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Abstract

This research resulted in the development of the Discrete Element Method (DEM)
as a general, robust, and scalable computer technique for unified modeling of the
mechanical behavior of solid and particulate materials, including the transition from solid
phase to particulate phase. Applications include gross damage of structures due to
extreme load events, and high speed penetration of structures, involving materials such as
concrete, rock, and novel combinations of these. This computer approach is useful for
assessing vulnerability of military and civilian facilities such as nuclear power reactors,
transportation facilities, buildings, and so on, and for assessing efficacy of military
operations involving such structures. One of the primary accomplishments of this
research is the development of interelement potentials for the DEM method such that
accurate and convergent results are obtained.

1. Executive Summary

Although empirical equations for local damage give a reasonable prediction of
quantities such as depth of penetration, they do not describe the behavior of the concrete
structure. In order to improve the understanding of concrete subjected to severe loading, a
combination of experiments and numerical methods are needed for a complete analysis of
the structural behavior where the material fracture mechanisms can be studied in detail.

In this work, a discrete element method was developed as a general computer technique
for unified modeling of the mechanical behavior of solid and particulate materials,
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including the transition from solid phase to particulate phase. As a result of this research,
the following contributions in the field of computer modeling by the discrete element
method were made:

* A theoretical method was developed to determine DEM contact normal and tangential
stiffnesses as functions of known material properties so that convergence is obtained and
the correct elastic behavior is produced, depending on the arrangement of the DEM
elements in the discretization. For a simple cubic assembly, the normal and tangential
stiffnesses are

K,=K, =E't (1.1)

For a close-packed assembly and for an irregular assembly, the normal and tangential
stiffnesses are

1 *
”=:Eﬁj;th (1.2)

(-3v)p o 3)

K = K. - (1.3)
(+v*) Jrﬁ—v '

where E* and v are defined for plane stress and plane strain situations in terms of elastic

modulus E, Poisson's ratio v, and thickness ¢ by

plane stress plane strain

E
E' = E
s (1.4)
v’ = % LA L5
i-v) (1)

* Regarding contact failure for close-packed and irregular DEM assemblies, a novel
DEM contact behavior was developed in order to account for different failure modes.
That is, when failure is dictated by the material’s fracture toughness K, or the material’s
ultimate tensile strength o,,. The contact stress-displacement curve, shown in Figure

1.1, is proposed to be linear until the contact normal and shear stresses reach critical
values given by

where

crit _ Zﬁ crit (Rt)juh
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Figure 1.1 DEM inter-element constitutive behavior.

After the contact forces reach the values given by Equations 1.6 and 1.7, the contact
behavior is proposed to be plastic until the area under the stress-displacement curve for
the normal direction spring reaches the material’s fracture energy, given by

K2
G, =—L (1.8)
I E
The maximum normal displacement is then given by
K2 6 crit fcril
8" =M 4 H where 0" === 1.9
max O':r”E‘ 2 crit Kn ( )

» For purposes of selecting a time step size for integrating the equations of motion, a new
method was developed to accurately bound the maximum frequency of vibration in a
DEM model, which gives a more accurate prediction than the ad hoc approximation that
is usually implemented.

» The proposed DEM method was used to model penetration events on concrete targets.
To increase the accuracy of numerical analyses for projectile impact, nonlinear
compression behavior and strain rate effects were incorporated into the model.
Penetration depth, scabbing velocity, and ballistic limit values were obtained and
compared with available empirical formulae obtained from the literature and a reasonable
agreement was found.

The major findings are summarized below.

Convergence Studies

The proposed method used a DEM model of a unit cell of homogeneous material
to theoretically develop criteria for contact stiffness and failure so that convergence of
elastic response and damage response due crack growth is established for the
representative models considered in the study. The simulations showed very good
correlation (for both the elastic behavior and fracture) with theoretical results. However,
the convergence rate was not clear from the simulations performed, and it appears to
change depending on element arrangement (i.e. simple cubic, close-packed, or irregular).




Nevertheless, the use of theory to determine contact parameters was very beneficial
because it avoided the tedious procedure of model calibration for a given mesh
refinement.

Megaclustering and Fracture

The technique used for solid model development (megaclustering) proved to be
an effective method of introducing irregularity in the model, with no preferential
directions for fracture. The technique allowed for the mesh to have areas of stress
concentration where crack propagation would be more likely to occur. For the type of
element arrangement produced by megaclustering, the energy-based criterion (influenced
by strain rate effects) developed for contact failure proved to be more appropriate than a
criterion based purely in the material’s ultimate tensile strength or fracture toughness.

Penetration Simulations

The numerical results obtained in this work showed that DEM is a very useful
tool for simulating impact problems and projectile penetration into concrete structures.
Due to the strain rates produced by such events, material properties such as tensile
strength, compressive strength, and fracture energy increased considerably. Results for
penetration depth, scabbing velocity, and ballistic limit were in agreement with the
bounds given by the available empirical formulae, especially the BRL equations to
predict scabbing velocity and ballistic limit. However, due to the parameters chosen for
the model, global deformation and flexural cracking occurred in the models, which
influenced the level of damage in the target.

Contact Compression Behavior

The incorporation of nonlinear compression behavior to account for material
“densification” due to concrete compaction proved to have a considerable influence on
the structural response of a concrete target subjected to a projectile penetration. The
addition of this behavior allowed the medium to absorb energy in the material
immediately ahead of the projectile, allowing the numerical results to correlate better
with the empirical formulae. However, the implementation of this behavior increased the
ductility of the medium, influencing the amount of spalling at the front face and scabbing
at the back face of the target.




Detailed Summary of Work

2. Overview of the Discrete Element Method (DEM)

The discrete element method (DEM) discretizes a material using rigid elements of
simple shape that interact with neighboring elements according to interaction laws that
are applied at points of contact. The rigid elements are typically of circular or spherical
shape due to the simplicity and speed of the contact detection algorithm. However,
several researchers have applied the method using elements of polygonal shape (Heuze et
al. 1993; Kun and Herrmann 1996; Bolander and Saito 1997; Camborde et al. 2000;
Prochazka 2004).

The method is ideal for modeling many problems not accessible to traditional
continuum-based methods such as finite differences and finite elements since it has the
advantage of inherently capturing large deformations and solid phase changes which are
commonly found in granular media. Other applications involving material separation and
progressive failure phenomena include concrete structural failure, rock blasting
operations, and fracture of ceramic or other quasibrittle materials under high velocity
impact. In contrast to finite elements, the method is particularly attractive for modeling
geomaterials due to its ability construct a mesh that is not completely continuous and
homogeneous, as shown in Figure 2.1. Since the mesh is constructed by rigid elements
that interact with each other at points of contact, the DEM mesh has the capability of
easily constructing a medium with voids, imperfections and heterogeneities, as shown in
Figure 2.1(b), which are present in rock, concrete, asphalt, and other geomaterials.
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Figure 2.1 Finite element mesh (a) vs. discrete element mesh (b).

The analysis algorithm consists of three major computational steps: contact processing,
in which contact forces are calculated, element motion, in which element displacements
are computed, and contact detection, in which new contacts are identified and broken
contacts are removed. In a DEM analysis, the interaction of the elements is treated as a
dynamic process that alternates between the application of Newton’s second law and the
evaluation of a force-displacement law at the contacts. Newton’s second law gives the
acceleration of an element resulting from the forces acting on it, including gravitational
forces, external forces prescribed by boundary conditions, and internal forces developed
at interparticle contacts. The acceleration is then integrated to obtain the velocity and




displacement. The force-displacement law is used to find contact forces from known
displacements. This process is described in the following sections.

