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A SYNTHETIC TEAMMATE FOR UAV APPLICATIONS:  
A PROSPECTIVE LOOK 

 

INTRODUCTION 
 
Newell, Shaw, and Simon (1958) established the research agenda for several generations of 
computational cognitive scientists in their seminal paper on the formal analysis, representation, 
and simulation of human problem solving.  In that paper they proposed that formal explanations 
of observable human behaviors could be created through the use of digital computers to generate 
the sequence of information processing activities required to produce those behaviors.  In other 
words, they proposed that we can use computers to simulate human cognition. 
 
Growth within that research community was slow at first because, among other things, 
computers were relatively hard to come by until the widespread adoption of personal computing 
in the early 1980s.  Nevertheless, a small, dedicated group of cognitive scientists trained 
themselves in the necessary methods and technologies, and began developing computational 
theories and cognitive architectures (Anderson, 1983) that accounted for the processes and 
phenomena in which they were interested. 
 
By the late 1980s a sufficiently large number of these computational accounts were available in 
adequate breadth and depth that Newell felt motivated to write a book (Newell, 1990) proposing 
that the time was right to begin pulling these disparate computational accounts together into 
unified theories of cognition.  Shortly thereafter, the emphasis shifted to embodying cognitive 
models within realistic perceptual-motor constraints (Kieras & Meyer, 1997).  This has 
culminated in the current emphasis on integrated cognitive systems (Gray, in press).  Today there 
are no fewer than two dozen such systems available to those interested in basic and applied 
research in cognitive modeling.  They exist in varying levels of maturity and integration.  A 
series of summaries, overviews, and comparisons of different subsets of these systems has been 
published recently (Pew & Mavor, 1998; Ritter et al, 2003; Morrison, 2004; Gluck & Pew, in 
press). 
 
The field of cognitive modeling has made significant progress in the last half century.  However, 
as we begin to think of the possible applications for cognitive models, in areas like training, 
analysis, and design, we realize there is still plenty of room for improvement.  For instance, even 
among the architectures which have a learning capability, their capacity for acquiring entirely 
new knowledge is modest at best.  The result of this is that large investments in knowledge 
engineering and hand tailoring are required to get the models to behave as desired.  This 
knowledge engineering requirement, along with various degrees and combinations of time 
pressure, publication pressure, and funding limitations, leads to models that do a good job 
accounting for specific datasets or empirical phenomena, but tend to be small scale, scripted, and 
brittle.  Our application interests, however, require large-scale, generative, robust models.  Thus, 
in the field of cognitive modeling there are gaps to bridge between models developed for 
scientific purposes and models developed for applications.  These gaps exist along continua 
associated with scale, generativity, and robustness. 
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The amount of knowledge required by a model is one way to think of scale issues.  Another 
concern regarding scale is the timescale on which the modeled behaviors are taking place.  
Anderson (2002) described the challenges associated with bridging the timescale gap between 
typical cognitive phenomena (e.g., the fan effect), which occur in approximately the 10 ms 
timescale, and typical educational and training applications, which may require hundreds of 
hours.  He referred to success in bridging this gap with computational cognitive models as “… an 
accomplishment for cognitive science on the order of the Human Genome Project” (p. 106).  
Thus, there exists an assortment of gaps between the desired goal state for cognitive modeling 
and the current state of the science, and bridging those gaps is an ambitious undertaking. 
 
Our research approach is a collection of methods selected because we feel they are the best way 
to make the fastest progress possible in bridging those gaps without adopting an AI approach that 
sacrifices cognitive plausibility.  We use the ACT-R cognitive architecture (Anderson et al., 
2004) to develop formal models of human performance and learning, in both simple laboratory 
tasks and complex synthetic environments, and compare data from the models to data from 
human participants doing the same tasks.  It is worth taking the time to comment briefly on the 
benefits associated with each component of this comprehensive research strategy.  
  
The cognitive architecture serves an integrating role across our research efforts, both within our 
research team and between our team and other laboratories who also are using the architecture. It 
facilitates the sharing of methods and the understanding of model implementations.  The 
simultaneous use of both simple laboratory tasks and complex synthetic environments is an 
attempt to bridge the domain gap mentioned earlier, through the careful selection of tasks that 
isolate cognitive phenomena relevant to performance in the complex environment.  Finally, the 
use of human data to assess the validity of model implementations is critical for establishing the 
utility of the models, either as psychological theories or as tools for applying cognitive science to 
improve Air Force operations. 
 
