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ABSTRACT

Existence and uniqueness of weak solutions are shown for different models of the
dynamic behavior of elastomers. The models are based on a nonlinear stress-strain
relationship (satisfying a locally Lipschitz and affine domination property) and in-
corporate hysteretic effects as well. The results provide alternatives to previous
theories that required monotonicity assumptions on the nonlinearities. Results with
a nonlinear constitutive law and nonlinear internal dynamics are presented for the

first time.

1 Introduction

In this paper we examine the theoretical foundations of a series of models for the dynamic
behavior of elastomers (filled rubber-like materials). As outlined in previous papers [6, 7], the
basic model describing the longitudinal motion of a viscoelastic bar with the upper end (z = 0)
fixed and a tip mass on the lower end (z = ¢) is given by
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pAcuy — (Aco)y =0 for 0 <2 < /{ (1.1)
Muy(t, )+ A.o(t,0) = Mg + f(1) (1.2)
u(t,0) =0 (1.3)
u(0, ) = ug (1.4)

(1.5)

u(0, ) = g,

where p is the mass density, A, is cross-sectional area, M is tip mass, g is gravitational accel-
eration, f is external force, and o denotes the stress. If there is no tip mass and A. = p =1,
then we can write the system in variational formulation as

Uy — oy = F(t) in V~ (1.6)
u(0,z) =up eV
u(0,2) =uy € H,

where we let V = H}(0,¢), H = L*(0,¢) and F(¢) = f(¢)é,(z). The crucial modeling question is
what type of stress strain relationship best describes the material. In our earlier experimentally
based investigations of elastomers we found that a nonlinear constitutive law is needed ([4, 5]),
ie.,

o(uz) = Fug + ge(uz) + Cpuy,, (1.9)

where the third term on the right side is a first approximation to a damping that these materials
exhibit. (For simplicity of presentation here we will later make the assumption that £ = 1.)
Comparing the actual experimental data with this model, we demonstrated good agreement for
unfilled and lightly filled rubber bars. However, the model is not adequate to describe medium
or highly filled elastomers that exhibit significant hysteretic behavior. To account for this
property of the material we included a Boltzmann integral term in the constitutive relationship
t d

o(uy) = Fug + ge(uz) + Cpug: + / e~ c1(t=5) ggu(uz, Uty )ds. (1.10)
As described in [5] under specific assumptions on the prehistory of the motion this relationship
can be expressed in an equivalent internal variable formulation

o(uz) = Bug+ ge(us) + Cpug + e (1.11)

d
&1, +cie1 = Egv(uz, utz‘) (112)
e1(0,2) = 0. (1.13)

We can think of 1 as an internal strain variable whose dynamics is described by (1.12)-(1.13).
We also note that although these constitutive relationships are expressed in terms of the in-
finitesimal strain u,, the formulation is equivalent to considering finite strains ¢ = u, + %ui,
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with different nonlinear functions g. and g,. The internal variable system (1.11)-(1.13) can be
further generalized by considering nonlinear internal dynamics, i.e., (1.11) with

d
&1, + &1 = Egv(uzy utz) + gin(gl) (114)

&1(0,2) = 0. (1.15)

We note that the resulting constitutive law is no longer equivalent to a Boltzmann integral
formulation. A further generalization that has proved important for highly filled elastomers
involves multiple internal variables. That is, one replaces ¢; in (1.11) by a finite sum Y ¢; of
internal variables ¢; which satisfy systems of the form (1.12)-(1.13) or (1.14)-(1.15).

In this note we consider the well-posedness of the basic model with the three different
constitutive laws. Thus we first show that the nonlinear problem with no hysteresis ((1.6)-(1.8)
with (1.9)) is well posed under rather general assumptions on the nonlinear function g.. Our
first result guarantees the existence of a unique local weak solution under a local Lipschitz
condition on the nonlinear function. If we impose an additional growth assumption on the
nonlinearity, then the weak solution is global (i.e., exists for any time interval [0, T]). We then
show that similar results can be obtained for the nonlinear problem (i.e., nonlinear g., ¢, ) with
linear internal strain dynamics ((1.6)-(1.8) with (1.11)-(1.13)) and for the nonlinear problem
with nonlinear internal strain dynamics ((1.6)-(1.8) with (1.11),(1.14)-(1.15)). The first two
problems were previously studied under certain monotonicity and growth assumptions on the
nonlinearities (¢. and g¢,) in [2] and [6], respectively. The results in this paper demonstrate
that well-posedness can be achieved under relaxed assumptions and can be extended to the
problem with nonlinear internal dynamics. The techniques we use were successfully employed
to establish existence-uniqueness of weak solutions for linear evolution equations of second
order in ¢ in [8] and for semilinear second order evolution equations where the nonlinear forcing
term satisfies a global Lipschitz condition in [9]. In [1] such techniques were extended to study
a nonlinear beam equation where the nonlinearity satisfies only a local Lipschitz condition.
Arguments for our results concerning the nonlinear problem with no hysteresis are very similar
to the ones used in [1]. We give a fairly detailed exposition here in order to be able to easily
refer to these as we extend the well-posedness result to the systems with internal variables.

