SOFTWARE LIBRARY FOR EXPLICIT UNCERTAINTY MODELING – PROTOTYPE DEVELOPMENT REPORT

BY DAVID C. GREGORY

SYSTEMS RESEARCH AND TECHNOLOGY DEPARTMENT

SEPTEMBER 2005

Approved for public release; distribution is unlimited.
Software Library for Explicit Uncertainty Modeling – Prototype Development Report

Title and Subtitle:
Software Library for Explicit Uncertainty Modeling – Prototype Development Report

Author(s):
David C. Gregory

Performing Organization Name(s) and Address(es):
Commander
Naval Surface Warfare Center
Dahlgren Division (Code B55)
17320 Dahlgren Road
Dahlgren, VA 22448-5100

Performing Organization Report Number:
NSWCDD/TR-05/94

Abstract:
An approach for automated uncertainty propagation through deterministic models is developed. The mathematical basis for uncertainty propagation based upon error analysis is derived. A modular, reusable, and universally applicable method of implementing the approach in software is presented, with examples in both Formula Translator (FORTRAN)-90 and C++. Verification techniques are developed and tested. The utility of the approach is demonstrated with an example uncertainty analysis. The example model was taken from the chemical and biological warfare hazard prediction simulation, Vapor, Liquid, and Solid Tracking (VLSTRACK). The methods for extending the approach with additional capability are outlined.

The modules presented are applicable to many engineering simulations where uncertainty characterization is desired. Furthermore, the modules can be incorporated into existing codes without redevelopment. Applications include sensitivity analysis, systems architecture studies, and research investment planning.

Subject Terms:
Uncertainty Propagation, Software Library, Error Analysis

Abstract (Maximum 200 words)

An approach for automated uncertainty propagation through deterministic models is developed. The mathematical basis for uncertainty propagation based upon error analysis is derived. A modular, reusable, and universally applicable method of implementing the approach in software is presented, with examples in both Formula Translator (FORTRAN)-90 and C++. Verification techniques are developed and tested. The utility of the approach is demonstrated with an example uncertainty analysis. The example model was taken from the chemical and biological warfare hazard prediction simulation, Vapor, Liquid, and Solid Tracking (VLSTRACK). The methods for extending the approach with additional capability are outlined.

The modules presented are applicable to many engineering simulations where uncertainty characterization is desired. Furthermore, the modules can be incorporated into existing codes without redevelopment. Applications include sensitivity analysis, systems architecture studies, and research investment planning.
FOREWORD

All engineering and scientific models are affected by the uncertainty of their input parameters. In the case of Chemical and Biological Warfare Hazard Prediction, the models are dominated by input uncertainty. This report develops and demonstrates a technique for treating uncertainty in legacy models without extensive redevelopment. The technique was developed with Hazard Prediction in mind, but it is the author’s hope that the technique will be tested and applied to a wide variety of engineering simulations.

The author would like to thank Mr. Max A. Lupton for helping develop the concepts in this report and Mr. Timothy J. Bauer and Mr. Matthew G. Wolski for reviewing the work.

This report has been reviewed by Mr. Gregory J. Sokolowski, Acting Head, Chemical and Biological Defense Battle Management Branch, and Mr. William H. Zimmerman, Acting Head, Chemical and Biological Defense Division.

Approved by:

[Signature]

ANN E. TATE, Head
Systems Research and Technology Department
CONTENTS

INTRODUCTION ..1
APPROACH ...1
ANALYTICAL OPERATORS ..2
IMPLEMENTATION ...3
TESTING ...5
DEMONSTRATION ..6
RECOMMENDATIONS ..7
CONCLUSION ..8
REFERENCES ..8
DISTRIBUTION ..(1)

APPENDICES

Appendix Page
A GAUSSIAN DISTRIBUTION OPERATIONS ... A-1
B UNCERTAINTY MODULE FORTRAN-90 SOURCE CODE B-1
C TEST SUBROUTINE FORTRAN-90 SOURCE CODE ... C-1
D UNCERTAINTY CLASS C++ HEADER FILE ... D-1
E UNCERTAINTY CLASS C++ SOURCE CODE ... E-1

TABLES

Table Page
1 TEST INPUTS ..5
2 TESTS AND ANALYTICAL RESULT ...5
3 SENSITIVITY OF DROPLET TERMINAL VELOCITY ..6
GLOSSARY

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined-type</td>
<td>In computer programming, a variable who’s structure is created by the programmer and consists of variables of intrinsic type, such as integer, real, etc.</td>
</tr>
<tr>
<td>Overloading</td>
<td>In computer programming, the process of defining functions or operations of the same name, differing only in the number and/or type of parameters</td>
</tr>
<tr>
<td>FORTRAN</td>
<td>Formula Translator</td>
</tr>
<tr>
<td>VLSTRACK</td>
<td>Vapor, Liquid, and Solid Tracking (computer model)</td>
</tr>
<tr>
<td>VX</td>
<td>O-Ethyl S-Diisopropylaminomethyl Methylphosphonothiolate (chemical nerve agent)</td>
</tr>
</tbody>
</table>
INTRODUCTION

Chemical and biological warfare hazard prediction is dominated by input parameter uncertainty, which has been historically difficult to treat within models. Variations in meteorological conditions, source terms, and even agent properties can have large impacts on the results given by traditional deterministic models. Unfortunately, the traditional approach for uncertainty analyses, the Monte Carlo approach, is computationally expensive even for the simplest of models. The Monte Carlo approach is to run the model once for each data point in a set that represents the statistical uncertainty in the inputs and analyze the output set. Thus, the computational expense is related exponentially to the number of uncertain inputs (O^p). In contrast, the computational expense of the explicit probabilistic approach presented in this technical report is related to the expense of the legacy model by a fixed linear factor.

