CHEMISTRY OF DIFLUORAMINE DERIVATIVES

Robert D. Chapman
Rena Y. Yee

Research and Technology Division (Code 474220D)
Naval Air Warfare Center Weapons Division
China Lake, CA 93555

Richard D. Gilardi
Laboratory for the Structure of Matter (Code 6030)
Naval Research Laboratory
Washington, DC 20375

Andrew Alan Pinkerton
Department of Chemistry
University of Toledo
Toledo, OH 43606

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>JUN 1996</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry of Difluoramine Derivatives</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Air Warfare Center Weapons Division Research and Technology Division (Code 474220D) China Lake, CA 93555</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 b. ABSTRACT
 c. THIS PAGE
 unclassified
 unclassified
 unclassified

17. LIMITATION OF ABSTRACT
 SAR

18. NUMBER OF PAGES
 12

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Calculated Performance Characteristics

<table>
<thead>
<tr>
<th>Compound</th>
<th>Density(^1) (\rho (\text{g} \cdot \text{cm}^{-3})) (HMX = 1.894)</th>
<th>Detonation pressure(^2) (P_{ CJ} \text{(KBar)}) (HMX = 390)</th>
<th>Specific impulse(^3) (I_{sp} \text{(sec)}) (HMX = 265)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{NN} \text{O}_2 \text{O}_2 \text{N})</td>
<td>1.999</td>
<td>474</td>
<td>285</td>
</tr>
<tr>
<td>(\text{NF}_2 \text{F}_2)</td>
<td>1.973</td>
<td>444</td>
<td>274</td>
</tr>
<tr>
<td>(\text{F}_2 \text{N}_2 \text{F}_2)</td>
<td>1.949</td>
<td>443</td>
<td>291</td>
</tr>
</tbody>
</table>

1. Ammon, H.L. (University of Maryland, College Park), personal communication.
2. Adolph, H.G.; Koppes, W.M.; Lawrence, G.W. (Naval Surface Warfare Center, Silver Spring, MD), personal communications.
3. Baroody, E. (Naval Ordnance Station, Indian Head, MD), personal communication.
The Best Demonstrated Route to HNFX

Chapman, Kreutzberger & Welker / TPL, Inc.
Complications in Nitrolysis

Welker / TPL, Inc.
The Proof

• X-ray analysis (Richard Gilardi, NRL) of a minor impurity crystal in HNFX

Interestingly, \(\rho = 1.863 \)
Polymorphism in HNFX

- Original crystal preparation (needles) had solvent channels $\rightarrow \rho = 1.784$ (theor. $\rho = 1.999$)

- New recrystallization from CHCl$_3$ gives m.p. 216–218 °C without solvent (old m.p. 202~203 °C), but same polymorph!

- New recrystallizations from acetone give new morphologies: prisms and plates rather than needles
Typical HNFX Needles

~80×
New HNFX Crystal Habits

- Unit cells measured by Prof. Alan Pinkerton by CCD detector
- But...all crystals are the same polymorph!
- Can you believe it?
HNFX Properties

• M.P. 216–218 °C(dec)

• Readily forms solvent adducts as HMX does

• “Solvent-channel” form (“α-HNFX”) ρ 1.784

• Comparison of solvent adduct densities:

\[
\begin{align*}
\alpha\text{-HMX} & : \rho = 1.838 \quad HNFX\cdot\text{solvent} & : \rho = 1.784 \\
HMX\cdot\text{DMF} & : \rho = 1.607 & \Delta\rho \approx 0.25 \\
HMX\cdot\text{NMP} & : \rho = 1.570 & \Delta\rho \approx 0.25 \\
\end{align*}
\]

• Impact sensitivity of “α-HNFX” comparable to PETN
Difluorosulfamic Acid (DFSA): A Recent History

\[
\begin{align*}
\text{BrNO}_2 & \quad \text{HNF}_2 \quad \text{SO}_3 \quad \text{H}_2\text{SO}_4 \\
& \quad \rightarrow \quad \text{decomposition} \\
& \quad \text{products} \\
& \quad \text{(CH}_2\text{Cl}_2 \text{ layer)} \quad \text{+} \quad \text{H}_2\text{O \ layer} \\
\end{align*}
\]

- Chapman, Fluorochem, Jan. 1990

\[
\begin{align*}
\text{NHSO}_3\text{H} & \quad \text{F}_2 \quad \text{H}_2\text{O} \\
& \quad \rightarrow \quad \text{19F} \quad \delta \quad 36.8 \\
& \quad \text{(H}_2\text{O \ layer)} \\
\end{align*}
\]

- Archibald, Fluorochem, Jan. 1990

⇒ “Could this be aqueous F\textsubscript{2}NSO\textsubscript{3}H?”
Sodium Difluorosulfaminate

- But dilute aqueous $\text{F}_2\text{NSO}_3^{-}\text{Na}^+$ is stable for weeks at pH 7–8
Acknowledgments

Funding

- Office of Naval Research (Dr. Richard Miller)