Element Interaction Models

When modeling a solid with no initial cracks (i.e., a nominally homogeneous
material), all contacts in the assembled medium are initially bonded with the behavior
that is schematically illustrated in Figure 2.2. During the course of a simulation, if a
bonded contact fails, according to criteria to be described, the contact becomes frictional
as shown also in Figure 2.2, if indeed the contact still exists (i.e., if the two DEM
elements are still being pressed into one another), or the contact is destroyed if the two
elements are separating. The computer implementation uses Rayleigh or proportional
damping (Cook et al. 1989), and therefore damping parameters are chosen as fractions of
critical damping at two desired frequencies.

bonded contact frictional contact
Figure 2.2 Discrete element interaction models for bonded and frictional contacts.

Bonded Contact

In the bonded contact, the normal spring acts in tension and compression, having
a linear elastic behavior between force and displacement, as shown in Figure 2.3(a). The
shear spring also has a linear elastic behavior, shown in Figure 2.3(b), with an elastic
constant that is usually lower than that of the normal spring.

F, F,
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Figure 2.3 Constitutive relation for bonded contact.

Frictional Contact

The normal-direction spring in the frictional contact shown in Figure 2.4(a) acts
only in compression. In the tangential direction, shown in Figure 2.4(b), the shear force
is monitored against a maximum possible value according to a Coulomb-type friction
law. The maximum shear force is defined as




|Fm| = -uF, +e @2.1)

where u and ¢ are the friction coefficient and the cohesion between the elements,
respectively. If the computed shear force F, is larger than F,™", F, is set to F,"*, allowing
the elements to slide.
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Figure 2.4 Constitutive relation for frictional contact.

Equations of Motion

After computing all the forces acting on an element, the displacement, velocities
and accelerations of each element are computed using the central difference method,
where details are given in Tavarez (2005) and Tavarez and Plesha (2006). Since explicit
integration is conditionally stable, the time step Ar must satisfy

\
(/1—52 -&, 2.2)

for linear viscous damping, where & is the fraction of critical damping at w,,,, which is
the highest natural frequency of the mesh. For practical problems, w,,, is rarely known
because it is expensive to determine. Therefore, an accurate upper bound for this
frequency is desirable.

At <

max

Frequency Bound
In this work, we have developed a new approach for obtaining an upper bound for

w,,. by computing the largest eigenvalue for a unit cell of DEM elements as shown in

Figure 2.5 This unit cell consists of seven rigid elements arranged in a close-packed
assembly. A complete mesh for a structure is then constructed by discretizing the
medium using a large number of these DEM unit cells inter-connected with one another.
Therefore, (a)max )e can now be obtained by calculating the largest eigenvalue of the DEM

unit cell structure. As will be shown in Section 3, the construction and analysis of this
DEM unit cell was also necessary to obtain the correct values for contact stiffness for
modeling elastic material behavior.

Mass and stiffness matrices were computed for the DEM unit cell shown in
Figure 2.5, which consists of 21 degrees of freedom (14 translational d.o.f. and 7
rotational d.o.f.). Values for the stiffness and mass matrices are given in Appendix A of
Tavarez (2005). Frequency analysis of the unit cell shown in Figure 2.5 provides

(wmax )e ~3.742,/K,, /m , where m is the mass of each DEM element and K, is the normal



contact stiffness. Substituting this frequency into Equation 2.2, we obtain an accurate
upper bound estimate for the critical time step Af_, as

At,, =~0.535[m/K, \1-&* - &, 2.3)

crit

DEMunit cell

A R Y

Figure 2.5. DEM discretization and unit cell used for computing maximum element
frequency.

3. DEM for modeling brittle materials

We use the concept of clusters to represent solid media. Clusters are formed by
bonding a number of circular-shaped DEM elements into a semi-rigid configuration. To
model a solid such as concrete, this concept can be extended to megaclustering wherein
the entire volume of a solid is modeled by bonding individual clusters together. Once the
model's geometry is established, boundary conditions are prescribed. This generation
scheme will allow for "molding" of structures or structural components of arbitrary
shape.

Determination of Inter-Element Normal and Shear Stiffness

The macroscopic linear elastic behavior of isotropic materials can be
characterized by two elastic constants: Young’s modulus E and Poisson’s ratio v, and the
physical parameters governing DEM element interactions have typically been determined
by the ad hoc process of validating a numerical simulation of a standard laboratory test
with an actual experimental result (Potyondy et al. 1996; Magnier and Donze 1998).
Unfortunately, if a new discretization for a particular problem is produced but with
different DEM element size (such as making element size smaller to improve accuracy of
the simulation), the calibration process would need to be repeated in its entirety to obtain
the new DEM parameters.

In our study we developed a new approach wherein we theoretically established
the interelement normal and tangential stiffnesses (and failure parameters, to be discussed
later) as functions of element size and commonly accepted elastic constants including
Young's modulus and Poisson's ratio. This was done by the analysis of a DEM unit cell of
material. Figure 3.1(a) shows an isotropic solid material element (with known elastic
modulus and Poisson’s ratio) subjected to uniaxial stress. The volume of material is then
modeled using the DEM unit cell shown in Figure 3.1(b). Using this unit cell, the normal
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and tangential spring constants can then be determined as functions of the known elastic
modulus and Poisson’s ratio of the material, and if needed the DEM element size.

(@) ) (©)
_ . S A RS RRRR.
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Figure 3.1 DEM unit cell for determination of inter-element spring constants.

The unit cell in Figure 3.1(b) contains 7 elements having 3 degrees of freedom per
element (two translations and one rotation). By requiring the deformation of this unit cell
to agree with the exact response for an isotropic material (see Tavarez 2005), we obtain
the normal and tangential stiffnesses to be

1 R
K, =mEt (3.1)

10 P B0 N
K, = (IH/,)K,,—‘/_B_(_V‘Z)Et (3.2)

where E* and v"* are defined for plane stress and plane strain situations by
plane stress plane strain

: E
E-  E o (3.2)
* v
v = v =) (3.4)

DEM Fracture Criteria

Different approaches have been used in the past to model fracture in DEM, where
most of this work considers a tensile force limit for contact failure (Zubelewicz and
Bazant 1987; Masuya et al. 1994; Bolander and Saito 1997; Brara et al. 2001; Mishra and
Thorton 2001). That is, if the tensile force in a certain contact exceeds a limit value, the
contact breaks and can no longer support tensile forces. This force limit is usually
determined by calibrating DEM simulation results to available experimental data from
tensile and compressive tests performed on a particular material. However, since force
transmission through a DEM medium can only occur via the inter-element contacts, the
number of contacts within a DEM medium will most likely affect the fracture behavior.
Therefore, this contact force limit is most likely to be element size dependent. Taking
into account this element size dependency, several researchers have considered a failure




criterion based on the tensile strength of the material, using a DEM model consisting of
two elements, as shown in Figure 3.2 (Sawamoto et al. 1998). The maximum normal
stress failure criterion states that failure occurs when the maximum principal stress
reaches the tensile strength of the material. The tensile force required to break the
contact is then determined by

-f;lll = Uult (2R)t (3'5)

where g, is the tensile strength of the material. As seen in Equation 3.5, this criterion
suggests that the tensile force required for contact failure is linearly proportional to the
DEM element radius R.

br

mm,;

2R

ARBERR

Figure 3.2 Tensile strength criterion for fracture.