2 The nonlinear problem with no hysteresis

In this section we investigate the system

Uyt — Cplhipy — Upe — (ge(ts))z = F(1) in V~ (2.16)
u(0,2) =ug € V (2.17)
u(0,2) =uy € H, (2.18)

where V = H}(0,{) — H = L*(0,{) — V*, Cp > 0 and F has been normalized only for the

sake of convenience. We make the following assumptions:



(A,.) The nonlinear function g. satisfies the following local Lipschitz condition: let B, (0) denote
the ball of radius r centered at 0 in H and for some positive constant Lp, we have

1ge(w) = ge(v)|| < L, [[w —v]|
for all w,v € B,(0).

(Ap,) There exist constants 7, Cy such that
lge(v)| < Cillol| + Co,

for every v € H.

(Af) The forcing term F' satisfies
Fe L30,T; V).

We define the space of weak solutions to be
U(O,T) = {u € LQ(OaT; V) | Ut € L2(07T; V)? Ut € L2(07T; V*)}a

with norm given by

1

[tlletgo,ry = (HUH%2(O,T;V) + el Zo.rvy + Huttl‘%?(O,T;V*)) ‘L
Definition 2.1 We define u € U(0,T) to be a weak solution of (2.16)-(2.18) if it satisfies

(uie, O)ve,v + Ot o) + (s, 9a) + (ge(ua), 0a) = (F,@)vey (2.19)
for every o €V

and

u(0,2) =ug €V (2.20)
u(0,2) = uy € H. (2.21)

Here (-,-) denotes the inner product in H while (-, )y« v represents the usual duality product.
We first prove the following local existence theorem:

Theorem 2.1 Under assumptions (A, ) and (Ay) and for any ug € V,uy € H, the system
(2.19)-(2.21) has a unique weak solution on some interval [0,1*].

Proof: Let P denote the Hilbert space radial retraction onto the ball in H centered at wuq, with
radius 1, and let

Ge(v) = g.(Pu).



Thus g. satisfies a global Lipschitz condition

e (10) = §e(0)Il < Ly, [P0 = Pol| < Liw —v] (2.22)
2.23)
for every w,v € H and also
ge(w)ll < Ll + €, (2.24)
where C' = ||g.(0)|| > 0.
Now we consider the problem
Uyt — Cplhipy — Upe — (Ge(Uz))z = F(1) in V~ (2.25)
u(0,2) =ug € V (2.26)
u(0,2) = uy € H. (2.27)

Let {t;}:2; be any linearly independent total subset of V. For each m let
VT = Span{d}la 771}27 s 777Z)m}7

and choose ug', ui* € V™ such that ug* — up in V and uf* — uy in H as m — oo. We develop
the standard Galerkin approximations for the problem (2.25)-(2.27). Let u™(¢) = ¥, CI* (1),
be the unique solution of the m-dimensional ordinary differential equation system

(uits i)vev + Op(ugy, ¥ie) + (U, ¥je) + (Ge(uy'), ¥je) = (Fobj)vey (2.28)
u™(0,2) = ug' (2.29)
u* (0, ) = ul". (2.30)

To obtain an @ priori estimate we multiply (2.28) by C’;ltC';”( ) and sum over j to arrive at

<u;¥,u;n>v*7v + OD<uirsz u?;> + <u;n7 utaz> + <ge( ) utm> <F7 uifn>V*7V‘ (231)
Thus

o (I (I + 2 (D17} + Ol = (), wl) + By (2.32)
Integrating from 0 to ¢ we obtain
11 13
Jlug" (D117 + fluz (D)) + QCD/O [uZo (TP dr = [Jui" || + Jlug,||* — 2/0 (Ge(uy'), ury)dr
+2/ ™Y e ydr. (2.33)

