Attenuation of visible solar radiation in the upper water column:
A model based on IOPs

ZhongPing Lee1, KePing Du2, Robert Arnone1, SooChin Liew3, Bradley Penta1
1Naval Research Laboratory
Code 7333
Stennis Space Center, MS 39529
zplee@nrlssc.navy.mil

2Research Center for Remote Sensing and GIS
School of Geography
Beijing Normal University
Beijing, 100875, China

3Center for Remote Imaging, Sensing and Processing
National University of Singapore
Lower Kent Ridge Road, Singapore 119260

Abstract - For many oceanic studies, it is required to know the distribution of visible solar radiation (E_PAR) in the upper water column. One way to reach this is by remote sensing. This includes two components: First, E_PAR at surface is calculated based on atmosphere properties along with the position of the Sun. Second, the vertical attenuation of E_PAR (K_PAR) is derived from products of ocean-color remote sensing. Currently, K_PAR is estimated based on chlorophyll concentration ([C]) from ocean color. This kind of approach works well for waters where all optical properties can be adequately described by values of [C], but will result in large uncertainties for coastal waters where [C] alone cannot accurately describe the optical properties. In this paper, we present an innovative model that describes K_PAR as a function of water’s inherent optical properties (IOP).

I. INTRODUCTION

Solar radiation in the visible domain (E_PAR, 350 – 700 nm), measured by downwelling irradiance in this text) encompasses the wavelengths shorter than 700 nm. The pioneer study of Zaneveld et al. [1] and subsequent studies [2-4] have demonstrated that the vertical penetration of E_PAR plays an important role in heat transfer of the upper water column. E_PAR at surface can now be adequately estimated from satellite measurements of atmosphere properties. It requires information of water’s optical properties to determine the vertical attenuation of E_PAR (K_PAR) with depth. Historical measurements have shown that K_PAR not only changes horizontally with constituents in the water [1, 5], but also changes with depth for any water [6, 7].

To represent the steeper than exponential reduction of E_PAR with depth, multiple exponential terms [6, 7] were usually adopted, with an attenuation coefficient (or attenuation depth) assigned for each term. These attenuation coefficients are kept vertically constant, but horizontally vary with Jerlov [5] water types. Recently, simple and explicit models have been developed to incorporate satellite-derived chlorophyll concentrations ([C]) into the description of the attenuation of E_PAR. When [C] values are provided via satellite observations of ocean color [8, 9], the partition factors and attenuation coefficients of the terms could be calculated [4].

Such kind of approach works for Case-1 waters – where all optical properties are determined by [C] alone (with solar zenith angle explicitly or implicitly included) [10, 11]. For non-Case-1 waters, uncertainties arise due to that it is not a constant relationship between [C] and optical properties. To avoid such limitations associated with [C]-based models, another approach is to describe the vertical transmittance of E_PAR using water’s optical properties [12, 13]. Following this strategy, and because that water’s absorption (a) and backscattering coefficients (b_b) can be adequately derived from ocean-color remote sensing [14-16], we developed a model to describe the vertical transmittance of E_PAR using values of a and b_b.
Attenuation of visible solar radiation in the upper water column: A model based on IOPs

Naval Research Laboratory Code 7333 Stennis Space Center, MS 39529

Abstract

II. Hydrolight SIMULATED $K_{\text{PAR}}(z)$

As in earlier studies [17, 18], we used Hydrolight [19] to get the necessary data sets: $K_{\text{PAR}}(z)$, and a and b_b. Unlike the simulations in Ohlmann and Siegel [18] where water’s IOPs were determined by [C] only, IOPs in our simulations were simulated with varying [C] and independently varying CDOM and suspended sediments, as described in Lee et al. [14] and IOCCG-OCAG [20]. Later, $K_{\text{PAR}}(z)$ is modeled as a function of a, b_b and z. Numerous descriptions can be found regarding simulations by Hydrolight. [19, 21-23]. The following summarizes the input settings carried out in this study.

The downwelling irradiance at sea surface from the Sun and sky is simulated by the spectral model of Gregg and Carder [24]. a and b_b values at 440 nm varied from 0.02 to 1.9 m$^{-1}$ and 0.002 to 0.115 m$^{-1}$, respectively, and kept vertically constant. The wavelengths are in a range of 350 – 700 nm with a 10-nm spectral resolution. Five depths (excluding 0 m) were selected for each Hydrolight run, with depths spread within and beyond the euphotic zone [25]. No bottom reflectance and inelastic scatterings (such as Raman scattering) are included in this study.

III. MODELING OF $K_{\text{PAR}}(z)$

With $E_{\text{PAR}}(z)$ simulated by Hydrolight, $K_{\text{PAR}}(z)$ is calculated

$$K_{\text{PAR}}(z) = \frac{1}{z} \ln \left(\frac{E_{\text{PAR}}(0^-)}{E_{\text{PAR}}(z)} \right) . \tag{1}$$

Figure 1 presents a few examples of $K_{\text{PAR}}(z)$. Clearly, $K_{\text{PAR}}(z)$ differs significantly for varying water properties. Also, consistent with earlier measurements, subsurface $K_{\text{PAR}}(z)$ changes a lot even for vertically homogeneous waters. This change is due to that water molecules absorb strongly in the longer wavelengths (large absorption coefficients). After photons pass through the subsurface layer (say 3 meters), the absorption is happened in the shorter wavelengths, where absorption coefficients are generally smaller, especially for oceanic waters.