Several researchers have imposed a limit in both the tensile and shear stress in the
contact, as shown in Figure 3.3 (Potyondy et al. 1996; Donze et al. 1997; Magnier and
Donze 1998). These thresholds are also selected according to shear and tensile strengths
determined in laboratory experiments.
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Figure 3.3 Failure surface for bonded contact considering tensile and shear limits.
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Fracture Toughness Failure Criterion

In what follows, we theoretically develop a contact failure criterion based on
DEM element size and known material properties. Since this method will eventually be
used to model extensive cracking and fragmentation in a medium, a criterion based only
on the ultimate tensile strength of the material would produce inaccurate results when
stress singularities arise due to flaws and cracking in the medium. The following
approach addresses this issue.

The results to be described here begin with the original work of Potyondy and
Cundall (2004). In their work, they postulate a breaking strength between the bonds of
contacting DEM elements, and then address the issue of determining the fracture
toughness of the material that is being modeled by the DEM discretization. The approach
described herein differs from theirs in that we view the fracture toughness as a
fundamental material parameter, and then attempt to use theory to develop expressions
for the behavior of bonds between contacting DEM elements. A main feature of such an
approach is that it promises to provide convergence. That is, it provides a precise
specification of how the contact behavior between DEM elements must change as a
function of element size so that convergence to the exact solution is achieved as the DEM
element size becomes smaller during model refinement. To model the progressive failure
of a solid due to crack growth, a local rupture criterion is applied to the bonded contacts
between interacting elements. The plane stress/strain near crack tip stress field for pure
Mode I loading in a homogeneous, isotropic, linear elastic material is given by (Anderson
1994):

Kl

Vo

Since crack growth is controlled by the stresses near the crack tip, i.e., at small 7, the first
term in Equation 3.6 gives the highest contribution to the stress field at the crack tip.
Therefore, keeping only the first term in Equation 3.6, the well known expression for the
stresses close to the crack tip, shown in Figure 3.4, is obtained.

o,(r.0)= F,(0)+ ZAnr””E-}"’w) (3.6)

o
~ Wi
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Figure 3.4 Crack tip stress field for pure Mode I cracking.

Restricting attention to 6 = 0, the stress o, is then

Ogp = 3.7
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The force required to advance the crack by breaking the contact at the crack tip of a DEM
model is determined by integrating the stress field over the DEM element diameter and
thickness (Potyondy and Cundall 2004), as shown in Figure 3.4. Therefore,

t 2R IZRK
7

f=[{099drdf ={{Eﬂ‘_”2dl’dt (38)

f=2K, t\/E (3.9)
M4

where fis defined in Figure 3.2. According to Irwin’s criterion, cracking will occur when
the value of K, reaches the material's fracture toughness K,.. Therefore, the required force
to break the contact is given by

fun = 2K1ct\/—‘1E (3.10)
T

As shown in Equation 3.10, material failure parameters in this approach are dependent on
DEM element size and the fracture toughness of the material. As described above, this
result is very significant because it prescribes exactly how the DEM interelement strength
must change as a function of element size so that convergence is obtained as element
radius R vanishes in the limit of mesh refinement.

4. Convergence of DEM simulations

Before discussing convergence of DEM simulations, it is instructive to briefly
discuss convergence of simulations performed using the finite element method (FEM).
In a typical FEM simulation, a problem is discretized using a user-selected number of
degrees of freedom. If the problem being modeled is elliptic (linear-elastic, small
deformations, no singularities such as point forces or cracks, etc.) then it is expected that
accuracy of results will improve as the model is refined by adding more degrees of
freedom, and that convergence to the exact solution will be obtained in the limit that an
infinite number of degrees of freedom are used. Fortunately and very importantly, there
are theoretical results showing that FEM simulations indeed do converge, and
furthermore the rate of convergence for most popular element types is known. In this
study we attempt to help establish similar results for DEM simulations.

We have studied, and established the convergence properties for DEM models for
applications to axial deformation of a bar, including the Poisson effect, and bending
deformation of a beam, for simple cubic arrangements of DEM elements, close packed
arrangements, and irregular (random) arrangements. In all cases, the interelement
potentials we have described in Section 3 give convergence as the number of DEM
element used in the discretization is increased. In this section, we present results for just
one of these studies, namely bending deformations using a simple cubic arrangement of
DEM elements.

Convergence for Elastic Response of a Cantilever Beam

A DEM model of a cantilever beam subjected to a sinusoidal tip load with
frequency w was considered. A closed-form solution for this problem can be obtained by
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idealizing the structure as a single degree of freedom (SDOF) model with natural
frequency equal to the fundamental natural frequency of a continuous cantilever beam

(ie., w, = 3.52,/ EI/ ML’ ). However, this solution assumes that only the fundamental

mode shape of the cantilever beam is excited by the loading conditions. Since higher
modes might not be insignificant for the degree of precision needed, the accuracy of the
DEM simulations for this problem will be studied by also comparing the DEM results
with simulations performed using finite element analysis (FEA). The finite element
analysis was performed in ANSYS, where the cantilever beam was discretized using
1440 four-node plane quadrilateral elements.

Figure 4.1 shows three DEM discretizations for the cantilever beam using close-
packed assemblies with 81, 729, and 6561 elements, respectively. The element size was
reduced by a factor of 3 for each refinement. All DEM simulations use the values for
normal and tangential spring stiffness given by Equations 3.1 and 3.2 with E = 1.2 GPa
and v = 0.3. The forcing frequency was chosen to be 0.2 times the value of the
fundamental natural frequency, and a fraction of critical damping of § =10 % was used
at this frequency. Figure 4.2(a) shows the tip displacement as a function of time for the
three models. Figure 4.2(b) shows the tip displacement obtained by the finest mesh along
with the SDOF solution and the FEA solution.

F=F sinot

Figure 4.1 DEM models of cantilever beam using a close-packed assembly.

As shown in Figure 4.2(b), there is also excellent agreement between the DEM solution
and both the SDOF solution and the FEA solution, and results also appear to converge to
a definite value in the limit of mesh refinement. However, since the ratio w/w” was

chosen to be greater for these models (w/w, =0.2), the importance of the higher modes

of vibration, which are neglected in the SDOF model, is greater and thus, the DEM
solution agrees slightly better with the finite element solution. Applying Richardson
extrapolation (Cook, et al 1989) to the results of these three DEM models provides an
estimate of 8, = 0.4754m as the steady state maximum amplitude of vibration that the
DEM models will converge to. The finite element solution provides
=0.4749 m which is within 0.1 % of the DEM extrapolated solution.

6FEM
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Figure 4.2 DEM tip displacement results and comparison with theoretical solution using
a close-packed assembly.