The purpose of this technical report is to demonstrate an approach for handling uncertainty in existing models explicitly and without resort to Monte Carlo simulations. It is important to note that while the focus of this paper is Chemical and Biological Hazard Prediction, the techniques described are applicable to virtually any scientific or engineering simulation.

APPROACH

Most hazard prediction models, which are traditionally deterministic models, operate upon scalar input. In these models a number represents an input parameter, such as wind speed, with units, for example 5 meters per second. However, if the input parameter has uncertainty associated with it, it would better be represented as a probability distribution. The distribution is a description of the likelihood that the wind speed will be any one scalar value.

The approach developed here is to treat those probability densities in the same ways as the scalar values are handled in the legacy model. If the same functions are derived for operating upon distributions as are used to operate upon the scalar values, then a model can be made to handle uncertainty with little complication. Therefore, functions for addition, multiplication, exponentiation, etc., must be developed for operating upon distribution functions.

Once the operator functions have been derived, features of most modern software languages allow the existing model to be made “uncertain” with very few changes. This approach utilizes two features of modern languages, defined types and overloaded operators. A defined type is a data structure that is defined by the programmer in addition to normal intrinsic types, such as integers, real numbers, booleans, etc. Defined types are created for the various distributions that are used to describe the uncertain input parameters. The power of this approach comes from “overloading” the operators that already exist in the legacy source code,
such as “+”, “*”, “sin()”, with the new functions that have been derived. In this way, the compiler is made to utilize the new operator functions when it encounters an operation involving the new defined types. Thus, existing code can be made uncertainty-enabled by simply changing the variable declarations from the intrinsic types to the new defined types.

The derived operator functions for Gaussian distributions are often algebraic and only slightly more complicated than the scalar operations. Therefore, the numerical complexity of this explicit approach is a multiple of the legacy numerical cost.

It should also be noted that this approach can also be applied to most models that solve integral or differential equations. Integral and differential equations are usually solved numerically using the basic algebraic operations for which the approach outlined in this paper is valid.

ANALYTICAL OPERATORS

The fundamental technology of this explicit approach is development of operators for distribution functions, which have the same behavior as their scalar counterparts. Specifically, the order of operations should not be affected.

For the purposes of the explicit probabilistic prototype, only Gaussian distributions were considered. For distributions where the variance is small when compared to the mean, the error in a function is related to the function’s total differential\(^1\) and the output distribution will also be Gaussian. So, for \(f(x,y,z)\), the total differential is written

\[
\frac{df}{dx} \cdot dx + \frac{df}{dy} \cdot dy + \frac{df}{dz} \cdot dz
\]

(Equation 1)

For Gaussian distributions, the error in \(f\), \(\sigma_f\), is given by the following equation, where \(dx\) is represented by the error in \(x\), \(\sigma_x\).

\[
\sigma_f = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 \cdot \sigma_x^2 + \left(\frac{\partial f}{\partial y}\right)^2 \cdot \sigma_y^2 + \left(\frac{\partial f}{\partial z}\right)^2 \cdot \sigma_z^2}
\]

(Equation 2)

Most simple operations, such as the addition, subtraction, multiplication, and division of two uncertain values can be readily located in literature\(^2\) and are summarized in Appendix A. However, many more complicated functions, such as those involving only one uncertain value or transcendental operators, are not available. Some operations not generally published that are currently in the library will be derived here as examples.
Consider the following function:

\[f(x) = \frac{m}{x} \]

(Equation 3)

where \(m \) is an exact constant and \(x \) is a Gaussian distribution given by

\[x = \mu_x \pm \sigma_x \]

(Equation 4)

and where \(\mu_x \) and \(\sigma_x \) are the mean and standard deviation of the distribution. The partial differential of \(f \) with respect to \(x \) is

\[\frac{\partial f}{\partial x} = -\frac{m}{x^2} \]

(Equation 5)

The distribution of \(f \) can be shown to be, using Equation 2,

\[f(x) = \frac{m}{x} = \mu_f \pm \sigma_f = \frac{m}{\mu_x} \pm \left(\mu_f \cdot \frac{\sigma_x}{\mu_x} \right) \]

(Equation 6)

Next, consider this function, where \(m \) is an exact constant and \(x \) is a Gaussian distribution:

\[f(x) = m^x \]

(Equation 7)