The portion of our current research portfolio that is the focus of this report is a collection of 
computational modeling efforts selected on the basis that we feel they are on the critical path for 
achieving our desired goal of a cognitively realistic synthetic teammate.  One line of research is 
focused on the demands placed on spatial cognition when navigating and orienting in virtual 
environments.  The second line of research is the development of a Predator pilot model capable 
of maneuvering the aircraft and flying reconnaissance missions in a synthetic task environment.  
The third line involves language understanding and generation to support verbal communication 
between humans and synthetic entities.  The final line of research involves team skill acquisition 
and retention.  The next several sections of this report describe each of these research lines in 
more detail. 
 

Navigation and Orientation in Virtual Environments 
 
Despite many decades of research, our understanding of how humans encode, store, process, and 
use spatial information remains limited.  There is extensive literature documenting a variety of 
phenomena that relate to spatial information processing (Franklin & Tversky, 1990; Glicksohn, 
1994; Gunzelmann, Anderson, & Douglass, 2004; Hintzmann, O’Dell, & Arndt, 1981; Rieser, 
1989; Siegal & White, 1975; Stevens & Coupe, 1978; Thorndyke & Hayes-Roth, 1982);  
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however, an integrated theory that can account for a large subset of those findings is lacking.  
Some basic principles have been proposed for particular areas of competence.  For instance, for 
large-sized spaces, such as those traversed in complex navigation, principles include hierarchical 
encoding (Stevens & Coupe, 1978; Hirtle & Jonides, 1985; McNamara, 1986), encoding based 
upon landmarks (Siegal & White, 1975; McNamara & Diwadkar, 1997), and the regularization 
of angle estimates to be nearer to 90 degree intervals (Glicksohn, 1994; Moar & Bower, 1983).  
For skills like mental rotation, the emphasis has been on the representation and manipulation of 
visual images (Kosslyn, 1994; Shepard & Metzler, 1971).  Finally, researchers focusing on 
vision have investigated a variety of phenomena, including perceptual grouping (Koffka, 1935; 
Van Oefelen & Vos, 1982) and 3-D object recognition (Hummel & Biederman, 1992). However, 
these noteworthy empirical and theoretical contributions have not been integrated together to 
produce a comprehensive understanding of human spatial ability. 
 
Our research on orientation and navigation in virtual environments is targeted at developing such 
a comprehensive theory.  There are three critical aspects of this research.  First, we have a series 
of experiments under way that are aimed at understanding the fundamental capacities and 
limitations of visual-spatial working memory (VSWM).  We developed a new experimental task 
that allows for detailed investigation of how people represent complex, 3D spatial information, 
while limiting the opportunity to use non-spatial strategies to facilitate performance.  Second, we 
are conducting a series of experiments investigating how individuals perform orientation tasks 
using maps.  These experiments are providing an additional level of understanding, beyond the 
research on VSWM, by uncovering how individuals use their VSWM in a naturalistic context. 
Finally, we are constructing computational cognitive models in ACT-R to develop a formal 
understanding of the processes involved in these two tasks.  We are using these models to 
identify the kinds of representations and processes that are needed to accurately capture human 
spatial competence.  All of this research will be brought together to develop an implementation 
of spatial competence in ACT-R.  Subsequently, we will be able to use those mechanisms to 
facilitate the development of a high-cognitive fidelity computational model that is able to fly 
UAV reconnaissance missions, which will provide a challenging test of those mechanisms. Each 
of these components of our research in this area is discussed briefly. 
 
Visuospatial Working Memory (VSWM) 
 
Visuospatial working memory (VSWM) is the set of cognitive processes people use to visualize 
temporary spatial arrangements of things.  VSWM is sometimes called the visuospatial 
sketchpad (Logie, 1994), a term that captures the purpose and character of this system.  VSWM 
is ubiquitous in everyday life (for example, imagining different furniture arrangements), and is 
critical for many occupations (engineers, architects, pilots, etc.).  However this nonverbal, 
ephemeral process is difficult to measure objectively.  We have developed a technique, called 
path visualization, which allows us to load VSWM and obtain detailed measures of the accuracy 
and speed with which information can be retrieved from it.  Path visualization is similar to some 
existing techniques (Attneave & Curlee, 1983; Brooks, 1968; Kerr, 1987, 1993; Vecchi & 
Girelli, 1998), but these techniques require people to report a single visualized location, whereas 
path visualization requires holding a complex path in visual memory.  In path visualization, 
people are given a sequential list of directions to visualize as a path (forward 1 step, left 1 
step….).  Each time a new segment of the path is described, a decision is required regarding 
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whether or not the new segment intersects with any previous part of the path.  Data consist of 
accuracy and response time for each intersection/no-intersection decision.  Additional details of 
the method are described in Lyon’s tech memo (Lyon, 2004). 
 
