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I. Introduction

Spread-spectrum (SS) steganography is attracting increasing interest among researchers and

practitioners in the fields of authentication and covert communications. Under a blind host

medium scenario, that is when the original clean host is assumed to be unavailable, past works

focused on the detection of the presence of a known message as in [1], [2], the recovery of an

unknown message embedded with a known signature as in [3], [4], or system optimization for

covert message delivery to signature-aware recipients [5]-[7].

Yet, one challenging issue in SS data hiding applications is fully blind message recovery, that

is when little or nothing can be assumed about the embedded message, the embedding signature,

and the host image, with direct application to eavesdropping the communication of an enemy.

Moreover, fully blind message recovery is also of interest when the communication takes place

between allies, since it is bandwidth efficient and requires no prior agreement on the message to

be sent, its signature, the stego-key, or a training sequence.

In a single or superimposed signal in additive white Gaussian noise (AWGN) scenario one

might split the two subspaces spanned by the signal and the noise eigenvectors, respectively [18].

However, when the message of interest and its total disturbance lie in the same subspace and the

message signal components cannot be distinguished by subspace estimation techniques, or when

subspace tracking is dubious, blind signal separation and estimation is usually achieved through

iterative procedures that take advantage of the finite alphabet property arising from the digital

nature of the hidden data and—when applied to multiple input channels—the independence of

the signals to be separated.

Throughout the course of our research, we attempt to recover a hidden unknown message

when neither the original host nor the embedding signature is known (fully blind SS steganalysis).

The only prior knowledge assumed (or guessed) is the embedding (block) transform domain. In

blind SS steganalysis the unknown host image acts as a source of interference to the message

to be extracted and, in a way, the problem parallels blind digital signal separation applications

as they arise in the fields of array processing [8]–[12], biomedical signal processing [13], [14],

image reconstruction [15], [16] or code-division-multiple-access (CDMA) wireless communication

systems [17]-[21].
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From this point of view, we first develop a least-squares-type iterative procedure for coupled

signature estimation and message recovery. Next, under a (colored) Gaussian assumption on

the host data bins we are able to treat the message signature as an unknown vector parameter

of a Gaussian mixture and derive an iterative procedure for signature-only estimation based on

expectation-maximization (EM) principles. Message recovery is then accomplished via minimum-

mean-square-error (MMSE) filtering and detection.

The rest of the paper is organized as follows. In Section II we present the received signal

model. Iterative procedures based on least squares and EM concepts for signature identification

and message recovery are presented in Section III. Simulation results are presented in Section

IV. Finally, some conclusions are drawn in Section V.

II. Signal Model and Notation

Basic Notation and Terms

To understand and research the problem of SS steganalysis, it helps to first put ourselves on the

side of the SS steganographer. Consider a host image H ∈ AN1×N2 that is to be watermarked

where A is the image alphabet and N1 × N2 is the image size in pixels. Fig. 1 shows a gray

scale F-16 image example in AN1×N2 = {0, 1, · · · , 255}512×512. Without loss of generality, the

image H is divided into M local blocks of size N1×N2

M
pixels. Each block H1,H2, · · · ,HM is to

carry one hidden bit d(m) ∈ {±1}, m = 1, 2, · · · , M , respectively. Embedding is performed in

a real 2-dimensional transform domain T . After transform calculation and conventional zig-zag

scanning vectorization, we obtain T (Hm) ∈ R
N1×N2

M , m = 1, 2, · · · , M . From the transform

domain vectors T (Hm) we choose a fixed subset of L ≤ N1×N2

M
coefficients (bins) to form the

final host vectors xm ∈ R
L, m = 1, 2, . . . , M (for example, it is common and appropriate to

exclude the dc coefficient).

An important statistical quantity for the developments that follow is the autocorrelation

matrix of the host data x,

Rx
4
= E

{

xxT
}

=
1

M

M
∑

m=1

xmxT
m (1)
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where E {·} denotes statistical expectation (here with respect to x over the given image H)

and T is the transpose operator. It is easy to verify [6],[7] that, in general, Rx 6= cIL, c > 0,

where IL is the size-L identity matrix. That is, Rx is not constant-value diagonal or “white”

in field language. As a corroborative, illustrative example of this assertion, Fig. 2(a) shows the

familiar baboon gray-scale image from standard image processing/benchmarking databases with

H ∈ {0, 1, · · · , 255}256×256; Fig. 2(b) shows the baboon host autocorrelation matrix for block-

DCT SS embedding of M = 1, 024 bits (one bit per 8 × 8 block) with L = 63 (embedding over

all frequency bins except dc).