Using assumption (Ay), the boundedness property (2.24) and standard inequalities we obtain

i
I\U?(t)IIQJrHU?(t)H“rV/O lur(DPdr < lu])? + Jug,|I” + /Hu )|*dr
1 02
+ —/ 1E(7)|[3dr + (2.34)
6 Jo 6




where ¢ is chosen such that v = 2Cp — 36 > 0. By applying the Gronwall inequality we
can conclude that the sequence {||u]’||*} is bounded. Hence there exists a positive constant
C = C(u1,uo, ge, F, T') independent of m such that

[l (O + fluz ( H“rl// [l (7)||?dr < C. (2.35)

Now we can argue as in [1, 2, 3, 8] that there exists a subsequence, again denoted by {u™}, and
limit functions v € W"*(0,T;V) and g € L*(0,T; H), such that
u™ — u weakly in W"(0,T;V) (2.36)
Ge(u™) — § weaklyin L*(0,T;H). (2.37)
Using these convergences we obtain that u satisfies
(i, P)ve v + Cp Uiz, @r) + (Uz, 2) + (G, 02) = (Fy@)ve v (2.38)
for every ¢ € V and

u(0,2) =ug € V (2.39)
u(0,2) = uy € H. (2.40)

We note that as in [1] we have that
Y — <utt7 ¢’>V*,V
is continuous over D(0,7; V) equipped with the topology of L?(0,7;V) and thus by density
over L*(0,T;V). So uy € (L*(0,T;V))* = L*(0,T;V*) and since we already established that
u € WH*(0,T;V) we can conclude that v € #(0,T'). By [8, Remark 1, p. 555] this also provides
the additional regularity:
we C([0,T);V), wu € C([0,T]; H).
To conclude that u is indeed a weak solution of (2.25)-(2.27) we need to show that
(9, 92) = (9e(uz), ¢z) for every @ € V. (2.41)
This is achieved by establishing the strong convergence u'(t) — uz(t) in H as m — oo. Let

2™(t) = w"™(t) — u(t). Using u}* and wu; as test functions in (2.28) and (2.38), respectively and
integrating, we find

t
Il (O + Nl (W1 + QCD/ 17 (r)Pdr = fluf" = wa|l* + [Jug, — oo’

=2 [ (7)) = §(r), S +2 [ (B (), 22N vedr + Xult), (242)



where

Xat) = 2 [~ ualt). () = (ualt), w2 (1)) = 20 [ (aral(r) 7)) + ()

t loef) = [ e () una(r))dr = [ (), () dr

+ o2 <F(7’),u7(7')>d7'] . (2.43)

Now
2 [ ()~ () 2 = 2 [ (G () — el ()
2 [ elualr) — 3(r), 21, (2.44)
and

2 (302 () = el | <2 [ Eur () = w10 ()

L gt 2 ! 2
= [z @litar +8 [ llzn(r)|dr. (2.45)

IA

Substituting (2.45) into (2.42), we obtain
¢
1= (N7 + = (DI + (20D — 5)/0 27 (PP dr < Jluf — || + |lug, — vos|®

S e + 100+ o), (2.46)

where
Vlt) =2 [ (elwa(r)) = 3(), (i + 2 [ (P (), 2 (v vl

Choosing the same subsequence as before we have ||u]" — uy|| — 0, ||ug. — uoz|| — 0. Since
2™ — 0 weakly in L2(0,T; V) we also have that |Y,,(¢)| — 0. We can argue that |X,,(¢)| — 0 as
m — oo for a.e. t in the following way: using the convergences (2.36) and (2.37) in (2.43) we
obtain the integrated form of (2.38) with ¢ = u,;. The fact that u satisfies this equation gives
the required result. Now by applying the generalized Gronwall inequality to (2.46) we can see
that

|z7()||* — 0 for a.e. t €[0,T],

and we can conclude that
Ge(u™) — Go(u,) strongly in L*(0,7T; H).

This guarantees (2.41) and thus u is a weak solution of (2.25)-(2.27).
Uniqueness of the weak solution of (2.25)-(2.27) can be shown in the standard way (e.g.,
see [2, 3, 6, 8]).



We now prove that (2.16)-(2.18) has a unique weak solution on some interval [0,¢*]. By
the above remarks we know that the weak solution of (2.25)-(2.27) has the property that wu, is
continuous in ¢. Thus, there exists t* with 0 < ¢* < T such that

||uz(t) — uoz|| <1 forall te0,t7],

and therefore
Ge(uz (1)) = ge(ux(t)) for all te€0,t7].
Hence u is a weak solution of (2.16)-(2.18) on [0,?*]. Uniqueness of the weak solution can again
be shown in the standard way. This completes the proof of Theorem 2.1.
Now we use the additional assumption (A, ) to guarantee the existence of a global weak
solution.