Path visualization data reveal a new spatial interference process in VSWM not previously 
identified.  When parts of a path wind around in a small area of (imaginary) space, the parts 
interfere with each other, degrading memory for them all. So proximity has measurable 
consequences in imaginary space, just as in real space.  Two other characteristics of VSWM are 
the same as in verbal memory – the likelihood of accessing a part of the path drops over time, 
and repetition increases the stability of a representation.   
 
We developed a model of path visualization performance in ACT-R, using standard parameter 
values for the effects of decay and repetition.  We modeled the spatial interference process by 
emulating a 3D spatial field, in which interference varied with Euclidean distance between 
locations.  To test this model, we generated predictions of accuracy as a function of the number 
of “near visits,” by which we mean the number of previous segments of the path that visit 
locations adjacent to the most recently presented path segment.  This is a measure of the amount 
of spatial clutter that is near the decision point.  Figure 1 shows the model’s predictions and the 
human data (Lyon, Gunzelmann, & Gluck, 2004).  The model’s combination of decay, repetition 
effects and spatial interference successfully capture the data (r2 = .88; RMSD = 0.045).   
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Figure 1.  Spatial interference effect in visuospatial 

working memory – human data and model predictions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Spatial Orientation with Maps 
 
The path visualization task provides an opportunity to investigate spatial ability while 
minimizing the impact of cleverly devised strategies that bypass the need to use spatial abilities.  
However, real-world tasks provide a rich context that frequently offers opportunities to use a 
variety of strategies (Gunzelmann, Anderson, & Douglass, 2004; Aginsky, Harris, Rensink, & 
Beusmans, 1997; Gunzelmann & Anderson, 2002; Murakoshi & Kawai, 2000), which may 
exercise an individual’s spatial ability in a variety of ways.  The orientation with maps task is 
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designed to investigate that kind of situation.  The task presents participants with two views of a 
space, an egocentric-based visual scene and a map (Figure 2).  There are several variations on the 
task, but the task always requires that the two views be brought into correspondence to answer 
correctly.  Participants may be asked to identify a highlighted object in one view on the other 
view, determine the viewer’s location or orientation, or perform a more complex task involving 
route planning or navigation.  We are using this task to examine the sorts of strategies that people 
use, and evaluate how they are using their spatial abilities to solve this kind of problem. 
 
 

 

 
Figure 2.  Orientation with maps task.  The task is to identify 

the location of viewer on the perimeter of the map, based upon 
the view of the space shown in the visual scene on the left. 

 
 
 
 
 
 
 
 
 
 
To monitor performance on this task in as much detail as possible, we are collecting a variety of 
dependent measures.  Of course, we obtain response times and accuracy data on a trial by trial 
basis.  These data, by themselves, are informative about how participants solve the problems, and 
the kinds of strategies they use.  For instance, Figure 3 shows the response proportions for the 
locate-viewer task shown in Figure 2 as a function of how far the response was from the actual 
correct answer.  Responses were scored as correct if they were within 15 degrees of the correct 
answer.  This figure shows that when participants were wrong, their responses were close to 
being correct in the majority of cases.  This suggests that participants are good at developing a 
qualitative sense of the relationship between the two views, but that they stumble a bit on the 
quantitative estimates.  This result, along with others, provides useful information about the 
problem solving strategies that participants are using.  These strategies, then, form the basis for 
the computational cognitive model that we are developing to perform the same task.  The 
performance of the model we have developed is similar to human performance on the measures 
we have tested so far (e.g., Figure 3, r2 = .96; RMSD = .017). 
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For better resolution on the problem solving process, we are also gathering eye and mouse 
movement data from participants in these studies.  These data provide very fine-grained detail 
about how each trial is solved, and give us a moment-by-moment indication of what each 
participant is doing on each trial.  We have not yet analyzed these data, as we hope to use the 
computational cognitive models to make predictions about what the trends in the eye data should 
be.  This is another step toward using computational cognitive models as predictive and 
prescriptive tools for applications like training. 
 
The orientation task is relevant for helping us understand the spatial demands placed on Predator 
pilots.  Maintaining awareness of the Predator’s location and orientation in space are important 
for making appropriate navigational decisions.  Thus, this task provides a good assessment of 
how spatial competence may be brought to bear in the context of piloting a UAV.  For instance, 
in Figure 4, it is challenging to reason about which way the opening in the cloud layer would 
move on the left view if the scenario depicted were set in motion.  Of course, there are other 
spatially demanding aspects of the task, including reasoning about wind speed and direction and 
how that impacts the plane, as well as determining how to maneuver the plane to maximize the 
amount of surveillance footage that is obtained.  These tasks, however, depend fundamentally on 
an ability to relate the information about the two views of the space, which is the focus of the 
orientation task. 
 

 
Figure 4.  UAV Reconnaissance task (described below).  Critical information is depicted on the map.  The left 

view presents an image from a surveillance camera mounted on the bottom of the UAV, which is directed 
toward the target. 