The partial differential of \(f \) with respect to \(x \) is

\[\frac{\partial f}{\partial x} = m^x \cdot \ln(m) \]

(Equation 8)

which can also be written

\[\frac{\partial f}{\partial x} = f(x) \cdot \ln(m) \]

(Equation 9)

Therefore, the distribution function can be shown to be

\[f(x) = m^x = \mu_f \pm \sigma_f = m^{\mu_x} \pm \left(\mu_f \cdot \sigma_x \cdot \ln(m) \right) \]

(Equation 10)

IMPLEMENTATION

As described above, the key concepts for this method are defined types and overloaded operators. The prototype was developed using Formula Translator (FORTRAN)-90 and the description here will follow the source code in Appendix B. However, this approach can be
implemented in other languages. In fact, implementation in C++ or Java is potentially simpler and requires fewer lines than in FORTRAN-90 due to their object-oriented features. A clear illustration of how to implement the approach in C++ is available online. A tested and verified skeleton implementation is included in Appendices D and E.

In FORTRAN-90, a defined type is declared as follows:

```fortran
type gaussian
  double precision :: mean
  double precision :: sigma
end type gaussian
```

Note that the type has two members representing the distribution average and standard deviation. The type definition allows variables of type `gaussian` to be declared.

Next, the operations outlined in Appendix A are implemented in source code. A function is written for each operator. In general, the functions will accept two gaussian types as arguments and return a gaussian type. The example shown below is the addition of two gaussian types.

```fortran
type(gaussian) function gaussianAdd (left, right)
  type(gaussian), intent(in) :: left
  type(gaussian), intent(in) :: right
  gaussianAdd%mean = left%mean + right%mean
  gaussianAdd%sigma = SQRT(left%sigma**2 + right%sigma**2)
end function gaussianAdd
```

Lastly, in FORTRAN-90, it is necessary to inform the compiler to overload an operator symbol with the function.

```fortran
interface operator (+)
  module procedure gaussianAdd
end interface
```

These three steps are repeated for each operator and each combination of types. The type declaration, operator functions, and interfaces are collected in a module, which is then easily utilized in other routines as needed. The module source code is available in Appendix B.

Adding uncertainty capability to pre-existing source code is then a simple exercise. Consider the following simple function:

```fortran
real function foo (x,y,w)
  real, intent(in) :: x
  real, intent(in) :: y
  real, intent(in) :: w
  foo = w * y**2 / SQRT(x)
end function foo
```

Modifying the function to use the uncertainty module requires changing only the variable declarations and function header.
type(gaussian) function foo (x,y,w)
 type(gaussian), intent(in) :: x
 type(gaussian), intent(in) :: y
 type(gaussian), intent(in) :: w
 foo = w * y**2 / sqrt(x)
end function foo

TESTING

Because the uncertainty module utilizes an analytical approach, it must give the exact analytical answer. Thus, the implementation of the approach in the module may be verified by testing each function against the analytical answer generated by hand. A testing subroutine was written that completes seven tests of the functions. The variables in all seven tests are presented in Table 1. The tests and the results are shown in Table 2 and the source code is available in Appendix C.

Table 1. Test Inputs

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>4.52</td>
<td>0.02</td>
</tr>
<tr>
<td>x</td>
<td>2.0</td>
<td>0.2</td>
</tr>
<tr>
<td>y</td>
<td>3.0</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Table 2. Tests and Analytical Result

<table>
<thead>
<tr>
<th>Test ID</th>
<th>Test Function</th>
<th>Analytical Mean</th>
<th>Analytical Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x + y - w</td>
<td>0.48</td>
<td>0.632771</td>
</tr>
<tr>
<td>2</td>
<td>w * x</td>
<td>9.04</td>
<td>0.904885</td>
</tr>
<tr>
<td>3</td>
<td>x / y</td>
<td>0.666667</td>
<td>0.149071</td>
</tr>
<tr>
<td>4</td>
<td>w ** int(3)</td>
<td>92.3454</td>
<td>1.225824</td>
</tr>
<tr>
<td>5</td>
<td>w ** real(3)</td>
<td>92.3454</td>
<td>1.225824</td>
</tr>
<tr>
<td>6</td>
<td>w ** dble(3)</td>
<td>92.3454</td>
<td>1.225824</td>
</tr>
<tr>
<td>7</td>
<td>w * y**2 / sqrt(x)</td>
<td>28.7651</td>
<td>11.59628</td>
</tr>
</tbody>
</table>

Obviously, it would be interesting to compare the analytical-based approach to a Monte Carlo solution. Preliminary investigations have shown that generating an accurate sample from the Gaussian distribution is critical to obtaining the correct analytical result. Results from Monte Carlo runs of a simple multiplication as in Test 2 match the analytical and uncertainty module result. However, the Monte Carlo approach is not able to match the analytical result for Test 7, even with very large numbers of samples. The Gaussian sampling function is suspected to be the source of error and a higher quality sampler is being sought.
DEMONSTRATION

In order to demonstrate the use of the uncertainty module approach, a subroutine derived from the Vapor, Liquid, and Solid Tracking (VLSTRACK) source tree was modified. VLSTRACK is a Chemical/Biological Hazard Prediction software written at the Naval Surface Warfare Center, Dahlgren. VLSTRACK provides an analysis tool for hazards resulting from the deployment of conventional Chemical and Biological Weapons. The function used for this demonstration was taken from the source code of VLSTRACK 3.1.2 and calculates droplet terminal velocity. The return value of the function is the terminal velocity of a liquid droplet given air and agent properties and accounting for nonspherical droplet deformation.

