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Abstract—The ObjectAgent system is being developed to 
create an agent-based software architecture for autonomous 
distributed systems. Agents are used to implement all of the 
software functionality and communicate through simplified 
natural language messages. Decision-making and fault 
detection and recovery capabilities are built-in at all levels.  

During the first phase of development, ObjectAgent was 
prototyped in Matlab. A complete, GUI-based environment 
was developed for the creation, simulation, and analysis of 
multi-agent, multi-satellite systems. Collision avoidance and 
reconfiguration simulations were performed for a cluster of 
four satellites.  

ObjectAgent is now being ported to C++ for demonstration 
on a real-time, distributed testbed and deployment on 
TechSat 21 in 2003. The present architecture runs on a 
PowerPC 750 running Enea’s OSE operating system. A 
preliminary demonstration of using ObjectAgent to perform 
a cluster reconfiguration of three satellites was performed in 
November 2000.  
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 1. INTRODUCTION 

There is an increasing desire in many organizations, 
including NASA and the Department of Defense, to use 
constellations or fleets of autonomous spacecraft working 
together to accomplish complex mission objectives. Some of 
the many advantages of using distributed satellite systems 
include greater performance, lower cost, and improved fault 
tolerance, reconfigurability and upgradability. Coordinating 
the activities of all the satellites in a constellation is not a 
trivial task, however, and the use of software agents for this 
task is a promising technology. 

Princeton Satellite Systems is developing the ObjectAgent  
(OA) and TeamAgent systems under Air Force Research 
Laboratory (AFRL) Phase II Small Business Innovative 
Research (SBIR) funding to create an agent-based software 
architecture that is designed for autonomous, distributed 
systems. Agents are used to implement all of the software 
functionality and communicate through simplified natural 
language messages. Decision-making and fault detection and 
recovery capabilities are also built-in at all levels.  

The TeamAgent system applies ObjectAgent to the problem 
of controlling multiple cooperative satellites. TeamAgent 
enables agent-based multi-satellite systems to fulfill complex 
mission objectives by autonomously making high- and low-
level decisions based on the information available to any 
and/or all agents in the satellite system. Simulations of 
multi-agent systems for multiple satellites have been 
developed using TeamAgent to illustrate collision avoidance 
and reconfiguration for a four-satellite constellation. Agents 
were used to monitor for collisions, reconfigure the fleet, 
and optimize fuel usage across the cluster during 
reconfiguration. 
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Previous papers have addressed the Matlab prototyping of 
ObjectAgent/TeamAgent and have described the research 
into agent organizations for distributed satellite control [7] 
[8]. These papers have also described the various multi-
agent, multi-satellite simulations that have been assembled. 

This paper describes the status of the real-time C++ 
development of ObjectAgent/TeamAgent. The first section 
describes the motivation for using software agents to control 
distributed satellite systems. It also describes the philosophy 
behind the development of ObjectAgent. The second section 
provides an overview of the agent architecture as 
implemented in Matlab. The third section describes the C++ 
implementation of this architecture and compares it to the 
Matlab prototype. Particular emphasis is placed on the 
message processing and the multi-threaded nature of the 
C++ agents. The effects of real-time operating system 
selection are also discussed. The fourth section describes a 
simple demonstration of real-time ObjectAgent. Finally, the 
current status of the ObjectAgent port from Matlab to C++ 
is presented and directions for future work are provided. 

 2. AGENTS FOR SPACECRAFT AUTONOMY 

The use of software agents is becoming increasingly popular 
as a method to improve the level of spacecraft autonomy. 
There is no consensus on the exact definition of a software 
agent, but a standard definition is given by Weiss [9]:  

An agent is a computational entity that can be viewed 
as perceiving and acting upon its environment and 
that is autonomous in that its behavior at least 
partially depends on its own experience.    

Bradshaw [3] and Knapik and Johnson [6] provide good 
overviews of the many different definitions used by 
researchers in the fields of artificial intelligence (AI) and 
computer science. 

The major benefit of agents is their autonomy. Intelligent 
agents can be given high level goals and then autonomously 
determine the appropriate actions to fulfill these goals. This 
can include interaction and collaboration with other agents. 
Agent based software is a form of distributed programming 
and as such, it maps naturally onto the requirements of 
distributed spacecraft [7]. Part of the purpose of the 
development of ObjectAgent is to research and demonstrate 
those areas where agent-based software can benefit 
distributed satellite systems. 