A Computational Account of Spatial Competence 
 
In addition to modeling human performance in the tasks described above, we are developing a 
detailed theory of spatial competence, which we intend to implement and integrate into the ACT-
R architecture.  These efforts may appear largely independent on the surface.  However, we are 
using the models we are developing to guide the development and implementation of a broad 
computational theory of spatial cognition, and the use of a common architecture allows us to 
draw connections between the VSWM and Orientation tasks.   
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The models we have developed do a good job of accounting for the data for the individual tasks 
(see Figures 1 and 3), which lends support to our conceptualization of the spatial processing used 
by participants to do them.  We are integrating many of the concepts identified at the beginning 
of this section, including hierarchical encoding, a focus on reference features, mental imagery, 
and regularization of angular estimates (we use qualitative encoding like left and right, which 
produces this effect).  Thus, we are drawing upon the existing literature to motivate the 
implementations of these models.  The next step is to generalize across the models we have 
developed for these tasks, to create an integrated account of human spatial competence that can 
serve as the basis for models of both tasks, and which can also scale up to account for the kinds 
of spatial problem solving performed by Predator pilots, which is described next. 
 

Basic Maneuvering and Reconnaissance Tasks 
Predator STE 
 
The primary application context for our current cognitive modeling research is Predator 
operations.  We are using a Predator Synthetic Task Environment (STE) developed at the Air 
Force Research Laboratory in Mesa AZ to facilitate bridging the gap between basic research and 
applications of that research that create value for the Air Force (Martin, Lyon & Schreiber, 
1998). The Predator STE (Figure 5a) is a laboratory version of the system interface available in 
the Predator Ground Control Station (GCS; Figure 5b), which is housed in a trailer (Figure 5c).  
The STE includes a high fidelity simulation of the flight dynamics of the Predator RQ-1A 
(Figure 5d).  Wrapped around this core flight model are three synthetic tasks with data collection 
capabilities:   
 

(a) the Basic Maneuvering Task wherein operators make very precise, constant-rate changes 
to the aircraft’s airspeed, altitude, and/or heading;  
 

(b) the Landing Task wherein operators fly a standard approach and landing; and  
 

(c) the Reconnaissance Task wherein the operator must maneuver the Predator to obtain 
simulated video of a ground target through a small break in the cloud layer.   
 
It has been found that experienced Predator pilots perform better in the STE than highly 
experienced pilots that have no Predator experience, suggesting that the STE taps Predator-
specific pilot skill (Schreiber, Lyon, Martin, & Confer, 2002). Our strategy is that through the 
use of this realistic, validated STE for cognitive model development, we will increase the 
transition potential of our basic and applied research.   
 
The synthetic tasks that comprise the Predator STE fit well within the larger context of our 
overall research program.  The reconnaissance task in particular places spatial demands on the 
pilot that directly relate to research questions that are being addressed in our navigation and 
orientation research.  Thus, a major advantage of using the Predator STE in our research is that it 
provides a relevant environment in which to explore the implications of the models we’ve 
developed to account for fundamental cognitive processes in simpler tasks that abstract away 
from much of the domain knowledge that complicates performance in the real-world.  Moreover, 
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because the STE has many of the same complex, dynamic characteristics of real Predator 
operations, it provides us with an opportunity to push forward the science of cognitive modeling 
into contexts that align well with the needs of the warfighter.  While there has been much 
progress in computational cognitive process modeling over the last 20 years, the majority of the 
research has focused on expanding and enriching our understanding of basic cognitive science 
using simple, controlled, static tasks.  Only in recent years has computational cognitive modeling 
moved into more complex, dynamic (Lee & Anderson, 2000, 2001; Schoelles & Gray, 2000) and 
real-world (Salvucci, 2001; Salvucci, Boer & Liu, 2001) domains.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) Predator STE        b) Predator Ground Control Station (GCS) 
interface 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     c) GCS Trailer              d) Predator RQ-1A 

Figure 5.  The Predator, the GCS, and the STE 
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Basic Maneuvering 
 
For a Predator pilot, the knowledge and skills necessary to effectively maneuver are essential to 
success. A natural place to begin a research program aimed at developing a fine-grained 
cognitive process model of a Predator pilot/teammate is the basic maneuvering task.  This task 
was inspired by an instrument flight task originally designed by Wickens and colleagues at the 
University of Illinois at Urbana-Champaign (Bellenkes, Wickens, & Kramer, 1997).  The task 
requires the pilot to fly seven distinct instrument flight maneuvers.  Preceding each maneuver is 
a 10-second lead-in during which time the pilot is asked to stabilize the aircraft in straight and 
level flight.  Following the lead-in is a timed maneuver of 60 or 90 seconds during which time 
the pilot maneuvers the aircraft by making constant rate changes to altitude, airspeed, and/or 
heading, depending on the maneuver, as specified in Table 1. 
 
