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Abstract— An important issue in the development of a dedi-
cated space borne soil moisture sensor has been concern over
the reliability of soil moisture retrievals in densely vegetated
areas and the global extent over which retrievals will be possible.
Errors in retrieved soil moisture can originate from a variety of
sources within the measurement and retrieval process. In addition
to instrument error, three key contributors to retrieval error
are the masking of the soil microwave signal by vegetation, the
interplay between nonlinear retrieval physics and the relatively
poor spatial resolution of space borne sensors, and retrieval
parameter uncertainty. Quantification of these errors requires the
realistic specification of land surface soil moisture heterogeneity
and spatial vegetation patterns. Since detailed soil moisture
patterns are currently difficult to obtain from direct observations,
an attractive alternative is the application of an observing system
simulation experiment (OSSE) in which simulated land surface
states are propagated through the sensor measurement and
retrieval process to investigate and constrain expected levels of
retrieval error. This manuscript describes results from an OSSE
designed out to simulate the impact of land surface heterogene-
ity, instrument error, and retrieval parameter uncertainty on
radiometer-only soil moisture products derived from the NASA
ESSP Hydrosphere State (Hydros) mission.

I. INTRODUCTION

The Hydrosphere State (Hydros) mission has been selected
by NASA for development under the Earth System Science
Pathfinder (ESSP) program. The Hydros mission objective is
to globally map dynamic patterns of surface soil moisture and
freeze/thaw conditions using a combination of passive and
active L-band microwave observations [1]. A key limitation
for space borne soil moisture observations has been concern
about their accuracy for areas of high biomass and land surface
heterogeneity. Given the scale of Hydros radiometers obser-
vations (approximately 40 km) and the practical limitations
of ground-based observations, such concerns are difficult to
address using actual observations. A potential alternative is the
use of the synthetic simulation experiments (OSSE’s) where
land surface heterogeneity is simulated using a distributed land
surface model and used to generate high-resolution synthetic

brightness temperature fields. These fields, in turns, can be:
degraded to reflect sensors resolution and accuracy limitations,
combined with realistically perturbed ancillary parameters, and
then inverted back into a soil moisture product. Comparison
of retrieved soil moisture fields with the original land surface
model output provides a theoretical constraint on the impact
of known retrieval uncertainties on the eventual accuracy of
soil moisture products [2], [3]. Here, a Hydros-based OSSE
is conducted during the 1994 growing season for two separate
radiometer-based soil moisture retrieval algorithms.

II. APPROACH

The observing system simulation experiment (OSSE) de-
scribed here is based on an existing methodology developed in
[2] and [4]. It has four distinct components: (1) a land surface
modeling component to predict surface geophysical states,
(2) a forward microwave emission model to convert these
geophysical states into microwave brightness temperature, (3)
an orbit and sensor model to realistically degrade microwave
brightness temperature fields based on the orbit and antennae
characteristics of the Hydros mission, and (4) a retrieval model
to invert simulated footprint-scale Hydros observations back
into geophysical quantities (i.e. surface soil moisture). These
components are discussed in the following subsections.

A. Land Surface Modeling

The 1-km surface (0-5 cm) soil moisture, 5-cm soil temper-
ature field (T5cm), and surface skin temperature fields (T0)
underlying the OSSE were derived from TOPmodel Land
Atmosphere Transfer Scheme (TOPLATS) simulations over
the 575,000 km2 Red-Arkansas River Basin (Figure 1) during
the May and June 1994 [5], [6].

B. Forward Microwave Emission Modeling

Forward microwave emission modeling followed the ap-
proached described in [4] and is briefly reviewed here. Model-
generated θ, T5cm, and T0 were combined with ancillary data
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Fig. 1. Location of OSSE domain (the 575,000 km2 Red-Arkansas River
Basin) in the United States Southern Great Plains.

in order to simulate 1-km H- and V-polarized microwave
brightness temperature (TB) via:

TBp = Ts(1 − rp)exp(−τp/cos(φ)) + T0(1 − ωp)[1 −
exp(−τp/cos(φ)][1 + rspexp(−τp/cos(φ))] (1)

where Ts is the effective soil temperature defined here as (T0

+ T5cm)/2, τp is the nadir optical depth, φ the look angle, and
rp the soil reflectivity. The subscript p refers to polarization
(V or H). In turn, vegetation opacity is defined as

τ = bpW (2)

The coefficient bp varies with both vegetation type and W is
the total columnar vegetation water content. Vegetation water
content was prediction for the Red-Arkansas River basin using
archived (1980 to 2000) 8-km AVHRR NDVI products and the
regression relationship of [7]. As described in [4], a woody-
vegetation correction factor was applied to convert the foliar
W value derived via this regression relationship into the total
columnar (i.e. truck, branches, and foliar) value required by
(2).