For example, it is easy to imagine each spacecraft having a 
higher-level agent that coordinates its activities with those of 
other spacecraft. This is important for those proposed 
missions that require multiple cooperative satellites to 
achieve their objectives, such as space-based 
interferometery. The agents and not the ground operators 
will be responsible for activity coordination.  

Additionally, cluster-level agents will enable operators to 
command the entire cluster as a “virtual” satellite by 
decomposing high-level commands or goals into individual 
spacecraft commands that can be sent to the appropriate 
spacecraft-level agents. This can be done without the 
operator having detailed information about the state of each 
spacecraft. Although the use of software agents may not be 
the only method to enable a fleet of spacecraft to work 
together, it appears to be very promising, especially for 
larger clusters of satellites. 

In addition to enabling more complex cooperation among 
satellites, there are many potential benefits to using agents 
onboard individual spacecraft. These advantages are 
analogous to those for clusters since a similar decomposition 
of intelligence and software functionality into hierarchical 
agents can be performed on each spacecraft. These benefits 
include: 

• Greatly increasing the level of autonomy onboard the 
spacecraft by flowing down high level tasks; 

• Making flight software flexible and easy to adapt 
because the agents can be dynamically loaded; 

• Improving the reliability of spacecraft and fleets of 
spacecraft by incorporating fault detection at both high 
and low levels; and 

• Reducing the need for large ground support 
organizations. 

 
NASA’s Deep Space 1 Remote Agent Experiment 

The first demonstration of agents used for control onboard 
spacecraft was NASA’s Deep Space 1 (DS-1) Remote Agent 
Experiment [1]. During the experiment in May 1999, the 
spacecraft was sent a list of goals instead of the usual 
detailed sequence of commands to execute. The Remote 
Agent (RA) software generated a plan to accomplish these 
goals and then executed this plan, monitoring for hardware 
faults during execution. Despite some minor glitches, the 
Remote Agent Experiment was a complete success and 
achieved 100% of its validation goals [2]. 

The RA software is installed as a layer on top of the regular 
flight software, an approach that requires the agent to 
process a lot of information and to be very intelligent. The 
complexity of using this approach to space flight software 
was evident when most of its capabilities were stripped off 
prior to launch and replaced by the more conventional Mars 
Pathfinder software [5]. (Additional capability was uploaded 
after launch.) 

ObjectAgent Software for Autonomous Spacecraft 

The ObjectAgent Software Architecture goes beyond the 
DS-1 remote agent experiment by using agents as the basis 
of the system rather than as a top layer. This is a key feature 
that distinguishes ObjectAgent from other agent 



architectures. Each agent is a multi-threaded process and 
this architecture allows decision-making, including fault 
detection and recovery capabilities, to be built in at all levels 
of the software. This in turn alleviates the need for 
extremely intelligent high-level agents and simplifies the 
software interfaces.  

A fundamental component of ObjectAgent is the flexible 
messaging architecture that provides a reliable method for 
agent-to-agent communication both on a single processor 
and across networks. Each message has a content field 
written in natural language that is used to identify the 
purpose of the message and its contents. Natural language 
was selected so that users could easily send messages or 
commands to the agents as well as understand the messages 
being sent between agents. The latter is important for 
debugging purposes. Because all agent-to-agent 
communication is through messages, it does not matter 
where the agent is located. Thus, this architecture can 
encompass multiple processors on one spacecraft or multiple 
processors on different spacecraft and on the ground. 

Two additional advantages of using agents for all software 
functionality are increased flexibility and robustness. 
Robustness is improved in ObjectAgent because all agents 
are endowed with a set of basic survival skills. Each agent 
has knowledge of its skills, inputs, and outputs, and is 
capable of automatically configuring itself upon launch.  It 
will automatically seek out other agents who can provide it 
with the inputs it needs as well as other agents who need its 
outputs. In this sense, an ObjectAgent system is self-
organizing.  

These same survival skills enable agents to be dynamically 
added to a system to improve the system capabilities or 
recover from a failure. The flexible and reconfigurable 
messaging architecture provides a common software 
interface that is vital to this ability to dynamically add or 
change software. Since all software is implemented as agents 
with the common messaging interface, all software can be 
easily replaced or updated. This messaging architecture also 
helps the system to recover from failures. 

