1}" is called a mazimal false vector of B iff B(y) = 0 and y

is not followed (with respect to <) by any other vector u with #(u) = 0. The Boolean
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function B4(x) = B'(x'), x' = (z!,2},...,2,), is called the dual function of 8. Since j is
positive, 3¢ is positive too. Hence, to B¢ there corresponds a unique TI increasing u.s.c.

SP filter which is the dual ¢ of ®. In addition, we have the following.

THEOREM 13 . Let STg be a m-D stack filter, whose defining rule is associated with
a fized window W of n points. Let & be its respective SP filter, whose dual SP filter is ®°.
Consider the positive Boolean function ,B(.’El,.'ljz,...,In) corresponding to ® and its dual
function B¢ corresponding to ®%. Let I : W — 1{1,2, ...,n} be a one-to-one tndez function.
Then:

(a) The stack filter STy can be ezpressed as a finite pointwise mazimum of moving local
minima and also as a finite minimum of mouving local mazima.

(b) The stack filter ST ga defined by B? can be obtained from STy by interchanging maz
with min. ‘

(c) To each minimal true vector a = (a1, as,...,an) of B there corresponds a unique
minimal kernel element G = {w € W : ay(u) = 1} of ®, and vice-versa. To each SP erosion
by G there corresponds a unique prime implicant of (.

(d) To each minimal true vector b = (by,...,b,) of 8% and, equivalently, to each
mazimal false vector of 3, there corresponds a unique minimal kernel element H = {w €
W :bjw) =1} of ®¢, and vice versa. To each SP dilation by H there corresponds a unique

prime tmplicant of 3%, and, equivalently, a unique prime implicate of 3.

Proof: (a) was shown in Section 6.2. (b) The function ¢ is obtained from f by inter-
changing Boolean sums with products and 1 with 0 (De Morgan’s laws). The filter ST4
is obtained from B¢ by replacing Boolean sum/product with max/min. Hence, ST« can
be obtained from STy by interchanging max with min.

(c) ® has at least one basis set, because @ is TI increasing and u.s.c. [26]. The subset

G of W belongs to the kernel of ®, because f(a) = 1 => 0 € &(G;) for some z € 2™,

and since ¢ is TI we can assume without loss of generality that z 0. Since I(') is
one-to-one, the correspondence a « G is one-to-one. Hence, G is minimal with respect to
set inclusion since a is minimal with respect to vector ordering <. From the vector a we -

can obtain the product p = z;,z;, ...z, where i, € {1,...,n} forr =1,..., k < n and
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D contains the variable z; iff a; = 1. The cérfespondehée a < p is one-to-one becéus;e-a'p.
contains no complémented variables. Since a is a minimal true vector of 8, p is a prime
implicant of #. The positive Boolean function 8 can be expressed as the sum of all its
prime implicants, which are all positive. Equivalently, the TI increasing u.s.c. SP filter
® can be gxpressed as the union of SP erosions by all its basis. sets [26]. Thus all the
correspondences p <+ a « G « ¥(X) = X © G* = (| X_, are one-to-one. Hence the
prime implicant p corresponds to the SP erosion by G %;Greplacing each z; in p with X_,,,
where I(w) = j, and the Boolean product with n.

(d) From the proof of part (c), the correspondences between the minimal true vectors
b of the positive Boolean function B¢, the basis sets of ®¢ (which exist for the same
reasons as for ®), and the prime implicants of 5¢ are all one-to-one. The vector b is the
dual of a maximal false vector of 3, because $¢(b) = 1 <= B(b') = 0. Equivalently,
each prime implicant of 8¢ is the dual of a prime implicate of 8, and the minimal SOP
expression for 8¢ is the dual of the minimal POS expression for 8. Thus, the subset H of
W corresponds to the prime implicate s = z;, + --- + z;, of 3, where ¢, € {1,...,n} for
r=1,...,k < n, and s contains the variable z; iff ; = 1. Hence, s yields a SP dilation
filter ¥(X) = X®H* = | J X_, by replacing each z; in s with X_,,, where I(w) = 7, and
the Boolean sum with U Q.E.D.

The following example clarifies Theorem 13 and its proof.

