CHEMICAL AND BIOLOGICAL BARRIER MATERIALS FOR COLLECTIVE PROTECTION

Kristian Donahue
Chemical Engineer
U.S Army Soldier and Biological Chemical Command
Natick, MA
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 NOV 2003</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical And Biological Barrier Materials For Collective Protection</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S Army Soldier and Biological Chemical Command Natick, MA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
<td>b. ABSTRACT unclassified</td>
<td>c. THIS PAGE unclassified</td>
<td></td>
</tr>
</tbody>
</table>

| therighttofreedomplc | unclassified | unclassified | | |

<table>
<thead>
<tr>
<th>Standard Form 298 (Rev. 8-98)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prescribed by ANSI Std Z39-18</td>
</tr>
</tbody>
</table>
OVERVIEW

- **PURPOSE**
 - Educate

- **BACKGROUND**
 - Brief History of CB Barrier for Collective Protection

- **TECHNOLOGY DEVELOPMENT AREAS**
 - Near-Term Solution
 - Mid-Term Solution
 - Long-Term solution

- **WHAT NEXT?**
 - Collaborative Effort
ColPro Shelters
* Heavy
* Cumbersome
* High Logistic Burden
* Very Expensive

Barrier Materials
* Butyl Rubbers
* Chlorinated Aliphatics
* Fluorinated Polymers

Characteristics of a Barrier Material
Permeability of a “Challenge Agent”

VS.
* Thermal Stability
* Flame Resistance
* Ease of Decontamination
* Longevity
* Leakage Points
* Weight
* Durability (Flexibility, Abrasion, Crackle)
* Cost

DEGREE OF PROTECTION?
NO BARRIER IS PERFECT

Threat Permeability
- Polarity
- Chemical Structure
- Size of Molecule
- Driving Force (Concentration)
- Temperature

Properties of Barrier Film
- Material
- Thickness
- Inertness
- Condition

SEVERAL COMPONENTS

- Base Material or Substrate
 - *Provides Physical Properties
- Impermeable Barrier
 - **Provides CB Protection**
M51
1st ColPro Shelter System
-1960’s

✓ Neoprene/Dacron®/Tedlar®

Effective Barrier Material?

✓ YES
100 minutes for Mustard (HD)
200 minutes for GB (Sarin)
M51 DEFICIENCIES

✓ Logistically Burdensome
 - 5,700 lbs.
 - Took 5 persons 30+ minutes to erect
 - Needed generator/blower to run 24/7

✓ Material Flaws
 - Expensive $$$
 - Difficult to weld/bond
 - Heavy
 → Tedlar®
 * Flex Cracking (Folding, Cold)
 * Abrasion
 × Dedicated Vehicle
WHAT NEXT?

1980’s Investigation

*Need New CB Material

*2 Areas Investigated
✓ Outer Shelter Skin
✓ Inner Liner Material

CANDIDATE MATERIALS

✓ Butyl Nylons
✓ Teflon®/Kevlar®
✓ Tedlar®/Vinyl coated Dacron®
✓ Teflon®/Nomex®
✓ Polyester/Tedlar®/Kevlar®
CHARACTERISTICS

- CB Resistance
- Flammability
- Weight
- Flexibility
- Durability
- Manufacturability
- Cost
- Decontamination
SUPERIOR QUALITY

- CB Resistance
- Weight
- Mechanical Properties
- Decontaminable
- Heat-Sealable

HOWEVER...

$$$ High Cost $$$

*Manufacturing
*Material

Chemical and Biological Protective Shelter (CBPS)
M28 LINER MATERIAL

- Secret Service
 *M20
 Adopted for GP shelters

 M28

Over Pressured Liner

Material

- PVDC or Saranex Barrier Film
- HDPE Scrim
- LDPE Coating (Protect Barrier)

Lightweight Inexpensive Solution

*Increased
- Weight
- Packing Volume
- Deployment Time
2 OPTIONS AVAILABLE

Teflon®/Kevlar®
* Superior Protection
* Lightweight
* Decontaminable
* Flame Resistant

HOWEVER...

$$EXPENSIVE$$

PVDC/PE (M28)
* Inexpensive
* Provide CB Protection for GP Shelters

HOWEVER...