Another key feature of ObjectAgent is it allows the user to 
specify the complexity of the agents and agent organizations 
and does not constrain users to a predefined notion of an 
agent. The user performs the decomposition of the system 
into agents. This allows greater flexibility, extensibility, 
upgradability, and compatibility with existing systems. If the 
user desires a system that runs traditional flight software, 
this software can be encapsulated in a single agent. This 
agent would then be the only piece of software running on 
the flight computer. If the user wishes to make use of the 
advantages of an agent-based system, however, she can 
distribute the traditional flight software functionality among 
multiple agents in any fashion she desires.  

Although artificial intelligence techniques are not built in to 
the ObjectAgent core, the OA system architecture allows AI 
techniques to be incorporated at any or all levels of the 
software. These techniques can even be added after the 
system is in operation, which is not possible with today’s 
flight systems. 

Finally, special attention has been paid to developing a 
system that is easy-to-use and simplifies the flight software 
creation process. ObjectAgent is an integrated approach to 
agent and flight software design, making extensive use of 
simplified natural language and graphical user interfaces.  

The following sections provide more detailed information 
about how this ObjectAgent architecture is implemented in 
both Matlab and C++. 

  3. OBJECTAGENT MATLAB ARCHITECTURE 

ObjectAgent was first prototyped in Matlab for a number of 
reasons that benefit both OA architecture developers and 
end-users. 

For the OA architecture developers, the use of Matlab 
enabled the proposed agent architecture to be rapidly 
prototyped and tested. An integrated development 
environment (IDE) for ObjectAgent was easily created using 
the Matlab GUI functions and this design environment is 
relatively platform independent, limited only by the 
platforms that Matlab supports. 

OA end-users can quickly verify their agent and algorithm 
designs as well as take advantage of the wide variety of 
Matlab-based software and toolboxes in existence, including 
PSS’ Spacecraft Control Toolbox. In the future, OA users 
will be able to automatically convert their Matlab agents into 
C++ agents that can be deployed in real-time systems.  

There are however, some limitations to using Matlab for the 
simulation of agents. Matlab is a single-threaded application 
so agents cannot be multi-threaded. Message passing must 
be emulated since Matlab does not have built-in support for 
messaging. These limitations preclude the use of Matlab for 
multi-agent system performance verification.  

Despite these limitations, the use of Matlab for rapid 
prototyping and platform independence has made it a very 
beneficial tool for the development of ObjectAgent and 
multi-agent systems. 

Matlab Agent Architecture 

Matlab agents are composed of skills that are written as 
Matlab m-files. Generally, each skill corresponds to one 
basic function, has inputs and outputs, and triggers one or 
more actions. There is a specific format for these skill files 
and each skill contains a data structure field that describes 



the assigned priority, the update period, the input and output 
interfaces, and the communication method. 

The primary action for each skill is an update action that is 
run every time the agent invokes the skill. This update action 
can make use of any Matlab function or m-file and dictates 
the skill functionality. Typically, the update function will 
process the skill inputs and generate the appropriate outputs 
that will be used by other skills within the same agent or sent 
to other agents through messages. 

There is no limit to the number of skills an agent can possess 
and there is a set of common skills required by each agent. 
One such skill is the RegisterSkill. Each agent must register 
with its home “Message Center” before it can send or 
receive messages or perform any task processing. The next 
two subsections describe this messaging architecture and 
task processing in greater detail. 

Messaging Architecture 

This section describes in greater detail the format of the 
messages used in the Matlab version of ObjectAgent for all 
agent communication. Note that this is also the format for all 
agent tasks (described in the next subsection.) The message 
format presently in use is proprietary and uses simplified 
natural language.  

The important characteristics of the messages used in 
ObjectAgent are: 

• Each message has a content. The content tells the agent 
what the message is about. It is a string composed of a 
subset of natural language structured in one of two 
formats: 

1. verb / noun phrase / preposition / noun phrase  
e.g. “receive data for Agent(Skill)” 

2. verb / noun phrase / preposition / noun phrase / 
preposition / noun phrase  
e.g. ‘find source for data for Agent(Skill)’ 

There are presently 14 verbs understood by the agents 
and users can expand this list. 

• Each message has data associated with it. The data can 
be anything that one agent wants to send to another. For 
example, this could be the parameter values that are 
being sent to another agent (such as in the first example 
above) or it could be the name of the desired 
information (such as in the second example.)  