We also conducted convergence analyses for irregular (random) DEM discretizations.
While these results appear to show convergence, it is interesting to note that contrary to
the cases using simple cubic and close-packed arrays, the irregularly structured models
seem to become more flexible as the mesh is refined. Moreover, results appear to
converge to a solution that is lower (about 6.5%) than the FEA solution. Therefore, it is
concluded that when Equations 3.1 and 3.2 are used for an irregular DEM assembly,
results may underpredict the steady state response of the beam. One possible explanation
for why the models become stiffer as the DEM mesh is refined (for the simple cubic and
close-packed arrangements) could be that for each refinement, there are contact springs
that are closer to the top and bottom surfaces of the beam, increasing the flexural stiffness
of the model. This appears to have a greater effect on the behavior of the model than
adding more degrees of freedom, which usually results in making a model more flexible.
On the other hand, the addition of degrees of freedom appears to have a greater effect on
the behavior of the model when using an irregular arrangement, resulting in a numerical
solution that becomes “softer” as the mesh is refined.

Rate of Convergence

The purpose of having at least three different results for each element
arrangement pattern was to determine the rate of convergence for the DEM analysis.
Using the results of three meshes, the rate of convergence (if uniform) can be computed
using Richardson extrapolation (Cook et al. 1989) as

_ ¢1 _¢2 1
pe l°g(¢2 ) ) loga @D

where ¢, are, in this case, the values for the maximum steady state displacement for the
three different discretizations, and a is the element size reduction factor for each mesh
refinement, which must be a constant for each refinement. Table 4.1 shows the rate
convergence computed for the three different meshes used for representing the cantilever
beam.
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Table 4.1 Summary of convergence results for the three model lattices used.

Number of Particles Used
DEM Element
Arrangement Mesh 1 Mesh 2 Mesh 3 a p
simple cubic 90 810 7290 3 4.57
close-packed 81 729 6561 3 1.52
irregular 600 1200 2400 ‘/5 3.00

Unfortunately, the rate of convergence was different for each element arrangement
pattern. As shown in this table, the simple cubic element arrangement pattern showed the
largest rate of convergence with a value of p =4.57. However, this surprisingly large

value is no doubt not accurate and might be due to the fact that the use of only 90
elements in a simple cubic discretization is too coarse of a mesh for this problem to
provide a uniform rate of convergence. Consequently, the result of mesh 1 is
considerably lower than the results of meshes 2 and 3, yielding an apparent large rate of
convergence. The same argument can be conjectured for the rate of convergence
computed for the irregular discretization. On the other hand, the rate of convergence for
the close-packed discretization was p =1.52, which is a more reasonable value.
However, while these results are the first of their kind that we are aware of, considerable
additional work is still required to adequately understand the convergence properties of
DEM simulations of elastic response in solids.

Convergence for Damage Response due to Crack Growth

In order to study convergence when the response includes damage, three DEM
models representing a plate with a crack subjected to pure Mode I loading were
developed. The material modeled by these DEM meshes has Young’s modulus

E =29.7 GPa, Poisson's ratio v =0.3, and fracture toughness K, =1.0 MPa+/m . The

models, shown in Figure 4.3, consist of 256, 1024, and 4096 elements, respectively. As
such, the DEM element radius was reduced by a factor of 2 with each mesh refinement.
The edge crack (shown by the solid line at the center of each model), was created by
giving contacts along the crack the standard behavior described by the frictional contact
mechanism shown in Figure 2.4. That is, if two initially contacting DEM elements on the
crack surface are separated (which is the case for all of the simulations of the models in
Figure 4.3), there are no forces acting between them, while if they remain in contact, they
have Coulomb friction response.

As seen in Figure 4.3, these models were constructed using a simple cubic
assembly of elements. This type of assembly was chosen due to its simplicity for
theoretical analysis leading to Equation 3.10. Even though symmetry could have been
used for this type of problem to reduce the number of elements, it was decided to model
the entire problem in order to avoid the application of symmetry constraints to each of the
DEM elements located at the symmetry boundary. For the loading shown in Figure 4.3,
the displacements are such that the crack surface undergoes zero vertical displacement,
while the upper boundary moves in the upward direction and the lower boundary moves
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an equal amount in the downward direction. With a simple cubic assembly, the crack
plane is perpendicular to the direction of the far field stress and thus the force at the crack
tip is carried by only the normal direction springs ahead of the crack tip. For these
models, the normal and tangential stiffnesses were assumed to be

K, =K, =Et 4.2)

The results of the DEM simulations are shown in Figure 4.3, where the solid data points
represent values of the displacement and far field stress that cause the crack to propagate
unstably across the model. Very importantly, these results appear to converge and an
extrapolated value for the far field stress that causes unstable crack growth can be
computed. Applying Richardson extrapolation to the results of these three models
provides an estimate of o, =2.78 MPa as the value of the far field stress that the DEM

models will converge to.
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Figure 4.3 Convergence for crack growth in a DEM model of a cracked plate subjected
to pure Mode I loading; solid circles in the plot represent the value of far field stress and
displacement that cause unstable crack growth.

D

It is important to mention that an exact analytic solution for this problem (finite
width plate with an edge crack) does not exist. This is due to the difficulty of finding a
solution that satisfies the traction-free boundary conditions on the free edges. However,
several numerical techniques have been developed in order to obtain very accurate
approximate solutions to this type of problem. Such techniques include the Boundary
Collocation Method, Green’s Function Method, Asymptotic Approximation, and the
Finite Element Method, among others. A commonly used solution to this problem,
consisting of an finite width plate with an edge crack subjected to pure Mode I loading is
given by (Gross and Strawley, 1964; Brown and Strawley, 1966)

oy = % 1.12 - 0.23(a/c)+10.6(a/c} - 21.7(a/c} +30.4(a/c) ]' (4.3)
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where o is the value of the far field stress that causes the crack to propagate unstably

across the plate, a is the crack length (= 0.03125 m) and c is the width of the plate
(a/c =1/8 for all the models of Figure 4.3). Equation 4.3 was obtained by a least square
fitting to data obtained by the Boundary Collocation Method, which is accurate to within
0.5 % for a/c<0.6. Using the parameters cited earlier, Equation 4.3 provides

0. =2.61 MPa . The extrapolated DEM solution overpredicts the solution in Equation

4.3 by about 6.5 %. While part of this disagreement may be due to error in the
Richardson extrapolation and the error in Equation 4.3 itself, it is nonetheless clear that
the DEM results are converging to a value that is greater than the exact solution. As
mentioned before, the value of the tangential spring stiffness influences the result, and it
is likely that the use of Equation 4.2 for the tangential stiffness is inadequate. Another
potential reason for this disagreement involves the incorrect fracture energy release rate
obtained by using the present approach for contact stiffness and failure criterion. This
will be explained in more detail in Section 5. While we view the agreement between
DEM and the exact solution as good, additional work was needed in order to improve the
accuracy of the DEM results. Nevertheless, the proposed failure criterion based on the
fracture toughness of the material is superior and better suited for problems with existing
cracks than a criterion based on the material’s tensile strength, the results of which fail to
converge.

5. General criterion for DEM interelement failures

In Section 3, a criterion for contact failure was developed as a function of element
size and the material’s fracture toughness, and convergence results presented in Section 4
revealed that for a model of a plate with an edge crack (using a simple cubic assembly),
this criterion produced results which, while in very good agreement with the exact
solution, they appeared to converge to a far field stress that was slightly higher. This
section describes an enhanced failure criterion that appears to provide convergence, while
allowing for failure according to the maximum principal stress failure criterion for
uncracked media, and failure according to fracture mechanics for media with cracks.