Theorem 2.2 Under assumptions (A,,),(As.), (Af) the system (2.16)-(2.18) admits a unique
global weak solution.

m

Proof: As before we can define Galerkin approximations v (t) = Y-, C;(1)t; to solve (2.28)-
(2.30) with the nonlinear function g. instead of g.. By assumption (A, ) we can develop a similar
a priori bound:

i ~ ~
™ (O + [l (D11 + V/O [ure(r)IPdr < C' = Clug,ur, F,T,C1,Ca). (247)

Thus we can again obtain convergences (2.36)-(2.37). Additionally, as in [2, Lemma 5.1] we
can show that
ul(t) — uy(t) weakly in H.

(The arguments to obtain this convergence in [2] depend only on the a priori bound and the
general Arzela-Ascoli Theorem and are independent of the specific assumptions on the nonlinear
function.) Thus by the weak lower semicontinuity of the norm in H we obtain that

lua (DI < €.

So the proof can be completed exactly as before using the local Lipschitz property of g. in the
ball B\/E(O) in H.

3 The nonlinear problem with linear internal dynamics

In this section we consider the system
Ut — ODutzz — Uggy — (ge(uz))x — &1 — F(t) n V*

(3.48)
€1, + c1€1 = EQU(UI, Uty ( )
e1(0) =0 (3.50)
u(0,z) =up € V (3.51)
u(0,2) = uy € H, ( )



where

) guilug) i ug, >0
gv(uz‘7utz‘) - { gvd(ux) lf Uy < 0’

i.e., the viscoelastic response function is different when the strain is increasing and when it is
decreasing. The internal dynamics is interpreted in the sense that

t d
e1(t) = / e—c1(t=s) — gy (Ugp, Usy )ds. (3.53)
0 ds

Integrating (3.53) by parts we obtain
t
e1(t) = gu(us, us) _/ 016_61(t_5)gu(u;p7u517)d8
0

+ i: h(t = t)e™ (1) [gui(ua(tr)) — goa(ua(t))] (3.54)

k=0
where h is the Heaviside function and t;, &k > 1, are the points where, roughly speaking,
u(ty) = 0 with ¢ = 0 (e.g., see [6]). More precisely, as explained in detail in [5], [6] the
definition of g, is based on the a priori given set of points {{;} where the value of ¢, takes
alternate values g,; and g,4 on successive intervals [tg, t54+1). That is, in the system formulation
(based on experimental data) one is given functions g¢,; and g¢,4 and a sequence of points {t;}
so that g, is defined by the alternating values g,i, g4 on intervals [t, tx11). Thus in essence g,
depends on u, and ¢ and not on uy,. In what follows we will therefore use the notation g¢,(u,).

Definition 3.1 We define (u,e1) € U(0,T) x L*(0,T; H) to be a weak solution of (3.48)-(3.52)
if it satisfies

<Utt7 99>V*,V + OD<Uta:7 S‘Qz> + <uz7 9917> + <ge(uz)7 SOI> + <517 99$> = <F7 99>V*7V (355)

for every o eV
u(0,z) =up €V (3.56)
u(0,2) =uy € H (3.57)

and

¢
e1(t) = gu(u(t)) — /0 cle_cl(t_s)gv(ux)ds
K

+ 0 h(t = )™ T (1) g (ua(t) — gualua(t)]. (3.58)

k=0
We make similar assumptions on ¢,;, g,q4 as on g¢., namely,

(A;,) The nonlinear functions g,, g.4 satisfy the following local Lipschitz condition: let B,(0)
denote the ball of radius r centered at 0 in H and for some positive constants L%T and
L% we have '
1gvi (w) = gui (V)| < L, [[w = v]|

9



90a(w) = gua(v)|| < L, [l — o]
for all w,v € B,(0).

(Ay,) There exist constants C¢, C? C} and C¢ such that
lg.: ()l < Cillv]| + Cs,
lg.a ()l < CY|lo]l + €3,
for every v € H.

Theorem 3.1 Under assumptions (A,,), (Ay,), (Af) the system (3.48)-(3.52) has a unique local

weak solution.