• Each message is time-tagged. This makes it easy for 
agents to determine if the data is valid. 

• Each message has fields indicating to and from whom 
the message is being sent. 

• Each message has a priority associated with it. Higher 
priority messages are processed first. 

This message format can easily be adapted to other industry 
formats. 

As mentioned previously, Matlab does not provide built-in 
support for message passing so the messaging between 
agents must be emulated. This is achieved by the creation of 
a “message center” that controls the flow of messages 
between agents. Every agent must register with its home 
message center before it can send or receive messages or 
perform any task processing. The message center is 
responsible for routing messages between agents.  

Figure 1 shows how this message passing architecture is 
implemented in Matlab. A collision avoidance agent on one 
spacecraft is sending a MoveCollAvoid message 
(MoveCollAvoid is a user-defined verb used in [7] and [8]) 
to an orbit maneuver agent on another spacecraft. This 
message is routed by the message center on the first 
spacecraft (MC1) to the message center on the second 
spacecraft (MC2) and then on to the appropriate agent. 
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Figure 1.  Example of the Matlab Messaging Architecture 
 
Agent Task Processing 

Matlab agents are single-threaded and their actions are 
based on the processing of their task lists at every time step. 
Tasks and messages have the same data structure, making 
for a fast and clean implementation and enabling tasks to be 
sent to the agents in messages. Each agent dynamically 
maintains its own task list and at every time step, the entire 
task list is processed in the manner shown in Figure 2.  
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Figure 2.  Agent Task Processing 

 



First, the agent’s incoming messages are added to its task 
list. This new task list is then prioritized and the 
tasks/messages with highest priority are processed first. The 
tasks are processed through natural language processing in 
which the verb determines the actions taken by the agent. 
These tasks, when processed, can cause a message to be 
created and sent, and/or actions to be taken by the agent that 
changes its internal state.  

Figure 1 shows an example from [8] where the task “update 
CollAvoidSkill” creates the message “MoveCollAvoid 
sc_4” (m1) and sends it to the orbit maneuver agent because 
a possible collision involving spacecraft #4 was detected. 
The verb function MoveCollAvoid is then processed by the 
orbit maneuver agent, which causes the update action of its 
OrbitManeuverSkill to be run. Additionally, message m2 is 
transmitted back to the collision avoidance agent 1. 

Creating Matlab Agents 

The ObjectAgent Matlab design environment uses an 
integrated graphical user interface to speed development. 
Figure 3 shows the primary interface. The user can design 
and simulate agents from this window.  

 

Figure 3.  Agent Developer GUI 
 
Agent skills are available in a library database making it 
easy to reuse code. Skills are added to an agent by selecting 
them from a checkbox list in the top right-center of the 
window. Skill parameter values can be changed from their 
default values in the bottom half of the window. 

Similar GUIs are available to specify agent communications, 
relationships, and error reporting. 

 4. REAL-TIME C++ OBJECTAGENT ARCHITECTURE 

The overall objective of our research is to use ObjectAgent 
to control real-time, distributed systems. This requires that 
the OA architecture be ported to a real-time programming 
language. C++ was selected because its object-oriented 
nature meshes nicely with the OA design philosophy. It was 
selected over Java and other object-oriented languages 
because it is more commonly used for the control of real-
time systems and because of our greater experience with 
C++. 

After selecting the programming language, it was necessary 
to select a target real-time operating system (RTOS) and 
embedded processor. The current baseline processor is the 
PowerPC 750 and the current architecture is designed to run 
on top of Enea’s OSE operating system. The PowerPC 750 
was selected because of its high speed and memory 
capabilities and because a rad-hard version will soon be 
available from Lockheed-Martin. 

RTOS Selection 

Enea’s OSE was selected as the operating system for 
ObjectAgent for several reasons. OSE is a message based 
operating system designed for distributed architectures with 
many features that lend itself to the ObjectAgent 
architecture. These features include multi-threading, very 
good process and memory management, and dynamic 
process loading, and are discussed in greater detail below. 

Message based RTOS simplifies the design of distributed 
applications by enabling designers to implement their 
applications using high-level constructs such as state 
transitions and message passing. They typically provide 
built-in safety features that make it ideal for distributed 
applications that require high availability and security. 