In SS steganography, the message bit sequence {d(m)}M
m=1 is hidden in the transform-domain

host vectors {xm}M
m=1 via additive SS embedding by means of a signature v ∈ R

L:

ym = d(m)v + xm m = 1, . . . , M. (2)

At this point, it is advantageous to change our perspective to that of the steganalysis researcher

attempting to recover the covert message. It is reasonable to assume that {d(m)}M
m=1 behave as

equiprobable binary random variables that are independent from each other and {xm}M
m=1. It is

also deemed reasonable to treat {xm}M
m=1 as a sequence of independent identically distributed

random vectors with zero mean. Hence, the watermarked data vectors {ym}
M
m=1 have mean

zero, autocorrelation matrix Ry = E
{

ymyT
m

}

= Rx + vvT , and joint probability distribution

function (pdf) fy1,y2,...,yM
(y1,y2, . . . ,yM) = fy1(y1)fy2(y2) . . . fyM

(yM). The mean squared

distortion of the original image due to the hidden message is

D = E
{

‖d(m)v + xm − xm‖
2} = ‖v‖2

. (3)

Basic Detection of Hidden Bits

We are interested in detecting the hidden bits {d(m)}M
m=1 in (2). The linear filter that operates

on ym and minimizes the mean square error (MSE) at its output is

wMMSE = arg min
w

E

{

∥

∥wTym − d(m)
∥

∥

2
}

= R−1
y v. (4)

If v were known, then bit detection could be carried out by sign detection at the MMSE filter

output:

d̂(m) = sgn
(

wT
MMSEym

)

= sgn
(

vTR−1
y ym

)

. (5)
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Yet, v is assumed to be unavailable herein. In the sequel, we develop two iterative procedures for

signature estimation and message bit recovery. The first procedure is least squares driven and

couples a signature estimation and a bit detection step. The second procedure is derived from

the EM theory and attempts signature-only identification; message recovery can then be carried

out separately.

III. Iterative Procedures

Iterative Generalized Least Squares

For notational simplicity we form the compound data observation matrix

Y = vdT + X (6)

where d
4
= [d(1) d(2) . . . d(M)]T ∈ {±1}M and X

4
= [x1 x2 . . . xM ] ∈ R

L×M . After data

prewhitening, the generalized least squares estimator of d, v is given by

arg min
v∈RL,d∈{±1}M

∥

∥

∥
R

− 1
2

x

(

Y − vdT
)

∥

∥

∥

2

F
(7)

where ‖·‖F denotes the matrix Frobenius norm. Notice that if we were allowed to assume

that {xm}M
m=1 were Gaussian, then (7) would coincide with maximum likelihood (ML) joint

estimation of d, v (treating both d and v as deterministic unknown parameters). In any case,

regretfully, joint estimation of d, v by (7) has complexity exponential in the hidden message

length M and event the shortest of hidden messages, say 100 bits, makes the recovery task

practically impossible. As such, we consider this cost unacceptable and attempt to reach a

quality approximation of the solution by alternating least squares estimates of d, v iteratively,

as follows:

1. Pretend v is known;

· Then, the least squares (LS) estimate of d is

d̂LS = arg min
d∈{±1}M

∥

∥

∥

∥

R
− 1

2
x

(

Y − vdT
)

∥

∥

∥

∥

2

F

= sgn(YTR−1
x v). (8)
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· Observing that R−1
x v = cR−1

y v, c > 0, we rewrite

d̂LS = sgn(YTR−1
y v) (9)

and recognize that (9) represents MMSE filtering followed by sign detection.

2. Pretend, in turn, that d is known;

· Then the least squares estimate of v is

v̂LS =arg min
v∈RL

∥

∥

∥
R

− 1
2

x

(

Y − vdT
)

∥

∥

∥

2

F
=

1

M
Yd. (10)

The conditional LS estimate in (10) is the best—minimum variance—unbiased estimate of v [22].