The necessary modification has already been presented in the Implementation section. A simple comparative sensitivity analysis was conducted in order to evaluate the importance of each of the seven input parameters. For each test, the sigma of the variable being tested was set to 10 percent (%) of the nominal value. The sigma for the remaining inputs was set to zero. The relative error in the terminal velocity calculation for the given error in each input parameter is summarized in Table 3. The input parameters are representative of a 500-micron droplet of O-Ethyl S-Diisopropylaminomethyl Methylphosphonothiolate (VX) at sea level.

Table 3. Sensitivity of Droplet Terminal Velocity

<table>
<thead>
<tr>
<th>Input Parameter</th>
<th>Mean (µ)</th>
<th>Variance (σ = 0.1* µ)</th>
<th>Relative Output Error % (σ / µ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>droplet diameter (m)</td>
<td>0.0005</td>
<td>0.00005</td>
<td>17.0</td>
</tr>
<tr>
<td>acceleration of gravity (m/s)</td>
<td>9.801</td>
<td>0.9801</td>
<td>5.15</td>
</tr>
<tr>
<td>air viscosity at 20 degrees Celsius (°C) (N*s/m²)</td>
<td>1.8e-05</td>
<td>1.8e-06</td>
<td>1.78</td>
</tr>
<tr>
<td>agent viscosity (N*s/m²)</td>
<td>0.7</td>
<td>0.07</td>
<td>1.44e-05</td>
</tr>
<tr>
<td>agent density (kg/m³)</td>
<td>1010</td>
<td>101</td>
<td>5.15</td>
</tr>
<tr>
<td>air density at 20°C (kg/m³)</td>
<td>1.2</td>
<td>0.12</td>
<td>5.15</td>
</tr>
<tr>
<td>agent surface tension (N/m)</td>
<td>3.2e-02</td>
<td>3.2e-03</td>
<td>0.234</td>
</tr>
</tbody>
</table>
RECOMMENDATIONS

This report serves merely as an introduction to the approach developed. There remains a significant amount of work to extend, validate, and verify the methods. Some potential areas for future work follow in this section.

The Monte Carlo approach should be rigorously compared against the uncertainty module. One potential finding is that the Monte Carlo technique requires very large numbers of samples in order to approximate the analytical solution.

The restriction of the variance being small compared to the mean may be prohibitive for Chemical and Biological Hazard Prediction. There are Hazard Prediction model inputs for which the variance is a significant percentage of the mean value. There are methods for deriving errors under these conditions, involving Taylor series expansions. However, the resultant operations do not typically generate Gaussian distributions. Instead, the Central Limit Theorem says that resulting distributions will be log-normal. Thus, the implementation is more complicated, requiring more defined types and more intensive functions.

The list of operator functions is incomplete. The source code currently contains the simplest operations and a few more complicated ones. A complete list of functions should be sought in connection with further testing with legacy source code.

A complete set of tests should be developed that covers all functions in the uncertainty module. This task is necessary to ensure accurate implementation of the operations.

The execution speed penalty for using the uncertainty module should be quantified and compared to a Monte Carlo approach that yields acceptable accuracy.

Because compilers will provide error messages when variable declarations are changed to the new defined types, modification of existing legacy code can be automated. It would be straightforward to develop an automated conversion utility in a scripting language such as Python.

For universal usage, the uncertainty module should be implemented as a C++ class, as explained by Reference 3. This work has been started and is included as Appendix D and Appendix E.

It will also be necessary to investigate other types of probability distributions. Log-normal and chi-squared distributions are likely to be needed because of the limitations of this approach discussed in the Analytical Operators section. A review of existing code should be undertaken in order to determine which distributions are utilized. Then, it will likely be necessary to develop and implement operation functions for mixed distribution operations.
CONCLUSION

This technical report serves to introduce the Explicit Probabilistic Modeling approach. This approach consists of combining properties of Gaussian distributions within a programming framework. The resulting library allows existing software to handle uncertainty calculations without extensive recoding. The approach has been implemented and tested, end-to-end, on a limited scale. Results are presented for an abstract set of test cases as well as for a component of a Chemical/Biological Hazard Prediction model.

Explicit probabilistic modeling has the potential to change the way that Chemical/Biological Hazard Prediction is approached. Because the technique can be applied on a generic, operator basis, pre-existing investments in deterministic models can be retained and made probabilistic. Detailed analyses of the sensitivity of hazard prediction models are possible due to the speed and simplicity of this approach. Extensive design of experimental techniques can be used to identify critical model input parameters. Identifying the most critical input parameters will help focus future research.