Example 4. Consider the 1-D FSP opening ¢(f) = fa where A = {—1,0,1}. Thus
fa(z) = max{g(z—1),9(z),g(z+1)}, where g(z) = min{f(z—1), f(z), f(z+1)},z € Z. Its
respective SP filter is ®(X) = X4, X C Z, and its dual SP filter is the closing ®%(X) = X4.
From Theorem 9a, VX C Z,

Xa= U XeG= [ XeoH, (30)
ceB(e) HeB(e4)

where the basis of & and ®¢ can be found from Theorem 11. That is, B(®) =
{{-2,-1,0},{-1,0,1},{0,1,2}} and B(®¢) = {{0},{-2,1},{—1,1},{~1,2}}. From The-
orem 9b we obtain a functional definition for ¢ as [set f; = f(z —3+1), 1 =1,2,3,4,5]
fa(z) = max{min(flaf2;f3){min(f2,f3af4)>min(f3af4,f5)} ) (31)
= min{fg,max(fl,f4),max(f2,f4),max(fg,fs)}. (32)
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Since qS is 'a. stack ﬁlt'er, we caﬁ also obtain the above rﬁax-min and min-max aeﬁnitions
for ¢ from its respective Boolean function. That is, let 8 and its dual 3¢ be the positive
Boolean functions corresponding to the increasing SP filters & and &9, respectively. The
window associated with ¢,<I>,<I’dvis W=A4A® A" = {-2,-1,0,1,2}. Thus § and B¢ will
be functions of 5 variables z,,z;, z3, 4, Z5, where the index function is I(w) = w + 3,
w € W. Next we summarize how to obtain 3 and 8% from the basis of ® and ®¢, by using

Theorem 13c,d.

basis sets of ® basis sets of &¢
{-2,-1,0},{-1,0,1},{0,1,2} {0},{-2,1},{-1,1},{-1,2}
min. true vectors of § min. true vectors of 3¢
(1,1,1,0,0),(0,1,1,1,0),(0,0,1,1,1) (0,0,1,0,0),(1,0,0,1,0), (0,1,0,1,0),(0,1,0,0,1)
prime implicants of 8 prime implicants of 3¢
I1T2T3, L2L3T4, I3T4ZTs I3, I1Z4, T2T4, T2Z5
prime implicates of §¢ prime implicates of g
Ty +Zo+ T3, T2+ Tz + Ty, Tz + T4+ Ts 1'3,‘131 + T4, T2 + T4, T2 + s

Each of the positive Boolean functions # and ¢ can be expressed now in minimal SOP

(POS) form as the sum (product) of its prime implicants (implicates). For example

B(z1, 2,23, T4y Ts) = Z1Z2Z3+ T9T3Ty + T3T4Ts (33)

= z3(zy + z4) (22 + z4) (22 + T5) (34)

By replacing Boolean sum with max and product with min, we obtain from (33) the
max-min definition of the FSP opening in (31) and from (34) it's min-max definition in
(32). '

Note that if we exchan‘ge in all the discussion of Example 4 the roles of & and &9, or,
equivalently, the roles of # and 3¢, we obtain the max-min and min-max definitions of the
dual stack filter of ¢, i.e., the closing f — f4, by replacing the roles of max and min'in
(31,32).

The 3-point opening f4 and closing f4 are comparable with the 5-point median med(f; W),

as Section 4 explains. From Theorem 10, the SP median by W has 10 basis sets, i.e., all

31



the 3-point subsets of W,V and is ideﬁtical to ifs dv..zal‘ﬁlter. Hence, its fesbé‘ctivé bositi?e
Boolean function has a unique minimal expression as the sum of the 10 prime implicants
z;x;zk, where 1,5,k € {1,2,3,4,5} and 7 # j # k.

Concluding, the two approaches of representing stack filters either by their basis (min-
imal kernel elements) or by their Boolean functions in minimal SOP or POS forms have
many analogies, which are summarized by Theorem 13. In addition the following compar-
isons are evident: 1) For small windows, e.g., of 3 points, both approaches are relatively
simple to apply. 2) For large windows, e.g.,'with number of points > 5, to find minimal
SOP or POS expressions for Boolean functions is a computationally complex task and has
become the objective of extensive research in the field of switching theory. By contrast,
for stack filters (of any window size) that are parallel or cascade combinations of median,
OS filters, erosions, dilations, openings, or closings, we can find their basis immediately
from Theorems 10,11 and hence their max-min definition from Theorem 9. In addition,
from the basis we obtain the Boolean functions in minimal SOP or POS expressions as
a by-product. 3) For large windows and arbitrary stack filters whose definition does not
allow easily to find their basis, the Boolean function seems at first more helpful since there
are standard algorithms [30,31] to find its minimal SOP or POS forms. In these cases the
Boolean function approach can also be seen as an algorithm (together with Theorem 13)

to find the basis.