For each vertical variation of $K_{\text{PAR}}(z)$, it is found that this vertical change could be modeled as,

$$K_{\text{PAR}}(\text{IOP}, z) = K_1(\text{IOP}) + \frac{K_2(\text{IOP})}{(1 + z)^{0.5}} . \tag{2}$$

Here K_1 is for the asymptotic value at greater depths, with K_2 more important to the subsurface K_{PAR} value. IOP here represents different combinations of absorption and backscattering coefficients. The dotted lines in Figure 1 show Eq.2 modeled $K_{\text{PAR}}(z)$ for those examples. Figure 2 presents the result of Hydrolight $K_{\text{PAR}}(z)$ versus Eq.2-modeled $K_{\text{PAR}}(z)$, with the Sun at 30° from zenith. Apparently the modeled $K_{\text{PAR}}(z)$ matches the Hydrolight $K_{\text{PAR}}(z)$ very well (the average error is 2.2%, with maximum error of is 6.4%). Such results clearly demonstrate that Eq.2 is adequate to describe the vertical change of $K_{\text{PAR}}(z)$.

To apply IOP distributions obtained from satellite observation of water color, how $K_{1,2}$ vary with IOP needs to be known. For the $K_{\text{PAR}}(z)$ data with the Sun at 30° from zenith, it is found that K_1 and K_2 could be well modeled with IOPs at one wavelength Zaneveld et al. [12] Barnard et al. [13]:

![Figure 1. Examples of $K_{\text{PAR}}(z)$ for different water properties. The numbers in the box are values of $a(490)$ (left) and $b_b(490)$ (right). Symbol represents $K_{\text{PAR}}(z)$ from Hydrolight simulations, while dotted lines are models from Eq.2.](image1)

![Figure 2. $K_{\text{PAR}}(z)$ from model (Eq.2) compared with $K_{\text{PAR}}(z)$ from Hydrolight (30° solar zenith angle), indicating that $K_{\text{PAR}}(z)$ can be well described by Eq.2 with two parameters.](image2)
absorption and backscattering coefficients at 490 nm, i.e.,

$$K_1(IOP) = x_0 + X_1(a(490))^{0.5} + x_2 b_1(490), \quad (3a)$$

$$K_2(IOP, \theta_a) = [\xi_0 + \xi_1 a(490) + \xi_2 b_1(490)](1 + \alpha_0 \sin(\theta_a)), \quad (3b)$$

$x_{0,1,2}$ and $\xi_{0,1,2}$ are model coefficients.

Since $K_{PAR}(z)$ also varies with solar altitude, we carried out HydroLight simulations with the Sun at 10° and 60° from zenith in order to include solar zenith angle into the model. From these simulations, we got

$$K_1(IOP, \theta_a) = [x_0 + X_1(a(490))^{0.5} + x_2 b_1(490)](1 + \alpha_0 \sin(\theta_a)).$$

Here θ_a is the solar zenith angle above the surface. Now we got a model that can describe the vertical distribution of E_{PAR} for different IOPs, depth, and sun angle as

$$T(IOP, z, \theta_a) = \frac{E_{ PAR}(z)}{E_{PAR}(0^{-})} = e^{-K_{PAR}(IOP,z,\theta_a)z}. \quad (5)$$

In this model, there are nine model coefficients: $x_{0,1,2}$, $\xi_{0,1,2}$, and $\alpha_{0,1,2}$. To derive their values, T values from Eq.5 were fit against T values from HydroLight simulations with the model coefficients derived by least-square curve fitting [4, 18]. Values of derived $x_{0,1,2}$, $\xi_{0,1,2}$, and $\alpha_{0,1,2}$ are provided in Table 1. Figure 3 presents Eq.5 modeled $T(IOP, z, \theta_a)$ versus $T(IOP, z, \theta_a)$ determined from HydroLight simulations. For those T values (limiting to the range of ~0.001 to 0.8), bigger errors happened at $T < 0.003$, where the effects of E_{PAR} on heat transfer and photosynthesis in the water column are small. For $T > 0.003$, the average error is ~9%. These results indicate that the simple optical-property-based model (Eq.5) is adequate for describing the vertical profile of $E_{PAR}(z)$ for different waters.

IV. SUMMARY

In this study, an innovative model is developed for describing the vertical transmittance of visible solar radiation ($E_{PAR}(350 - 700$ nm), measured by downwelling irradiance in this study) in the upper layer of the oceans. Different from the traditional approaches, one exponential term is used for the vertical distribution of E_{PAR}. Its attenuation coefficient ($K_{PAR}(z)$), however, is modeled as a function of depth instead of vertically constant. $K_{PAR}(z)$ is also modeled as a function of solar zenith angle and water’s optical properties ($a(490)$ and $b_b(490)$) with data from HydroLight simulations. With the availability of $a(490)$ and $b_b(490)$ images obtained from satellite remote sensing, this $K_{PAR}(z)$ model can be adequately incorporated into physical oceanography models to study the effects of visible solar radiation on surface heating [26]. Also, it provides easy and reliable tool to predict the light level at desired depths, needed to plan the C$_{14}$ incubation for in situ measurements of primary production [13].

ACKNOWLEDGEMENT

Support for this study was provided by the Office of Naval Research (P.E. 61153N and N0001405WX20623). The authors thank Dr. Robert F. Chen for assistance in MODTRAN calculation and are grateful to Dr. Curtis Mobley for providing HydroLight code and assistance.

REFERENCES