Perhaps most importantly, this approach has nearly universal applicability to scientific and engineering simulations. Uncertainty-enabled models would offer many new possibilities, especially in the area of sensitivity studies. Analysis conducted with uncertainty-enabled models would help focus future research and development and empirical model validation.

REFERENCES

APPENDIX A

GAUSSIAN DISTRIBUTION OPERATIONS
Convention:

\(x \) represents a Gaussian distribution with a mean, \(\mu_x \), and standard deviation, \(\sigma_x \).

\(y \) represents a Gaussian distribution with a mean, \(\mu_y \), and standard deviation, \(\sigma_y \).

\(m \) represents a scalar constant or known value with no uncertainty.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Output Mean ((\mu_w))</th>
<th>Output Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x + y)</td>
<td>(\mu_x + \mu_y)</td>
<td>(\sqrt{\sigma_x^2 + \sigma_y^2})</td>
</tr>
<tr>
<td>(x + m)</td>
<td>(\mu_x + m)</td>
<td>(\sigma_x)</td>
</tr>
<tr>
<td>(x - y)</td>
<td>(\mu_x - \mu_y)</td>
<td>(\sqrt{\sigma_x^2 + \sigma_y^2})</td>
</tr>
<tr>
<td>(x - m)</td>
<td>(\mu_x - m)</td>
<td>(\sigma_x)</td>
</tr>
<tr>
<td>(x \times y)</td>
<td>(\mu_x \times \mu_y)</td>
<td>(\mu_w \times \left(\frac{\sigma_x}{\mu_x} \right)^2 + \left(\frac{\sigma_y}{\mu_y} \right)^2)</td>
</tr>
<tr>
<td>(x \times m)</td>
<td>(\mu_x \times m)</td>
<td>(\sigma_x \times m)</td>
</tr>
<tr>
<td>(x \div y)</td>
<td>(\mu_x \div \mu_y)</td>
<td>(\mu_w \times \left(\frac{\sigma_x}{\mu_x} \right)^2 + \left(\frac{\sigma_y}{\mu_y} \right)^2)</td>
</tr>
<tr>
<td>(x \div m)</td>
<td>(\mu_x \div m)</td>
<td>(\frac{\sigma_x}{m})</td>
</tr>
<tr>
<td>(m \div x)</td>
<td>(M \div \mu_x)</td>
<td>(\mu_w \times \frac{\sigma_x}{\mu_x})</td>
</tr>
<tr>
<td>(x^m)</td>
<td>(\mu_x^m)</td>
<td>(\mu_w \times m \times \frac{\sigma_x}{\mu_x})</td>
</tr>
<tr>
<td>(m^x)</td>
<td>(m^{\mu_x})</td>
<td>(\mu_x \times \sigma_x \times \ln(m))</td>
</tr>
</tbody>
</table>
APPENDIX B

UNCERTAINTY MODULE FORTRAN-90 SOURCE CODE
module Uncertainty

!the root of it all, the gaussian distribution type

type gaussian
 double precision :: mean
 double precision :: sigma
end type gaussian

!... all of the interfaces...

interface compare
 module procedure gaussianCompare
end interface

interface operator (+)
 module procedure gaussianAdd
 module procedure gaussianAddDouble
 module procedure doubleAddGaussian
 module procedure realAddGaussian
 module procedure gaussianAddReal
end interface

interface operator (-)
 module procedure gaussianSubtract
 module procedure gaussianSubtractDouble
 module procedure doubleSubtractGaussian
 module procedure gaussianSubtractReal
 module procedure realSubtractGaussian
end interface

interface operator (*)
 module procedure gaussianMultiply
 module procedure gaussianMultiplyDouble
 module procedure doubleMultiplyGaussian
 module procedure gaussianMultiplyReal
 module procedure realMultiplyGaussian
end interface

interface operator (/)
 module procedure gaussianDivide
 module procedure gaussianDivideDouble
 module procedure gaussianDivideReal
 module procedure doubleDivideGaussian
 module procedure realDivideGaussian
end interface

interface operator (**)
 module procedure gaussianPowerDouble
 module procedure gaussianPowerReal
 module procedure doublePowerGaussian
 module procedure realPowerGaussian
end interface

interface SQRT
 module procedure gaussianSQRT
end interface

interface operator (.lt.)
 module procedure gaussianLess
end interface

interface operator (.le.)
 module procedure gaussianLessEqual
 module procedure gaussianLessEqualDouble
 module procedure gaussianLessEqualReal
end interface

interface min
module procedure gaussianMinReal
end interface

interface exp
 module procedure gaussianExp
end interface

! Private functions are not available outside of the module, forcing the operators to be used instead
private :: gaussianCompare

private :: gaussianAdd
private :: gaussianAddDouble
private :: doubleAddGaussian
private :: realAddGaussian
private :: gaussianAddReal

private :: gaussianSubtract
private :: gaussianSubtractDouble
private :: doubleSubtractGaussian
private :: gaussianSubtractReal
private :: realSubtractGaussian