Maximum Principal Stress Failure Criterion

In a DEM model with no initial flaws, where the fracture toughness is a constant
material property, a failure criterion based on fracture mechanics and the material’s
fracture toughness will be inappropriate and will overpredict a structure's strength
compared to the maximum principal stress criterion. Due to the similarity of the discrete
element method with molecular dynamics, the fracture toughness will vary depending on
the molecular (element) lattice. As such, since there are no guaranties that, in the limit of
mesh refinement, that a DEM model will have flaws greater than the critical crack size
for the material being modeled, hence we have developed an alternate criterion that
automatically allows failure to be dictated by the ultimate tensile strength of the material,
g, , or the material’s fracture toughness, K, as appropriate.

ult »

17




Fracture Energy Failure Criterion

Figure 5.1 shows a cracked specimen before and after an infinitesimal crack
extension Aa. The energy release rate in a homogeneous, isotropic linear elastic material
is determined by calculating the total work balance per unit thickness for extending a
crack a distance Aa. Therefore,

Aa 07

- ZIZ { [a”,da dx (5.1)

where &/ is the crack opening displacement at position x behind the crack tip after crack
extension Aa, and o, is a function of both position x and the crack opening displacement
é behind the crack tip.

y y
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Figure 5.1 Specimen configurations before and after crack advance Aa.

Solving Equation 5.1 and taking the limit as Aa — 0 yields the well known relationship
between energy release rate and stress intensity factor X,
Kj
E‘

In the present work, it will be assumed that the energy required to fracture an
isotropic material is independent of the mode of fracture. Therefore, the fracture energy
G, or critical energy release rate is then given by Equation 5.2 when the value of X,
reaches the material's fracture toughness K. That is,

I

In DEM, Equation 5.1 simplifies since Aa is equal to the element diameter and
therefore o), is averaged by dividing the contact force by the diameter and thickness of
the DEM element. Moreover, the crack opening displacement is also averaged over the
diameter of the element and consists of the stretch of the normal direction spring in the
crack tip contact. Therefore, in the present approach, the critical energy release rate is
obtained by computing the area under the curve of o,, vs.  at contact failure. For
instance, Figure 5.2 shows the o,, vs. 6 behavior when Equation 3.10 is used as a
criterion for normal contact failure, and computes the fracture energy for this condition.
As shown in the analysis in Figure 5.2, for a simple cubic assembly (K, = Et), the

G = 5.2)

(5.3)

obtained fracture energy will be
K,
' mE

(5.4)
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which is different from the result in Equation 5.3. More importantly, this result shows
that in order to have the correct critical energy release rate using Equation 3.10, the
normal contact stiffness at the crack tip must be reduced by a factor of .

g 1
. [’ 1 hos
f,,—ZkaJ; i 2 (2R)f <
O-L‘ --------------------------- d
: s=L
K

: R \”
S, [ZKkt\/;J \
Gr== - Kk"
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4RIK, X,

1
Gf =EO'C(S‘.

Figure 5.2 DEM Fracture energy computation using Equation 3.10 for contact failure.

Another important issue to consider is that the criterion in Equation 3.10 considers only
Mode I cracking, where there is no force being carried by the tangential spring at the
crack tip contact. Since in a two-dimensional simulation both Modes I and II can be
present simultaneously in a contact, especially for close-packed and irregular
discretizations, a fracture criterion should be developed to account for this type of loading
where both the normal and tangential springs at the crack tip contact are being deformed.

In what follows, both a DEM flaw-free medium and a DEM cracked medium will
be considered in order to develop a combined criterion for contact failure where the
ultimate tensile strength of the material is used together with the material’s fracture
toughness to model crack tip contact failures.

DEM Flaw-Free Medium

Returning to the DEM unit cell, shown in Figure 5.3, we can obtain both the
normal and tangential contact forces as a function of the applied uniaxial tensile stress in
the unit cell. When the applied stress approaches the material’s tensile strength o, using
the unit cell results for normal and tangential contact stiffness, these forces are

crit - (Rtbuh
i = V3 f) (5.5)
f;Ll‘ll = (Rt}’uh (1 3V ) (56)

20 -v"*

These critical forces for a close-packed assembly are analogous to the criterion leading to
Equation 3.5, which is only based on the tensile strength of the material.

For a flaw-free medium, contact normal and tangential forces will reach the
critical forces given by Equations 5.5 and 5.6 simultaneously and then the model will
reach the ultimate tensile strength of the material. Regardless of the material’s fracture
toughness, the contact forces should not exceed those given by Equations 5.5 and 5.6.
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Otherwise, the model’s tensile strength will be greater than the material’s tensile strength.
However, a DEM cracked medium presents a different scenario for ultimate failure, as
follows.

6
EENRNRRARY
\— material's tensile strength

Figure 5.3 DEM unit cell used for determination of critical contact forces.

DEM Cracked Medium

When cracks are present, the contact forces at the crack tip reach the critical
forces given by Equations 5.5 and 5.6 relatively quickly during loading since stresses at a
DEM crack tip become infinite in the limit of mesh refinement. However, it is proposed
that complete failure should not occur before the contact achieves the material’s fracture
energy G,. In order to satisfy this condition, the stress-displacement curve shown in
Figure 6.7 is adopted for both the normal and tangential contact at the crack tip.

o, contact tensile
A critical stress contact shear
crit critical stress
ol | SO .
/o Gy /i
_:-'(a) E : - 5 (b) § ‘ : R 5
crit " oo crit .t
Sn (Smax 5t 6ma.\

Figure 5.4 DEM contact stress-displacement behavior and fracture energy.

As shown in Figure 5.4, the contact springs (both normal and tangential) behave linearly
up to the point where the forces satisfy Equation 5.5 or Equation 5.6 for the normal and
tangential springs, respectively. Once these forces are reached, the behavior is proposed
to be plastic until the area under the stress-displacement curve for the normal spring,
shown in Figure 5.4(a), reaches the fracture energy of the material, given by Equation
5.3. It should be noted that the area under the curve in Figure 5.4(a) is the minimum
energy lost, as energy may also be stored in the tangential direction of the contact.
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The maximum normal displacement 8. is obtained by computing the area under

max

the curve in Figure 5.4(a) and equating this to the material’s fracture energy G,
Therefore, the maximum normal displacement is given by

K2 6cril
8, =—t—+—— .
max ;‘rIIE* 2 (5 7)
where
cnl
o,crll = ull )
" 2Rt T4y )( NG ) ©8)
i fcril RU . .
6 it _ Jn - ult Y 59
et SR Gy) (5.9)

Therefore, Equation 5.7 gives a displacement-based failure criterion, where the maximum
displacement is a function of the material’s tensile strength, elastic modulus, Poisson’s
ratio, and fracture toughness. Since contact stresses are computed using the radius of the
elements in contact, the failure criterion is also element size dependent. It should be
noted that if unloading occurs in the contact after it has reached the plastic range, the
slope of the unloading force-displacement curve will be equal to the initial slope (K, and
K, for the normal and tangential stiffnesses, respectively).

Convergence

To test the failure criterion given in Equation 5.7, three DEM models representing
a plate with a crack subjected to pure Mode I loading were developed. The models,
shown in Figure 5.5, consist of 1172, 4713, and 18899 elements, respectively, arranged in
a close-packed assembly. The material modeled by these DEM meshes has elastic

modulus E =29.7 GPa, Poisson's ratiov = 0.3, ultimate tensile strength o, =3.44 MPa,

and fracture toughness K, =1.0 MPa+/m (i.e., concrete).