Table 1.  Maneuvering requirements in the Predator STE basic maneuvering task. 
 
Maneuver Airspeed Heading Altitude 

1 Decrease 
67–62 knots 

maintain 
0° 

maintain 
15,000 feet 

2 maintain 
62 knots 

Turn Right 
0-180° 

maintain 
15,000 feet 

3 maintain 
62 knots 

maintain 
180° 

Increase 
15,000-15,200 feet 

4 Increase 
62–67 knots 

Turn Left 
180-0° 

maintain 
15,200 feet 

5 Decrease 
67–62 knots 

maintain 
0° 

Decrease 
15,200-15,000 feet 

6 maintain 
62 knots 

Turn Right 
0-270° 

Increase 
15,000-15,300 feet 

7 Increase 
62–67 knots 

Turn Left 
270-0° 

Decrease 
15,300-15,000 feet 

 
During the basic maneuvering task the pilot sees only the Heads-Up Display (HUD), which is 
presented on two computer monitors (Figure 6).  Instruments displayed from left to right on the 
first monitor are Angle of Attack (AOA), Airspeed, Heading (bottom center), Vertical Speed, 
RPM’s (indicating throttle setting), and Altitude.  The digital display of each instrument moves 
up and down in analog fashion as values change.  Depicted at the center of the HUD are the 
reticle and horizon line, which together indicate the pitch and bank of the aircraft.  On the far 
right of the second monitor is a trial clock, bank angle indicator, and compass.  During a trial, the 
left side of the second monitor is blank.  
 
At the end of a trial, a feedback screen appears on the left side of the second monitor.  The 
feedback depicts deviations between actual and desired performance on altitude, airspeed, and 
heading plotted across time, as well as quantitative feedback in the form of root mean squared 
deviations (RMSDs).  The pilot’s goal for each trial is to minimize the deviation between actual 
and desired performance on airspeed, altitude, and heading.   
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Figure 6.  Heads-Up Display (HUD) and Feedback Screen for the Predator STE Basic 
Maneuvering Task. 

 
We have developed an expert model of basic maneuvering that is based on an instrument flight 
strategy called the ”Control and Performance Concept.” The strategy involves first establishing 
appropriate control settings (pitch, bank, power) for desired aircraft performance, and then 
crosschecking instruments to determine whether desired performance is actually being achieved.  
This is an effective flight strategy because control actions with the stick and throttle have 
immediate, first-order effects on pitch, bank, and power, which then result in lagged, second-
order effects on performance parameters like airspeed, altitude, and heading.  Controlling a 
dynamic system on the basis of first-order effects is more efficient and effective than controlling 
a dynamic system on the basis of second-order effects, so an effective way (and the 
recommended way) to maneuver an airplane is to adjust the controls until the control instruments 
show the desired readings, and then simply let the aircraft’s performance change as a result of 
the control surfaces (along with proper crosschecking of all instruments, of course). 
 
Validation of the model comes from both performance and process data that were collected from 
the model and seven aviation experts – highly experienced pilots located at the Air Force 
Research Laboratory in Mesa.  The model compares well with experts on overall performance, 
and performance by maneuver, as assessed through a composite performance measure that 
considers deviation between actual and desired airspeed, altitude, and heading (Gluck, Ball, 
Krusmark, Rodgers, & Purtee, 2000). 
 
Several specific results (Gluck et al, 2000) are worth highlighting.  First, the model captures an 
effect of maneuver complexity even though it was not intentionally designed to do so, wherein 
for both the model and expert pilots, performance was best on one-axis maneuvers, followed by 
two-axis maneuvers, and then the three-axis maneuver.  Second, goodness of fit estimates 
computed from model and expert performance data compared well with average fit estimates 
computed from each expert’s performance compared to the rest of the experts.  In fact, the fit of 
the model to the experts’ data is better than the fit of one particular expert’s data to the rest of the 
experts’ data.  Both of these results, in addition to results from other analyses, suggest that the 
model is a good approximation of expert performance on this task. 
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Verbal protocol results suggest that not only does the performance level of the model compare 

econnaissance 

urrently we are in the process of extending our Predator pilot model to the reconnaissance task.  

he reconnaissance task is challenging in several respects.  Not only must the pilot maneuver the 

e are presently collecting data from aviation experts that will be used to validate the model that 