private :: gaussianMultiply
private :: gaussianMultiplyDouble
private :: doubleMultiplyGaussian
private :: gaussianMultiplyReal
private :: realMultiplyGaussian

private :: gaussianDivide
private :: gaussianDivideDouble
private :: doubleDivideGaussian
private :: gaussianDivideReal
private :: realDivideGaussian

private :: gaussianPowerDouble
private :: gaussianPowerReal
private :: doublePowerGaussian
private :: realPowerGaussian

private :: gaussianSQRT
private :: gaussianLess
private :: gaussianLessEqual
private :: gaussianLessEqualDouble
private :: gaussianLessEqualReal
private :: gaussianMinReal
private :: gaussianExp

private :: gaussianCompliment

contains

!!! The functions for comparing gaussian types

logical function gaussianCompare(arg1, arg2, tol)
 type(gaussian), intent(in) :: arg1
 type(gaussian), intent(in) :: arg2
 double precision, intent(in) :: tol
 gaussianCompare = ((abs(arg1%mean - arg2%mean)/arg2%mean) .lt. tol) .and. &
 (abs(arg1%sigma - arg2%sigma)/arg2%mean) .lt. tol)
end function gaussianCompare

!!! All the add operations

type(gaussian) function gaussianAdd (left, right)
 type(gaussian), intent(in) :: left

B-4
type (gaussian), intent (in) :: right
gaussianAdd%mean = left%mean + right%mean
gaussianAdd%sigma = SQRT(left%sigma**2 + right%sigma**2)
end function gaussianAdd

type (gaussian) function gaussianAddDouble (left, right)
type (gaussian), intent (in) :: left
double precision, intent (in) :: right
gaussianAddDouble%mean = left%mean + right
gaussianAddDouble%sigma = left%sigma
end function gaussianAddDouble

type (gaussian) function doubleAddGaussian (left, right)
type (gaussian), intent (in) :: right
double precision, intent (in) :: left
doubleAddGaussian%mean = left + right%mean
doubleAddGaussian%sigma = right%sigma
end function doubleAddGaussian

type (gaussian) function realAddGaussian (left, right)
type (gaussian), intent (in) :: right
real, intent (in) :: left
realAddGaussian%mean = dble(left) + right%mean
realAddGaussian%sigma = right%sigma
end function realAddGaussian

!!! All the subtract operations

type (gaussian) function gaussianSubtract (left, right)
type (gaussian), intent (in) :: left
type (gaussian), intent (in) :: right
gaussianSubtract%mean = left%mean - right%mean
gaussianSubtract%sigma = SQRT(left%sigma**2 + right%sigma**2)
end function gaussianSubtract

type (gaussian) function gaussianSubtractDouble (left, right)
type (gaussian), intent (in) :: left
double precision, intent (in) :: right
gaussianSubtractDouble%mean = left%mean - right
gaussianSubtractDouble%sigma = left%sigma
end function gaussianSubtractDouble

type (gaussian) function gaussianSubtractReal (left, right)
type (gaussian), intent (in) :: left
real, intent (in) :: right
gaussianSubtractReal%mean = left%mean - dble(right)
gaussianSubtractReal%sigma = left%sigma

end function gaussianSubtractReal

! All the multiply operations

type(gaussian) function gaussianMultiply (left, right)
 type(gaussian), intent(in) :: left
 type(gaussian), intent(in) :: right
 gaussianMultiply%mean = left%mean * right%mean
gaussianMultiply%sigma = gaussianMultiply%mean * &
 SQRT((left%sigma/left%mean)**2 + (right%sigma/right%mean)**2)
end function gaussianMultiply

! All the divide operations

type(gaussian) function gaussianMultiplyDouble (left, right)
 type(gaussian), intent(in) :: left
 double precision, intent(in) :: right
gaussianMultiplyDouble%mean = left%mean * right
gaussianMultiplyDouble%sigma = left%sigma * right
doubleMultiplyGaussian = gaussianMultiplyDouble(right,left)
end function gaussianMultiplyDouble
type(gaussian) function gaussianDivide (left, right)
type(gaussian), intent(in) :: left
 type(gaussian), intent(in) :: right

 gaussianDivide%mean = left%mean / right%mean
 gaussianDivide%sigma = gaussianDivide%mean * &
 SQRT((left%sigma / left%mean)**2 + (right%sigma / right%mean)**2)
end function gaussianDivide

type(gaussian) function gaussianDivideDouble (left, right)
type(gaussian), intent(in) :: left
double precision, intent(in) :: right

 gaussianDivideDouble%mean = left%mean / right
 gaussianDivideDouble%sigma = left%sigma / right
end function gaussianDivideDouble

type(gaussian) function gaussianDivideReal (left, right)
type(gaussian), intent(in) :: left
real, intent(in) :: right

 gaussianDivideReal%mean = left%mean / dble(right)
 gaussianDivideReal%sigma = left%sigma / dble(right)
end function gaussianDivideReal

type(gaussian) function realDivideGaussian (left, right)
type(gaussian), intent(in) :: right
real, intent(in) :: left

 realDivideGaussian%mean = dble(left) / right%mean
 realDivideGaussian%sigma = abs(realDivideGaussian%mean * right%sigma/right%mean)
end function realDivideGaussian

type(gaussian) function doubleDivideGaussian (left, right)
type(gaussian), intent(in) :: right
double precision, intent(in) :: left

 doubleDivideGaussian%mean = left / right%mean
 doubleDivideGaussian%sigma = abs(doubleDivideGaussian%mean * right%sigma/right%mean)
end function doubleDivideGaussian