7 CONCLUSIONS

We have extended the theory of median, OS, and stack filters by introducing the use of
mathematical morphology to analyze them and to relate them with morphological filters.
OS filters are both function- and set-processing (FSP). Using morphological concepts, we
showed that OS filters commute with thresholding. This fact allows to analyze OS filters
by focusing only on OS of sets. OS of sets are easier to analyze and implement, because
their definition involves counting of points, in contrast to the sorting of numbers required
for OS of functions.

We have shown that each k-th OS filter by 5 window W of n points is eqtllval to the
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maximum of the local minima (erosions) by all k-point subsets of W and to the minimum
of the local maxima (dilations) by all (n — k + 1)-point subsets of W this representation
is given by a closed formula which does not involve sorting. We proved this max-min
representation of OS filters by using first a combinatorial proof and second their kernel
and basis (minimal kernel elements) representation. The minimal kernel elements of the
k-th OS filter by W are all the k-point subsets of W. The minimal elements approach
allows to unify OS filters together with a large class of linear and nonlinear filters which
can be expressed as a supremum or union of erosions.

We have found that medians, openings, and closings are closely related. If W is a 1-D
convex symmetric (2n + 1)-point window and B is a 1-D convex (n + 1)-point set, the
median (and its iterations) of any signal by W is bounded below by the opening and above
by the closing by B. If a signal is a root of both the opening and closing by B, then
it is a root of the median by W. (The converse is true only for signals of finite extent.)
Hence, median roots with respect to W can be obtained by finding signals that are roots
of both the opening and the closing by B. For example, the open-closing or clos-opening
by B provide roots of the median by W in a single pass. Moreover, the median root
obtained through iterating the median filter-by W on a finite extent signal is bounded
from below and above, respectively, by the open-closing and clos-opening by Bj; it was
also experimentally observed that this median root lies close to the open-closing and clos-
opening. These results combined with the fact that open-closing requires comparable or
less computational complexity than a single median, (and, hence, much less complexity
than iterating the median,) makes the open-closing (or clos-opening) more appealing. For
suppressing impulse noise in signals, the open-closing behaves very similarly to the median;
in addition, it can discriminate between positive and negative noise spikes, whereas the
median cannot. Some similar results were obtained for 2-D filtering.

Finally, we have shown that the stack filters, whose original definition [27,28] was based
on positive Boolean functions, are actually the class of all finite maxima of local minima
and minima of local maxima filters. As such, they contain all median and OS filters, and
only those FSP morphological filters that commute with thresholding. Stack filters can

be expressed as minimal forms of max-min operations based either on irreducible forms



of their Boolean functions or on their 'lminimal kernel elements. We. hvave' established thé
theoretical equivalence of both of these approaches and provided é systematic algorithm
to find the max-min expression of any stack filter from its Boolean function.

Thus, FSP erosion and dilation are the prototypes for representing any median, OS,
or stack filter. Since all these filters commute with thresholding and set erosion/dilation
can be implemented using an intersection/union of shifted versions of the input set, the
erosion/dilation (min/max) representation of 0s and stack filters suggests simple methods
for their parallel implementation. |

In short, mathematical morphology combined with the minimal elements representa-
tion provides a self-contained mathematical framework that, based on simple concepts,
facilitates the theoretical analysis of all the above nonlinear filters, establishes their inter-
relationships, suggests methods for their implementation, and further relates them to a

large class of nonlinear filters, linear filters, and algorithms for shape analysis [26,39].
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CAPTIONS OF FIGURES

Figure 1. (a) A 256 x 256-pixel (8-bit/pixel) graytone image f corrupted with salt-and-
pepper noise; SNR=15.1 dB. (Probability of occurrence of noisy samples is 0.1.) (b) Open-
ing fp of f by a 2 x 2-pixel square set B; SNR=19.5 dB. (c) Open-closing (f5)?; SNR=25.8
dB. (d) Median of f by a 3 X 3-pixel window; SNR=29.1 dB. (The SNR’s were computed
by 20log,,(255/€rms), Where €., was the rms-value of the difference between the original

and the noisy or restored images.)

Figure 2. (a) Original 1-D function f. (b) Its open-closing (fg)® by B = {-1,0,1}.
(c) Its clos-opening (fZ)p. (d) Its median root med®(f; W) by W = {-2,-1,0,1,2}.

Figure 3. 2-D median filtering windows: H for hexagonal grids and R for rectangular

grids.

Figure 4 Counter-example for relations between 2-D medians and openings-closings.
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