Proof: The proof is essentially the same as the proof of Theorem 2.1, so we just outline the
crucial steps. First, as in [6] we consider the interval [0,%1]. Let P denote the Hilbert space
radial retraction onto the ball in H centered at wug, with radius 1, and define

ge(v) = g(Pv), (3.59)
Gvi(v) = gui(Pv), (3.60)
Gua(v) = gui(Pv). (3.61)

Thus §ge, gui, Guva satisfy the following global Lipschitz and boundedness properties:

§i(0) =3I < Lillo—oll, = evivd (3.62)
Gl < Cillw] + 3 (3.63)

Hence we can consider the problem

Uy — ODutavz — Ugze — (ge(ur))z
0 X o
= 5 Go(uz) — e g, (ug,) — cl/ e_“l(t_s)ﬁv(uz)ds =F(t) in V", (3.64)
x 0
u(0, ) = uo, (3.65)
u(0,2) = uy. (3.66)

We develop Galerkin approximations {u™} to (3.64)-(3.66). The additional terms in this system
as compared to (2.25)-(2.27) cause no difficulties in obtaining an a priori estimate similar to
(2.35) due to the properties (3.63). Thus the convergences (2.36)-(2.37) can be obtained and
the strong convergence

ur'(t) — ug(t) in H

can be established. One can also easily observe the additional regularity: v € C(0,¢1;V), u; €
C(0,t1; H), and also that e; € C(0,t1; H). By the continuity property of u, in ¢ there exists
t* > 0 such that for ¢ € [0,t*], ||uz(t) — woz|| < 1. Hence gj(us) = gj(uz), j = e,vi,vd on
[0,1*]. So u is a weak solution of (3.48)-(3.52) on the interval [0,¢*]. If t* = ¢; it makes sense

10



to consider the next interval [{1, 3], where local existence of a weak solution can be established
exactly as before. Uniqueness of the weak solution is shown in the standard way.

The existence of a global weak solution can be guaranteed under additional boundedness
assumptions.

Theorem 3.2 Under assumptions (A,.), (Ay,), (As.), (As,), (Ay) the system (3.48)-(3.52) ad-

mits a unique global weak solution.

Proof: First we consider the interval [0,;1]. We develop Galerkin approximations {u™} for
(3.48)-(3.52) as before and by the boundedness properties (A;, ), (As,) we can obtain an a priori
estimate like (2.47). The crucial step in the proof is that we can establish the convergence

uy(t) — ug(t) weakly in  H,

and thus guarantee that ||u,(¢)]|* < C'. Now the local Lipschitz property of ¢, and g, can be used
in the ball B\/E(O) to yield the strong convergence u”*(t) — u(t) in H as before. Uniqueness

can be shown in the standard way, and then the weak solution can be extended to the next
intervals [t;,t;41], ¢ > 1.

4 The nonlinear problem with nonlinear internal dynam-
ics

We consider the system

Ut — CDutzz — Upy — (ge(uz))z — €1z = F(t) in V-~ ( )
d

€1, + c1e1 = gin(e1) + EQU(UM Uty ( )
61(0) =0 (4.69)
u(0,z) =ug €V (4.70)
ut(ovw):ul EH, ( )

where the nonlinear functions g., g, are as in Section 3. We interpret the internal dynamics in
the sense that the internal strain ¢; solves

(1) = gulue0) + [ e g + giner)) ds

+ DAt = t)e T (=1 g (us () — gua(ua(t)] (4.72)

k=0

where again h is the Heaviside function and ¢;, k£ > 1 are defined as in Section 3. We suppose
that the nonlinear functions g., g., ¢;» satisfy global Lipschitz properties:

11



(Ar) For some positive constants L¢, L"" L*¢ and L™ we have

lge(w) = ge)l| < L — o] (4.73)
lgu(w) = ()] < L¥|w — o] (4.74)
lgua() = gua(@)| < L o] (4.75)
lgin(w) = gin(@)| < L™lw o] (4.76)

for all w,v € H.
We prove the following theorem:

Theorem 4.1 Under assumptions (Ar), (Ay) the system (4.67)-(4.71) has a unique global weak
solution .