The proposed algorithm is now straightforward. Initialize v̂ (or d̂) arbitrarily (or by an

educated guess if side information is available) and alternate iteratively between (9) and (10)

to obtain at each step conditionally least squares optimal estimates of one vector parameter

given the other. Stop when convergence is observed. Notice that (9) requires knowledge of

the autocorrelation matrix of the watermarked host data Ry which can be estimated by sample

averaging over the received data observations, R̂y(M) = 1
M

∑M
m=1 ymyT

m. Of course, this way

the optimality—in the LS sense—of (9) is obtained asymptotically, since R̂y(M) →
M→∞

Ry in

probability for elliptically contoured input vectors [23]. We call the coupled repeated calculation

of (9) and (10) iterative generalized least squares1 SS steganalysis (IGLS-SSS).

Extensive experimentation with (9) and (10) showed that for sufficiently long hidden messages

(number of bits M equal to 4,000 or more, for example) high quality message decisions d̂ are

obtained. When the message size is small, however, estimation of Ry becomes problematic

causing deviations of the least squares estimates of d̂ (and v̂) from the true values. To address

this concern, we have considered the possibility of developing an expectation- maximization (EM)

signature identification procedure as a final-stage assist.

Although in general EM schemes can be computationally expensive and slow in convergence,

meaningful improvements for small hidden messages have been achieved, as seen in [24], and can

be exploited. In fact, in the following section, we derive a new expectation-maximization (EM)

signature identification procedure to handle the aforementioned cases.

1Occasionally, conditional coupled least-squares schemes as the one in (9) and (10) are referred to as weighted

least squares [13] in the literature.

5



Expectation-Maximization

We are interested in estimating v from the received data vector y
4
= [yT

1 yT
2 · · · yT

M ]T ∈ R
LM

with pdf fy(y;v). To overcome the computational intractability of the maximum likelihood

estimate of v, v̂ML = arg max
v∈RL

fy(y;v), we view the received data y as a set of incomplete data

that are part of a larger postulated dataset of complete data [y,d]. The pdf of the incomplete

data (parameterized in v) is given by

fy(y;v) =
∑

d∈{±1}M

fy,d(y,d;v) (11)

where fy,d(y,d;v) denotes the joint pdf of y,d parameterized in v. If d were available, then the

pair (y,d) would be a sufficient statistic for ML estimation of v by v̂ML = arg max
v∈RL

fy,d(y,d;v) =

arg max
v∈RL

{lnfy,d(y,d;v)}. Since d is not available, we may replace/estimate lnfy,d(y,d;v) by a

function, say Q(v), Q(v) ≈ lnfy,d(y,d;v) and maximize that estimated function, i.e.

v̂ = arg max
v∈RL

Q(v). (12)

To proceed further we select as Q(v) the MMSE estimate of lnfy,d(y,d;v) given y. There-

fore, Q(v) = Ed {lnfy,d(y,d;v)|y}. However, the conditional expectation Ed {lnfy,d(y,d;v)|y}

includes the conditional pmf of the hidden data pd/y(d) for all d ∈ {±1}M , which in turn de-

pends on v, hence is not available. If an estimate v̂(k) is available, it can be used to define

the conditional pmf of the hidden data parameterized in v̂(k), pd/y(d; v̂(k)). Consequently, our

estimated function (approximation of lnfy,d(y,d;v)) becomes

Q(v; v̂(k))
4
= Ed

{

lnfy,d(y,d;v)|y; v̂(k)
}

=
∑

d∈{±1}M

pd/y(d; v̂(k))lnfy,d(y,d;v)
(13)

and (12) becomes v̂ = arg max
v∈RL

Q(v; v̂(k)). This v̂ can be used to obtain an updated estimate

v̂(k+1) = arg max
v∈RL

Q(v; v̂(k)). (14)

Alternating calculation of (13) and (14) constitutes an expectation-maximization (EM) pro-

cedure with “objective function” (as frequently referred to in the literature [25]) Q(v; v̂(k)). To

6



proceed further toward a specific solution to our steganalysis (unknown signature estimation)

problem, we choose to model the host data vectors xm as Gaussian distributed, xm ∼ N (0,Rx),

m = 1, 2, . . . , M , and therefore

fy(y;v) =

(

1

2
√

(2π)L|Rx|

)M

(15)

M
∏

m=1

{

e−(ym−v)T R−1
x (ym−v)/2 + e−(ym+v)T R−1

x (ym+v)/2
}

We rewrite (13) as

Q(v; v̂(k)) =

2M

∑

i=1

pd/y(di; v̂
(k))lnfy,d(y,di;v) (16)

where di ∈ {±1}M is the ith possible message bit combination, i = 1, 2, . . . , 2M .