Unlike traditional embedded operating systems, which 
utilize lightweight tasks to partition complex activity and 
semaphores to establish communications, the messaging 
RTOS use memory-protected processes and message-based 
communications. This approach makes it easier to 
conceptualize complex applications and distribute 
programming responsibilities across large development 
teams. The messaging RTOS model also makes it easier to 
compartmentalize critical operations and data, thereby 
enhancing reliability and security. 

The following subsections describe how OSE differentiates 
itself from traditional kernels like VxWorks. We selected 
OSE as our initial target RTOS because these features better 
support distributed systems and simplify the work that must 
be done by our developers. 

Process Management—Processes may be grouped into 
blocks, each with its own memory pool. While other kernels 



may schedule tasks running in a shared memory 
environment, OSE knows what resources each owns, 
including such things as file descriptors, sockets, as well as 
all memory resources, and supervises to avoid conflicts. If 
tasks die, the kernel can reclaim the resources automatically. 
Additional memory features are discussed in the Memory 
Management Unit (MMU) support section. 

Interprocess Communication—OSE is a true message 
passing OS which features full central processor unit (CPU) 
or destination transparent messaging. In this sense, it is 
designed for distributed processing applications. The 
messaging schema naturally supports fault tolerant and/or 
high availability designs, in the following fashion: 

• Processes send messages to other processes 

• Processes dynamically bind to other processes 

• OSE supervises all communications between processes; 
if delivery fails, or a process dies (or is killed), all 
connected processes are notified so they may take 
corrective action. One corrective action could be to 
establish a connection with a backup process (or board) 
or messages may be dynamically re-routed to alternate 
destinations. 

Error Handling—Error handling is managed by the process, 
block, or system error handlers. This simplifies code 
development, and offers a hierarchical approach to error 
management. This will facilitate agent error handling. 

MMU Support—Integrated MMU support means, among 
other things, processes or blocks (groups of processes) can 
be partitioned into MMU segments. Depending on the level 
of security desired, messages passed between processes 
could either be copied between segments or accessed by 
reference. The latter will be important when large amounts 
of data must be manipulated. This would reduce the need for 
shared memory pools.  

Dynamic Software Upgrades—Software can be dynamically 
upgraded even to the individual process level, without 
stopping the rest of the system. This is enabled by the fact 
that processes bind (and detach) from one another 
dynamically. This feature is important for adding and 
removing agents dynamically. 

Agent Architecture 

Each C++ agent is an object of a specific Agent subclass. A 
generic C++ Agent class has been created and all Agent 
subclasses inherit from this class. The generic Agent class 
contains a number of the various survival skills required by 
each agent, such as the abilities to communicate through 
messages and to seek for input sources. The Agent class 
(and all of its subclasses) contains an Update function in 
which all processing for the main agent process takes place. 

C++ agents are composed of skills that are written as C++ 
classes. Generally, each skill acts in the same fashion as 
those skills found in the Matlab agent architecture. Each 
skill class contains data fields that describe the assigned 
priority, the update period, the input and output interfaces, 
and the communication method. 

The primary action for each skill is an update function that is 
executed every time any agent invokes the skill. This update 
function can make use of any C++ function or class and 
dictates the skill functionality. The update function operates 
in the same fashion as the update function described in the 
Matlab agent architecture. 

The skills of an individual agent can be grouped into 
activities. Each activity runs in a separate thread (or OSE 
process) and the threads of one agent share common 
memory. The activities are defined in the specific Agent 
subclasses. 

There is no memory sharing between agents. All 
synchronization of agents is by messaging. Within an agent, 
other mechanisms may be used. 

OSE Agent Implementation 

Figure 4 shows the C++ implementation of an agent in OSE. 
An agent consists of three primary OSE processes — the 
Main Agent process, the Dispatcher process, and the 
Collection Center process — and any number of additional 
skill or activity processes.  

The Main Agent process is the first process to run when an 
agent is initialized. This process is responsible for creating 
the common objects required by the agent and for starting 
the other processes. Upon initialization, the Main process 
first creates an instance of a specific Agent subclass. The 
Main process then creates numerous instances of a Queue 
class that serve as inboxes and outboxes for agent 
communications. These queues store Message objects and 
are discussed in greater detail in the next subsection.  