!!! All the power operations

type(gaussian) function gaussianPowerDouble (left, right)
type(gaussian), intent(in) :: left
double precision, intent(in) :: right

 gaussianPowerDouble%mean = left%mean ** right
 gaussianPowerDouble%sigma = gaussianPowerDouble%mean * &
 abs (right * left%sigma / left%mean)
end function gaussianPowerDouble

type(gaussian) function gaussianPowerReal (left, right)
type(gaussian), intent(in) :: left
real, intent(in) :: right

 gaussianPowerReal%mean = left%mean ** right
 gaussianPowerReal%sigma = gaussianPowerReal%mean * &
 abs (right * left%sigma / left%mean)
end function gaussianPowerReal

type(gaussian) function gaussianPowerInteger (left, right)
type (gaussian), intent (in) :: left
integer, intent (in) :: right

gaussianPowerInteger%mean = left%mean ** right
gaussianPowerInteger%sigma = gaussianPowerInteger%mean * &
abs (right * left%sigma / left%mean)

end function gaussianPowerInteger

type (gaussian) function doublePowerGaussian (left, right)
type (gaussian), intent (in) :: right
double precision, intent (in) :: left

doublePowerGaussian%mean = left ** right%mean
doublePowerGaussian%sigma = abs(right%sigma * doublePowerGaussian%mean * log(left))

end function doublePowerGaussian

type (gaussian) function realPowerGaussian (left, right)
type (gaussian), intent (in) :: right
real, intent (in) :: left

realPowerGaussian%mean = dble(left) ** right%mean
realPowerGaussian%sigma = abs(right%sigma * realPowerGaussian%mean * log(left))

end function realPowerGaussian

type (gaussian) function gaussianExp (arg)
type (gaussian), intent (in) :: arg

 gaussianExp = doublePowerGaussian(exp(1.0d0), arg)

end function gaussianExp

!!! Square root operation

 type (gaussian) function gaussianSQRT (arg)
type (gaussian), intent (in) :: arg

 gaussianSQRT = gaussianPowerDouble (arg, 5.0d-1)

end function gaussianSQRT

!!! Logical Operations

!!!!! note bene!!!!!!
! These need serious consideration and are to be used only for proof of concept!

 logical function gaussianLess (left, right)
type (gaussian), intent (in) :: left
type (gaussian), intent (in) :: right

gaussianLess = left%mean .lt. right%mean

end function gaussianLess

 logical function gaussianLessEqual (left, right)
type (gaussian), intent (in) :: left
type (gaussian), intent (in) :: right

gaussianLessEqual = left%mean .le. right%mean

end function gaussianLessEqual

 logical function gaussianLessEqualDouble (left, right)
type (gaussian), intent (in) :: left
double precision, intent (in) :: right

gaussianLessEqualDouble = left%mean .le. right
end function gaussianLessEqualDouble

logical function gaussianLessEqualReal (left,right)
 type(gaussian), intent(in) :: left
 real, intent(in) :: right

 gaussianLessEqualReal = left%mean .le. dble(right)
end function gaussianLessEqualReal

!!! Other intrinsics
!!! Note Bene !!!!
!!! these still need serious consideration as well
!
 specifically:
 !
 !
 type(gaussian) function gaussianMinReal (arg1,arg2)
 type(gaussian), intent(in) :: arg1
 real, intent(in) :: arg2

 if (arg1%mean .lt. dble(arg2)) then
 gaussianMinReal%mean = dble(arg2)
 gaussianMinReal%sigma = arg1%sigma
 else
 gaussianMinReal = arg1
 end if
end function gaussianMinReal

type(gaussian) function gaussianCompliment (arg)
 type(gaussian), intent(in) :: arg

 gaussianCompliment%mean = -arg%mean
 gaussianCompliment%sigma = arg%sigma
end function gaussianCompliment

end module Uncertainty
APPENDIX C

TEST SUBROUTINE FORTRAN-90 SOURCE CODE
integer function testUncertaintyLibrary ()
 double precision :: tol
 integer :: errCount
 type(gaussian) :: x
 type(gaussian) :: y
 type(gaussian) :: z
 type(gaussian) :: w
 type(gaussian) :: answer1,answer2,answer3,answer4
 type(gaussian) :: answer5,answer6,answer7,answer8
 type(gaussian) :: foo7

 !tolerance for this test suite
tol = 0.00001

 !control variables for all the tests
 w = gaussian(4.52,0.02)
x = gaussian(2.0,0.2)
y = gaussian(3.0,0.6)