Eliminating the constant over i terms in the lefthandside pdf of (16) we obtain

lnfy,d(y,di;v) = lnfy/d(y;v) + lnpd(di) (17)

=

M
∑

m=1

vTR−1
x ymdi(m) −

M

2
vTR−1

x v + c1

where di(m) denotes the m−th element of vector di ∈ {±1}M and c1 is a constant that can be

dropped as inconsequential to the optimization problem. Substituting (17) in (16) yields

Q(v; v̂(k))

=
2M

∑

i=1

pd/y(di; v̂
(k))

{

M
∑

m=1

vTR−1
x ymdi(m)−

M

2
vTR−1

x v+c1

}

=
M
∑

m=1

∑

d=±1

pd(m)/ym
(d; v̂(k))vTR−1

x ymd−
M

2
vTR−1

x v+c1.

(18)

Let us now calculate the conditional probability

pd(m)/ym
(d; v̂(k)) =

fd(m),ym
(d,ym; v̂(k))

fym
(ym; v̂(k))

=
fym/d(m)(ym; v̂(k))

∑

d=±1 fym/d(m)(ym; v̂(k))
.

(19)
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Combining (18) and (19), (16) takes the closed form

Q(v; v̂(k)) =
M
∑

m=1

∑

d=±1 fym/d(m)(ym; v̂(k))vTR−1
x ymd

∑

d=±1 fym/d(m)(ym; v̂(k))

−
M

2
vTR−1

x v + c1

=

M
∑

m=1

vTR−1
x ym

(1 − e−2v̂(k)T
R

−1
x ym)

(1 + e−2v̂(k)T
R−1

x ym)

−
M

2
vTR−1

x v + c1

=vTR−1
x

M
∑

m=1

ym tanh(v̂(k)TR−1
x ym)

−
M

2
vTR−1

x v + c1. (20)

Conveniently, (20) is quadratic in v. To update the estimate of v, we set the derivative of (20)

with respect to v to zero and obtain the recursive formula

v̂(k+1) =
1

M

M
∑

m=1

ym tanh(v̂(k)TR−1
x ym). (21)

In summary, recursion (21) is the proposed EM-type signature identification procedure. Suc-

cess of the EM recursion in finding the global maximum depends, in general, on the initialization

vector v̂(0). As with the IGLS procedure, Rx in (21) is substituted by R̂y(M).

Discussion on proposed blind IGLS and EM procedures

It is well understood that in comparison with least squares algorithms, EM procedures converge

slowly. For the specifics of our steganalysis problem where the autocorrelation matrix of the

host data Rx is not available and is substituted by the sample average estimate of the received

data R̂y(M), we observed experimentally that the expected likelihood increments in (21) be-

come exceedingly small resulting in uncomfortably slow convergence of the EM procedure. As a

result, we do not consider the derived EM recursion as a stand-alone steganalysis scheme. We

rather suggest use of (21) as a potential add-on to IGLS for small-sample-support steganalysis

initializing v̂(0) at v̂LS from (9), (10).

8



Finally, for the sake of mathematical accuracy we should emphasize that there is always a

phase/sign ambiguity present when one considers joint data demodulation and signature iden-

tification. The ambiguity problem can be overcome either under differential data embedding

or with a few known (or guessed) embedded data symbols for phase/sign correction. In the

following experimental studies the ambiguity problem is assumed handled.