After the creation of the message queues, the Skill objects 
used by the agent are created. This is followed by the 
creation of a table mapping input names to the appropriate 
skills. The Collection Center and Dispatcher processes are 
then created and are passed pointers to the appropriate 
queues. Inboxes are used by the Collection Center to pass 
incoming messages to the appropriate processes. The 
outboxes contain messages that are generated by the agent 
and that are to be sent out by the Dispatch process.  

Finally, any other skill or activity processes are created. 
Each skill process has an inbox and an outbox associated 
with it. After initialization, the Main Agent process 
continues to run and repeatedly calls the agent object’s 
update function. The Main Agent process is a prioritized 
process. 



Messaging Architecture 

OSE provides built-in support for message passing through 
the use of signals. Signals are passed from one OSE process 
to another and the signal types are user-definable. A C++ 
Message class has been defined for agent messaging. The 
important characteristics of this Message class are the same 
as those described in the Matlab agent architecture although 
some modifications have been made to the implementation.  

The first modification is that messages are no longer 
processed based on priority. They are processed on a first in, 
first out (FIFO) basis, which is partly due to the way OSE 
handles signals. The second modification is that there is no 
broadcast capability at present, again because of limitations 
with OSE. We will implement some form of broadcasting 
ourselves. 

Two additional fields have also been added to the class to 
identify the verb and the type of data being sent. Since all 
message data is sent as a character string, it is necessary that 
the receiving agent know the type of data being sent in order 
to be able to reconstruct it. The verb has been stripped out of 
the message content and placed in a separate enumerated 
field to reduce the need for an agent to use natural language 
processing (NLP) to understand each message. Simple 
messages such as “request” or “transmit” will not require 
NLP although more complex messages will still make use of 
this function. The user will still interface with the agents 
through natural language by virtue of a pre-processor that 
will convert Matlab-type OA messages into C++ objects and 
vice versa. We had contemplated using a different OSE 

signal type for each verb but that would have made the 
architecture too OS-specific. 

Figure 4 also shows the messaging architecture as 
implemented in C++. Each agent creates Dispatcher and 
Collection Center processes that handle outgoing and 
incoming messages, respectively. When these processes are 
created, pointers to either the agent’s inboxes or outboxes 
are sent to each. The queues are used as shared memory 
between the agent processes and its Dispatcher and 
Collection Center.   

To send a message, an agent or skill process first creates a 
Message object and places this object in its outbox to be 
sent by the Dispatcher. Dispatcher processes always send 
their messages to another agent’s Collection Center process. 
Since each message contains a destination, the Dispatcher is 
able to find the destination Agent’s Collection Center 
process and send the outgoing message (via an OSE signal) 
to it. 

Unfortunately, message objects cannot be passed within an 
OSE signal. Therefore, when a Message object is generated 
by an Agent to be dispatched, it first must be decomposed 
by the Dispatcher into simple data types such as character 
buffers, integers, and floating point values. These 
decomposed values can then be stored and sent within OSE 
signals.  

When this type of signal is received by a Collection Center 
process, a new message object is created by the Collection 
Center with the appropriate data fields. Based upon the verb 
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Figure 4.  C++ Agent Architecture 



and content, this message is then stored in the inbox queue 
of the appropriate agent process. If the verb is neither 
“request” nor “transmit”, the message is passed to the Main 
Agent for further processing. Otherwise, the Collection 
Center compares the name of the input/output (contained in 
the message content) with the table mapping inputs and 
outputs to skills to determine the inbox(es) into which the 
message should be placed. The agent and skill processes 
poll their inboxes periodically, dequeue incoming messages, 
and execute the code indicated by the message object.  

This architecture enables all natural language processing to 
be localized within the Main Agent process and invoked 
only when necessary. For the simple demonstrations 
presented to date, NLP has not been required.  

Agent Processing 

Unlike the Matlab architecture in which an agent is single-
threaded and processes a task list every time step, C++ 
agents are multi-threaded and their actions are based on 
priority within the operating system.  

Agents are designed to carry out certain activities. These 
activities are implemented as OSE processes and spawned 
by agents. Activity processes accomplish their goal by using 
one or more instances of particular skills. Skill subclasses 
inherit from a generic skill class, which also has an Update 
function in which all processing is accomplished.  

Activities invoke their Skill objects' Update functions in the 
appropriate order to accomplish their final objective. An 
activity process can be implemented so that once processing 
is complete, it halts and restarts from the beginning when 
signaled to restart.  