The results of the DEM simulations are also shown in Figure 5.5, where the
hollow data points represent values of the far field stress that cause the crack to propagate
unstably across the model. As mentioned before, using Equation 4.3 for this problem
gives o, =2.61 MPa. Applying Richardson extrapolation to the results of these three

models provides an estimate of o, =2.595 MPa as the value of the far field stress that

the DEM models will converge to, which is within 0.5% of the solution in Equation 4.3,
which could be in error by as much as 0.5%. Therefore, the proposed criterion for
contact failure appears very promising.

Applying Equation 4.1 to the results of the three models, a convergence rate
p =1.8 (almost quadratic) was obtained, which is a reasonable value and is encouraging.
The models shown in Figure 5.5 were also developed with no initial crack, and all three
models essentially carried a maximum stress of o =3.44 MPa (independent of model
discretization), which agrees with the value of the ultimate tensile strength of the material

o,,. Therefore, the proposed method provides excellent results regardless of the type of

failure (fracture toughness or ultimate tensile strength).
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Figure 5.5 Convergence for crack growth in a DEM model of a cracked plate subjected
to pure Mode I loading; hollow data points in the plot represent the value of far field

stress and displacement that cause unstable crack growth.
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6. DEM for modeling concrete penetration

One of the objectives of our study was to use DEM for modeling impact and
penetration events, with special interest on concrete members. An important issue is the
influence of strain rate effects on material properties such as the tensile strength and
elastic modulus, among others. Thus, material properties determined from static tests may
not be applicable to impact situations without adjustments to account for the rate of
loading. In a study of fracture of concrete under uniaxial impact tensile loading, Zielinski
(1982) observed that the elastic stiffness, stress levels at failure, and deformation capacity
were all higher when compared to static uniaxial tensile tests. In fact, for dynamic
loading, the ultimate compressive strength can be more than doubled (Bischoff and Perry
1991), whereas the ultimate uniaxial tensile strength increases by multiples of 5 to 7 at
very high strain rates (Ross et al. 1996). In Tavarez (2005), we review some of the
literature on strain rate effects with special interest in concrete. We also review models
that have been proposed by Tang, Malvern, and Jenkins (1992), Dilger, Koch, and
Kowalczyk (1984), Mikkola and Sinisalo (1982), and Soroushian, Choi, and Alhamad
(1986), among others.

Tensile Strength

Far less dynamic testing has been carried out on concrete in tension than in
compression (Fu et al. 1991), and therefore there is insufficient data available to allow the
derivation of reliable empirical expressions. Suaris and Shah (1983) suggested that rate
sensitivity is considerably more pronounced in tension and flexure than in compression.
Tedesco et al. (1989) carried out split Hopkinson bar tests on direct tensile specimens and
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observed ratios of dynamic to static strengths of up to 3.6 at strain rates of approximately
8 s'. Weerheim and Reinhardt (1989) carried out tensile loading of notched specimens
using a split Hopkinson bar and found a ratio of dynamic to static tensile strength of

approximately 2 at a stress rate of 10* MPa/s, rising sharply to 4.5 at 2x10° MPa/s.
Brara et al. (2001) conducted experiments on concrete specimens in tension using a new
experimental technique base on the Hopkinson bar principle and the spalling
phenomenon, and concluded that for strain rates of approximately 120 s, the dynamic
tensile strength exceeds the quasi-static value by approximately an order of magnitude.
John et al. (1987) proposed a model to predict the dynamic tensile strength for concrete
using three material parameters: fracture toughness K, critical crack tip opening
displacement CTODc, and Young’s Modulus E. In their approach, K, and E are
assumed to be rate independent while CTODc is assumed to decrease exponentially with
the logarithm of the relative strain rate. The dynamic tensile strength is then computed
using the following formula

KZ
o, ), =1.4705 ——f
( ult ),/ E'(CTODC )d 6.1
where the dynamic critical crack tip opening displacement is calculated as
(crob,), = CTOD, - %" (6.2)
F- 1og(—f’:—) (6.3)
)

where the static critical crack tip opening displacement CTOD, = 0.0005 in. and the
quasi-static strain rate £, =30x107 s™.

Elastic Modulus

The limited data available suggest that increases in Young’s modulus with strain
rate are far less pronounced than increases in compressive strength. Using the data
available from the literature, Williams (1994) proposed the following formula for the

ratio of dynamic to static Young’s modulus (Ecd /E. )
Ecd

=1.325¢ %% £26x107° (6.4)
However, due to the very wide scatter of the data, Williams stated that this relationship
should be treated with caution. The following section will discuss the actual equations
that were incorporated into our DEM method to treat strain rate effects.

Strain Rate Effects Formulae used in the DEM Method

Although more work needs to be done in developing models for rate of loading
effects for concrete, and in testing applications of these to DEM models, we have
employed the following. Klepaczco (1990) proposed a criterion to determine the dynamic
tensile strength of concrete based on experimental results relating fracture stress o, and

critical loading time ¢_,. This criterion was proposed for high strain rates (higher than 20
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s) and has the advantage of being based on some physical notion taking into account the
thermally activated rate process. The criterion in the integral form is expressed as

a(T)
= (S’L(t—)) dt 6.5)

o'ull

where 0,,, ¢,,, and a(T) are three material constants at a given temperature . The
parameter « is temperature dependent and is related to the activation energy of material
separation. The parameter ¢, is the longest critical time at which o (tm )= o, » Where

ult *

o, 1s the quasi-static tensile strength. For a linearly proportional loading, the integral
form of the criterion in Equation 6.5 takes the following form

1
GF = [(a + 1)tCOE‘O-uII ]'_lﬁ Sm (6~6)

where E is the Young’s modulus (under static conditions) and € is the strain rate.
According to experimental results on wet concrete, Brara et. al (2001) found these
parameters to be: a =0.95 and ¢, = 50 ps. Comparing the results of Equation 6.6 with

data obtained from the literature, it was found that the formula fits very well to the
majority of experimental data and can also be used for smaller strain rate values (but
greater than 0.75 s™') and still obtain reasonable results. As such, the expression in
Equation 6.6 was adopted in our work to obtain the dynamic tensile strength as a function
of strain rate for strain rates greater than 0.75 s”'. For smaller strain rates, the static value
of tensile strength was used. In our DEM code, the normal strain rate is computed at
each time step using

(6.7)

where v is the relative velocity vector between two DEM particles, n is the normal unit
vector, and L, is the initial center-to-center distance between bonded DEM elements.

It is well known that enhancement of elastic modulus due to strain rate effects is
less significant than that of tensile strength and compressive strength (Williams, 1994;
Koh et al. 2001). We use the following expressions to determine the dynamic elastic
modulus as a function of strain rate in compression and tension, respectively (CEB,
1988):

0.026

Ey _ (f_) (6.8)
Ec.r 80

£ ., 0016

S (i) (6.9)
El.\' 80

where the subscripts c, ¢, d, and s denote compressive, tensile, dynamic, and (quasi-)
static states, respectively. The quasi-static strain rate is taken as &, = 30x107°s™,

It has also been observed that the fracture toughness K. increases as the rate of
applied load is increased. Mindess et al. (1987) conducted experiments on single-edge
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notched concrete beams loaded dynamically in 3-point bending, using an instrumented
drop weight impact machine in order to study the effect of the load rate on the fracture
energy and fracture toughness of the material. It was found that fracture toughness
values and fracture energies under impact loading were much higher (approximately an
order of magnitude) than those obtained in static tests.