IV. Experimental Studies

We consider as a host example the familiar gray scale 512× 512 “F-16 Aircraft” image that has

been used widely in the pertinent literature. We perform 8×8 block DCT embedding by (2) over

all bins except the dc coefficient with an arbitrary signature v ∈ R
63 and varying host distortion

D = ‖v‖2. The hidden message is, therefore, 5122

82 = 4, 096 bits long. We examine four different

message recovery operations: (i) Standard signature matched-filtering (MF) with known v; (ii)

MMSE filtering with known v and known true autocorrelation matrix of the host Rx which

serves as a performance bound reference for the proposed blind schemes; (iii) blind (neither v

nor Rx is known) IGLS by (9), (10); and (iv) blind IGLS followed by EM in (21) as derived

and discussed in Section 3 for potentially improved signature identification under small-sample-

support steganalysis. Fig. 3 shows the corresponding probability of error (bit-error-rate or BER)

curves as a function of the host distortion. To our satisfaction, the proposed all-blind schemes

vastly outperform MF recovery with a known embedding signature and approach rather closely

the performance of the ideal MMSE detector where both the embedding signature and the host

autocorrelation matrix are perfectly known2. It is seen that for this given message size (4,096

bits) the EM add-on to IGLS offers a small gain that arguably does not justify the significant

increase in computational complexity and decision delay.

In Fig. 4, however, we repeat the exact same study for the small 280 × 280 version of the

Aircraft image. It can now be argued that for this sample support ( 2802

82 = 1, 225 message bits)

the gain of EM post-processing (close to an order of magnitude at 30 dB distortion) does justify

2The ideal MMSE detector can be viewed as the receiver of the intended recipient of the hidden message that

has knowledge of the signature and the clean host.

9



the extra cost. (Fig. 5 shows the clean and stego image after message embedding with 30 dB

distortion). For this sample support ( 2802

82 = 1, 225 message bits), the gain of EM post-processing

(close to an order of magnitude at 30 dB distortion) is appealing but it is expected that this

can be improved if auxiliary-vector (AV) filtering is incorporated either alone or in conjunction

with EM. For additional experimental verification, the same study is carried out (Fig. 6) on the

280 × 280 “Lena” image with the same conclusions.

Finally, Fig. 7 shows an example with the ASCII text message hidden in Fig. 5(b) (with 26

dB image distortion) and its recovered form by IGLS alone or IGLS and EM in tandem.

V. Conclusions

We considered the problem of recovering a hidden message embedded in an unknown digital

host image by means of an unknown signature. We first developed an iterative generalized least

squares (IGLS) procedure that allows joint signature estimation and message recovery. For large

data support (i.e. large images) the hidden message can be blindly recovered with probability

of error close to that obtained via supervised MMSE detection. To handle the cases of small

data support (i.e. small images) we derived an expectation-maximization procedure that—when

initialized appropriately—yields improved probability of error rates when compared to our first

proposed scheme. Despite any difficulties associated with the estimation of the image autocor-

relation matrix and the subsequent existence of fixed points that are not global solutions, the

procedures developed herein provide a computationally feasible alternative to complete enumer-

ation (for signature estimation and/or bit detection).
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Fig. 1. F-16 image example H ∈ {0, 1, · · · , 255}512×512.
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Fig. 2. Sample image manifesting non-white autocorrelation matrix: (a) Baboon image example
H ∈ {0, 1, · · · , 255}256×256. (b) Host data autocorrelation matrix (8 × 8 DCT, 63-bin host).
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Fig. 3. Bit-error-rate versus host distortion for the 512 × 512 Aircraft image.
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Fig. 4. Bit-error-rate versus host distortion for the 280 × 280 Aircraft image.
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(a)

(b)

Fig. 5. A sense of distortion: (a) Original 280 × 280 plane image. (b) Watermarked plane (1.2
kbit hidden message, L = 63, distortion D = 30 dB).
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Fig. 6. Bit-error-rate versus host distortion for the 280 × 280 Lena image.
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(a)
This is a steganalysis test. We test two algorithms for blind recovery of a message and
its spreading code: iterative generalized least squares and expectation maximization.

(b)
This is a steganalysis test. We test two algorithms for blind recovery /f a mb3sage and
its spreeding cod%: itdrative!generalized least squares and expectation0maximization.

(c)
This is a steganalysis test. We test two algorithms for blind recovery of a message and
its spreading cod%2 iterative generalized least squares and expectation maximization.

Fig. 7. Covert messaging: (a) Original hidden ASCII message. (b) Recovered ASCII message
via IGLS coupled signature and binary message estimation. (c) Recovered ASCII message via
EM signature estimation (280 × 280 plane image, L = 63, distortion D = 26 dB).
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