Another possible implementation of an Activity process is to 
allow it to run continuously in parallel with all other 
processes. These Activities can be stopped and started when 
necessary. 

Issues that are still being addressed include the prioritization 
and coordination of the multiple agent processes. Deadlock 
may be addressed through the use of some of the basic 
survival skills discussed earlier. Agents are designed to 
time-out when they do not receive information from other 
agents in a timely fashion and to either report this condition 
or take corrective action internally, if possible. Watchdog 
agents will be created to monitor agent CPU and memory 
usage and to shut down those agents that are not behaving 
properly. These issues will be addressed in greater detail 
throughout the next year.   

Creating C++ Agents 

Currently, C++ agents are created by hand. Every agent 
class inherits from a base Agent class, allowing the user to 

focus on adding the desired features to the new agent 
without having to redefine the basic agent functionality.  

The use of similar Matlab and C++ function libraries 
simplifies the conversion of Matlab agents to C++. In the 
future, a GUI will be created to perform this conversion 
automatically given user preferences. 

 5. SIMPLE REAL-TIME OA DEMONSTRATION 

The first significant demonstration of the real-time 
ObjectAgent architecture took place in November 2000. 
During the demonstration, ObjectAgent/TeamAgent was 
used to control the reconfiguration of a cluster of three 
satellites. 

Demonstration Scenario 

The real-time demonstration scenario is a variant of one of 
the reconfiguration scenarios performed initially by Schetter 
[7] and [8] in the Matlab/Simulink environment. This 
scenario was later modified for implementation in the pure 
ObjectAgent Matlab design and simulation environment. 

One cluster of three satellites was simulated. The reference 
orbit was a circular orbit with a semi-major axis of 7100 km 
and an inclination of 28 degrees. The three spacecraft were 
placed in an elliptical trajectory relative to the reference 
orbit. The orbits are described by the force free solution of 
Hill’s equations relative to the reference orbit. The free 
elliptical solution was chosen such that: 

1. The free elliptical trajectory traced out a 2:1 ellipse in 
the vertical plane of motion (x-z plane where the 
coordinate frame used is the local-vertical, local-
horizontal (LVLH) frame of the reference orbit — x is 
in the direction of the velocity vector, z is nadir 
pointing, and y completes the right-handed coordinate 
system); 

2. The projection of the free elliptical trajectory was a 
circle in the local horizontal plane (x-y plane) of radius 
5 km; and 

3. The free elliptical trajectory was inclined ±26.57° from 
the local horizontal plane (x-y plane.) 

The spacecraft were equally distributed about the ellipse. 
The initial orbital elements of the three spacecraft are given 
in Table 1. 



Table 1.  Demonstration Orbital Elements 

 S/C #1 S/C #2 S/C #3 

Semi-Major Axis 
(km) 

7100.003 7100.007 7100.007 

Eccentricity 3.520e-4 3.524e-4 3.524e-4 

Inclination (degs) 28.000 28.035 27.965 

Longitude of 
Ascending Node 
(degs) 

-0.09 0.04 0.04 

Longitude of 
Perigee (degs) 

-179.92 -59.92 59.84 

Mean Anomaly 
(degs) 

180.00 59.88 -59.88 

 

One spacecraft was selected as the Cluster Manager and was 
in charge of maintaining the proper spacecraft formation. 
Upon receipt of a ground command to change the radius of 
the projected formation circle, the Cluster Manager decided 
where each spacecraft should move to by optimizing fuel 
usage across the cluster. 

These new positions were sent to each spacecraft and they 
would then plan a series of burns to move themselves to 
those locations. 

Testbed Environment 

The real-time testbed that was used for the development of 
the demonstration is shown in Figure 5.  

 

Figure 5.  ObjectAgent Real-Time Testbed 
 
The chassis on the upper-left side of the figure houses the 
three PowerPC 750 boards. Each board represents one of the 
three spacecraft and runs OSE and the real-time 
ObjectAgent software. All communication among boards 
and the simulation and development computers uses 
Ethernet. 

The simulation of the three spacecraft resides on the 
PowerMac G4, located in the lower right of the photo. The 
simulation is written in C++ and simulates the attitude, orbit, 
and hardware dynamics of each spacecraft as well as the 
space environment. The boards “sense” and “act on” the 
environment by communicating with the simulation through 
sockets.  