Proof: Let us first consider the interval [0,¢;]. On this interval g, = ¢,; or g, = g,q depending
on the initial conditions and the forcing term. We define the following approximate sequence
{ulN eV} let {u™, e} be the unique weak solution of the system

<u1]5¥7 99>V*7V + OD<uz]£j:7 9‘91’> + <u]z\77 9900> + < 6( ) Q‘QI> + <€i\]7 991‘> = <F7 99>V*7V (477)
uN(0,2) =uy €V (4.78)
ul (0,2) =uy € H (4.79)

and
1
e = g, (u)) — e g, (uoy) —I—/0 e_cl(t_s clgu( M+ gin(eN 1)] ds (4.80)

where € = 0. The sequence is well-defined since (4.77)-(4.80) is the same as (3.55)-(3.58) except
for the known term ff e=1(=3)g, (eV=1(s))ds. It is easy to see that Theorem 3.2 extends to this
case as well. Also the assumption (Az) for g. and g, guarantees that (A, ),(A,,), (A4s.) and
(Ap,) are satisfied. Our goal is to show that {u™(¢)}, {uY (1)}, {eN(t)} are Cauchy sequences
(uniformly in ¢ < #7).

Let 4N = uN —uN=1 and éN = &V — "1, Then we have

(iigy, @) + Cpllgy, pu) + (0, 0o) + (ge(ul ) — ge(ud ™), a) + (&), ) = 0 (4.81)

With ¢ = 4 this gives

1d 2 2 e v ~ N
5 Ul ( P+ Il (1)) gy (DN < (L7 + L)l () (1))
tal’ | i () sl o) +Lm/ le? = (s) — e () dsllag()ll,  (4.82)

12



where L? = max{L", [*?}. Thus,

iy ()] +2Cp /t | @l (r)|)Pdr < 2(L° +Lv)/0t
+ 2c1L”/
+on [ /0 eV (s) = X =2(s)llds [, (r) | dr. (4.83)

ity (7)1, (7)lldr

T

iy’ (]| +

i, () dr

We estimate the second term on the right side as

2c1L“// 1@ (s)|ds

I ;
< ar ( a;V(T)HdT) +clmf(
03 0 0

t
iy (r)lldr [ |l (7)|ldr
0

¥ (7)||dr < 2c1L“/

2
Al (r)lar )

Lty gt t

< 6152 = Y ()P + e L8t | J|al(r)]Pdr (4.84)
1 0
The third term can be estimated similarly to yield

in 1 [T N1 N-2 » N Lmtl N=2(_1|2
oF, /0 /0 1eN=1(s) — eN=2(s)||ds|| 6. ()||dr < / H —N-2(r) |2
+ L"”(Sftl Am(r)u dr. (4.85)
0

Hence (4.83) gives

¢ ¢
O+ 1O +m [ 1 < [ 10
o [ 1Y () = )P, (1.86)
where o = M,M ;21 and 6 is chosen such that yuy = 2Cp — (L° + L")é} —

c1 Lv8%4, — L"6%1, > 0. By the Gronwall inequality we obtain

6 < e [ 1= () = X)), (4.57)
with g = pze2h, so
O+ O < o [ o /TueN—l(s)—e¥—2<s>r\2dsdr
o [ NN - YA P
< (et + ) /0 |V () =l Pdr. (488)
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Similarly,

1 (DI = (g (g (1)) = go(ug = (1), €7 (1)

)
el [ N g (5)) — g0l )))ds, Y (1)
H e g1 (7 (5)) = ginleNH3)ds, 2 (1)

Using similar techniques to those above, we obtain that for some constants us, pe, 7 inde-
pendent of N

(DI < pslld

t
ﬁiV(T)HQdTer/O le?’ ™M (7) = ex T (r)II*dr. (4.89)

t
iy (DI + po
0

Substituting (4.87) into (4.89) we find

OIF < ps [ X7 = X 2|, (4.90)

which together with (4.88) yields

t
O+ 1O + 1YW < [ 1) - V2 s))s
(psta)™
> /lﬁl‘ 1HL2 (0,t1;H)> (4.91)

where p = piapaty + piz + ps. This guarantees that {u ()}, {uY (1)}, {eN(¢)} are Cauchy se-
quences. Using the strong convergence of these sequences we can take a limit in (4.77) and
(4.80) to obtain the existence of a weak solution of (4.77)-(4.80) on the interval [0, #1]. Unique-
ness of the weak solution can be derived in the usual way. Now the weak solution can be
extended to the intervals [t;,%,41] as in [6]. Thus we proved that (4.77)-(4.80) has a unique
global weak solution.

Remark 4.1 [t is possible to establish the global existence of a weak solution under local Lip-
schitz properties and growth conditions on the nonlinear functions g.,Gui, Gud, Gin- Taking ul
as a test function in (4.77) and using standard inequalities we can show thal the iterates
{ulN(#)},{eN (1)} are bounded by a constant, independent of N. Thus the computations (4.81)-
(4.91) can be repeated in this ball using the local Lipschitz property of the nonlinear functions.
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