Soil reflectivity (rp) is calculated as

rp = rspexp(h) (3)

where h is assumed to be 0.1 of the surface root-mean-squared
height s and rsp is the Fresnel reflectivity of the equivalent
smooth surface. This reflectivity is derived from soil moisture
via the Fresnel equation and the soil moisture mixing modeling
of [8] given known values for percentage sand (S) and clay
(C) soil contents. For inland water surfaces

TB = T0(1 − rs) (4)

Fig. 2. Illustration of OSSE procedure using simulated soil moisture and
brightness temperature imagery. Key components include the land surface
modeling, microwave emission modeling, orbital and sensor modeling and
soil moisture retrieval modeling.

where waves are neglected and rsp is calculated via the Klein-
Swift model.

Vegetation parameters bp, ωp, and s are assigned using a
1-km land cover classification and a lookup-table populated
with typical literature values. S and C are taken from a soil
classification map of the image and the USGS soil texture
table. See Tables II and III in [4] for specific parameter values.
Results presented here are based on a special case of scaling
W by a factor of three in both the forward and inversion
portions of the modeling. This was done to examine a suffi-
ciently wide range of vegetation conditions and examine soil
moisture retrieval performance under ”worst-case” vegetation
density and heterogeneity conditions.

C. Orbital and Sensor Model

A precise model of Hydros orbital and scanning character-
istics was not used. Instead a Hydros overpass covering the
entire OSSE domain was assumed every day at 6 am and 6 pm
and footprint-scale TB observations were computed by linear
averaging of 1-km LSM TB predictions within a 36-km fixed
earth grid placed onto the OSSE domain. To simulate sensor
noise, spatially independent Gaussian noise with a standard
deviation of 1 K was added to each 36-km TB retrieval. This
was done independently for both radiometer polarizations and
for each day of the simulation. Justification for a 1 K noise
magnitude is given in [4].



D. Soil Moisture Retrieval Models

Two separate retrieval models were used to invert simulated
footprint-scale TB products back into soil moisture. The first
approach is based on H-polarized TB measurement and the
approach of [9]. This single-polarization method neglects
differences between soil and canopy temperatures by assuming
T0 = Ts. Given known 36-km ancillary values of h, ωh, Ts,
bh, W , φ, S and C this allows (1) to be solved for rsp

which, in turn, is converted into a soil moisture estimate using
the Fresnel equations and the soil-mixing model of [8]. The
second approach is based on multi-polarized measurements
of both TBh and TBv and the approach of [10]. Here, soil
moisture and W are given initial estimates which are then
interactively adjusted such that the difference between com-
puted and observed dual-polarization brightness temperature
is minimized. No a priori knowledge of W is required since
it is simultaneously calculated along with soil moisture.

For both retrieval models, coarse-scale ancillary values of
h, Ts, W , S, and C were obtained by aggregating 1-km
fields used in the forward modeling component of the OSSE
up to the 36-km footprint scale. In order to capture the
impact of parameter error on soil moisture retrieval accuracy,
synthetic noise was added to 36-km (i.e. footprint-scale) Ts

and bp values feed into the retrieval model. Ts and bp noise
was sampled from a mean-zero Gaussian distribution with
a standard deviation of 1.5 K and 0.02, respectively, and
assumed to be both spatially and temporally independent.