 !answers for all the tests
 answer1 = gaussian(0.48000,0.632771)
 answer2 = gaussian(9.04000,0.904885)
 answer3 = gaussian(0.66667,0.149071)
 answer4 = gaussian(92.3454,1.225824)
 answer5 = gaussian(92.3454,1.225824)
 answer6 = gaussian(92.3454,1.225824)
 answer7 = gaussian(28.7651,11.59628)

 !Test #1: addition and subtraction
 z = x + y - w
 errCount = errCount + setErr(compare(z,answer1,tol))

 !Test #2: multiplication
 z = w*x
 errCount = errCount + setErr(compare(z,answer2,tol))

 !Test #2: division
 z = x/y
 errCount = errCount + setErr(compare(z,answer3,tol))

 !Test #4: test the double power function
 z = w**(dble(3))
 errCount = errCount + setErr(compare(z,answer4,tol))

 !Test #5: test the real power function
 z = w**(real(3))
 errCount = errCount + setErr(compare(z,answer5,tol))

 !Test #6: test the integer power function
 z = w**(int(3))
 errCount = errCount + setErr(compare(z,answer6,tol))

 !Test7 #: multiplication, division, powers, and squareroots
 z = (w*y**2)/ SQRT(x)
 errCount = errCount + setErr(compare(z,answer7,tol))

 testUncertaintyLibrary = errCount

end function testUncertaintyLibrary
APPENDIX D

UNCERTAINTY CLASS C++ HEADER FILE
class Gaussian
{
public:
 // Data Members
 double mean;
 double sigma;
 // Constructors and Destructors
 Gaussian(void);
 Gaussian(double meanIn, double sigmaIn);
 ~Gaussian(void);
 // Standard methods
 void Display ();
 // Overloaded Class Operators
 Gaussian operator+(Gaussian &arg2);
 Gaussian operator+(double &arg2);
 Gaussian operator-(Gaussian &arg2);
 Gaussian operator-(double &arg2);
};

// Overloaded Non-Class Operators
Gaussian operator+(double &arg1, Gaussian &arg2);
Gaussian operator-(double &arg1, Gaussian &arg2);
APPENDIX E

UNCERTAINTY CLASS C++ SOURCE CODE
```cpp
#include <iostream>
#include <math.h>
#include "gaussian.h"
using namespace std;

Gaussian::Gaussian(void)
{
}

Gaussian::Gaussian(double meanIn, double sigmaIn)
{
    mean = meanIn;
    sigma = sigmaIn;
}

Gaussian::~Gaussian(void)
{
}

void Gaussian::Display ()
{
    cout << mean << ", " << sigma << endl;
}

Gaussian Gaussian::operator+ (Gaussian &arg2)
{
    Gaussian out;
    out.mean = mean + arg2.mean;
    out.sigma = sqrt(pow(sigma,2) + pow(arg2.sigma,2));
    return ( out );
}

Gaussian Gaussian::operator+ (double &arg2)
{
    Gaussian out;
    out.mean = mean + arg2;
    out.sigma = sigma;
    return ( out );
}

Gaussian operator+ (double &arg1, Gaussian &arg2)
{
    Gaussian out;
    out.mean = arg2.mean + arg1;
    out.sigma = arg2.sigma;
    return ( out );
}

Gaussian Gaussian::operator- (Gaussian &arg2)
{
    Gaussian out;
    out.mean = mean - arg2.mean;
    out.sigma = sqrt(pow(sigma,2) + pow(arg2.sigma,2));
    return ( out );
}

Gaussian Gaussian::operator- (double &arg2)
```
{
 Gaussian out;
 out.mean = mean - arg2;
 out.sigma = sigma;
 return (out);
}

Gaussian operator- (double &arg1, Gaussian &arg2)
{
 Gaussian out;
 out.mean = arg2.mean - arg1;
 out.sigma = arg2.sigma;
 return (out);
}
DISTRIBUTION

<table>
<thead>
<tr>
<th>DOD ACTIVITIES (CONUS)</th>
<th>INTERNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN CODE A76 (TECHNICAL LIBRARY)</td>
<td>B60 TECHNICAL LIBRARY</td>
</tr>
<tr>
<td>COMMANDING OFFICER CSSDD NSWC</td>
<td>B</td>
</tr>
<tr>
<td>6703 W HIGHWAY 98 PANAMA CITY FL 32407-7001</td>
<td>B50</td>
</tr>
<tr>
<td></td>
<td>B55</td>
</tr>
<tr>
<td>DEFENSE TECH INFORMATION CTR 8725 JOHN J KINGMAN RD SUITE 0944 FORT BELVOIR VA 22060-6218</td>
<td>G24 (GREGORY)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NON-DOD ACTIVITIES (CONUS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTN JOHN CHIN GOVERNMENT DOCUMENTS SECTION LIBRARY OF CONGRESS 101 INDEPENDENCE AVENUE SE WASHINGTON DC 20540-4172</td>
</tr>
<tr>
<td>THE CNA CORPORATION 4825 MARK CENTER DRIVE ALEXANDRIA VA 22311-1850</td>
</tr>
</tbody>
</table>