An experimental investigation of mode I fracture of concrete was conducted by
Lambert and Ross (2000) under the dynamic loading of a split Hopkinson pressure bar.
Fracture specimens in the form of notched-cavity splitting tension cylinders were
subjected to stress wave loading that produced strain rates up to 10 s'. A very good
linear relationship between fracture toughness and strain rate was found over a strain rate
range of 1 s to 8 s'. The fracture toughness increased by a factor of approximately 3
when the strain rate increased from 1 s to 8 s'. However, this linear trend was not
suggested as a global trend for the entire strain rate spectrum. It is important to mention
that the analysis of fracture toughness data under high rates of loading, or under impact
loading is complex. For instance, the dynamic fracture toughness is dependent on the
crack velocity, which may vary considerably as the crack propagates. Therefore, due to
the lack of available data for K, at higher strain rates, it was decided instead to apply
strain rate effects to the material’s fracture energy G, since the failure criterion is
primarily based on this quantity. As such, it was also assumed that the material’s
dynamic fracture energy changes in the same fashion as the dynamic ultimate tensile
strength as a function of strain rate. That is, we used the following expression to
determine the dynamic fracture energy as a function of strain rate

G,) -£6,) (6.10)

where the factor & is the ratio of dynamic to static tensile strength for the given strain
rate. This factor is directly applied to the computed static fracture energy (Equation 5.3)
rather than to K|, so that strain rate effects do not become excessive from computing the
square of the dynamic fracture toughness in order to determine the dynamic fracture
energy using the relationship in Equation 5.3.

DEM Compression Behavior — Material Densification

One aspect of our DEM method that has not yet been described is the
compression behavior of the medium. Often, the possibility of compression failures in
DEM models is neglected, with the main emphasis being on tensile failures. However, in
problems involving penetration, extremely high compressive stresses are produced, and
the possibility of compressive failure should be included. Experimental results have
shown that concrete targets exhibit what is referred to as “medium densification” for the
material ahead of the projectile, which is another local source of energy absorption.
There is likely a considerable amount of energy that is absorbed due to this phenomenon
and this is incorporated to some extent into the method we have developed.

To illustrate our DEM approach, consider the bonded elements shown in Figure
6.1(a). The cluster, which is attached to a boundary that could be a fixed support or
another DEM element, consists of elements of initial radius #,. As shown in Figure 6.1,

the initial (equilibrium) distance between the elements is given by d;. Therefore, contact
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or separation is determined by comparing the sum of the radii of the elements with the
initial distance d, (for bonded contacts).

When the contact is in compression, the normal-direction spring behaves in a
linear fashion using the normal spring stiffness given in Equation 3.1 for plane stress and
plane strain. However, we propose that when the contact achieves a critical compressive
stress, the equilibrium distance d, will then be changed to d; , as shown in Figure 6.1(b),
and the contact normal force will behave in a plastic manner in order to account for non-
recoverable material densification. Therefore, further compression (or separation) of the
contact will be measured relative to this new equilibrium configuration given by d; . In
essence, the DEM elements are allowed to overlap. Once the medium has reached total

compaction, the contact will behave again in a linear fashion, with a normal contact
stiffness equal to its initial stiffness.

Figure 6.1 DEM treatment of compressive behavior and material densification.

Rather than allowing DEM elements to overlap, the densification process described here
could also be implemented by allowing the element radius to reduce from #, to r*, as

suggested in Figure 6.1(b), and increasing the element density in order to conserve the
element’s mass. However, this latter approach was not used in our study because
reduction of the element radius will most likely affect other contacts associated with this
element (i.e., contact separation will occur, as shown in the figure). In the approach we
use wherein some DEM elements are allowed to overlap, other contacts associated with
the element (which may not be at a critical compressive stage) will be unchanged, and
material densification will automatically be obtained because of the overlap between
appropriate DEM elements. This technique is also, in some aspects, analogous to
establishing a nonlinear equation of state (EOS) for the medium.

In order to determine the compressive critical contact stress, the results obtained
from the DEM unit cell shown in Figure 5.3 were used. The critical normal force given

in Equation 5.5 is then applied, using the value of maximum compressive strength f.

instead of the maximum tensile strength o, . The critical compressive contact force
(f,,"'")c is then given by

crit - (Rt)f: V_‘_
(; )”—21—1/' ﬁ—ﬁ) (6.11)
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Since the material’s compressive strength is now included, this parameter will also
be dependent on the strain rate € . The dynamic compressive strength will be determined
using (CEM, 1988)

1.026

Ju (£ for  és10 5~ 6.12)
fcx 80

fc'd _ - \/3 . -1

el _y(g) for  £>10 s (6.13)
s

where

log y = 6.15a - 0.492 (6.14)
a=1/6+3£14) (6.15)

and f, is the static compressive strength in MPa at a quasi-static strain rate

g, =30x107° s'. Figure 6.2 shows the ratio of dynamic to static compressive strength

of concrete as a function of strain rate. The strain rate has a smaller effect on
compressive strength than on the tensile strength of the material.
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Figure 6.2 Strain rate effect on ultimate compressive strength.

It is important to mention that due to the lack of available data for validation, it
was not clear how to choose or determine the parameters that govern the compaction
phase. These parameters are the compaction stiffness and the strain at full compaction
and they were chosen somewhat arbitrarily. As mentioned before, is was assumed that in
the compaction phase the contact behaves plastically and it will continue to do so until

the distance between the element centers (given by d;) reaches the DEM element radius

R. When this happens, it is assumed that the material has reached full compaction and
therefore, it will continue to have a normal stiffness equal to the initial stiffness K, .
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Additional work is required to validate the parameters chosen for this compaction phase
and to gain more confidence in their use. Nevertheless, as will be shown later, it is an
essential phenomenon to incorporate in a high speed penetration event, especially for
concrete members.

7. DEM simulation of concrete penetration

This work developed a new approach for using the DEM method to assess local
damage to concrete structures subjected to extreme loading. Currently, damage to
reinforced concrete structures is evaluated mainly with empirical formulas derived from
various types of impact tests. DEM simulation results are presented here with a
comparison with available formulas for predicting penetration, scabbing thickness, and
perforation thickness in plain concrete targets. A limitation to our numerical DEM
implementation is that real life penetration events are three dimensional, whereas our
DEM model is presently two dimensional. Tavarez (2005) describes a calibration process
so that qualitative comparisons can be made between our two dimensional simulations
and the available empirical formulas. We note that for two dimensional simulations, no
calibration process is needed, but unfortunately, data for structure behavior under
extreme loading conditions is not as well developed. For more accurate applications to
projectile penetration, a three dimensional implementation of our results is needed, and
this may be considered in future work.

Figure 7.1 shows the DEM model used for simulating penetration events. The
concrete member consists of 12000 DEM elements and is cantilever-supported at both
ends. The model has a length of 96 in. with a depth of 30 in., and is assumed to be in
plane strain conditions. Therefore, all quantities (density, contact stiffness, stresses, etc.)
are computed per unit thickness. The projectile is steel and consists of 351 DEM
elements and was constructed using a close-packed assembly. The projectile has a width
(diameter) of 3.5 in. and its density was determined so that its total weight is 15 Ibs. The
following subsections provide more details about the properties used for both materials.