Interfacing ACT-R to the Predator STE 
 

omputational cognitive models “see” their visual environment by moving visual attention 

well to that of experts, but also the processes that underlie that performance compare well to 
those used by experts (Purtee, Krusmark, Gluck, Kotte, & Lefebvre (2003).  While experts were 
performing trials of the basic maneuvering task, we collected fine-grained process measures: 
retrospective and concurrent verbal reports, and eye-tracking data.  Retrospective verbal reports 
from the experts suggest that they were indeed using the control and performance strategy when 
performing the maneuvering task.  Concurrent verbal reports suggest that maneuver goals 
influence how experts perform the task, as one would expect.  Participants verbalized attention to 
heading much more frequently on maneuvers that required a heading change (maneuvers 2, 4, 6, 
& 7) relative to those that did not (1, 3, & 5).  This result is consistent with the way the model is 
implemented.  In more recent analyses of these data, we have found that model fixations, expert 
eye-fixations, and expert verbalizations on instruments displaying information about the lateral 
axis (bank, heading, & compass) were more frequent on heading change maneuvers relative to 
non-heading change maneuvers (Gluck, Ball & Krusmark, in press). 
 
R
 
C
Recall that during the reconnaissance task the operator must maneuver the aircraft to obtain 
simulated video of a target through a small hole in a cloud layer (sometimes referred to as the 
cloudbreak).  During the reconnaissance task the pilot sees the HUD on the left monitor.  The 
HUD is superimposed over a simulated video feed from either the Predator’s nose or sensor 
camera.  On the second monitor is a map that tracks the location of the Predator relative to the 
ground target (see Figure 4). 
 
T
Predator so that the aircraft, target, and cloud hole are all aligned, but this must be done while 
accounting for an unpredictable cloud hole location, effects of wind on the UAV, no-fly zones, 
altitude and time restrictions, and maneuverability constraints of the Predator itself.  The goal of 
the task is to maximize time on target while minimizing flight violations.   
 
W
is under development.  The protocol requires participants to spend one day completing basic 
maneuvering trials until they reach a set performance level on each of the seven basic 
maneuvers.  Then, on day two, the experts fly eight reconnaissance missions that are designed to 
stress dynamic spatial reasoning through proximal (and variable) placement of the ground target, 
cloud hole, and no-fly zone, as well as wind speed and direction.  Data collected during these 
reconnaissance missions include various performance and process measures including time on 
target, time in violation of flight constraints, flight path, eye-tracking data, concurrent verbal 
reports, and retrospective verbal reports. 
 

C
around within a digital representation of that environment.  This is fairly trivial with simple, 
static tasks that are implemented in the same software language as the cognitive model, but it is 
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more complicated when the architecture must interface with an external simulation.  The 
approach we adopted in interfacing our models to the Predator STE was to re-implement the 
visual displays of the STE in Lisp, the programming language in which ACT-R is written.  The 
focus of the reimplementation was on matching the information provided by the visual display 
without necessarily reverse engineering the full graphics display of the STE.  This was facilitated 
by the use of digital readouts for the flight instruments (other than the horizon line and reticle) in 
the STE, such that the model was not required to process an analog device in order to determine 
the value of the flight instrument.  In the case of the horizon line and reticle, ACT-R returns a 
digital value for pitch and bank to the model (as reflected in the orientation of the horizon line 
with respect to the reticle), even though a graphic depiction of the horizon line and reticle is 
displayed. Other than the visual displays, the Predator STE provides a Variable Information 
Table (VIT) data structure that contains data on most of the flight parameters of the UAV. 
 
Although the Predator STE models both a nose camera (looking forward) and a sensor camera 

 was also necessary to develop a server on the Predator STE computer to trap virtual keystrokes 

 the reconnaissance task, there are many additional visual features that were required in the 

Verbalization Between Operators and Synthetic Entities 
 

he VERBOSE (VERbalization Between Operators and Synthetic Entities) project is an applied 

(looking downward), there is no nose or sensor camera view in the basic maneuvering task--
because the goal of the task is to require instrument flight.  However, for the reconnaissance task, 
those views had to be represented. This turned out to be a significant challenge requiring the 
support of an aeronautical engineer with a background in 3-D simulation.  In addition, not all the 
data we needed was available in the VIT. A separate cloudbreak data structure provides this 
information. 
 
It
coming from the cognitive model (which runs on a separate computer and sends keystrokes via 
the Microsoft Windows API) and send them to the Predator STE.  These keystrokes are used to 
change from the nose camera to the sensor camera and back. 
 
In
Lisp representation of the task. For each screen object, we create a virtual object that the 
cognitive model can access as well as a graphical object for visual display purposes.  A decision 
was made not to fully model the graphics of the tracker map (the right monitor in Figure 4), 
including contour lines, longitude and latitude lines, terrain features, the runway and surrounding 
buildings, etc.  Instead only the objects that are directly relevant to the reconnaissance mission 
are modeled: target, ground control station, no fly zone, ring indicating the limit of where the 
cloud hole can appear, UAV icon.  This simplifies the representational requirements, but it is 
something we will reconsider if data suggest we are somehow sacrificing model validity. 
 

