REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 07/28/2006
2. REPORT TYPE FINAL
3. DATES COVERED (From - To) 04/01/2003 - 03/31/2005

4. TITLE AND SUBTITLE
 A NATURAL LOCOMOTION VIRTUAL ENVIRONMENT TESTBED

5a. CONTRACT NUMBER
5b. GRANT NUMBER N000014-03-1-0261
5c. PROGRAM ELEMENT NUMBER
5d. PROJECT NUMBER
5e. TASK NUMBER
5f. WORK UNIT NUMBER

6. AUTHOR(S) PAUSCH, RANDY F.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 CARNEGIE MELLON UNIVERSITY
 5000 FORBES AVENUE
 PITTSBURGH, PA 15213

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 OFFICE OF NAVAL RESEARCH
 REGIONAL OFFICE CHICAGO
 230 SOUTH DEARBORN, ROOM 380
 CHICAGO, IL 60604-1595

10. SPONSOR/MONITOR'S ACRONYM(S) ONR
11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 NO RESTRICTIONS
 DISTRIBUTION STATEMENT A
 Approved for Public Release
 Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
 This research, originally scoped for three years, was to test hypotheses about memory and sensory modalities; specifically, does a walk-around Virtual Reality interface improve performance in memory and other tasks when compared to other interfaces?

 The first year of the grant was spent designing, engineering, and debugging an infrastructure for a wireless virtual reality system that allowed a large, free-range full body interface, and a framework for running experiments using this apparatus.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT U
 b. ABSTRACT U
 c. THIS PAGE U

17. LIMITATION OF ABSTRACT UU
18. NUMBER OF PAGES 3
19a. NAME OF RESPONSIBLE PERSON RANDY F. PAUSCH
19b. TELEPHONE NUMBER (Include area code) (412) 268-3579

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. 239.18
Research Problem and Approach

This research, originally scoped for three years, was to test hypotheses about memory and sensory modalities; specifically, does a walk-around Virtual Reality interface improve performance in memory and other tasks when compared other interfaces?

The first year of the grant was spent designing, engineering, and debugging an infrastructure for a wireless virtual reality system that allowed a large, free-range full body interface, and a framework for running experiments using this apparatus.

A major goal was to test various hypotheses about whether moving one’s body through space aided in memory, especially for navigation.

Another goal was to determine to what degree physical performing various actions during training, and/or watching a virtual reality avatar during training, aided one’s ability to perform those actions in a post-training scenario. Related questions included whether a basic human behavior such as enactment can be used as a metric for assessing the quality of motion, rendering style, and interactivity of virtual reality avatar?

Much of this work was inspired by Desney Tan’s results, which showed that users had a larger sense of engagement, or “presence” when view scenes on a larger, life-scale display (as opposed to a desktop display), even though the visual angle subtended was identical (as shown on the figure to the right).
Technical Accomplishments

We were able to construct the largest wireless (tracking area of 4x5x2.3 meters), full-body tracking virtual reality system we are aware of. (Shown in figure to the right). This system allowed tracking of not only the user’s body, but also hand-held or free-standing props, such as a gun that could be picked up, a beach ball that could be tossed back and forth, and a chair that could be moved in the environment, and then sat or stood upon. One of our major findings is that haptic feedback based on these kinds of objects hugely improves the sense of presence in the virtual environment.

The system used a Vicon motion capture system that we put into a real-time data capture mode; that 3d tracker information was run through a kalman filter and fed into the Panda3D graphics engine (www.panda3d.org) that is jointly developed by Carnegie Mellon and Walt Disney Imagineering. The output was downsampled to NTSC and broadcast wirelessly as a short-range, low-power television signal. The architecture of the system is show in the diagram below:

![Architecture Diagram](image)

Research Accomplishments

With the remaining time in the first year of this grant, we were able to perform several informal pilot studies with mostly inconclusive results. We were able to partially replicate the SIGGRAPH 1997 research by Pausch and Proffitt regarding letter searching, and adapted that “surround search” to a memory paradigm where subjects looked for pairs of symbols, as in the game “concentration.”

Some of the ideas that we developed in this later influenced some work on human-robot (as opposed to human-avatar) interaction.
Publications that Led from This Work:

Financial
$99,937.67 of the funded $100,000.00 was spent. The funding was not available for the remaining two years of the grant.