* Increase Weight
* Increase Deployment Time
* Increase Packing Volume
* Not Decontaminable

OR
Joint Science and Technology Panel for CB Defense

Investigate/Develop Next Generation CB Material

GOAL

- Lightweight Composite Material
- UV/Flame Resistant
- Increased Durability
- Improved Permeation Properties
- Decreased Cost (Material & Manufacturing)
MITIGATE RISK

Incremental Improvements

3 Pronged Approach

* Near-Term Solution
 - Fluoropolymer Coating/Lamination of GP Fabrics

* Mid-Term Solution
 - Nanotechnological Enhancement of Polymers
 - Low-Temperature Processible Fluoropolymers

* Long-Term Solution
 - Self-Decontaminating Barrier Materials
NEAR-TERM SOLUTION

Improving Barrier Properties of General-Purpose Fabric

Polyester with PVC Coating
*Apply Coating or Laminate

Duracote Corporation
- Various Laminates
- Very Promising Results

TCE Simulant
Typical GP Fabric = 17,000 g/d/m²

BUT...Delamination

Tetrachloroethane (TCE) Permeation Through Laminated GP fabric
CB Barrier Coatings
For
GP Shelter Fabric

* Low cost
* Water Soluble
* Environmentally safe
* Easy to apply
Goal: Transition in 2-4 yrs.

Current Programs

* Nanocomposite Films
* Low-Temperature Processible Fluoropolymers
Background

- Novel patented nanotechnology is based on the use of minute levels (1-5%) of chemically inert inorganic fillers that exhibit a platelet nanostructure.

- Adjustment of chemistry and processing conditions allows nanofillers to self-assemble (stack up) through the thickness of the plastic sheet and parallel to the plane of the barrier film.

- High aspect ratio creates a tortuous path for the diffusing chemical species.

- Increased distance = Increased time for diffusion through thickness of the plastic.
Accomplishments

✓ Synthesized several nanocomposite films that have shown up to 5X improvement in barrier to CB simulants compared to unfilled barrier films

✓ Layered silicates act as a passive flame retardant
 ➔ Act as a barrier to the flame by the formation of a ceramic or glassy layer on the surface of the polymer
 ➔ High gas barrier also prevents oxygen from feeding the flame, thus starving the fire
LIVE AGENT TESTING

Developed a multi-layer laminate system that achieved greater than 24-hour exposure to liquid HD mustard chemical agent with NO penetration

<table>
<thead>
<tr>
<th>Agent</th>
<th>Sample</th>
<th>(0-2)</th>
<th>(2-4)</th>
<th>(4-6)</th>
<th>(6-8)</th>
<th>(8-12)</th>
<th>(12-24)</th>
<th>(24-48)</th>
<th>(48-72)</th>
<th>Cumulative</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD</td>
<td>Neat</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.1</td>
<td>0.15</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>TSI Barrier Film</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>GB</td>
<td>Neat</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.00016</td>
<td>0.00036</td>
<td>0.00037</td>
<td>0.00089</td>
</tr>
<tr>
<td></td>
<td>TSI Barrier Film</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>
CURRENT EFFORTS:

Scaling up Technology → Prototype Shelters

✓ Non-Decontaminable Barrier Liner Material

✓ Decontaminable High Barrier CB Outer Skin Fabric
LOW-TEMP PROCESSENTIBLE FLUOROPOLYMERS

ARAMIDS (KEVLAR®, NOMEX® etc.)

- High Strength
- Light Weight
- BUT…

*High Cost

Needed to Survive the High Temperature During Manufacturing

Low-Temperature Fluoropolymer = Lower Cost Substrate
Work From building blocks

Create:
* Void Free Fabric Substrate
* CB Resistant Barrier

- Low Cost
- Lightweight
- Decontaminable
Elongation at Break (23°C)
ASTM D638 Type D dogbones

- Not aged (control)
- 24 hr D2
- 24 hr Clorox
CURRENT EFFORTS:

✔️ Have equipment in place and have completing a limited production run

Production?
Improving:
Efficiency
Quality
Consistency of entire process
LONG-TERM SOLUTION

Self-Decontaminating Barriers
Incorporating
Catalytically Reactive Membranes

*Newly funded program with Ventana Research

TECHNOLOGY WATCH

✓ Academia
✓ Industry
✓ Government
✓ Foreign Military
CONCLUSION

2 Currently available Options

→ Kevlar/Teflon
→ M28 Liner (PVDC/PE)

Mitigate Risk
※ Near-Term Solution※
Coated/Laminated Barrier Fabric
※ Mid-Term Solution※
Integrating Nanocomposites into Commodity Polymers
※ Long-Term Solution※
Low-Temperature Processible Fluoropolymers
Self-Decontaminating Barrier Materials Incorporating Catalytically Reactive Membranes

➢ Need to work together to bridge technology gaps and identify novel solutions
THANK YOU

Questions?