T
research effort aimed at the development of language-enabled synthetic entities for use in 
training simulation environments.  The plan is to merge the Reconnaissance task model 
(discussed above) with an extended version of a language comprehension model, called Double 
R Model (Ball, 2004), which is also under development.  The combined model will be integrated 
into the CERTT Testbed (discussed below) and will perform the role of the Predator pilot as part 
of a three-person Predator team performing a reconnaissance mission. 
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As with the other models described in this paper, the VERBOSE cognitive model is being 

esearch in the development of a Situation Model (Zwann & Radvansky, 1998) to ground the 

n Historically Black Colleges and Universities (HBCU) research contract was awarded to the 

implemented within ACT-R (Anderson, et al., 2004). The language model is unique in 
attempting to model human language capabilities within a cognitive architecture (distinguishing 
it from most AI and computational linguistic systems) as part of a large-scale, functional 
language comprehension system (distinguishing it from most models of language processing in 
cognitive science).  The construction of language-enabled synthetic entities is a complex 
research endeavor and the VERBOSE research is proceeding in several different directions.  To 
the maximum extent practical, we plan to use existing knowledge bases and linguistic and 
cognitive resources in the construction of a functional system.  Besides our commitment to using 
ACT-R, we are working on the integration of WordNet (Fellbaum, 1999) — a large lexical 
database motivated on psycholinguistic principles—to provide a full lexicon.  We are also 
investigating the use of FrameNet (Ruppenhofer, Ellsworth, Petruck, & Johnson, 2005) and/or 
VerbNet (Palmer, Gildea, & Kingsbury, 2005) for the representation of verb centered 
constructions (e.g., transitive vs. intransitive verb) — a capability not provided by WordNet.  We 
are extending Double R Model to support the recognition and processing of multi-word 
expressions and constructions (currently Double R Model processes one word at a time).  An 
earlier effort (Ball, Rodgers, & Gluck, 2004) looked at integrating CYC (Lenat, 1995), a massive 
knowledge base of commonsense knowledge, with Double R Model.  Integrating these resources 
without sacrificing cognitive plausibility is a key research objective. 
 
R
referring expressions in the linguistic input is also ongoing.  The situation model is a spatial-
imaginal representation that will make use of the visuo-spatial module being developed for ACT-
R as part of the Navigation and Orientation research effort (discussed above).  The situation 
model will contain a representation of the objects and entities and their relative orientation (and 
other relations) as described in the linguistic input and perceived in the environment.  The 
situation model replaces the use of abstract “concepts” in many other approaches to the 
representation of meaning.  In Double R Model terms, the concept PILOT is viewed as just an 
alternative linguistic form for “pilot” and claims that uppercase words are somehow 
representative of non-linguistic concepts is eschewed in favor of their grounding in a spatial-
imaginal representation of objects and relations among objects.  This spatial-imaginal grounding 
is not yet specified in a computational implementation, but it is the direction in which the 
research is headed. 
 
A
City College of New York (CCNY) to investigate the use of Latent Semantic Analysis (LSA) for 
determining word sense frequencies.  LSA is a statistical technique based on Singular Value 
Decomposition (SVD) of matrices reflecting word to text associations extracted from large text 
corpora.  SVD can be used to reduce the number of dimensions of association between words 
and texts (initially the number of words times the number of texts) leading to the extraction of 
the latent (i.e., non-explicit) semantic similarity between the words and texts (and indirectly 
between words and words).  The goal of this project is to determine the base word sense 
frequencies of the various senses of words for use in the VERBOSE system as part of the word 
sense disambiguation (WSD) component of the system. 
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Some additional requirements of a functional language-enabled synthetic entity include the 
integration of speech recognition and generation capabilities, some mechanism for inferencing 
over linguistic (Zadeh, 2004) and/or spatial-imaginal representations (Johnson-Laird, 1983), 
representation of discourse-level knowledge (provided in part by the situation model) in addition 
to word-, phrase-, and clause-level knowledge, and a mechanism for tying linguistic 
representations to behavior (e.g., motor actions, shifts of attention, verbal responses).  These 
represent future areas of research for eventual integration into VERBOSE. 
 