The development of the real-time ObjectAgent architecture 
is done on the Windows NT computer seen in the 
background. This computer downlinks OA agents onto the 
boards and monitors OSE processes in real-time. Ground 
commands are sent to the spacecraft by sending OSE signals 
from the NT machine to the real-time boards. 

A similar testbed has been set up at the Air Force Research 
Laboratory (AFRL) at Kirtland Air Force Base and is 
described in greater detail in Zetocha and Brito [10]. The 
AFRL testbed was used for the actual demonstration. 

Software Agents 

For the demonstration, each spacecraft board runs three 
agents — a sensor agent, a thruster agent, and an orbital 
trajectory agent. The Cluster Manager spacecraft has an 
additional reconfiguration agent onboard. 

The sensor agent receives spacecraft position, velocity, and 
remaining fuel from the simulation. The orbital trajectory 
agent plans a series of thrust commands that will move the 
spacecraft from the present position to the desired final 
position. This planning is performed using a simplex linear 
programming technique. The thruster agent sends these 
commands to the simulation at the appropriate times. 

The reconfiguration agent is responsible for determining 
where each spacecraft should go upon receipt of a change 
formation command from the ground. This agent receives 
the position, velocity, and remaining fuel from the sensor 
agents on each spacecraft. It uses a version of the algorithm 
presented by Campbell and Schetter [4] to select the new, 
desired positions of each spacecraft by optimizing fuel usage 
across the cluster. These desired positions are then sent to 
each spacecraft’s orbital trajectory agent for the actual 
maneuver planning. Although these optimization algorithms 
had been demonstrated in Matlab, they were not available in 
C++ at the time of the demonstration. Instead, upon receipt 
of a reconfiguration command from the ground, the 
reconfiguration agent sent a pre-determined set of new 
positions to the three spacecraft. 

Unfortunately, it is not currently possible to present a useful 
plot of the results of the simulation. The spacecraft positions 
can be viewed on the Macintosh screen in real-time and the 
absolute positions are saved in a text file. However, we are 
still developing the software tools for analysis and 
visualization of the outputs. 



 6. CURRENT STATUS & FUTURE WORK 

The Matlab design phase of ObjectAgent is complete and 
the next version is scheduled for release in December 2000. 
This version includes more robust and reconfigurable agent 
communications and relationships, error reporting, and 
enhanced documentation and examples. 

The initial design of the real-time C++ architecture is 
complete and a demonstration of the reconfiguration of a 
cluster of three satellites was performed in November 2000. 

Following the demonstration, a review of the C++ 
architecture is being performed and improvements are being 
made. Work will also begin on the development of a GUI-
based tool for the conversion of Matlab agents to C++. This 
tool and the final C++ architecture should be complete by 
March 2001. After that time, work will begin in earnest to 
analyze and debug the various timing and priority issues that 
will undoubtedly arise. Work will also begin on the 
watchdog agents for software reliability. 

Work is also continuing on the development of the real-time 
agents that will be used onboard AFRL’s TechSat 21 
demonstration flight in 2003. TechSat 21 is a mission that 
will involve three satellites flying in formation and acting as 
a “virtual” satellite.  

ObjectAgent will be used to build two elements of the flight 
software, the Cluster Manager and the Spacecraft Manager. 
The Cluster Manager is a flight software package that 
controls all spacecraft operations that require the 
coordination of multiple spacecraft. It also provides 
complete fault detection of all cluster operation related 
systems. One of the primary functions of the Cluster 
Manager is to perform relative control of the satellites in the 
cluster. This will include relative stationkeeping and 
estimation of the cluster center-of-mass and the relative 
positions of each satellite. 

The Spacecraft Manager is a flight software package that 
provides an autonomous replacement for the ground 
operations team. It will control all aspects of spacecraft 
operation including fault detection and redundancy 
management. The Spacecraft Manager provides an interface 
between the Cluster Manager and the rest of the TechSat 21 
flight software. 

At the conclusion of development, ObjectAgent will provide 
a robust, easy-to-use software architecture for the control of 
distributed systems. The flexibility built into the system by 
the use of agents at all levels enables software to be easily 
configured and upgraded after deployment. ObjectAgent 
also provides a common interface to many advanced control 
and estimation techniques. Its applicability extends beyond 
clusters of satellites to any real-time, distributed system 
including robotics, autonomous vehicles, the automobile 

industry, telecommunications and energy systems, and 
process control. 
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