' N

| 96 in !

Figure 7.1 DEM discretization for modeling penetration in a concrete member.

Concrete Target
Table 7.1 shows the DEM model details and material properties for the concrete
target used in all simulations. All material properties reported in this table are quasi-static
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values. Such values are then used in the code to compute the respective dynamic
properties as a function of strain rate.

Table 7.1 Concrete properties used in DEM model.

Densit DEM element Elastic | Poisson's| Tensile |Compressive] Fracture
) ¥ radius modulus ratio strength strength toughness
(R) (E) (v) (our) {r'e) (Kic)
2.17x10™ Ib-s%in 0.25 in. 3,122 ksi 0.2 300 psi 3000 psi | 910 psi-s™?
Steel Projectile

Table 7.2 shows the DEM model details and material properties used for the steel
projectile used in the analysis. It is important to mention that even though the projectile
is deformable, it does not have failure capabilities incorporated for it. This was decided
due to the relative coarse mesh (resulting in a somewhat rough surface) and assembly
used for the projectile model. Moreover, experimental data show that most projectile
damage phenomena is due to thermodynamic issues and therefore, since this aspect of
deformation was not incorporated into the model, it was decided not to include erosion or
failure of the projectile.

Table 7.2 Projectile properties used in DEM model.

Effective DEM element Elastic Poisson's Projectile Projectile
Density radius modulus ratio diameter weight
(p) (R) (E) (v) (D) w)
2.43x10° Ib-s%in 0.15544 in 29,000 ksi 0.3 35in 151b

DEM Analysis Procedure
The velocity of the projectile was varied in the numerical simulations, and
depending on the impact velocity, different behaviors were observed. However, in order
to compare the numerical results produced by the 2-D DEM code used in this work with
available empirical formulas for penetration, scabbing, and perforation of concrete
targets, which are based on 3-D experimental results, the following approach was taken.
After creating the DEM model shown in Figure 7.1, it was necessary to calibrate the
model to determine the effective tensile strength and fracture toughness of the medium.
According to the available empirical formulas and the given material properties, for the
model considered here, the penetration depth should be approximately 5 inches for a
projectile velocity of 500 ft/s, without producing scabbing in the back face of the target.
As such, the initial velocity of the projectile in the DEM model was set to V, = 500 ft/s,
and the calibration parameter was varied until a penetration depth of approximately 5
inches was obtained. Once this calibration was completed, subsequent simulations were
carried out with no recalibrations. In the subsequent simulations:
» The velocity of the projectile was gradually increased in order to produce scabbing,
and then penetration in the concrete target.
* The scabbing and penetration velocities obtained from the numerical simulations
were then compared to the results obtained using the available empirical formulae.
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According to the DEM model parameters, the required time step for the simulations was

approximately At =8.9x10™® seconds. Due to the number of elements in the model, an
average running time of approximately 15 hours on a Unix workstation was needed for a
simulation time of approximately 10 ms, which was the simulation time required for a
complete penetration event.

DEM Simulation Results

Figure 7.2(a) shows the projectile at its maximum depth of penetration, which is
approximately 5.05 in., and Figure 7.2(b) shows the vertical position of the projectile tip
as a function of time. The hollow data point indicates when the projectile impacts the top
of the beam. ‘
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Figure 7.2 Projectile maximum penetration and tip vertical position as a function of
time.

The figure also shows the depth of the beam, which is shown in the scale of the figure
(i.e., 30 in.). As seen in Figure 7.2(a), there were flexural cracks resulting in global
deformation in the target, which makes it difficult to determine the actual penetration
depth relative to the target. Nevertheless, the results obtained in this simulation agree
very well with the NDRC prediction.

Figure 7.3 shows the results of the different available empirical formulae to
determine the scabbing thickness 4, of a concrete target subjected to projectile

penetration. As defined earlier, the scabbing thickness is the minimum thickness required
to prevent scabbing in a concrete target.

Since it is a lengthy process to construct DEM models of different thickness, it
was instead decided to determine the minimum projectile velocity required to induce
scabbing in the model. In Figure 7.3, we see that for the 30 in. target thickness of our
DEM model, the predicted values for scabbing thickness vary from 750 ft/s to 1250 ft/s.
In order to determine the “scabbing velocity” in our DEM model, the projectile velocity
was increased in intervals of 50 ft/s until scabbing was produced in the model.
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Figure 7.3 Calculated scabbing thickness (using data listed in Tables 7.1 and 7.2).

Figure 7.4 shows scabbing in the DEM model for a projectile impact velocity of
V, =850 ft/s. There was no scabbing at a velocity of 800 ft/s (only a large flexural crack
that leaded to ultimate fracture of the beam), and therefore it was determined that the
“scabbing velocity” for the model is 850 ft/s which falls within the predicted values of
the available empirical formulas. The snapshot at Stage 4 in Figure 8.8 shows the
maximum penetration in the model.

Stage 1 (t =0 ms) ' 7 /Stage 2 (t = 1.0 ms)

-4Stage 3 (t = 2.67 ms)

Figure 7.4 Scabbing in concrete target.

The scabbing velocity for the model agrees very well with the prediction of the BRL
formula, which predicts a scabbing velocity of V, = 760 ft/s. We note that this equation
is the only one among the many empirical formulas that does not rely on the penetration

depth x, to determine the scabbing thickness. According to the BRL equations, the
scabbing thickness is determined from the perforation thickness. It is important to
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mention that the addition of the nonlinear compression behavior decreases the degree of
brittleness in the model and therefore scabbing is produced at a higher velocity than
might actually occur. As seen in Figure 7.4 (stage 4), considerable penetration occurred
in the model before any scabbing was present, suggesting that when it did occur, there
were other factors that contributed to it such as overall deformation and the development
of flexural and shear cracks.

Figure 7.5 shows the results of the different available empirical formulae to
determine the perforation thickness 4, of a concrete target, where the perforation

thickness is the minimum thickness required to prevent perforation in a concrete target.
Analogous to the procedure done for scabbing, it was decided to determine the minimum
velocity required to completely perforate the target. This velocity is also known as the
ballistic limit. In Figure 7.5, we can see that for a target thickness of 30 in., the predicted
values for perforation thickness vary from approximately 1000 ft/s to 1500 ft/s. Figure
7.6 shows a DEM model where full perforation was obtained. As in the procedure done
to determine the scabbing velocity, the projectile velocity was increased in intervals of 50
ft/s until full perforation was achieved in the model. This was obtained for an impact
velocity of 1150 ft/s, which again falls within the range of predictions from the available
empirical formulas. '

The perforation velocity obtained from the DEM simulations agrees particularly
well with the prediction from the BRL equation (shown in Figure 7.5), which directly

predicts the perforation thickness without using the penetration depth x . or the scabbing
thickness #,. Although the results obtained from the simulations presented in this

chapter are very encouraging, additional work is required so that more confidence is
gained in the use of the proposed approach to predict local damage in concrete targets
due to projectile impact.
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Figure 7.5 Calculated perforation thickness (using data listed in Tables 7.1 and 7.2).
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Figure 7.6 Perforation in concrete target.
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