III. RESULTS

Figure 2 shows a schematic of the OSSE procedure along
with imagery results for a single day of the simulation.
Footprint-scale soil moisture products derived via the se-
quential application of the forward model, orbit and sensor
model, and retrieval model(s) (left column) are compared
with products derived via the simple linear aggregation of
the original land surface model output (right column). Closer
analysis of OSSE results from all days of the analysis reveals
that spatial patterns in simulated retrieval errors are driven
primarily by the distribution of vegetation within the domain.
Figure 3b plots soil moisture RMSE in retrieval products (i.e.
the left column of Figure 2) stratified by the mean vegetation
water content (W ) contained within individual 36-km pixels.
Statistics are pooled values for all 36-km pixels in the Red-
Arkansas River basin and all days of the OSSE. Significant
errors are present in both algorithms for W > 1.5 kg m−2. A
large fraction of this RMS error is due with a positive bias in
soil moisture retrievals (Figure 3a).

Sensitivity runs based on applying retrieval models at
various scales indicate that this bias is primarily caused by
aggregation efforts and the inability of coarse-scale (36 km)
footprint-retrievals to capture fine-scale (1-km) land surface
variability predicted by the LSM and high-resolution AVHRR
imaging of the basin. Figure 4 illustrates this by comparing re-
trieval bias results for the application of the single-polarization
algorithm to simulated 1-km Ts and TBh fields and the
subsequent aggregation of 1-km soil moisture retrievals to
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Fig. 3. Plots of retrieved 36-km soil moisture a) bias and b) RMSE stratified
by 36-km vegetation water content values for both the single- and multi-
polarization retrieval algorithm.
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Fig. 4. Difference in soil moisture retrieval biases when applying the single-
polarization algorithm to 1- (dashed line) and 36-km (solid line) geophysical
fields.
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Fig. 5. For both retrieval algorithms, soil moisture retrieval biases, stratified
by 36-km W levels, for the baseline retrieval case (solid line) and result derived
after application of the inland water correction strategy

36km, to results for the baseline approach of applying retrieval
models to 36-km Ts and TBh fields. The large positive bias
observed at high W is eliminated by application of the retrieval
model at a finer spatial resolution.

One distinct sub-set of aggregation errors are those asso-
ciated with the contamination of footprint-scale observations
by sub-footprint-scale areas of inland water. Actual 36-km TB

observations are based on a linear average of emission from
both water and land surfaces

TB = fwTB,water + (1 − fw)TB,land (5)

where fw is the fraction of the footprint covered by water. This
fraction can be estimated either from high-resolution VIS/IR
imagery or the radar mapping capability of the Hydros sensor.
Here, a separate fw is determined for each 36-km pixel in the
OSSE domain using a 1-km AVHRR land cover classification.
Given knowledge of fw, emission from the land surface can
be estimated as

TB,land = (TB − fwTB,water)/(1 − fw) (6)

Assuming T0 and fw are known from ancillary sources,
TB,land can be estimated using this expression and used in
lieu of TB observations to derive 36-km soil moisture products.
Even though inland water constitutes a very small portion of
the OSSE domain (< 1% by area), applying this correction
leads to a significant reduction in soil moisture retrieval biases
for both retrieval approaches (Figure 5).

IV. CONCLUSION

The observing system simulation experiment (OSSE) de-
scribed here captures the influence of land surface hetero-
geneity, observation noise, inversion parameter uncertainty,
and retrieval assumptions on the accuracy of radiometer-only
Hydros soil moisture products. Examining these error sources
in a controlled numerical setting provides an opportunity to
assess eventual processing and retrieval strategies designed to
mitigate their impact. Nevertheless, care should be taken when

equating error results presented here to accuracy expectations
for actual Hydros soil moisture products. This particular OSSE
provides a simplified representation of only a partial set of
error sources within actual retrievals. Particular choices con-
cerning the nature of represented error may impact the relative
accuracy of various retrieval algorithms. In addition, while
useful as a test-bed to study strategies for treating aggregation-
based retrieval errors, results for the case of scaled-up veg-
etation density (3W) should be interpreted as a worst-case
scenario of land surface heterogeneity and vegetation density
encountered over only limited portions of the globe. Hydros
soil moisture algorithms will undergo continued evolution and
refinement prior to Hydros launch, based on a combination of
OSSE results, further analyses, and data from ongoing airborne
field campaigns. Given the generally large contribution of
retrieval biases to overall RMSE (Figure 3), it may also be
possible to improve the accuracy of retrieved soil moisture
via calibration of retrieval model parameters.
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