The underlying linguistic theory adopted in the VERBOSE effort is motivated by Cognitive 
Linguistic approaches to meaning and the basic claim that the meaning of words and expressions 
is grounded in embodied experience and not in some purely abstract, disembodied conceptual 
realm (Langacker, 1987, 1991; Lakoff, 1987).  Further, linguistic structure and meaning go hand-
in-hand, whether at the level of words, fixed expressions, or larger constructions.  This is in 
contrast to the predominant Generative Linguistic approach (Chomsky, 1981) which advocates 
an autonomous syntax that can be studied in isolation from meaning.  In terms of language 
processing, the VERBOSE system is highly interactive, with words and expressions in the input 
activating representations in memory that are dynamically integrated into a coherent 
representation of meaning (assuming the input text is itself coherent).  Many of the 
representations activated in memory correspond to linguistic constructions—larger linguistic 
units with variable elements—that have been acquired over a lifetime of experience with 
language (e.g.  the transitive construction “Subject kicked Object” is activated by “kicked” in 
“the man kicked the ball”).  The basic language comprehension process involves construction 
activation (based on the linguistic input and context), selection and integration (Ball, 2005).  
Given the focus on the development of a computational implementation of a language 
comprehension system founded on principles of Cognitive Linguistics, VERBOSE can be 
described as a Computational Cognitive Linguistic system, a term that is not yet in currency. 
 
The creation of language-enabled synthetic entities entails integrating VERBOSE into a software 
agent that is capable of interacting in a simulation environment.  The simulation environment we 
have chosen is the Cognitive Engineering Research on Team Tasks (CERTT) UAV testbed that 
was designed to study team training and which will provide a useful testbed for studying 
communication between the synthetic entity and human teammates.  Our cognitive model of a 
Predator pilot flying a reconnaissance mission will provide the basis for creation of the software 
agent.   
 
Measurement and Modeling of Team Skill 
 
Although there are platform-to-platform variations, operation of the Predator system requires 
multiple individuals on the ground functioning as a command-and-control team.  The CERTT 
Laboratory hosts a three-person simulation of UAV ground control based on Predator operations 
(Cooke & Shope, 2004).  This synthetic environment provides an ideal testbed for understanding 
and measuring team performance and cognition in a command-and-control setting.  The 
simulated version of this UAV ground control task requires participation of the pilot or Air 
Vehicle Operator (AVO) who flies the UAV, the Payload Operator (PLO) who controls the 
camera systems to take pictures, and Data Exploitation, Mission Planning, and Communications 
(DEMPC) operator who determines the route and is a source of information.  The three team 
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members work interdependently, each at a console, in order to position a UAV at target 
waypoints to take photographs.  The synthetic teammate described in this paper will replace a 
human pilot in this setting.   
 
Although individual performance is measured in this task (e.g., a score based on course deviation 
for the AVO), the performance of the team is of most interest.  The team performance measure is 
tied to team goals and is a composite score based largely on number of targets photographed and 
amount of resources used.  Because the UAV team, like command-and-control teams in general, 
has members with heterogeneous backgrounds, averaging of individual data does not necessarily 
reflect team-level performance that is represented in the team score.  Further, team performance 
data collected in the context of the CERTT UAV task (Cooke, et al., 2004) shows improvement 
over trials and this improvement is not associated with changes in individual or team knowledge.  
Instead, it seems that team skill is attributed to team coordination or the timely and adaptive 
sharing of information among team members. 
 
Current research in the CERTT Lab is investigating the development of team coordination skill 
and its retention over time.  In addition, modeling efforts are underway to apply dynamical 
system techniques to these data.  Team coordination is measured by extent of deviation from an 
optimal model (passing of information in timely manner at each target waypoint).  
  
The synthetic teammate needs to interact with the two human teammates in order to seamlessly 
integrate into this coordinating system.  The synthetic task is so structured that much of the 
required interaction can be scripted or rule-based with some flexibility engendered by natural 
language understanding (so that non-synthetic teammates can pass and ask for information in a 
variety of ways).  However, the challenge arises when there are unexpected events or changes in 
the plan.  For example, equipment may break down or targets of opportunity may appear on the 
scene.  This will require not only natural language understanding but also a deeper understanding 
on the part of the synthetic teammate of information needs of others and its own capabilities.  
The synthetic pilot will need to understand team members’ roles and task-related goals and 
subgoals in order to adapt to these novel situations.  Also, there are some subtle timing 
constraints in information sharing that are exhibited by experienced team members.  The 
synthetic teammate will also have to be able to respond or request information of the right person 
at the right time. 
 

CONCLUSIONS 
 
In this paper we have provided an overview of our past, current, and future computational 
cognitive modeling research and a description of how that research is intended to come together 
in support of the applied goal of creating a synthetic teammate for training, analysis, and system 
design.  This has been a prospective look at some of the key cognitive capabilities and 
constraints on this synthetic teammate because the research is in progress and the integration of 
the various research lines has not happened yet.  Each of the research lines described here 
(orientation and navigation in virtual environments, Predator pilot modeling, natural language, 
and team skill) could stand alone as a justifiable research investment area unto itself, but we find 
it helpful to think of them as each supporting a common application goal state.   
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